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Recent years have seen much activity in searches for dark-sector messenger particles in the 10–100 MeV
mass range, especially in view of a potential new light boson conjectured by the ATOMKI Collaboration,
X17. Under the assumption that the messenger particle has definite parity and either zero or unit spin, quite
stringent bounds already exist on its coupling to electrons and protons. Equally stringent bounds on the
neutron coupling do not exist yet, but are nonetheless desirable. We explore how measurements of deuteron
photodisintegration with a quasifree neutron can yield bounds on the neutron coupling, and compute
projections for a potential measurement at the low-energy high-intensity electron scattering experiment
MAGIX@MESA. The projected bounds are found to be competitive for an axial-vector or pseudoscalar
scenario, but not for a vector or scalar scenario.
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I. INTRODUCTION

In recent years, the main paradigm for dark-matter
searches has been shifting. With heavier candidate particles,
such asweakly interactingmassive particles (WIMPs), either
excluