
Scalar bounded-from-below conditions from Bayesian active learning

George N. Wojcik*

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

(Received 2 January 2024; accepted 1 April 2024; published 14 May 2024)

We present a procedure leveraging Bayesian deep active learning to rapidly produce highly accurate
approximate bounded-from-below conditions for arbitrary renormalizable scalar potentials, in the form of a
neural network which may be saved and exported for use in arbitrary parameter space scans. We explore the
performance of our procedure on three different scalar potentials with either highly nontrivial or unknown
symbolic bounded-from-below conditions (the most general two-Higgs doublet model, the three-Higgs
doublet model, and a version of the Georgi-Machacek model without custodial symmetry). We find that we
can produce fast and highly accurate binary classifiers for all three potentials. Furthermore, for the
potentials for which no known symbolic necessary and sufficient conditions on boundedness-from-below
exist, our classifiers substantially outperform some common approximate analytical methods, such as
producing tractable sufficient but not necessary conditions or evaluating boundedness-from-below
conditions for scenarios in which only a subset of the theory’s fields achieve vacuum expectation values.
Our methodology can be readily adapted to any renormalizable scalar field theory. For the community’s
use, we have developed a PYTHON package, BFBrain, which allows for the rapid implementation of our
analysis procedure on user-specified scalar potentials with a high degree of customizability.

DOI: 10.1103/PhysRevD.109.095018

I. INTRODUCTION

Although the Standard Model (SM) contains only a
single elementary scalar (the Higgs boson), given the SM’s
failure to adequately address a variety of ongoing theo-
retical and experimental questions, such as the identity of
dark matter, the gauge-gravity hierarchy problem, and the
origin of the intricate and nontrivial structure of fermion
masses and mixings, it would be needlessly limiting to
avoid considering theories with multiple additional scalar
fields. Over the decades, significant model-building work
has been and continues to be done on a variety of theories
with extended scalar sectors (see, for example, [1–7]), in
which these beyond the Standard Model (BSM) scalars
might spontaneously break new gauge symmetries, act as
dark matter candidates or mediators, reproduce the
observed SM Higgs mass with a greater degree of natu-
ralness, and more. Unfortunately, multiscalar BSM theories
tend to present model builders with considerable difficulties
—in a significant subset of such constructions, the scalar
sector is in fact the principal source of model complexity.
Unlike gauge interactions, which have highly constrained

forms for their interactions by virtue of the elegant structure
suggested by local gauge invariance, there are compara-
tively few a priori theoretical constraints on most scalar
coupling parameters. As such, the number of free param-
eters in a given theory will grow rapidly with the number of
scalar fields, quickly making comprehensive explorations
of these parameter spaces nontrivial at best and entirely
intractable at worst. Among the more notorious problems
arising in multiscalar theories is the issue of boundedness-
from-below of the scalar potential, a necessary precondition
for stability of the vacuum. The problem is simple enough
to express: For a given set of model parameters, the scalar
potential function in the action must have an absolute
minimum at some finite configuration of scalar vacuum
expectation values (vev’s). If this condition is not satisfied,
then the model has no absolute minimum and any vacuum
configuration we observe in our universe is necessarily
unstable.
A necessary step to determining the bounded-

from-below region of scalar potential parameter space is
specifically identifying strict boundedness-from-below
conditions, namely the region of parameter space in which
the sum of all quartic terms of the scalar potential are
always positive. Once this criterion is resolved, the com-
plete space of bounded-from-below scalar potentials can be
determined simply by requiring that on the boundaries of
the strictly bounded-from-below region (that is, where there
exists a vev configuration such that the quartic coefficients
sum to 0), the cubic and/or quadratic terms ensure

*gwojcik@wisc.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 095018 (2024)

2470-0010=2024=109(9)=095018(37) 095018-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.095018&domain=pdf&date_stamp=2024-05-14
https://doi.org/10.1103/PhysRevD.109.095018
https://doi.org/10.1103/PhysRevD.109.095018
https://doi.org/10.1103/PhysRevD.109.095018
https://doi.org/10.1103/PhysRevD.109.095018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


boundedness-from-below is maintained. For many BSM
studies, it in fact suffices to simply determine the strict
bounded-from-below conditions, since a region satisfying
the weak boundedness-from-below conditions but not the
strict ones is likely infinitesimally close to a model for
which the strict condition is observed—this practice is so
common that in subsequent sections in this paper we shall
often for the sake of brevity refer only to “bounded-from-
below conditions” when discussing the strict positivity
criteria.1

At tree level, identifying the strictly bounded-from-
below region of parameter space amounts to determining
if a given multivariable quartic polynomial, parametrized
by the quartic scalar coupling coefficients, is everywhere
positive, or equivalently, that a rank-4 tensor is positive-
definite. Since many radiative corrections can be expressed
simply as modifications of the tree-level quartic couplings,
resolving the tree-level bounded-from-below region gen-
erally also addresses the problem at arbitrary loop level as
well. Unfortunately, while it is always possible to deter-
mine the positive-definiteness of a given rank-4 tensor [7],
the general procedure to do so is NP-hard [7,9,10], and
hence often not feasible to accomplish even for numerical
scans of the model parameter space. While certain special
cases can be treated more easily,2 the only recourse for
many scalar potentials is to embark on an enormously
complicated symbolic analysis, which will generally not
yield compact solutions if closed-form results are obtain-
able at all. Failing to find exact necessary and sufficient
conditions, model builders have generally relied on trac-
table symbolic approximations to these conditions by
finding criteria that are necessary but not sufficient
(e.g., [12], in which case the criteria will permit points
that are not, in fact, stable) or sufficient but not necessary
(e.g., [13], in which case a stable allowed portion of
parameter space will be omitted). Any attempt to create
a generic strategy to approach the boundedness-from-
below problem, therefore, naturally must address the
punishing complexity of determining the positive-
definiteness of a rank-4 tensor, even approximately.
In this work, we proposemitigating this problem by using

active learning: By training a sequential neural network on
comparatively few explicitly labeled points and using the
network itself to propose additional training examples,
the full landscape of decision boundaries in the space of
the potential’s quartic coupling constants for boundedness-
from-below can be rapidly approximated while probing

only a fraction of the full parameter space—recently
in [14–16] these techniques have been used in other BSM
model building contexts. Training can be done on the scale
of hours on an individual personal computer and requires
only publicly available machine learning frameworks, and
once the decision boundary is well explored, the trained
neural network itself can be used as a fast classifier to
evaluate the boundedness-from-below of the scalar potential
for any point in the model’s parameter space to a remarkable
degree of accuracy. On explicitly labeled test data, we find
that our classifiers substantially outperform common exam-
ples of necessary but not sufficient and sufficient but not
necessary approximate bounded-from-below conditions.
Furthermore, because we employ a Bayesian neural net-
work, the trained classifier also has a meaningful metric for
uncertainty in its predictions, which can be used to gauge the
reliability of its results.
Once trained, the classifier produced by our methodol-

ogy represents a portable set of approximate bounded-
from-below conditions, accurate enough to be usable for a
wide range of phenomenological studies and with reliable
uncertainty estimates on its predictions, that can in turn be
saved, shared, and applied to new points in parameter space
with minimal computational effort. In this paper, we shall
outline the key components of our procedure and explore
the results of applying it to several scalar potentials with
nontrivial or unknown strict bounded-from-below condi-
tions. The remainder of this paper is laid out as follows. In
Sec. II, we outline the problem of strict boundedness-from-
below in greater detail and establish notation. In Sec. III, we
review some key concepts in Bayesian deep learning and
reference their application in our setting, with a particular
emphasis on uncertainty quantification, as well as arguing
for the suitability of a Bayesian neural network for the
classification task at hand. In Sec. IV, we review the
fundamental concepts in active learning (particularly in
the context of a Bayesian neural network) and describe the
components of our active learning procedure in detail. In
Sec. V, we present the results of applying our procedure to
three different scalar potentials: The most general two-
Higgs doublet model (2HDM), the Weinberg three-Higgs
doublet model of [4], and the Georgi-Machacek model [3]
with custodial symmetry broken (as occurs at the loop
level [5,12,17]). Finally, in Sec. VI, we summarize our
findings and discuss directions for future work. In addition
to this paper, we have published a PYTHON package on
GitHub, BFBrain [18], which allows for our procedure to
be easily implemented for arbitrary user-specified
scalar potentials, and includes substantial customization
options.

II. PROBLEM SETUP

In general, a renormalizable scalar potential with real
degrees of freedom given as ϕi can be written as

1There are, of course, models where flat directions of the
quartic potential are significant, perhaps most famously the
minimal supersymmetric Standard Model (MSSM) [8].

2For example, if the quartic terms in a potential can be split
into biquadratic forms, such as in the inert doublet model [11],
the problem can be reduced to simply proving the positive-
definiteness of a rank-2 tensor, which can be readily done
numerically or symbolically.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-2



VðϕÞ ¼ Mijϕiϕj þ ξijkϕiϕjϕk þQðλ⃗Þijklϕiϕjϕkϕl; ð1Þ

where M, ξ, and Qðλ⃗Þ are a rank-2, rank-3, and rank-4
tensor, respectively, while λ⃗ is a vector of independent real
coefficients of dimension-4 scalar operators—for later
notational convenience we keep these coefficients explicit,
and without loss of generality let Qðλ⃗Þ be a linear function
of λ⃗. A necessary precondition for vacuum stability of the
model (barring additional nonrenormalizable operators) is
that such a model is bounded from below—that is, the
global minimum of V is greater than −∞. As noted in
Sec. I, a necessary step in this analysis is confirming strict
bounded-from-below conditions, namely

Qðλ⃗Þijklϕiϕjϕkϕl > 0 ∀ ϕ∈Rd: ð2Þ

In tensor algebra terms, the rank-4 tensor Qðλ⃗Þ must be
positive-definite. It is straightforward to see that many of
the characteristics of positive-definiteness of matrices carry
over to rank-n tensors—for example, a positive rescaling of
a positive-definite tensor remains positive-definite, and the
sum of two positive-definite tensors must necessarily
remain positive-definite. Two lemmas are of particular
use when characterizing the space of λ⃗ values that satisfy
Eq. (2) for some scalar potential. First,
Lemma 1. Let Qðλ⃗Þijkl be a rank-4 tensor representing

the quartic part of a scalar potential, and let Q be a linear
function of λ⃗. Then, the set of λ⃗ such that Qðλ⃗Þijkl is
positive-definite is convex.3

Proof. A region C is convex by definition if the line
segment separating any two points λ⃗a; λ⃗b ∈ C are also
in C—we can write this as tλ⃗a þ ð1 − tÞλ⃗b ∈ C for
t∈ ½0; 1�. From the linearity of Qðλ⃗Þ, we know that
Qðtλ⃗a þ ð1 − tÞλ⃗bÞ ¼ tQðλ⃗aÞ þ ð1 − tÞQðλ⃗bÞ. We know
that Qðλ⃗a;bÞ are both positive-definite, and since
t∈ ½0; 1�, we know that t; 1 − t ≥ 0. Therefore, we know
that both tQðλ⃗aÞ and ð1 − tÞQðλ⃗bÞ are positive-definite, and
so their sum, Qðtλ⃗a þ ð1 − tÞλ⃗bÞ will also be positive-
definite. ▪
Furthermore, we can straightforwardly see that
Lemma 2. Let Qðλ⃗Þijkl be a rank-4 tensor representing

the quartic part of a scalar potential, and let Q be a linear
function of λ⃗. Then, for some real number r > 0, Qðrλ⃗Þ is
positive-definite if and only if Qðλ⃗Þ is positive-definite.
Proof. Both directions of the proof follow immediately

from the linearity of Qðλ⃗Þ. If Qðλ⃗Þ is positive-definite, then
we know thatQðrλ⃗Þ ¼ rQðλ⃗Þmust also be positive-definite

for r > 0, and similarly if Qðrλ⃗Þ is positive-definite, then
Qðλ⃗Þ ¼ r−1Qðrλ⃗Þ is also positive-definite. ▪
Combining the two lemmas 1 and 2, we readily see that

characterizing the entire strictly bounded-from-below
region for a given scalar potential is simply the task of
identifying a single, geodesically convex region on the
surface of the unit hypersphere in λ⃗ space.
The convexity of the bounded-from-below region sug-

gests a convenient feature: In order to fully characterize that
region, we need merely to find a small ensemble of points
within it from a random search, and then scan intelligently
in the local vicinity of those points in order to locate the
decision boundaries. We do not need to worry, for example,
that any other valid region might exist, hugely separated in
λ⃗ space from the convex region the classifier learns. It is
therefore not unreasonable to expect that a sufficiently
well-trained classifier can to good approximation character-
ize the entire bounded-from-below region for a given scalar
potential, and allow a model builder to easily include
bounded-from-below constraints in arbitrary parameter
scans even with potentials for which numerical or algebraic
techniques for determining these constraints are unresolved
or impractically computationally intensive. To realize such
a classifier, we merely need to identify a classification
technique that suits our needs and a training strategy to
efficiently explore λ⃗.

III. BAYESIAN DEEP LEARNING AND
UNCERTAINTY: A REVIEW

To answer the first of our needs, defining an appropriate
classifier, we propose a Bayesian neural network [19,20], a
form of learner which has previously proven effective in
addressing other problems arising in high energy physics,
for example jet classification [21,22], predictions for
supersymmetric (SUSY) theories [23], and analyzing
galactic gamma ray observations [24]. Since neural net-
works can in principle approximate any continuous func-
tion,4 a neural network should be extremely well-suited to
learning an arbitrary classification rule for boundedness-
from-below, where continuity and analyticity of the scalar
potential ensure that a continuous function evaluating
“boundedness-from-below” as a scalar function of the
input quartic potential couplings, theoretically exists. In
a Bayesian neural network, probability distributions rather
than point estimates of the neural network’s parameters are
learned during training, affording greater uncertainty quan-
tification abilities which we shall find useful. This section
briefly reviews the concepts underlying a Bayesian deep

3Thank you to Matthew Sullivan for pointing this out.

4This is only rigorously true for infinitely wide or deep neural
networks, and we will make some architecture choices later on
which will further limit expressivity, but for practical purposes a
finite neural network is capable of expressing essentially any
decision boundary we are likely to come across.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-3



neural network, outlining its suitability for our task and
summarizing some important results leveraged in our
analysis.
To maximize readability, the discussion here will be

primarily qualitative and intuitive with as little mathematics
as possible—more detailed and mathematically rigorous
discussions of Bayesian neural networks are deferred to
Appendix B. Before diving into the Bayesian neural
network paradigm, it is useful to discuss the nature of
predictive uncertainty in neural networks. Because the
black-box nature of any neural network, it is virtually
inconceivable that any classifier we produce will be
perfectly accurate. Furthermore, even if it were, we would
have no means of rigorously proving that accuracy.
Therefore, in order to render our classifier useful, it must
have some notion of its predictive uncertainty—that is,
given an input, the neural network must produce not only a
label, but also some metric for how confident the classifier
is about that label. We also note that a high degree of
classifier uncertainty may stem from one of two principal
sources in our problem: First, a point in λ⃗ space that is
extremely close to the boundary between the bounded-
from-below region and the unbounded region will presum-
ably have uncertain classification because it resembles
points in both possible classes. Second, a point anywhere
in λ⃗ space may have uncertain classification simply because
the model is insufficient—either its training data is sparse
in the vicinity of that point or the model is not complex
enough to perfectly capture the physics. These two sources
of uncertainty—from inherent ambiguity in the data and
from insufficiency of the model—are often classified as
aleatoric and epistemic uncertainty, respectively.
It is clear that any classifier we wish to use for our task

must have a notion of both epistemic and aleatoric
uncertainty, and be capable of distinguishing between
the two—we can see this by considering how differently
a model builder might consider points with significant
levels of one or the other uncertainty. A point with high
aleatoric uncertainty likely denotes a region that may be of
physical interest, perhaps with a metastable scalar potential,
for example. A point with high epistemic uncertainty,
meanwhile, solely suggests a shortcoming of our training
data or neural network that should trigger skepticism in the
classification from a physicist, but can be corrected by
expanding the training set or increasing the complexity of
the model. Unfortunately, a conventional neural network-
based classifier lacks any adequate machinery to track
epistemic uncertainty. For clarity, we will discuss this
problem in the case of a simple binary classifier. In this
case, a neural network takes an input value x and outputs a
confidence score (really, a likelihood) between 0 and 1
given as

cwðxÞ ¼
1

1þ expf−fwðxÞg
; ð3Þ

where fw is a real function specified by neural network’s
weights (trainable parameters) w.5 This score indicates the
model’s confidence that x is in the “positive” class (which
class is defined as “positive” is of course arbitrary)—a
score close to 1 indicates high confidence that x belongs to
this class, while a score close to 0 indicates high confidence
that it belongs instead to the other classification.
Translating this into labels is then trivial: Points with
cwðxÞ > 0.5 are classified as positive and all others are
placed in the opposite class. Points with high aleatoric
uncertainty are inherently ambiguous and will output
confidence scores near 0.5, since similar training data
points will incentivize the weights to modify predictions
around the uncertain point in opposite directions. However,
since the confidence score is the sole output from the neural
network, it is also clear that there is no further information
from our prediction that we might use to quantify epistemic
uncertainty. In fact, it has been empirically demonstrated
[25] that neural networks can often produce highly con-
fident but incorrect predictions for points that are dissimilar
from any training data—obviously, the confidence score
alone not only lacks any way for us to separate aleatoric and
epistemic uncertainty, it appears to disregard the latter
entirely.

A. Bayesian neural networks

Bayesian neural networks offer a solution to this short-
coming. While a conventional deterministic neural network
learns a series of point estimates for its weights, based on
their maximum likelihood values given the training data, a
Bayesian neural network is presented with a prior proba-
bility weight distribution, and learns a posterior distribution
given the training data. As a result, a Bayesian neural
network does not offer a deterministic point estimate for its
prediction, but instead offers a probability distribution over
outputs. The variance of this distribution provides a notion
of epistemic uncertainty: If more data is provided, the
posteriors of the model weights will become sharper
(reflecting our diminishing ignorance), in turn sharpening
the distribution of the prediction.
In practical terms, translating the above notions into

tractable approaches for deep learning is nontrivial, and for
details we refer readers to Appendix B and a review such
as [20]. In this work, we approximate Bayesian inference
using a technique known as Monte Carlo dropout [25].
Originally devised as a regularization technique for neural
networks, dropout randomly sets the outputs of some
neurons to zero during each pass through the network

5Because this score ranges between 0 and 1 and represents a
likelihood of the positive label y given the input x and the weights
w, it is often written as pðyjx; wÞ. Given that misinterpretation of
the confidence as the genuine probability of the label y given
input x [that is, pðyjxÞ] is rife, however, we have opted for a
different somewhat nonstandard notation.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-4



during training. In [25], a correspondence was proved
between a conventional neural network trained with drop-
out and an (approximate) Bayesian neural network. The
dropout-trained neural network will produce prediction
distributions with the same mean and variance as the
corresponding Bayesian neural network as long as dropout
is also applied when making predictions. In the original
proposal for Monte Carlo dropout, the dropout probability
of the neurons remained a free input parameter in the
training process, which required optimization for any given
set of training data via simple trial and error (or in other
words, repeated training of the network). Because our task
involves adding new training data throughout the learning
process, we instead opt for a modified approach known
as concrete dropout [26], which treats the dropout prob-
ability of each network layer’s neurons as a learnable
parameter which is automatically optimized during train-
ing. The details of the implementation of concrete (and
Monte Carlo) dropout are discussed in Appendix B.
To glean information about the prediction distribution for

an input x, then, we only need to repeatedly query our
trained network with the dropout enabled. For example, a
modified confidence score for an input x can be attained by
taking the mean of the confidence scores given in some
number of trials T, or more succinctly

c̄ðxÞ ¼ 1

T

XT
t¼1

ctðxÞ; ð4Þ

where t here represents some specific forward pass of the
input through the model, and ctðxÞ represents the output
confidence score from the tth pass. Now we can consider
how this confidence score might assess uncertain inputs.
An input with high aleatoric uncertainty will, similar to the
deterministic case, result in most passes through the neural
network outputting values near 0.5, but a point about with
high epistemic uncertainty (and therefore a high variance in
the weights which contribute to the output) will instead give
outputs which are highly certain in opposing directions,
i.e., some outputs will be close to 1 and others close to 0.
c̄ðxÞ, will therefore still be close to 0.5. In contrast to the
confidence score given in Eq. (3), then, this Bayesian
version has a notion of both aleatoric and epistemic
uncertainty.

B. Quantifying uncertainty in Bayesian deep learning

Having argued that the probability distributions pre-
dicted by a Bayesian neural network reflect both epistemic
and aleatoric uncertainty, we can now summarize how these
components are estimated in our specific application.
Information theory suggests tractable estimates of both
total uncertainty (that is, epistemic and aleatoric uncertainty
combined) and epistemic uncertainty. A measurement of
total uncertainty is the Shannon entropy [27], which we can
estimate as

Hðc̄Þ ¼ −c̄ log c̄ − ð1 − c̄Þ logð1 − c̄Þ; ð5Þ

where c̄ ¼ c̄ðxÞ, as defined in Eq. (4), for some input x.
The expression in Eq. (5) is maximized for c̄ ¼ 1=2 and is
precisely analogous to the Gibbs formula for entropy in
thermodynamics. The epistemic uncertainty can be esti-
mated via mutual information, given by

IðctÞ¼Hðc̄Þþ 1

T

XT
t¼1

�
ct logctþð1−ctÞ logð1−ctÞ

�
; ð6Þ

where ct follows the same notation as Eq. (4). Formally,
mutual information measures the expected information
gained about the weights through knowing the label of
the queried input. Because uncertainty in the weights in
turn corresponds to a Bayesian neural network’s measure of
epistemic uncertainty, we follow the practice of [28] and
identify the mutual information as an estimate of that
quantity. We can see that mutual information is not
sensitive to low-confidence predictions in the individual
passes ct through the neural network, as long as they are
consistent: Even if c̄ ¼ 1=2, IðctÞ ¼ 0 if all ct ¼ c̄. Instead,
mutual information is maximized for points where there is a
high degree of disagreement between different predictions
of the neural network, regardless of the inherent ambiguity
of the input.
We finally invoke one further candidate metric for model

uncertainty, the variation ratio. This quantity is given by

VRðxÞ ¼ 1 −
fx
T
; ð7Þ

where fx is the number of the T forward passes through the
neural network that specify a classification other than the
most common label for some input x. In the Bayesian case,
this approximates the likelihood that the mode label is not
the true label, given the input and the training data. This
measure does not cleanly correspond to either epistemic or
aleatoric uncertainty, but its intuitive usefulness is clear,
and it is often included in studies on uncertainty in
Bayesian deep learning [29,30]. We note that, unlike
mutual information, points with higher aleatoric uncer-
tainty (that is, with predicted confidence scores all near
1=2) will tend to also have a high variation ratio, since a
smaller variability of the confidence scores will result in
more instances of conflicting classification if c̄ is near 1=2
than if it instead were highly certain. At the same time, a
point with high aleatoric uncertainty might have a smaller
variation ratio than a point with lower aleatoric uncertainty,
simply because the latter point has a greater variance in its
predictions.
An important caveat to each of these metrics of uncer-

tainty is that they are not, a priori, calibrated, especially in
active learning where the training set is disproportionately
composed of inputs for which the neural network is

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-5



uncertain. This means that the likelihood estimated from,
e.g., the variation ratio is not going to be generically equal
to the probability that a given point drawn from some
distribution is incorrectly classified. Of course, since at the
time of training we generally cannot know the distribution
of quartic couplings in some user’s phenomenological scan
(which will likely have a complicated prior depending on a
variety of parameters other than the quartic scalar cou-
plings, such as physical particle masses or vev mixing
parameters), the notion of a generally well-calibrated
uncertainty is nonsensical here. It is feasible that an
uncalibrated model produced by analyses of the type
presented here can be calibrated for a particular distribution
of inputs using techniques discussed in, e.g., [31], but we
do not pursue this possibility here or in our public package
BFBrain. Uncalibrated uncertainties, however, are hardly
useless—they contain information about the relative con-
fidence for some input that the neural network has about its
outputs, compared to other inputs. In our empirical studies,
we shall find that the uncertainty metrics outlined in this
section serve as an excellent predictor of the classifier
accuracy for a given input point. In a numerical scan of
parameter space points, therefore, we can readily apply the
neural network to classify scalar potential boundedness-
from-below while identifying points where the classifica-
tion may be unreliable, either excluding these points from
the scan or subjecting them to further (more computation-
ally expensive) analysis.

IV. ACTIVE LEARNING

Having discussed the mechanics of our classifier, we can
now address the training strategy we employ to explore our
parameter space. A key issue with which we are presented
is that the overwhelming majority of points in the full
parameter space (namely the hypersphere in λ⃗ space) will
for most scalar potentials be thoroughly uninteresting,
while only a very small portion will yield bounded-
from-below potentials. Furthermore, explicitly labeling
any points to create training data will, by the nature of
the problem, be computationally expensive. Active learning
is a paradigm that efficiently addresses these problems, by
dynamically generating a training set consisting of only the
most informative samples from parameter space over the
course of training.6 In this section, we shall review some of
the core concepts of active learning and outline the
application of these concepts in the context of our particular
problem.
An implementation of an active learning strategy gen-

erally consists of three components:
(i) An oracle computes the label for given input data.

This calculation, as noted earlier, will generally be
computationally expensive, and so calls to the oracle

will represent a significant bottleneck in the program
and should be minimized.

(ii) Some sort of statistical learner (in our case a
Bayesian neural network functioning as a binary
classifier) which will be trained on points labeled by
the oracle. This learner will be trained on data
labeled by the oracle, and then its outputs on
additional unlabeled data will suggest new points
for the oracle to label and incorporate into the next
round of training.

(iii) A query strategy by which the trained learner
suggests new points to the oracle for labeling, which
are then incorporated into the training set for the next
round of learning. This strategy generally selects
new training points on which the classifier is highly
uncertain.

In our analysis, then, the active learning program flow is
as follows:
(1) Generate a random initial sample of λ⃗’s and label

them with the oracle. This shall become the initial
training data Ptrain.

(2) Train the classifier on Ptrain.
(3) Generate an additional sample L of candidate λ⃗’s in

the vicinity of points which the oracle has labeled as
bounded-from-below.

(4) Score the points in L based on the algorithm’s query
strategy, and add those with the top percentile of
scores to Ptrain.

(5) Repeat Steps 2–4 until a predetermined number of
active learning iterations have completed.

For convenience and clarity, we have also summarized the
program flow of the active learning loop in Fig. 1. With the
active learning strategy outlined, we can spend the remain-
der of this section describing the individual components of
this strategy in greater detail—in particular the oracle and
the query strategy. The specific architecture of our learner, a
Bayesian neural network of the type discussed in Sec. III,
may be of less interest to the general reader and so
information on its structure is located in Appendix C.

A. Oracle

The problem of creating an oracle to label scalar
potentials as bounded from below is a somewhat nontrivial
one—in large part because the lack of a computationally
efficient and highly accurate method for assigning these
labels is precisely the problem that our analysis is devised
to address. A possible choice would be to implement a
version of the general algorithm discussed in [9], which
determines whether a given scalar potential is bounded
from below with perfect accuracy using the theory of
resultants, but this method’s accuracy comes at a price:
Labeling a single data point for even an extremely simple
model (e.g., the inert doublet model) will take hours—a
consequence of the fact that the algorithm is executed in
exponential time.6For a review of active learning, see, e.g., [32].

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-6



Instead, for this analysis, we opt for introducing a small
degree of inaccuracy into our oracle in exchange for a
substantially more time-efficient labeling procedure. A
necessary and sufficient condition for satisfying the pos-
itive definiteness condition of Eq. (2) (and therefore
establishing boundedness from below) is the non-negativity
of the potential for every value of the vev vector ϕ on Sd−1,
the surface of the d-dimensional unit hypersphere, where
we remind the reader that ϕ is a real d-dimensional vector
parameterizing the vev configuration of the scalar field(s)
in the theory. So, we can approximate this condition,
theoretically arbitrarily well, by simply repeatedly locally
minimizing the quartic potential on Sd−1 an arbitrary
number of times with random starting points, and labeling
a point as bounded from below if all the local minima
found by the oracle are positive. In Algorithm 1, we depict
this simple strategy schematically. In the practical imple-
mentation of our analysis (and in the public package
BFBrain), the execution of this algorithm is optimized
using Jax [33] and the JaxOpt constrained numerical
optimization package [34], leveraging these tools’ auto-
matic differentiation and parallelization capabilities to
greatly speed up computation.

It is clear that formally, our approximate oracle
represents necessary but not sufficient conditions for
boundedness-from-below. The accuracy with which
these conditions approximate necessary and sufficient
boundedness-from-below conditions is dependent on three
parameters. Two of these are simply parameters for the
local minimization algorithm: The maximum number of
gradient descent steps taken and the error tolerance of the
minimizer (i.e., how small of a gradient norm does the
minimizer accept as being indicative of a local extremum).
We have found that for our experiments, these parameters
have a negligible effect for reasonable choices of 10000
maximum steps and a tolerance of 10−3. The third
parameter which affects our algorithm’s precision is the
number of local minimization attempts that the oracle
makes for each potential, niter—in practice this parameter
overwhelmingly controls the oracle’s accuracy. Fortunately,
this parameter is (at least within hardware and software
constraints) arbitrarily tunable, and as niter → ∞, the
approximation will approach perfect necessary and suffi-
cient conditions. Of course, the fact that the calculation is
always approximate introduces a degree of label noise into
our training data—some points which are in reality not
bounded-from-below will be mislabeled. We will inves-
tigate the effects of this noise empirically in subsequent
sections.
In order to use this oracle effectively, we must obviously

estimate a value of niter which dependably excludes points
which are not bounded-from-below, but remains computa-
tionally tractable. Because we wish our strategy to readily
apply to any possible renormalizable scalar potential, it is
not realistic to make a general statistical guarantee of the
oracle reliability for given values of niter—at best, we might
estimate the probability that a given local minimization
iteration will yield a negative minimum. Instead, we rely on
the robustness of results to increasing niter to estimate an
optimal value of this parameter for each scalar potential we
consider: For each scalar potential, starting from niter ¼ 50,
we repeatedly use the oracle to label the same random
sample of 105 points (uniformly sampled from the surface

Algorithm 1. A schematic depiction of our approximate
oracle’s classification strategy. Here, PGDðf;ϕ0Þ refers to a
projected gradient descent minimization over ϕ on the unit
hypersphere Sd−1, with starting point ϕ0.

FIG. 1. A schematic diagram of the flow of the active learning program, as described in the text.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-7



of the unit hypersphere in λ⃗ space), increasing niter by 50
after each labeling attempt. We estimate that the optimal
value of niter is the value for which the oracle produces
identical labels for all 105 points for at least 5 consecutive
iterations. The basic strategy is depicted in Algorithm 2,
and a flexible implementation of the strategy is included in
the BFBrain package.
A natural question emerges at this point—namely, why

do we not simply employ this approximate oracle directly
to label points in a phenomenological scan, rather than
resorting to a neural network? The first and most obvious
answer to this question lies in the fact that our oracle can
rapidly become enormously computationally expensive, as
the number of vev parameters increases and the number of
local minimizations necessary to achieve robustness
increases with it. After training, the neural network’s
performance is entirely independent of the oracle’s com-
putational cost—therefore, depending on the model build-
er’s requirements for precision, an oracle of arbitrary
expense may be used without affecting the computational
efficiency of the neural network in regular use—one may
even use the NP-hard algorithm of [9] as an oracle.
Furthermore, in the case of a noisy (that is, suboptimal
niter) oracle, the oracle itself lacks any capacity for
uncertainty estimation. We shall find empirically that even
in the presence of significant label noise (that is, with niter
such that ∼10% of the points labeled as bounded-from-
below are false positives), metrics for model and predictive
uncertainty on data outside of the training set remain
effective indicators of the reliability of a prediction. We
also find in some circumstances that a neural network
trained on such noisy data achieves consistently better
performance than the noisy oracle itself. Finally, the use of

a neural network to classify boundedness-from-below in
turn makes certain aspects of exploring the parameter space
of the scalar potential considerably simpler: For example,
the neural network’s output now constitutes a differentiable
function describing the boundedness-from-below of a
scalar potential.

B. Query strategy

The efficacy of our strategy for analyzing scalar poten-
tials will clearly be highly dependent on the manner in
which the training set is constructed. To that end, here we
discuss our strategy for generating our training data in
significant detail. First, before active learning can take
place, we need an initial (small) set of labeled training data,
which we shall call Ptrain. To generate the initial Ptrain, we
begin by uniformly sampling 1000 points from the unit
hypersphere in λ⃗ space, and querying our oracle about their
labels. In all of the scalar potentials we consider here (and
likely in most scalar potentials that might be of interest), the
overwhelming majority of the points generated in this
manner will not be bounded-from-below. To avoid incen-
tivizing our neural network to simply label everything as
not bounded-from-below, we must then either reweight the
points which are bounded-from-below or augment our
training data with considerably more bounded-from-below
points. We can leverage the convexity of the bounded-from-
below region to readily do the latter: By randomly sampling
points on the line segments between the known bounded-
from-below points in Ptrain (and then projecting these back
onto the unit hypersphere), we can generate an arbitrary
number of additional bounded-from-below points without
any further need to label them (as long as we can be
confident that our oracle has sufficiently small noise—we
shall investigate this effect later).7 Adding the newly-
generated bounded-from-below points to Ptrain, we then
have a balanced initial training set.
After generating the initial Ptrain, our query strategy must

also identify additional points to be added to the training set
during each active learning iteration. We shall be consid-
ering a paradigm known as pool-based active learning,
where a pool of new unlabeled points L are proposed to the
classifier, and then the trained classifier selects some subset
of them to be labeled and added to the training set. The next
task for our query strategy, then, is to generate L. To begin,
we consider which points are of interest in our task: Points
in and near the single convex region in λ⃗ space in which the
potential is bounded from below. Ideally, then, our pool

Algorithm 2. The empirical method for testing the approxi-
mate oracleΩ and identifying the best value of niter, usingΛ, a list
of sets of scalar quartic coefficients in λ⃗.

7Strictly speaking, we could achieve a greater diversity of
points by randomly sampling positive linear combinations of
bounded-from-below points, but in practice this minor generali-
zation would not be especially meaningful, since points generated
by this procedure represent a small fraction of the training set
once a sufficient number of active learning iterations have been
performed.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-8



should focus on this region already, rather than uniformly
sampling the entire parameter space. Similar to [15,16], we
accomplish this emphasis by generating L from sampling in
the vicinity of bounded-from-below points in the training
set. Specifically, in order to generate a new point from an
existing training point p, we rotate p in a random direction
(uniformly sampled from all possible directions in λ⃗ space)
by an angle (in radians) δ, where δ is randomly chosen from
a normal distribution N ð0;Δ2Þ. The initial points p are
randomly selected (with uniform probability) from the
bounded-from-below points in Ptrain.
The procedure for generating L leaves only a single free

parameter that we must select: The scale of the rotation
anglesΔ. To estimate an appropriateΔ, we note that wewish
L to be, to good approximation, a pool of points drawn from
a region that at least somewhat tightly encompasses the
entire bounded-from-below region of λ⃗ space, while not
oversampling points which are far from this region and
therefore of little interest to us. We should therefore
anticipate that an appropriate Δ value should equate to a
length scale characteristic of the size of the bounded-from-
below region—then, we would anticipate that L will likely
(after several active learning iterations to expand the initially
small pool of bounded-from-below points) sample a region
that approximately covers the entire bounded-from-below
region in parameter space and its immediatevicinity,without
needing to sample from the entire parameter space. To
estimate the characteristic length scale of the bounded-from-
below region, we can simply approximate it (very roughly)
as the surface of the hypersphere subtended by a single angle
(which we shall suggestively also refer to as Δ). Then, if a
fraction f of uniformly-distributed random points on the λ⃗
hypersphere is bounded-from-below, we can estimate thatΔ
satisfies the equation

f ¼
ffiffiffi
π

p
Γðn

2
Þ

2Γðnþ1
2
Þ ðsinΔÞ

n−1
2F1

�
1

2
;
n − 1

2
;
nþ 1

2
; sin2Δ

�
;

n≡ dimðλ⃗Þ; ð8Þ

where 2F1ða; b; c; zÞ denotes the ordinary hypergeometric
function and ΓðxÞ is the Euler gamma function, as long as
f ≤ 1=2 (which for practical problems will almost certainly
always be the case). Since f can always be estimated by
finding the fraction of the initially generated training points
that are bounded-from-below (before we rebalance the
initial training data by adding additional bounded-from-
below points), we therefore can estimate Δ by numerically
solving the above expression.
We should note that the expression in Eq. (8), being

based on somewhat unrealistic assumptions about the
geometry of the bounded-from-below region and predi-
cated on an initial training sample that can give a highly
uncertain measurement of f (for example, if the training
sample includes only OðseveralÞ bounded-from-below

points), gives us only a very approximate characterization
of the optimal value for Δ. In general, it only suggests an
order of magnitude. However, because we only require L to
provide adequate coverage of the full bounded-from-below
region (because our query strategy will then identify which
points in L are most informative regardless of the pool’s
distribution), this approximate knowledge is all that is
required—in other words, we should anticipate that our
learner’s performance should be robust against Oð1Þ
modifications of Δ (in fact, cursory experiments have
borne this expectation out). We find that this strategy
yields good results for the scalar potentials that we consider
here, which suggests its applicability in a broader range of
scalar potentials that users of our public code may want to
analyze.
With a pool of candidate points L generated, the final

step of our query strategy is to identify the points in L
which are most informative, so that they can be labeled and
added to Ptrain for the next iteration of active learning. Of
course, “most informative” is hardly a rigorously defined
term, so we must arrive at a definition that yields a
performant classifier after training. A common criterion
for the informativeness of a point in active learning
scenarios is the degree of uncertainty the classifier has
about that point’s label—fortunately in the Bayesian neural
network paradigm, we have ample metrics of uncertainty,
discussed in Sec. III B. Therefore, given L if we wish to add
k points to our training data, we can select the k points from
Lwhich have the highest uncertainty measure based on one
of the metrics discussed in that section. This line of
thinking leads us to four selection criteria, all of which
we will consider in our analysis:

(i) Maximum entropy: Points with the largest Shannon
entropy, defined in Eq. (5), are selected.

(ii) Bayesian active learning by disagreement (BALD):
Points with the largest mutual information, defined
in Eq. (6), are selected. This strategy’s utility in
active learning problems was discussed (and the
name was coined) in [35].

(iii) Variation ratios: Points with the largest variation
ratios, defined in Eq. (7), are selected.

(iv) Random: As a control to gauge the efficacy of our
other strategies, points are assigned a random
“uncertainty” score (in reality just a random number
sampled from the uniform distribution between 0
and 1), and those points with the highest scores are
selected.

With each active learning iteration we add 5 × 103 new
points to Ptrain, out of a pool L consisting of 5 × 105 points
generated as described in this section. In contrast to our
approach when generating our initial training data, we do
not augment the newly added data with additional positive
points to balance the dataset labels—in practice we find that
approximate parity between the label classes is preserved in
any event.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-9



V. EXPERIMENTS

In this section, we shall present the results of employing
our procedure for training a bounded-from-below classifier
with several example scalar potentials. We find with all
examples that our methodology results in consistently high-
performance classifiers that exhibit accuracy likely to be
sufficient for most parameter point scans, as well as robust
uncertainty estimates that permit more careful evaluation of
the points most likely to be incorrectly labeled.

A. Experiments: Scalar potentials

Before presenting our results, we must, of course,
specify some scalar potentials to analyze with our tech-
niques. For our purposes here, we shall only consider
potentials with SM-like (that is, SUð2ÞL ×Uð1ÞY) gauge
symmetry—this is for simplicity and because much of the
work on nontrivial boundedness-from-below conditions for
scalar potentials has been done in this regime, for example
regarding multi-Higgs doublet models. We stress, however,
that the techniques outlined in this paper and implemented
in our public code are theoretically applicable to any
renormalizable scalar potential with any symmetry group.
Having limited ourselves to SUð2ÞL ×Uð1ÞY potentials,
then, we further narrow our considerations by selecting
three different classes of scalar potentials to analyze in

detail. The first of these is the most general Two-Higgs
doublet model (2HDM), where we write the quartic part of
the scalar potential as

Vð4Þ
2HDM ¼ λ1

2
jH1j4 þ

λ2
2
jH2j4 þ λ3jH1j2jH2j2 þ λ4jH†

1H2j2

þ
�
λ5
2
ðH†

1H2Þ2 þ λ6jH1j2ðH†
1H2Þ

þ λ7jH2j2ðH†
1H2Þ þ H:c:

�
; ð9Þ

H1 and H2 are two complex SUð2ÞL doublets. Because λ5,
λ6, and λ7 are all complex parameters, there are a total of 10
real quartic coefficients, or in our terminology the λ⃗ space
which characterizes the potential is 10-dimensional.
Meanwhile, after leveraging gauge invariance we can see
that a given vev configuration in the model has 5 inde-
pendent real parameters. Next, we consider a three-Higgs
doublet model (3HDM) with a Z2 × Z2 discrete symmetry
imposed, initially proposed in [4] as a model with CP
violation in the scalar sector and suppressed flavor-
changing neutral currents. The quartic part of the potential
function in this case is given by

Vð4Þ
3HDM ¼ λ1jH1j4 þ λ2jH2j4 þ λ3jH3j4 þ λ4jH1j2jH2j2 þ λ5jH1j2jH3j2

þ λ6jH2j2jH3j2 þ λ7jH†
1H2j2 þ λ8jH†

1H3j2 þ λ9jH†
2H3j2

þ 1

2
½λ10ðH†

1H2Þ2 þ λ11ðH†
1H3Þ2 þ λ12ðH†

2H3Þ2 þ H:c:�; ð10Þ

where now the Higgs doublets H1 and H2 are joined by a third Higgs doublet H3. Since λ10, λ11, and λ12 are all complex
parameters, the λ⃗ space for this potential is 15-dimensional. Meanwhile, a vev configuration for the model is entirely
specified by 9 independent real parameters. Finally, we consider the “precustodial” variant of the Georgi-Machacek (GM)
model [3] as presented in [5], in which the usual custodial SUð2Þ of the GM model is omitted.8 This potential is given as

Vð4Þ
PC ¼ λ1

4
jHj4 þ λ2

4
ðTrA†AÞ2 þ λ3

4
TrðA†AÞ2 þ λ4

4!
½TrB2�2 þ λ5jHj2TrA†A

þ λ6H†AA†H þ λ7
2
jHj2TrB2 þ λ8

2
ðTrA†AÞðTrB2Þ þ λ9

2
ðTrABÞðTrA†BÞ

þ iλ10
2

ðHTσ2A†BH −H†BAσ2H�Þ; ð11Þ

whereH is the SM Higgs doublet, and A and B are real and
complex triplets of SUð2ÞL, respectively. Since all the
coefficients in Eq. (11) are real, the λ⃗ space here is
10-dimensional, while a vev configuration is fully specified

by 10 real parameters. For the convenience of the reader, we
have collected key information on our three scalar potentials
in Table I.
Several remarks are in order regarding the scalar

potentials we have chosen for this exploration. First, in
spite of not extending the SM gauge group, all three of our
potentials have highly nontrivial conditions for bounded-
ness-from-below. Of the three, only the 2HDM potential

8This may occur, for example, if custodial symmetry-violating
terms are generated at the loop level.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-10



of Eq. (9) has known exact symbolic bounded-from-below
conditions, first presented in [1] and later expressed
compactly as conditions on the eigenvalues of a
Minkowski matrix in [36]. We have found these exact
conditions to be a useful cross-check to our results for this
potential, where we find that our oracle delivers perfect
accuracy on all of our validation sets, and misclassifies
only a handful of the Oð105Þ points used in training sets,
which by the nature of active learning will be inherently
more ambiguous. In the case of the 3HDM potential, only
sufficient, but not necessary, conditions are known pre-
cisely (derived in [13], with an alternative set discussed
in [6], the latter of which applies only to real λ10–12), in
spite of the model having been originally proposed nearly
50 years ago. Partially resolved symbolic expressions for
boundedness-from-below of the precustodial potential of
Eq. (11) are derived in [5,37], but elements of the
procedure the authors have derived still require establish-
ing the positive-definiteness of a system of quartic
polynomials, albeit a lower-dimensional one than the full
space of possible vev configurations. The 3HDM and
precustodial potentials therefore exhibit interesting use
cases for the procedure we are exploring in this work—
closed-form symbolic expressions for their bounded-
from-below conditions are unknown, and, because of
the Oð10Þ number of parameters specifying a vev con-
figuration in these models, unlikely to be tractable.
Meanwhile, the 2HDM, although its bounded-from-below
conditions have been solved, allows us a reassuring
validation of the procedure’s performance in one of the
most complicated scenarios in which these conditions
have been fully resolved.

B. Experiments: Classifier performance
on uniformly sampled test sets

For our first experiments, we simply implement our
strategy, as described in Sec. IV, to create classifiers for
the three scalar potentials we are considering. To get a
better sense of their performance, for each potential we
have performed the analysis five times (with five different
random number seeds for generating and labeling training
and validation data) and present the mean and variance of
each performance metric we depict here. For validation

data, each trial uses 106 points sampled uniformly from
the λ⃗ space hypersphere of the corresponding scalar
potential. With an eye toward practical applications of
our proposed analysis procedure, we note that this method
of validation, which relies on labeling a large number of
instances which are not used in training, may be inad-
visable or impractical if a particularly computationally
expensive oracle is used, such as the NP-hard exact
algorithm in [9]. In such cases, a user can estimate
improvements in F1 score (that is, ΔF1) on unlabeled
data by measuring the agreement between classifier
predictions after successive active learning iterations,
following [38]. As our current oracle is efficient enough
to permit large validation sets, we do not explore this
possibility here, but the BFBrain package contains multi-
ple methods of tracking model performance in the absence
of a labeled validation set, and we refer a curious reader to
the package’s documentation.
Returning to the parameters of our current experiment,

for our results in this section, we have performed active
learning for 20 iterations for the 2HDM and precustodial
potential, and for 40 iterations for the 3HDM potential,
which we find produces highly performant classifiers. Our
experiments will involve a variety of training hyper-
parameters—for convenience we summarize the most
relevant ones in Table II, as well as including “default
values” for these parameters, which our training experi-
ments will use unless otherwise specified. Beginning our
experiments, in Figs. 2–4, we get a sense for the overall
performance of the method on our different scalar poten-
tials by plotting the F1 score, precision, and recall of the
classifier on validation data, evaluated after each active
learning iteration. To get a better idea of the quality of
uncertainty quantification, these figures also depict the
same quantities, evaluated on datasets where the most
uncertain inputs (as judged by mutual information, which
we find to be the most effective discriminator between
correctly and incorrectly classified points) are omitted
from the validation data—specifically, we remove the
inputs within the top 5% of mutual information estimates
within their predicted class.9 For clarity, we have also
included corresponding tables of the final values achieved
for each classifier metric at the end of training, which

TABLE I. The three different scalar potentials that we consider
in our experiments for this work, along with the equations giving
their scalar potential values, the number of independent real
quartic couplings, and the number of independent real parameters
to specify a vev in each model.

Potential Equation Quartic couplings Vev components

2HDM Eq. (9) 10 5
3HDM Eq. (10) 15 9
Precustodial Eq. (11) 10 10

9We find that in general, due to the bounded-from-below
points being comparatively clustered close together in λ⃗ space,
points with this classification tend to have somewhat larger
mutual information values than points which are not bounded-
from-below, at least for validation points drawn uniformly from
the λ⃗ hypersphere. Therefore it is somewhat more useful to
consider relative uncertainties of points separately for each
predicted label class rather than computing uncertainty quantiles
across all inputs at once. We emphasize, however, that by
segregating quantile computation based on the classifier’s pre-
diction, we can perform this same discrimination with unlabeled
datasets that might be encountered in, e.g., a parameter space
scan.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-11



provides a more quantitative picture of our results—
Table III outlines the final performance metrics achieved
for classifiers of all three models on full sets of validated
data, while Table IV depicts the same performance metrics
after points with a high mutual information score are
removed from the validation sets in the manner that we
have described.
From these figures and tables, we can already glean a

number of interesting characteristics of our method. First,
for all three scalar potentials considered, the classifier
achieves significant accuracy. Omitting the random query
strategy (which should by design be inferior to all active
learning strategies we employ) we find F1 scores ranging
from above 0.96 for the 3HDM potential to in excess of
0.99 for the precustodial potential. In turn, this indicates
that the classifiers uniformly exhibit both comprehensive
(that is, few false negatives) and precise (that is, few
false positives) coverage of the bounded-from-below
parameter space.
It is important to emphasize that in the case of scalar

potentials for which symbolic necessary and sufficient
bounded-from-below conditions are unknown or intrac-
table, the methodology here substantially outperforms the
more conventional techniques for approximating bounded-
from-below conditions we have considered here. Applying
sufficient conditions to the 3HDM potential or applying the
necessary and sufficient conditions in the precustodial
potential with only two fields with nonzero vevs both
achieve F1 scores on the validation sets of not far in excess
of 0.8—in the case of the former, this stems from a
significant number of false positives, while in the case
of the latter, it stems from false negatives. Applying the
two-field necessary and sufficient symbolic conditions to
the 3HDM potential results in somewhat improved perfor-
mance, with an F1 score in excess of 0.92, but our
procedure outperforms even these results significantly.
Meanwhile, for phenomenological studies the time neces-
sary to classify large numbers of points is negligible: On a
personal laptop with an Nvidia GeForce GTX 1660 Ti
GPU, the 2HDM classifier is capable of evaluating 105

inputs with 100 forward passes through the network each in
∼0.7 seconds—more than 5 times faster than even our
implementation of the symbolic bounded-from-below con-
ditions of [36]. So, we note that our methodology is capable
of achieving enormously more accurate results than

approximate symbolic bounded-from-below conditions
while requiring comparable computation time after train-
ing, and can be applied in theory to any renormalizable
scalar potential. While insufficient for work that requires
extremely high precision (e.g., identifying a region of
metastability for the potential), all three of our neural
network classifiers can serve as excellent and efficiently
evaluated expressions of the approximate bounded-
from-below conditions for the purposes of a first-pass
phenomenological parameter space scan.
Beyond simply noting the high performance of the

models, we also see from these figures that the method-
ology outlined here is quite robust to both differing
starting conditions and the choice of query strategy. To
the former point, we see that while the models can evince
significantly varying performance among the trials with
different initial training data (and validation data) in
early active learning iterations, these variances quickly
converge to the subpercent-level well before active learn-
ing terminates. To the second point, we see that our
three uncertainty-motivated query strategies outlined in
Sec. IV B all significantly outperform the baseline random
query strategy, but there is little discrepancy among the
results from the three strategies themselves—especially as
active learning continues and performance begins to
plateau. Moreover, although mutual information is clearly
an effective indicator of the reliability of the results,
particularly in the case of false negatives, there seems to
be no significant difference in this quantity’s discrimi-
nating power among the neural networks trained with
different query strategies.
As a final point we draw from Figs. 2–4, we see that the

performance of the classifiers vary significantly for differ-
ent potentials: After 40 rounds of active learning, a 3HDM
classifier trained with the BALD query strategy achieves an
F1 score of 0.9658� 0.0007, while a 2HDM classifier with
the same query strategy achieves an F1 score of 0.9801�
0.0021 after just 20 rounds, and the analogous classifier for
the precustodial potential achieves 0.9936� 0.0007. The
scaling behavior of this performance with increasing λ⃗
space dimensionality or the number of independent vev
parameters (the two obvious metrics for the complexity of a
given scalar potential) is unclear—on one hand, the 3HDM
potential, with 15 real quartic coupling coefficients, dem-
onstrates significantly poorer classifier performance than

TABLE II. The most relevant hyperparameters for our active learning experiments in this section. In our analysis, the value in the
“Default” column for each parameter is used unless we specify otherwise.

Parameter Definition Default

l Length scale of weight prior N ð0; l−2Þ (see Appendix C) 0.1
Epoch patience Number of epochs without loss improvement before ADAM terminates 100
Layers Number of hidden neural network layers (with 128 neurons each) 5
niter Oracle accuracy hyperparameter (see Section IVA) 100 (2HDM,3HDM) 250 (Precustodial)

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-12



the 10-coefficient 2HDM and precustodial potentials, but
on the other hand, the discrepancy between the 2HDM and
precustodial classifiers’ performances roughly equates the
discrepancy between the 3HDM and 2HDM performances.
Furthermore, the best-performing classifiers are those
trained on the precustodial potential, in spite of the fact
that this scalar potential has more free vev parameters than
the 2HDM, and the same number of quartic coefficients. It
is clear, then, that at least in the regime we have considered
for these experiments (namely, potentials with ≲Oð10Þ

independent quartic coupling coefficients and a similar
number of free vev parameters), the efficacy of our
procedure in characterizing the bounded-from-below
region can vary somewhat (although remaining, at least
for our examples, uniformly high) in a manner that is not
obviously predictable.
While a detailed exploration of the causes of these

differing performance outcomes is beyond the scope of
the current work, we can do some further investigation of
this phenomenon by eliminating certain possible causes. In

FIG. 2. For the general 2HDM potential: (Left) The F1 score (top), precision (middle), and recall (bottom) of the boundedness-from-
below classifier with 5 hidden layers of 128 neurons each for BALD (blue), maximum entropy (magenta), variation ratios (red), and
random (green) acquisition functions, as a function of the number of active learning iterations performed, recorded over the course of
executing the active learning loop as described in Sec. IV. Each experiment is performed 5 times with different starting weights, initial
training data, and initial validation data; the lines depicted represent the mean performance of all 5 trials, with the standard deviation
being depicted as the transparent filled regions. Final classifier performances are listed in Table III. (Right): As on the left, but with the
validation set altered by removing the points for which the classifier predicts a mutual information [defined in Eq. (6)] score greater than
95th percentile of all points with the same predicted classification. Final classifier performances on validation data subject to these
restrictions are listed in Table IV.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-13



Fig. 5, we depict the F1 scores over the course of active
learning for differing numbers of hidden layers in our
network, quoting the final results for the trained networks
in Table V. If the performance of the classifier were limited
solely by the capacity for the neural network architecture to
learn the bounded-from-below decision rule, we might
expect that a deeper network, with its larger number of
weights, would achieve superior performance than a more
shallow one. However, we see that for the 3HDM and the
precustodial model, a shallower 3-layer network actually
achieves the same (or incrementally superior) performance
to a 5- and 7-layer architecture—while suffering some
instability in the quality of its results for the 2HDM

potential. This result then suggests that the underperform-
ance of our methodology on the 3HDM is not a product of
an overly simple neural network.
Another possible source of underperformance for the

3HDM analysis might be suboptimal training hyperpara-
meters. Given that the ADAM algorithm is usually quite
robust to changing learning rates, we instead can focus on
the characteristic length scale of our weight priors, l (as
defined and discussed in Appendix C), and the epoch
patience (the number of training epochs without improve-
ment on the loss that the ADAM optimizer tolerates before
declaring the neural network weights converged). In these
cases, decreasing l (or in other words, increasing the

FIG. 3. As Fig. 2, but for the 3HDM potential given in Eq. (10). Final performances for the data depicted in the left (right) column are
listed in Tables III and IV. Notice that due to slower convergence, we have allowed active learning to continue for 40 iterations here,
rather than the 20 iterations considered for the other potentials. For comparison, we have included the F1 score on the validation data of
the sufficient conditions of [13], assuming that our oracle labels are accurate, as well as the F1 score from applying the necessary and
sufficient conditions for boundedness-from-below if only 2 of the 3 fields are allowed to achieve nonzero vev’s simultaneously. As with
other lines the value and uncertainty of these F1 scores are taken as the mean and standard deviation of 5 independent experiments (in
this case the 5 independent validation datasets).

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-14



variance of the Gaussian priorN ð0; l−2Þ on the weights) or
increasing the epoch patience should lead to a better fit of
the neural network to the training data, since either less
prior knowledge is assumed on the weight distributions (as
l → 0, the priors become those of total ignorance) or a
greater number of optimizer steps is permitted. If the neural
network with our original hyperparameters is failing to
adequately learn a decision rule that is well-represented in
our training data, decreasing l and increasing the
epoch patience would presumably improve the model’s
performance. To test this, we train 3HDM classifiers
with a dramatically reduced l value (l ¼ 0.01), as well
as classifiers with dramatically increased epoch patience

(500, instead of 100). The comparative F1 scores associated
with tuning these hyperparameters, along with the perfor-
mance of the default setting, are depicted in Fig. 6, with
their final performances summarized in Table VI—we can
clearly see that there is no statistically significant difference
in performance when these hyperparameters are altered. In
turn, this result supports the thesis that inadequacy of the
model architecture is not the principal source of the 3HDM
classifier’s underperformance.
Given our results, perhaps the most likely explanation

for the degraded performance of the classifier on the
3HDM is that the active learning algorithm fails to explore
the 15-dimensional λ⃗ space with the same efficiency that it

FIG. 4. As Fig. 2, but for the precustodial GM potential given in Eq. (11). Final performances for the data depicted in the left (right)
column are listed in Tables III and IV. For comparison, we have included the F1 score on the validation data of the symbolic necessary
and sufficient conditions for boundedness-from-below, assuming that only 2 of the 3 fields achieve nonzero vevs at a time (these may be
readily extracted from [5]). As in Fig. 3 we have assumed that our oracle labels are accurate, and the value and uncertainty of this F1

score is taken as the mean and standard deviation of 5 independent experiments.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-15



explores the 2HDM and precustodial potentials’
10-dimensional λ⃗ space. We can find further support for
this position by considering the accuracy that the classifier
achieves on their active learning training sets. In Table VII,
we compute the binary accuracy of the 3HDMmodel on its
training data after 40 epochs, determining the mean and
error as usual from 5 independent trials.
We see that, while adjusting l has no discernible effect on

the neural network’s accuracy on its training set (and
therefore, likely a minimal effect on the neural network’s
performance in general), the trials with increased epoch
patience unsurprisingly improve the models’ accuracies on
their training sets. However, this improved performance on

the training set does not translate to improved performance
on the validation set. We can therefore reason that the
validation set contains points which are not well repre-
sented by the training data—the 3HDM parameter space is
not being entirely explored. Because the geometry of each
potential’s bounded-from-below region will, of course,
differ substantially, it is furthermore feasible that some
difference in the efficiency of our active learning procedure
in exploring the 2HDM and the precustodial potentials may
account for the performance discrepancy between these
potentials as well.
Finally, we might suspect that the performance dis-

crepancies between potentials that we observe could be
improved by simply increasing the number of active
learning rounds. To explore this, we see in Figs. 2–4 that
recall (which we remind the reader is an estimate of the
probability that a truth level bounded-from-below point is
correctly labeled by the classifier) for the 2HDM and
3HDM potentials has a visible positive slope even at the
end of active learning, indicating that the neural network
is continuing to discover new regions of bounded-from-
below parameter space. However, precision (which esti-
mates the probability that a point that the classifier labels
as bounded-from-below is actually bounded-from-below
at truth level) demonstrates a far less pronounced mon-
otonic improvement for both of these potentials, so it
remains unclear whether and to what degree any perfor-
mance gap might be closed simply by arbitrarily extend-
ing training.10

Although Figs. 2–4 and Tables III and IV have offered us
some minor insight into the utility of our uncertainty
metrics, we can now move on to explore these character-
istics more rigorously. In Fig. 7, we depict the F1 scores on
the validation sets for the classifiers trained for the 2HDM,
3HDM, and precustodial potentials with our default
parameters, as points with uncertainty metrics above
different quantiles (determined separately for bounded-
from-below and not bounded-from-below points) are
excluded from the validation set. We can see that all three
uncertainty metrics are useful predictors of the classifier’s
accuracy on a given point: As the included uncertainty
quantiles decrease, the F1 scores for each potential rapidly
improve—for the 3HDM and 2HDM, we see that this
improvement is most rapid when mutual information, that
is, our estimate of purely epistemic uncertainty, is used as
the uncertainty metric, while performance for all three
uncertainty metrics is comparable for the precustodial
potential, where we have also found the classifier achieves
the best performance in general.

TABLE III. The F1 score, precision, and recall achieved by
fully trained classifiers for different scalar potentials and active
learning query strategies on their full validation datasets, depicted
in the left columns of Figs. 2–4. Means and uncertainties
computed by averaging the results of five independent trials.

Potential Query F1 score Precision Recall

HDM BALD 0.980(2) 0.984(3) 0.977(3)
Max entropy 0.978(2) 0.979(3) 0.976(4)
Variation ratios 0.977(2) 0.978(2) 0.976(4)
Random 0.942(4) 0.960(5) 0.924(5)

3HDM BALD 0.9658(7) 0.9656(6) 0.966(2)
Max entropy 0.968(2) 0.968(2) 0.969(2)
Variation ratios 0.967(2) 0.966(2) 0.968(1)
Random 0.9387(8) 0.952(2) 0.925(2)

Precustodial BALD 0.9936(7) 0.9952(7) 0.992(1)
Max entropy 0.9925(4) 0.9932(6) 0.9918(7)
Variation ratios 0.992(1) 0.993(2) 0.991(1)
Random 0.973(2) 0.979(3) 0.967(3)

TABLE IV. As Table III, but reflecting the performance on the
validation sets after removing all points with mutual information
greater than the 95th percentile of points in their predicted
classification, corresponding to the charts in the right column
of Figs. 2–4.

Potential Query F1 score Precision Recall

2HDM BALD 0.9983(5) 0.997(1) 1.0(0)
Max entropy 0.9978(8) 0.996(2) 1.0000(1)
Variation ratios 0.9978(8) 0.9947(9) 1.0(0)
Random 0.989(2) 0.978(4) 1.0(0)

3HDM BALD 0.9913(6) 0.983(1) 0.99998(3)
Max entropy 0.9927(7) 0.986(1) 0.99990(6)
Variation ratios 0.9920(9) 0.984(2) 0.99983(8)
Random 0.9855(6) 0.971(1) 1.0(0)

Precustodial BALD 0.99982(9) 0.9998(1) 0.99988(7)
Max entropy 0.99982(4) 0.99974(6) 0.99990(5)
Variation ratios 0.99986(3) 0.9998(1) 0.99991(7)
Random 0.9962(6) 0.992(1) 1.0(0)

10As the size of training data increases beyond what can be
contained in GPU memory, it may be necessary to split the
training data into batches, which we have found can slightly
degrade performance—see the discussion at the end of
Appendix C.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-16



The dropoff of the performance of some of the classifiers
as the included uncertainty quantiles are very small (≲10%)
suggests that these uncertainty quantification metrics are
not perfect—there exist a small number of points about
which the model can be quite certain, but incorrect.
However, these incorrect-but-certain points represent an
extremely small fraction of the total points considered,
given that the classifiers in question still exhibit F1 scores
of >0.995 for included quantiles of about 0.05. Given that
incorrect-but-certain points appear to be most present when
mutual information is the uncertainty metric, this suggests
that these points are likely points of low epistemic
uncertainty (that is, adequate training data in the region
of the points), but high aleatoric uncertainty (that is, the
points themselves are very close to the decision boundary).
Since mutual information is insensitive to aleatoric uncer-
tainty, the failure of this metric to account adequately for
these points is unsurprising, however we note that it is
likely that such points, being near the neural network’s
decision boundary, will likely produce similar phenom-
enology to points which are correctly classified. The
variation ratios uncertainty metric appears, in general, to
be the least useful uncertainty metric—producing consis-
tent and significant underperformance as a discriminator
for all three potential functions. This is unsurprising given
the fact that the variation ratio’s expressivity as an uncer-
tainty metric is significantly limited by the number of

predictive evaluations that we perform: Using 1000 forward
passes as we do, we can expect that any point which has a
“truth-level” (that is, the limit as the number of evaluations
goes to infinity) variation ratio of ≲0.001 will be impre-
cisely determined due to insufficient statistics. Mutual
information and entropy, which are not based on predic-
tions crossing a specific threshold, will be significantly less
sensitive to the effect of a finite number of predictive
evaluations.
A final observation we can make on the discriminating

power of the various uncertainty metrics lies in the different
performance of the classifiers trained with different query
strategies. Notably, the random query strategy appears to be
robust against the dropoff in F1 score for very small
included uncertainty quantiles, even in cases where other
query strategies exhibit this behavior. This suggests, then,
that a classifier trained with the random acquisition
function possesses slightly higher-quality uncertainty esti-
mates, in that there are significantly fewer points for which
the classifier is highly certain but incorrect than there are
for classifiers with our various active learning query
strategies. We might expect that this would be a conse-
quence of statistical bias in active learning [39], namely that
the training set for active learning, not being an indepen-
dent and identically distributed (i.i.d.) sample from the
same distribution as the validation set, might not predict
uncertainties that are optimally calibrated for it. Of course,
the training set points used during training with the random
acquisition function are not from the same distribution as
the validation set uniformly sampled from the unit hyper-
sphere surface (or, indeed, independently distributed
between active learning iterations), but by not being
disproportionately selected to have high uncertainty, it is
perhaps not unreasonable to suggest that the randomly-
queried training set is a closer representation of the
validation set’s distribution than those which are generated
through the active learning strategies. Of course, if this is

FIG. 5. The F1 score achieved over the course of active learning with the BALD query strategy for the 3HDM (left), 2HDM (middle),
and precustodial (right) scalar potentials, for differing numbers of hidden layers (where each hidden layer is constructed with 128
neurons)—3 layers (blue), 5 layers (magenta), and 7 layers (red). Lines represent the mean of 5 experiments while transparently shaded
areas denote the standard deviation. Final performances achieved by these trained classifiers are summarized in Table V.

TABLE V. The final F1 scores achieved by the trained neural
networks in Fig. 5, where the number of neural network layers is
varied.

3HDM 2HDM Precustodial

3 Layers 0.967(3) 0.979(5) 0.9938(4)
5 Layers 0.9658(7) 0.980(2) 0.9936(7)
7 Layers 0.962(2) 0.979(2) 0.9930(6)

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-17



the cause of the discrepancy, it is both unclear whether this
advantage for the random query strategy will hold for other
distributions, such as those which might emerge in a
parameter space scan, and in any case the discrepancy in
performance only becomes statistically significant in most
cases once an impractically small (≲0.1) included uncer-
tainty quantile is used, in which case the neural network
classifier is not especially useful. A detailed exploration of
the effect of training set bias in uncertainty quantification
for active learning for this application would require the
development of a method of removing this bias from the
loss estimate for our active learning application. Such an
estimator was developed in [39], for example, in the case of
active learning with a finite and not-replenished pool of

unlabeled candidate training data L, but identifying an
analogous estimator for our active learning implementation
is beyond the scope of this work.

C. Experiments: Classifier performance
on semirealistic test sets

In the previous section, we have evaluated our classi-
fiers’ performances on validation sets of points which
uniformly sample from the λ⃗ space hyperspheres of the
2HDM, 3HDM, and precustodial potential functions.
While these datasets are useful to get a sense of a
classifier’s overall coverage of the complete bounded-
from-below space of the potential, these sets themselves
bear little resemblance to the distributions of points which
are more typical of a practical parameter space scan. As
such, we shall explore our models’ performance on test
distributions of a form that more commonly appears in
parameter space scans: 2-dimensional slices in λ⃗ space. For
each potential, we have selected 4 pairs of quartic coef-
ficients to scan over while we hold the remainder fixed.
Then, for each pair, we randomly generate 500 sets of the
remaining parameters, and then for each of these 500 sets,
we randomly generate 2000 pairs of the two scanned
parameters. In all cases, we randomly sample from uniform
distributions over each quartic coefficient between -5 and 5,
except where a negative value of a quartic parameter
violates a necessary condition for boundedness-from-
below, in which case we restrict the value to be positive
(this helps maximize the fraction of our slices which are
“interesting”—that is, contain a decision boundary). In the
case of the precustodial model, two coefficients λ2 and λ3 in
Eq. (11), must satisfy λ2 þ λ3 > 0 and λ2 þ λ3=2 > 0 in
order to avoid bounded-from-below conditions for a
potential with a single complex SUð2ÞL triplet, so in cases
where λ2 and λ3 are not scanned over, we uniformly sample

FIG. 6. The F1 score achieved over the course of active learning for the 3HDM potential with different hyperparameter values
for the prior length scale l and the patience of the ADAM optimizer’s early stopping condition (epoch patience), for BALD (left),
maximum entropy (middle), and variation ratios (right) query strategies. Lines represent the mean of 5 experiments while trans-
parently shaded areas denote the standard deviation. Final performances achieved by these trained classifiers are summarized in
Table VI.

TABLE VI. The final F1 scores achieved by the trained neural
networks in Fig. 6, where the 3HDM bounded-from-below
conditions are learned with differing training hyperparameters,
as described in Fig. 6 and the text.

BALD Max entropy Variation ratios

Default 0.9658(7) 0.968(2) 0.967(2)
Epoch Patience ¼ 500 0.968(2) 0.9670(9) 0.9687(8)
l ¼ 0.01 0.966(2) 0.968(1) 0.967(2)

TABLE VII. The binary accuracy on training data (which
should, by its nature, be ambiguous) for fully-trained 3HDM
classifiers with the specified hyperparameter choices. Mean and
error are computed by conducting 5 independent trials for each
parameter choice.

Hyperparameter choice Training set accuracy

Default 0.975(2)
Epoch Patience ¼ 500 0.989(3)
l ¼ 0.01 0.974(2)

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-18



these two combinations of the coefficients along intervals
between 0 and 5 instead of sampling λ2 and λ3 directly.
We can use these “slice ensembles” to get a sense of the

level of performance we can expect from our trained
classifiers on generic 2-dimensional slices (and more
broadly, typical lower-dimensional cross sections in

parameter space that appear often in phenomenological
studies), and, crucially, how accuracy of the model on these
slices might be estimated from the predictive uncertainty
metrics described in Sec. III. To do this, we label each point
in our slices using the corresponding oracle. Then, taking
our models trained using the BALD query strategy as a

FIG. 7. The F1 score achieved for the 2HDM (top), 3HDM (middle), and precustodial (bottom) scalar potentials, with points which
have an uncertainty score (mutual information, entropy, or variation ratios) greater than different quantiles for points with their predicted
class excluded. Lines represent the mean of 5 experiments while transparently shaded areas denote the standard deviation, while the
query strategy used is BALD (blue), maximum entropy (magenta), variation ratios (red), and random (green).

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-19



baseline, we check the predictive accuracy for the model
along each 2-dimensional parameter space slice, along with
the uncertainty (as determined by mutual information,
which we found in Sec. V B to provide the best discrimi-
nating power between incorrectly and correctly classified
points in that setting) associated with each prediction. By
scanning a large number of these slices, we can also get a
qualitative and quantitative understanding of the “worst-
case” performance of the classifiers on these types of
samples (in effect, executing a primitive search for adver-
sarial inputs in the language of machine learning), as well
as what constitutes more typical performance and how one
can differentiate between the two. In Table VIII, we list data
related to the binary accuracy of the classifiers on these
ensembles of slices, including the average binary accuracy
on a slice, the minimum binary accuracy, and the median
performance among slices for which ≥ 5% of points are
predicted as bounded-from-below (what might be consid-
ered “interesting” parameter space—computing the median
accuracy across all slices will tend to uninformatively
yield a value of 1.0, due to a significant number of slices
which are entirely correctly classified as not bounded-
from-below).
The results outlined in Table VIII give us a feeling for the

performance of the classifiers on the slice ensembles. We
can see that, with the possible exception of the universally
≥ 97% accuracy achieved by the 2HDM classifiers, we
have found specific 2-D slices for which the classifier has a
significant error rate. In the case of the 3HDM potential, we
even find slices with accuracy values which are substan-
tially worse than the ∼50% expected performance of an
untrained classifier. However, it also appears that a strong
negative correlation universally exists between the mean
mutual information in the points of a given slice and the
classifier’s binary accuracy for that slice, as we might

expect: Just as with the validation samples in Sec. V B, this
uncertainty metric provides a reliable estimate of the
accuracy of a given prediction. Furthermore, this correla-
tion appears to increase as less accurately classified slices
are present in the ensemble: While the uniformly accurate
2HDM classifiers tend to have the most modest negative
correlations between accuracy and mean uncertainty, the
sometimes seriously inaccurate 3HDM classifiers uni-
formly enjoy correlation coefficients of less than or equal
to -0.7.
While Table VIII presents some quantitative data on the

performance of our methodology on different slice ensem-
bles, a visual approach can give us a better understanding of
the utility of our method—specifically, it can better
illustrate how uncertainty quantification can allow us to
robustly exclude (or depending on the needs of the model
builder, reexamine with a more robust, but computationally
expensive, methodology for determining boundedness-
from-below) the substantially inaccurate slices while cor-
rectly identifying the slices for which we can trust the
classifier’s results. In Figs. 8–10, we depict some illus-
trative examples of classifier slices for the 2HDM, 3HDM,
and precustodial potentials, respectively. To use uncertainty
estimates to meaningfully gauge the reliability of individual
model predictions, we will of course have to have a notion
of what a “large” uncertainty means for each model. To
establish such a notion, we compute our highest-quality
uncertainty estimator, mutual information, for a “calibra-
tion set” of 106 input λ⃗’s sampled uniformly from the
surface of the unit hypersphere (for our purposes here, we
use our existing labeled validation sets, but an unlabeled
and randomly generated set of points will work just as
well for use cases in which labeling such a large set of
points with an oracle is impractical; the BFBrain package
possesses methods to produce such a calibration set

TABLE VIII. The minimum binary accuracy for each slice ensemble, the median accuracy for slices in the ensemble which fall in the
“interesting region” (≥ 5% of points are predicted to be bounded-from-below), and the Pearson correlation coefficient between binary
accuracy and the average mutual information of the points in elements of the slice ensemble. The averages and errors for these quantities
are computed from the results for five independently trained classifiers. The quartic coefficients are defined as in Eq. (9) for the 2HDM,
Eq. (10) for the 3HDM, and Eq. (11) for the precustodial model.

Scanned variables Min. accuracy Med. accuracy Accuracy-uncertainty correlation

2HDM λ4 − Reλ5 0.978(2) 0.9951(8) −0.62ð10Þ
λ2 − λ3 0.979(5) 0.9942(9) −0.52ð14Þ
λ3 − λ4 0.977(7) 0.9964(3) −0.45ð20Þ

Reλ6 − Reλ7 0.977(4) 0.9946(6) −0.80ð5Þ
3HDM λ4 − λ7 0.65(10) 0.986(1) −0.70ð7Þ

Reλ10 − Reλ11 0.16(11) 0.982(2) −0.82ð7Þ
λ1 − λ7 0.40(25) 0.9856(6) −0.82ð10Þ
λ1 − λ5 0.59(8) 0.9849(6) −0.75ð6Þ

Precustodial λ5 − λ6 0.85(8) 0.9975(2) −0.82ð9Þ
λ8 − λ9 0.93(3) 0.9986(2) −0.87ð5Þ
λ2 − λ5 0.97(2) 0.9989(2) −0.75ð7Þ
λ4 − λ7 0.96(1) 0.9980(3) −0.74ð3Þ

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-20



automatically). Noting that points which are predicted as
bounded-from-below tend to have larger mutual informa-
tion than points of the other class, we then compute the
0.95 and 0.99 mutual information quantiles for the set of
calibration set points which the model predicts to be
bounded-from-below. These quantiles allow us to differ-
entiate highly uncertain inputs from others, without refer-
ence to the distribution of our input slices or the precise
numerical scale of the mutual information measurements,
which is nontrivially dependent on neural network archi-
tecture, training data, and hyperparameters.
To examine both the circumstances under which the

classifier performs poorly, as well as get a sense for each
classifier’s more typical performance, Figs. 8–10 depict
both the member of the given slice ensemble which exhibits

the lowest binary accuracy (as discussed above, our
“adversarial” examples), as well as one which exhibits
the median binary accuracy for the ensemble (just as in
Table VIII, we have restricted each slice ensemble to only
those points with at least 5% of the points being predicted
to be bounded-from-below). Unlike the figures thus far
displayed in this work, these classifications are the product
of individual trained classifiers, and not averaged results
among 5 independent identical experiments—this is
because individual predictions of trained classifiers cannot
be meaningfully combined without likely enhancing the
networks’ collective predictive power via ensembling [40],
a use case which we do not explore in this work. For
completeness, plots for the slice ensembles not depicted in
the main text are included in Figs. 15–17 in Appendix D,

FIG. 8. Assuming a BALD query strategy and default hyperparameters, scatter plots drawn from the λ4 − Reλ7 slice ensembles for a
classifier for the 2HDM potential given in Eq. (9). Dots represent correctly classified points, while triangles represent incorrectly
classified points. Classification label and mutual information are indicated by point color: Red, orange, and olive points are predicted to
be bounded-from-below, while blue, cyan, and green points are predicted to not be. Different color classifications within predicted labels
indicate that the point has mutual information greater than the 0.99 quantile (olive, green) or 0.95 quantile (orange, cyan) of the mutual
information in the calibration set (see text). On the left, the slice in the ensemble with the lowest binary accuracy is depicted. On the
right, a more typical example is depicted, with binary accuracy equal to the median accuracy, computed as described in the text.

FIG. 9. As Fig. 8, but for the λ4 − λ7 slice ensemble of the 3HDM potential, with quartic coefficients defined in Eq. (10).

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-21



along with Tables X–XV, which give the specific quartic
coefficient values used to produce all plots depicted here
and in that appendix.
Figures 8–10 help depict the practical usefulness of

classifiers trained by our method, allowing us to see both
the typical (extremely precise) performance of the model on
various 2-D slices, as well as what the output may look like
when the classifier fails. For the plots which depict median
classifier performance along the slice ensembles, we see
uniformly high accuracy for all three of the 2HDM, 3HDM,
and precustodial classifier. Misclassified points are
extremely rare, invariably close to the decision boundary,
and tend to have unusually high mutual information scores
—indicating higher-than-average epistemic uncertainty.
Furthermore, in agreement with the correlations found in
Table VIII, we see that our median-accuracy slices have a
significant number of points that do not demonstrate high
mutual information, so thatwemight identify 2-dimensional
slices on which the classifier is likely to be highly perform-
ant without having to label our points with an oracle.
In the case of our classifers’ worst slices, we see that at

least for the 3HDM and the precustodial potentials’
classifiers, there exist 2-dimensional parameter space slices
for which there is significantly degraded performance.
More reassuringly, we see that these slices also have a
number of points with exceedingly high mutual informa-
tion, in particular within the misclassified regions. These
worst-case scenario plots therefore suggest that while it
may be possible to find regions of parameter space over
which the classifiers have unacceptably poor performance,
such regions are in general recognizable as such.11 We

should also note that the worst-case scenario performances
are in no way typical of the majority of samples in a
parameter space—unless the user is scanning over hun-
dreds of two-dimensional slices and specifically selecting
points which have a high density of high-uncertainty
points, the median-performance plots are a far more
typical.

D. Experiments: Effects of label noise

We conclude our experimentation by considering the
effect of a flawed oracle on the quality of the classifier—
specifically in the case that the principal parameter
governing the oracle’s accuracy in our experiments,
niter, is set to significantly suboptimal values. From
Sec. IVA, we recall that this will lead to a significant
number of points incorrectly being labeled as bounded-
from-below, with smaller niter values leading to a greater
number of misclassifications. To gauge the severity of this
effect, we train classifiers with oracles that use different
small values of niter (specifically 5, 10, and 20), and track
their performance on validation data labeled using the niter
parameters of Table II, which satisfy our robustness
criteria of Sec. IVA. In Fig. 11, we depict the F1 scores
achieved over the course of training for each of our
considered scalar potentials with the different niter values,
as well as the performance of each oracle with suboptimal
niter on the validation dataset. We have also listed the final
F1 scores achieved by each of these noisy classifiers, in
addition to the corresponding results for the equivalent
trials with default niter values first depicted in Figs. 2–4, in
Table IX.
From this figure and table, we can observe some

intriguing classifier behavior for suboptimal niter. First,
we see that in stark contrast to our results for our default
niter values, depicted in Figs. 2–4, for noisy oracles
(generally those which achieve F1 scores of ≲0.95), we
actually find mild to moderately-significant discrepancies

FIG. 10. As Fig. 8, but for the λ5 − λ6 slice ensemble of the precustodial potential, with quartic coefficients defined in Eq. (11).

11In the case of 2-dimensional parameter space scans along the
quartic coefficients, we can also identify likely unreliable outputs
by observing nonconvexities in the bounded-from-below region,
which must be incorrect. However, doing this for 3-dimensional
scans is considerably more difficult, and for 4-dimensional scans
cannot be done visually.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-22



between classifier performance based on the active learning
query strategy. In particular, BALD (based on mutual
information) appears to substantially outperform other
query strategies. Inspecting the accuracy of the suboptimal
oracles on the training set in the 2HDM classifier, we can
see that this stems from the fact that BALD selects points
which are significantly less likely to be misclassified than
the maximum entropy or variation ratios-based strategies:
For niter ¼ 5, our 2HDM oracle achieves an average F1

score of 0.87� 0.03 on the training dataset generated by a
BALD query strategy (accuracy is determined using the
symbolic necessary and sufficient bounded-from-below
conditions of [36], while mean and error are extracted
by performing 5 identical experiments). Meanwhile, it
achieves an F1 score of 0.60� 0.04 and 0.62� 0.04 for
the maximum entropy and variation ratios query strategies.
This difference vanishes when niter ¼ 20, at which point the
oracles’ F1 scores on the training data are identical up to

FIG. 11. The F1 score achieved for the 2HDM (top), 3HDM (middle), and precustodial (bottom) scalar potentials over the course of
active learning, for oracles with niter ¼ 5 (left), 10 (middle), and 20 (right). Lines represent the mean of 5 experiments while
transparently shaded areas denote the standard deviation, while the query strategy used is BALD (blue), maximum entropy (magenta),
variation ratios (red), and random (green). Although the training data is labeled using an oracle with the indicated niter values, the
validation data is labeled using the robust niter parameters we discussed in Sec. IVA and given in Table II. The black lines represent the
performance of the noisy (that is, low niter) oracle on the validation datasets, which is imperfect due to incorrect positive labels. Final F1

scores (and associated uncertainties) attained from the classifiers depicted here are listed in Table IX.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-23



statistical error, at 0.996� 0.001—where we furthermore
see no significant performance difference between the
different active learning query strategies.
The reason that BALD selects points more likely to be

classified well by an inferior oracle is less immediately
clear. A potential intuitive reason is that, while maximum
entropy and variation ratios both heavily incentivize the
selection of points near the decision boundary (points with
high aleatoric uncertainty). Points along the decision
boundary, being extremely close to the bounded-from-
below region, should intuitively have only a very small
region in vev space in which the quartic potential is
negative if they are not bounded-from-below, making it
more probable that our approximate oracle will miss these
regions if niter is small. Meanwhile BALD, by selecting
points with high mutual information (which we take to
estimate epistemic uncertainty), tends to prefer points for
which there is a significant variance in the neural network’s
predicted confidence scores while being somewhat far from
the decision boundary—that is, in regions about which the
neural network can expect to be quite certain about, once it
has some additional information.12 In fact, we see that in
many cases, the neural network with the BALD query
strategy significantly outperforms the oracle on which it
was trained. Referring back to the training outcomes with
our default niter values, depicted in Figs. 2–4, it appears that
as a rough rule, this overperformance seems to persist
whenever the F1 score of the noisy oracle on the validation
data is more than Oð10−2Þ less than the optimal

performance achieved by the classifier trained with the
default, robust niter—after this point, the oracle appears to
achieve uniformly higher performance than the neural
network classifiers.
To get a better visual understanding of the degradation of

classifier performance from oracle noise, and explore the
effect of oracle noise on uncertainty quantification, in
Figs. 12–14, we depict the performances on validation
data of classifiers with our different active learning query
strategies over the course of active learning for different
values of niter, along with the performance over only points
that have a mutual information value of below the 0.95
quantile of the respective classification in the validation set,
in the same manner as Figs. 2–4.
In these figures, we find several reassuring results

regarding the robustness of our classifier models to oracle
noise. First, we see that in the case of an oracle with an F1

score ≳0.99 (i.e., the niter ¼ 20 case for the 2HDM and
3HDM potentials), there is no significant performance
degradation for any of the query strategies—in turn this
suggests that, since the oracle we have used in these
experiments is imperfect (and given our robustness tests,
likely at a level significantly below the discrepancy
between the niter ¼ 20 oracle and our defaults), in all
probability we need not be concerned with the effects of
oracle noise on our classifiers. Furthermore, we see that
even in cases with significantly degraded performance,
mutual information remains a highly effective gauge of the
reliability of given point predictions: By omitting highly
uncertain points, we see significant improvements in the
classifier performance over all potentials, query strategies,
and niter values. It should be noted, however, that F1

scores remain significantly degraded relative to the default
oracles when a very noisy (e.g., niter ¼ 5) oracle is used,
even when highly uncertain points are omitted from the
analysis.

TABLE IX. The F1 scores achieved by fully trained classifiers with varying degrees of oracle noise, parametrized by lower values for
the oracle hyperparameter niter—these represent the final classifier performances achieved by the training results depicted in Fig. 11.

F1 scores

Potential Query niter ¼ 5 niter ¼ 10 niter ¼ 20 Default niter

2HDM BALD 0.91(1) 0.974(3) 0.979(1) 0.980(2)
Max entropy 0.877(4) 0.958(8) 0.975(3) 0.978(2)
Variation ratios 0.877(6) 0.957(3) 0.976(2) 0.977(2)
Random 0.855(4) 0.919(5) 0.939(2) 0.942(4)

3HDM BALD 0.935(3) 0.962(2) 0.963(2) 0.9658(7)
Max entropy 0.918(6) 0.950(3) 0.967(2) 0.968(2)
Variation ratios 0.927(8) 0.957(4) 0.967(1) 0.967(2)
Random 0.913(5) 0.932(2) 0.937(2) 0.9387(8)

Precustodial BALD 0.851(3) 0.915(3) 0.962(7) 0.9936(7)
Max entropy 0.831(2) 0.897(4) 0.942(5) 0.9925(4)
Variation ratios 0.830(5) 0.894(4) 0.941(4) 0.992(1)
Random 0.832(4) 0.898(3) 0.936(3) 0.973(2)

12Simplistically, this can be shown by considering the ex-
pression for mutual information of Eq. (6) for a case with two
forward passes through the network, which give c0 − δ and
c0 þ δ. Then, we see that mutual information achieves a mini-
mum when c0 ¼ 0.5, and increases as the mean departs from the
decision boundary.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-24



FIG. 12. For the general 2HDM potential: (Left) The F1 score as a function of the number of active learning iterations performed with
the training data labeled by an oracle with niter ¼ 5 (blue), 10 (magenta), 20 (red), and the default value of Table II (green). Plots are
made with a classifer trained using the BALD query strategy (top), maximum entropy (middle), and variation ratios (bottom). (Right):
As on the left, but with the validation set altered by removing points with mutual information greater than the 0.95 quantile for their
respective predicted class, in the same manner as Figs. 2–4.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-25



VI. DISCUSSION AND CONCLUSIONS

In this work, we have presented a novel procedure using
active learning to automatically approximate the strictly
bounded-from-below parameter space of arbitrary renorma-
lizable scalar potentials. We have further shown that the
classifiers produced by this method can significantly out-
perform existing methods of producing approximate sym-
bolic bounded-from-below conditions, while requiring

comparable execution time on personal electronics and
demanding no special insight from themodel builder beyond
the ability to write down the quartic part of potential. These
approximatemethods also provide uncertainty quantification
that can be readily used to gauge a prediction’s reliability,
allowing the outputs of the classifier to be trusted for use in
phenomenological scans of the parameter space in a broad
array of BSM scalar models. While in this work we have

FIG. 13. As Fig. 12, but for the 3HDM potential in Eq. (10).

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-26



restricted our analysis to three scalar potentials with com-
plicated (or unknown) bounded-from-below conditions, we
have also created a public PYTHON package, called BFBrain
[18], which allows for our procedure to be replicated for any
user-specified renormalizable scalar potential with detailed
installation and usage instructions available online.
Our study also suggests a number of directions for further

improvement and study of our procedure. For example,
it remains unclear what precise factors influence the

classifier’s maximum performance on different potentials,
although we have observed small but significant discrep-
ancies in classifier accuracy between the scalar potentials we
have explored here. Additional data regarding classifier
performance for potentials with a wider range of dimension-
alities for their vev parameters and quartic coefficients,
therefore, could potentially establish a rough sense of
scaling behavior that we cannot deduce here. Further
refinements of the active learning strategy and neural

FIG. 14. As Fig. 12, but for the precustodial potential in Eq. (11).

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-27



network architecture may also result in significant perfor-
mance gains over what we have thus far demonstrated—for
example, developing a procedure to dynamically alter the
procedure for generating the pool of candidate points L as
active learning continues may improve the efficiency with
which the algorithm explores the parameter space, while
permutation symmetries of some potentials, such as those of
multi-Higgs doublet models, may be implemented either
explicitly or via a graph neural network to further narrow the
parameter space that must be explored. Additional study can
also be made of stopping criteria for active learning, namely
the conditions under which we might consider the network
to have achieved high performance (and can stop active
learning), without relying on a labeled validation set (which
may be unreasonably expensive to produce for some
potentials)—some work in this direction in other active
learning contexts has been considered in, e.g., [38,41].
More broadly, we have seen in our work that machine

learning techniques continue to find new applications inBSM
model building, joining other applications such as active
learning experimental and theoretical parameter space con-
straints [14–16], reinforcement learning of flavor physics
parameters [42,43], and even automated generation of sim-
plified models [44]. We have seen that the problem of finding
boundedness-from-below conditions for BSM scalar poten-
tials, for which approximate numerical conditions are often
overlooked in favor of analytically tractable, but often highly
imprecise, algebraic conditions, can be addressed to a high
degree of accuracy using publicly available machine learning
tools and hardware accessible tomost researchers. It stands to
reason that considerablymore applications of recent develop-
ments in the machine learning space exist for BSM model
building, where a significant number of other complex and
intractable problems exist.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy under the Contract No. DE-SC0017647. The author
would like to thank Lisa Everett and Matthew Sullivan for
useful discussions related to this project.

APPENDIX A: A REVIEW OF BINARY
CLASSIFIER PERFORMANCE METRICS

In the interest of maximizing the accessibility of this
work, here we briefly review the definitions of various
metrics that we employ to rate the performance of our
binary classifiers—specifically precision, recall, and F1

score. The definitions we use here are all standard, and
therefore a reader already familiar with these terms will find
nothing new here.
We extract all three of the aforementioned metrics from a

confusion matrix of the classifier on some labeled dataset
(in this case our various validation datasets. Assuming a
binary classifier assigns a “positive” or “negative”

classification to each point in the dataset, the elements
of the confusion matrix are:

(i) True positives (TP): The number of points which the
classifier correctly identifies as positive.

(ii) False positives (FP): The number of points which the
classifier incorrectly identifies as positive.

(iii) True negatives (TN): The number of points which
the classifier correctly identifies as negative.

(iv) False negatives (FN): The number of points which
the classifier incorrectly identifies as negative.

Then, we can compute the precision, recall, and F1 score as

Precision ¼ TP
TPþ FP

; Recall ¼ TP
TPþ FP

;

F1 ¼
2TP

2TPþ FPþ FP
: ðA1Þ

It can be derived that the F1 score is simply the harmonic
mean of precision and recall.
We can equivalently think of precision and recall as

conditional probabilities in terms of two events: That a
point is of the positive class (which we can denote as þ)
and that a point is classified in that class (which we call
Cþ). Then, precision is the conditional probability
PðþjCþÞ, while recall is the conditional probability
PðCþ jþÞ. If we let the bounded-from-below class of
potentials represent our positive class, then the F1 score
incorporates these two probabilities and gives us a key
metric for the performance of our classifier: It is ultimately
dependent on what fraction of the bounded-from-below
parameter space the classifier correctly identifies (recall)
and what fraction of points classified as bounded-from-
below are classified correctly (precision).

APPENDIX B: BAYESIAN INFERENCE,
MONTE CARLO DROPOUT, AND CONCRETE

DROPOUT

This appendix reviews the Bayesian deep learning tech-
niques employed in this paper, specifically Monte Carlo
dropout and its variant concrete dropout, in greater detail. To
begin, we note that in Bayesian inference, wewish to learn a
posterior distribution on some set of model parameters θ (in
this case, these are distributions on the weights of the
Bayesian neural network), given a set of training data X
and their corresponding labels Y—in other words, we need
to learn the distribution

pðθjX;YÞ ¼ pðYjX; θÞpðθÞR
pðYjX; θÞpðθÞdθ ; ðB1Þ

where in Eq. (B1) we have invoked Bayes’s theorem,
and pðθÞ is a prior distribution on the model parameters.
It is unfortunately not tractable to determine the posterior
distribution (or in particular, do the integration in the
denominator of the equation) exactly in our problem

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-28



case—or in fact for all but a few extremely simple statistical
learners. Variational inference is a common technique to
approximate the posterior—in which we posit a tractable
distribution qϕðθÞ, which depends on some parameters ϕ,
and then find parameters ϕ that minimize the Kullback-
Leibler (KL) divergence between qϕðθÞ and the intractable
exact posterior. The exact posterior is unknown, but maxi-
mizing the log evidence lower bound,

LVI ≡
Z

qϕðθÞ logpðYjX; θÞdθ − KLðqϕðθÞjjpðθÞÞ;

ðB2Þ

where KL denotes the KL divergence (note that the
divergence in this expression is between two known
distributions, qϕðθÞ and the prior), is equivalent to minimiz-
ing the KL divergence between qϕðθÞ and the exact
posterior [45]. Provided all the terms in Eq. (B2) are
differentiable with respect to the parameters ϕ, we can
optimize the expression with respect to the various para-
meters of the approximate distribution (for example, mean
weights and variances of the model weights).
In [25], the authors demonstrated a correspondence

between the optimization objective in Eq. (B2) for certain
classes of Bayesian neural networks and the optimization
objective of a conventional feed-forward neural network
with dropout applied before each weight layer. In general,
such a network has its predictions given as a composition of
layers which map some input x to an output. The output of
the kth layer in the neural network is given by

skþ1 ¼ σkðWk · zk · sk þ bkÞ;
zk ∼ Bernoullið1 − pkÞ: ðB3Þ

Here, Wk is the weight matrix for the kth layer, zk is a
diagonal matrix of Bernoulli random variables so that each
element of the layer input vector sk has a probability pk of
being set to 0 with each forward pass through the network,
bk is a bias vector, and σk is some nonlinear activation
function (in our case, a ReLU or a sigmoid activation
function). For a training dataset consisting of N samples
with a binary classifier, optimizing the loss [25,26]

BCEþ 1

N

XL
k¼1

	
l2ð1 − pkÞ

2
jjWkjj22 þ

1

2
jjbkjj22

þ Kkðpk logpk þ ð1 − pkÞ logð1 − pkÞÞ


; ðB4Þ

approximates variational inference of a Bayesian neural
networkwith prior distributionsN ð0; 1=l2Þ over theweights
and biases, where BCE denotes binary cross-entropy loss
(averaged over all samples in the training set, or a repre-
sentative batch of them) and evaluated with a single forward

pass with dropout), L is the number of layers in the neural
network, and Kk is the number of neurons in the (k − 1)th
layer of the network (that is, the number of inputs into the kth
layer). Furthermore, as discussed in the main text, obtaining
the outputs of the neural network at test time by performing
multiple evaluations of the same inputs with dropout will
approximate drawing from the distribution of outputs of the
Bayesian neural network—this technique is known as
Monte Carlo dropout.
In Monte Carlo dropout, we see that the parameters ϕ of

our approximate posterior qϕðθÞ are the weights and biases
of our dropout network (Wk and bk, respectively), as well
as the dropout probabilities for each layer pk. While the loss
in Eq. (B4) is differentiable with respect toWk and bk, it is
not possible to differentiate with respect to the dropout
probability pk. Therefore, in order to minimize this part of
the objective one must perform a scan over possible
dropout parameters for each layer. Given that our use case
includes continuously augmenting the training dataset, in
principle we would then need to perform this scan for each
active learning iteration, which is clearly unworkable. If
instead we arbitrarily specified dropout probabilities, the
quality of our uncertainty estimates would suffer—as
discussed in [26], a model with fixed dropout probability
can only reduce its predictive variance by reducing the
magnitude of its weights—which can ultimately degrade
model performance (after all, a network with only weight
values of exactly 0 will have zero predictive variance,
but also no predictive power). In practice, this means that
for fixed dropout probability, a larger amount of training
data may not a priori reduce the network’s predictive
variance [46], in turn suggesting that, for example, com-
paring uncertainty estimates between active learning iter-
ations will be nonsensical (or at the very least,
unprincipled). More formally, failing to tune the dropout
probability is ultimately failing to fully optimize the KL
divergence between the approximate posterior qðθÞ and the
true posterior pðθjX;YÞ. Hence, the potential predictive
power (and associated uncertainty) of the Bayesian clas-
sifier is not extracted.
Concrete dropout [26] circumvents this difficulty by

approximating the Bernoulli random variables zk with
corresponding draws from the concrete distribution,

sigmoid

�
1

t
ðlogp − logð1 − pÞ þ log u − logð1 − uÞÞ

�
;

u ∼ Unifð0; 1Þ; ðB5Þ

where t is some temperature parameter. Hence, instead of
being either retained with probability pk or dropped, an
input to the kth layer of the neural network will be scaled
according to a draw from this distribution. For small
tð≲0.1Þ, the concrete distribution well approximates the
Bernoulli distribution, but is smooth and can be differ-
entiated with respect to the probability p. As a result, the

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-29



loss in Eq. (B4) can now be optimized over its weights,
biases, and dropout probabilities via gradient descent
methods (i.e., conventional neural network training). In
the BFBrain package, we implement concrete dropout in
TensorFlow2, borrowing heavily from both the code presented
in [26] and an earlier adaptation to TensorFlow2 given
by [47], with only marginal changes made to facilitate
model portability.

APPENDIX C: THE LEARNER

In this appendix, we discuss the details of our specific
implementation of a Bayesian neural network in our As
discussed in Sec. III, for our learner we have selected a
Bayesian neural network, with Bayesian inference approxi-
mated using concrete dropout. Having outlined the funda-
mental concepts used in the Bayesian neural network in that
section, here we restrict our attention to the particularities
of our learner’s construction. Our basic network is a
Bayesian multilayer perceptron (MLP) implemented in
TensorFlow [48], which takes as input a vector λ⃗ and outputs
confidence scores in a probability distribution between 0
and 1—if the average score is close to 0, the network is
confident that the point is not bounded from below, while if
the average score is close to 1, the network is confident that
it is. The quartic coefficients are fed into the MLP, which
has some number (varying between 3 and 5 in our
experiments) of hidden layers, each with 128 neurons.13

All weights have a Bayesian prior distribution N ð0; 1=l2Þ,
where we have found empirically that l ¼ 0.1 gives good
results for all potentials that we consider, and that some-
what smaller or larger values of l do not substantially affect
the results.
Exact Gaussian process inference is approximated by

concrete dropout, discussed in Sec. III and Appendix B,
where dropout is applied to the outputs from all hidden
layers, the hidden layer activation functions are ReLU, and
the output node activation function is a sigmoid. In [26], the
authors also suggest that concrete dropout should be
applied to the input layer. If the training set is sufficiently
informative, then they find that the dropout probability for
the input layer will converge to 0. However, we find this
practice somewhat degrades the performance of our neural
network, both in raw accuracy and quality of the uncer-
tainty metrics. This discrepancy likely stems from the fact
that the study in [26] considered image classification,
where the inputs are very high-dimensional and neural
network must learn an appropriate low-dimensional feature
representation of the raw input. In our case, the inputs are
already low-dimensional and condensed into extremely
informative features, namely the quartic potential coeffi-
cients themselves—ignoring any one of these inputs will

make a rigorous determination of the potential’s bounded-
ness-from-below impossible. In lieu of applying concrete
dropout to the input layer, we instead apply regularization
terms to the network to render the learner equivalent to one
with concrete dropout applied to the input layer [see
Eq. (B4)], but that layer’s dropout probability is kept
constant at 0.
We can restrict our neural network architecture to

leverage the fact that boundedness-from-below of a scalar
potential is invariant to a positive rescaling of all the quartic
coefficients fairly easily: By setting all neuron biases, as
defined in Appendix B, Eq. (B3), to 0, it is trivial to show
that the neural network’s output is restricted to a sigmoid of
a homogenous function in the inputs, which in turn
guarantees that the classifications will demonstrate scale
invariance. Because a large positive rescaling will still
affect the neural network’s confidence scores (for example,
the entropy of an uncertain output might be significantly
reduced simply by scaling the input by a large positive
number), in any practical inference task we will still apply a
preprocessing layer to project the input onto the unit
hypersphere. However, by limiting the functional form
of our network’s outputs to reflect the character of the
problem, we still narrow our hypothesis space and have
found that we achieve a more performant trained classifier.
After new training points are acquired in each training

round, the neural network’s weights are randomly reini-
tialized and the network is re-trained on the entire set of
training data thus far accrued. This reinitialization prevents
the network from overweighting of training data that was
sampled in an early active learning iteration, which we find
eventually leads to a collapse of the model’s epistemic
uncertainty estimates. The loss objective is, as is standard
for classifiers of this type, given by binary cross entropy (as
well as the regularization terms discussed in Appendix B).
Optimization is accomplished with the ADAM algorithm
[49] with a learning rate of 0.001, and continues for 2 × 104

TABLE X. The parameters corresponding to the worst binary
accuracy among each of the 2HDM slice ensembles. Each
column corresponds to a different pair of parameters which
are scanned over (see Sec. V C for details). Coefficients listed
here are defined in Eq. (9).

λ4 − Reλ5 λ2 − λ3 λ3 − λ4 Reλ6 − Reλ7

λ1 1.99 2.43 4.32 2.54
λ2 0.36 λ2 1.46 2.62
λ3 3.54 λ3 λ3 2.35
λ4 λ4 3.94 λ4 4.02
Reλ5 Reλ5 −3.53 −1.84 4.27
Imλ5 2.19 3.59 −0.92 −3.25
Reλ6 −1.64 0.85 0.34 Reλ6
Imλ6 −2.41 −3.12 −3.02 −1.35
Reλ7 0.07 −0.91 −0.35 Reλ7
Imλ7 −1.11 1.22 2.26 −0.41

13We found little appreciable change in performance when
increasing or decreasing the number of neurons in a given layer,
as long this number was ≳Oð100Þ.

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-30



epochs or until the loss on the training dataset fails to
decrease for 100 consecutive epochs (in which case the
weights which yielded the smallest loss are restored at the
end of training).
A final remark on the details of our neural network

training is in order, regarding our arrangement of the
training data into batches. It is common practice, in order
to leverage the high degree of parallelization possible on a
GPU, to compute the training loss for a neural network for
a large batch of inputs simultaneously, and then apply
updates to the weights to minimize the mean loss within
that batch. Throughout this paper, we shall take our batches
to be large enough to contain the entire training dataset—
this will result in more stable performance and uncertainty
evaluation, at the expense of limiting the potential size
of our training datasets to be small enough to fit within
GPU memory. We have found that an alternative strategy,

with small batch sizes of 5 × 103 points, results in a mild
degradation of performance and training stability, so for the
somewhat simple models we consider for our experiments
in this work (and only modestly-sized training datasets), we
adhere to placing all training data in a single batch. The
BFBrain package permits the use of smaller batches, to
accommodate larger models and/or training data that a
particular scalar potential might necessitate.

APPENDIX D: ADDITIONAL SLICE
ENSEMBLE DATA

In this Appendix, we include additional figures in the
format of Figs. 8–10 for other slice ensembles that we have
considered, in addition to a table of the quartic coefficients
used to generate all figures appearing in the work.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-31



FIG. 15. As Fig. 8, but for the λ2 − λ3 (top), λ3 − λ4 (middle), and Reλ6 − Reλ7 (bottom) slice ensembles of the 2HDM potential, with
quartic coefficients defined in Eq. (9).

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-32



FIG. 16. As Fig. 8, but for the Reλ10 − Reλ11 (top), λ1 − λ7 (middle), and λ1 − λ5 (bottom) slice ensembles of the 3HDM potential,
with quartic coefficients defined in Eq. (10).

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-33



FIG. 17. As Fig. 8, but for the λ8 − λ9 (top), λ2 − λ5 (middle), and λ4 − λ7 (bottom) slice ensembles of the precustodial potential, with
quartic coefficients defined in Eq. (11).

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-34



TABLE XI. As Table X, but for the parameters for which the median accuracy in the slice ensemble is obtained,
computed as described in Sec. V C.

λ4 − Reλ5 λ2 − λ3 λ3 − λ4 Reλ6 − Reλ7

λ1 4.22 2.52 4.53 2.96
λ2 4.10 λ2 3.08 2.83
λ3 3.68 λ3 λ3 4.30
λ4 λ4 4.68 λ4 4.82
Reλ5 Reλ5 0.53 −1.73 −4.05
Imλ5 −2.26 −0.13 0.56 −0.81
Reλ6 −2.48 −2.36 0.10 Reλ6
Imλ6 1.54 0.82 −4.54 −2.97
Reλ7 −3.13 −0.99 0.21 Reλ7
Imλ7 1.96 1.39 2.34 1.76

TABLE XII. As Table X, but for the slices with the worst binary accuracy for the 3HDM potential, with
parameters defined in Eq. (10).

λ4 − λ7 Reλ10 − Reλ11 λ1 − λ7 λ1 − λ5

λ1 2.46 2.24 λ1 λ1
λ2 3.37 2.37 3.10 2.69
λ3 4.22 2.28 0.83 3.98
λ4 λ4 3.61 3.34 −0.97
λ5 −3.53 −1.17 2.81 λ5
λ6 4.77 2.07 0.95 −1.63
λ7 λ7 3.75 λ7 4.29
λ8 1.34 4.54 4.98 4.40
λ9 4.60 −3.34 0.51 −0.53
Reλ10 −1.14 Reλ10 2.98 1.36
Imλ10 1.18 −1.56 3.17 2.44
Reλ11 2.79 Reλ11 −0.59 1.61
Imλ11 −3.01 −0.76 −3.40 −0.45
Reλ12 1.63 1.65 −4.38 −2.74
Imλ12 −4.59 −2.87 −1.41 −3.41

TABLE XIII. As Table X, but for the slices with the median binary accuracy for the 3HDM potential, with
parameters defined in Eq. (10).

λ4 − λ7 Reλ10 − Reλ11 λ1 − λ7 λ1 − λ5

λ1 3.02 3.03 λ1 λ1
λ2 1.88 2.05 1.96 3.95
λ3 4.50 3.01 3.80 4.64
λ4 λ4 −2.22 1.13 0.92
λ5 −4.61 0.50 1.37 λ5
λ6 0.52 4.56 0.42 4.47
λ7 λ7 −1.24 λ7 2.84
λ8 2.99 −0.09 −2.29 2.94
λ9 1.94 1.56 3.75 1.31
Reλ10 2.40 Reλ10 3.06 4.19
Imλ10 4.74 −0.13 −2.57 −2.63
Reλ11 1.62 Reλ11 −3.17 4.48
Imλ11 4.97 −1.44 3.13 3.63
Reλ12 4.44 −2.82 1.29 −4.01
Imλ12 3.84 −2.08 4.38 −0.84

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-35



[1] M. Maniatis, A. von Manteuffel, O. Nachtmann, and F.
Nagel, Stability and symmetry breaking in the general two-
Higgs-doublet model, Eur. Phys. J. C 48, 805 (2006).

[2] I. P. Ivanov, Building and testing models with extended
Higgs sectors, Prog. Part. Nucl. Phys. 95, 160 (2017).

[3] H. Georgi and M. E. Machacek, Doubly charged Higgs
bosons, Nucl. Phys. 262, 463 (1985).

[4] S. Weinberg, Gauge theory of CP violation, Phys. Rev. Lett.
37, 657 (1976).

[5] G. Moultaka and M. C. Peyranère, Vacuum stability con-
ditions for Higgs potentials with SUð2ÞL triplets, Phys. Rev.
D 103, 115006 (2021).

[6] R. Boto, J. C. Romão, and J. a. P. Silva, Bounded from
below conditions on a class of symmetry constrained
3HDM, Phys. Rev. D 106, 115010 (2022).

[7] K. Kannike, Vacuum stability of a general scalar potential of
a few fields, Eur. Phys. J. C 76, 324 (2016); 78, 355(E)
(2018).

[8] T. Gherghetta, C. F. Kolda, and S. P. Martin, Flat directions
in the scalar potential of the supersymmetric standard
model, Nucl. Phys. B468, 37 (1996).

[9] I. P. Ivanov, M. Köpke, and M. Mühlleitner, Algorithmic
boundedness-from-below conditions for generic scalar po-
tentials, Eur. Phys. J. C 78, 413 (2018).

[10] K. G. Murty and S. N. Kabadi, Some NP-complete prob-
lems in quadratic and nonlinear programming, Math. Pro-
gram. 39, 117 (1987).

[11] N. G. Deshpande and E. Ma, Pattern of symmetry
breaking with two Higgs doublets, Phys. Rev. D 18,
2574 (1978).

[12] S. Blasi, S. De Curtis, and K. Yagyu, Effects of custodial
symmetry breaking in the Georgi-Machacek model at high
energies, Phys. Rev. D 96, 015001 (2017).

[13] B. Grzadkowski, O. M. Ogreid, and P. Osland, Natural
multi-Higgs model with dark matter andCP violation, Phys.
Rev. D 80 (2009) 055013.

TABLE XIV. As Table X, but for the slices with the worst binary accuracy for the precustodial potential, with
parameters defined in Eq. (11).

λ5 − λ6 λ8 − λ9 λ2 − λ5 λ4 − λ7

λ1 3.33 2.54 3.08 0.40
λ2 6.28 4.73 λ2 1.26
λ3 3.16 2.11 −3.84 −0.61
λ4 0.81 4.51 3.74 λ4
λ5 λ5 4.27 λ5 3.29
λ6 λ6 −3.25 −1.87 1.78
λ7 −0.40 −1.35 1.55 λ7
λ8 −0.93 λ8 −0.43 3.02
λ9 3.81 λ9 −0.65 −3.83
λ10 −0.80 −0.41 0.45 4.05

TABLE XV. As Table X, but for the slices with the median binary accuracy for the precustodial potential, with
parameters defined in Eq. (11).

λ5 − λ6 λ8 − λ9 λ2 − λ5 λ4 − λ7

λ1 2.85 4.67 0.80 1.19
λ2 5.13 6.38 λ2 4.70
λ3 3.61 5.92 2.00 2.84
λ4 3.70 0.55 1.15 λ4
λ5 λ5 4.70 λ5 3.11
λ6 λ6 −2.00 1.11 3.35
λ7 2.79 1.26 2.69 λ7
λ8 4.41 λ8 4.14 2.09
λ9 −3.12 λ9 −2.51 −2.72
λ10 −1.44 −0.71 1.64 −3.36

GEORGE N. WOJCIK PHYS. REV. D 109, 095018 (2024)

095018-36

https://doi.org/10.1140/epjc/s10052-006-0016-6
https://doi.org/10.1016/j.ppnp.2017.03.001
https://doi.org/10.1016/0550-3213(85)90325-6
https://doi.org/10.1103/PhysRevLett.37.657
https://doi.org/10.1103/PhysRevLett.37.657
https://doi.org/10.1103/PhysRevD.103.115006
https://doi.org/10.1103/PhysRevD.103.115006
https://doi.org/10.1103/PhysRevD.106.115010
https://doi.org/10.1140/epjc/s10052-016-4160-3
https://doi.org/10.1140/epjc/s10052-018-5837-6
https://doi.org/10.1140/epjc/s10052-018-5837-6
https://doi.org/10.1016/0550-3213(96)00095-8
https://doi.org/10.1140/epjc/s10052-018-5893-y
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948
https://doi.org/10.1103/PhysRevD.18.2574
https://doi.org/10.1103/PhysRevD.18.2574
https://doi.org/10.1103/PhysRevD.96.015001
https://doi.org/10.1103/PhysRevD.80.055013
https://doi.org/10.1103/PhysRevD.80.055013


[14] S. Caron, T. Heskes, S. Otten, and B. Stienen, Constraining
the parameters of high-dimensional models with active
learning, Eur. Phys. J. C 79, 944 (2019).

[15] M. D. Goodsell and A. Joury, Active learning BSM
parameter spaces, Eur. Phys. J. C 83, 268 (2023).

[16] A. Hammad, M. Park, R. Ramos, and P. Saha, Exploration
of parameter spaces assisted by machine learning, Comput.
Phys. Commun. 293, 108902 (2023).

[17] J. F. Gunion, R. Vega, and J. Wudka, Naturalness problems
for rho ¼ 1 and other large one loop effects for a standard
model Higgs sector containing triplet fields, Phys. Rev. D
43, 2322 (1991).

[18] G. Wojcik, Bfbrain, https://github.com/Gwojci03/BFBrain,
2023.

[19] D. J. C. MacKay, A practical Bayesian framework
for back propagation networks, Neural Comput. 4, 448
(1992).

[20] M. Magris and A. Iosifidis, Bayesian learning for neural
networks: An algorithmic survey, Artif. Intell. Rev. 56, 1
(2023).

[21] J. Y. Araz and M. Spannowsky, Combine and conquer:
Event reconstruction with Bayesian ensemble neural net-
works, J. High Energy Phys. 04 (2021) 296.

[22] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T.
Plehn, and J. Thompson, Deep-learning jets with uncer-
tainties and more, SciPost Phys. 8, 006 (2020).

[23] B. S. Kronheim, M. P. Kuchera, H. B. Prosper, and A.
Karbo, Bayesian neural networks for fast SUSY predictions,
Phys. Lett. B 813, 136041 (2021).

[24] F. List, N. L. Rodd, G. F. Lewis, and I. Bhat, The GCE in a
new light: Disentangling the γ-ray sky with Bayesian graph
convolutional neural networks, Phys. Rev. Lett. 125,
241102 (2020).

[25] Y. Gal and Z. Ghahramani, Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning, in
International Conference on Machine Learning (PMLR,
Cambridge, 2016), pp. 1050–1059.

[26] Y. Gal, J. Hron, and A. Kendall, Concrete dropout, Adv.
Neural Inf. Process. Syst. 30, 3581 (2017).

[27] C. E. Shannon, A mathematical theory of communication,
Bell Syst. Tech. J. 27, 379 (1948).

[28] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and
S. Udluft, Decomposition of uncertainty in Bayesian deep
learning for efficient and risk-sensitive learning, in
International Conference on Machine Learning (PMLR,
Cambridge, 2018), pp. 1184–1193.

[29] V. Rakesh and S. Jain, Efficacy of bayesian neural networks
in active learning, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(2021), pp. 2601–2609.

[30] Y. Gal, R. Islam, and Z. Ghahramani, Deep Bayesian active
learning with image data, in International Conference on
Machine Learning (PMLR, Cambridge, 2017), pp. 1183–
1192.

[31] M.-H. Laves, S. Ihler, K.-P. Kortmann, and T. Ortmaier,
Well-calibrated model uncertainty with temperature scaling
for dropout variational inference, arXiv:1909.13550.

[32] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta,
X. Chen, and X. Wang, A survey of deep active learning,
ACM Comput. Surv. (CSUR) 54, 1 (2021).

[33] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C.
Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, JAX: Composable
transformations of PYTHON+NumPy programs, 2018.

[34] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F.
Llinares-López, F. Pedregosa, and J.-P. Vert, Efficient and
modular implicit differentiation, arXiv:2105.15183.

[35] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel,
Bayesian active learning for classification and preference
learning, arXiv:1112.5745.

[36] I. P. Ivanov, Minkowski space structure of the Higgs
potential in 2HDM, Phys. Rev. D 75, 035001 (2007); 76,
039902(E) (2007).

[37] T.-K. Chen, C.-W. Chiang, and K. Yagyu, CP violation in a
model with Higgs triplets, J. High Energy Phys. 06 (2023)
069; 07 (2023) 169(E).

[38] M. Altschuler and M. Bloodgood, Stopping active learning
based on predicted change of f measure for text classifica-
tion, in 2019 IEEE 13th International Conference on
Semantic Computing (ICSC) (IEEE, New York, 2019),
pp. 47–54.

[39] S. Farquhar, Y. Gal, and T. Rainforth, On statistical bias in
active learning: How and when to fix it, arXiv:2101.11665.

[40] Ensemble learning in Bayesian neural networks, in Gener-
alization in Neural Networks and Machine Learning
(Springer-Verlag, Berlin, 1998), pp. 215–237.

[41] H. Ishibashi and H. Hino, Stopping criterion for active
learning based on error stability, arXiv:2104.01836.

[42] T. R. Harvey and A. Lukas, Quark mass models and
reinforcement learning, J. High Energy Phys. 08 (2021) 161.

[43] S. Nishimura, C. Miyao, and H. Otsuka, Exploring the
flavor structure of quarks and leptons with reinforcement
learning, J. High Energy Phys. 12 (2023) 021.

[44] W. Waltenberger, A. Lessa, and S. Kraml, Artificial proto-
modelling: Building precursors of a next standardmodel from
simplified model results, J. High Energy Phys. 03 (2021) 207.

[45] C. M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics) (Springer-Verlag,
Berlin, Heidelberg, 2006).

[46] F. Verdoja and V. Kyrki, Notes on the behavior of MC
dropout, arXiv:2008.02627.

[47] A. Amerio, Concretedropout, https://github.com/aurelio-
amerio/ConcreteDropout, 2022.

[48] M. Abadi et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015, Software available from
http://tensorflow.org.

[49] D. P. Kingma and J. Ba, ADAM: A method for stochastic
optimization, arXiv:1412.6980.

SCALAR BOUNDED-FROM-BELOW CONDITIONS FROM … PHYS. REV. D 109, 095018 (2024)

095018-37

https://doi.org/10.1140/epjc/s10052-019-7437-5
https://doi.org/10.1140/epjc/s10052-023-11368-3
https://doi.org/10.1016/j.cpc.2023.108902
https://doi.org/10.1016/j.cpc.2023.108902
https://doi.org/10.1103/PhysRevD.43.2322
https://doi.org/10.1103/PhysRevD.43.2322
https://github.com/Gwojci03/BFBrain
https://github.com/Gwojci03/BFBrain
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1007/s10462-023-10443-1
https://doi.org/10.1007/s10462-023-10443-1
https://doi.org/10.1007/JHEP04(2021)296
https://doi.org/10.21468/SciPostPhys.8.1.006
https://doi.org/10.1016/j.physletb.2020.136041
https://doi.org/10.1103/PhysRevLett.125.241102
https://doi.org/10.1103/PhysRevLett.125.241102
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arXiv.org/abs/1909.13550
https://doi.org/10.1145/3472291
https://arXiv.org/abs/2105.15183
https://arXiv.org/abs/1112.5745
https://doi.org/10.1103/PhysRevD.75.035001
https://doi.org/10.1103/PhysRevD.76.039902
https://doi.org/10.1103/PhysRevD.76.039902
https://doi.org/10.1007/JHEP06(2023)069
https://doi.org/10.1007/JHEP06(2023)069
https://doi.org/10.1007/JHEP07(2023)169
https://arXiv.org/abs/2101.11665
https://arXiv.org/abs/2104.01836
https://doi.org/10.1007/JHEP08(2021)161
https://doi.org/10.1007/JHEP12(2023)021
https://doi.org/10.1007/JHEP03(2021)207
https://arXiv.org/abs/2008.02627
https://github.com/aurelio-amerio/ConcreteDropout
https://github.com/aurelio-amerio/ConcreteDropout
https://github.com/aurelio-amerio/ConcreteDropout
http://tensorflow.org
http://tensorflow.org
https://arXiv.org/abs/1412.6980

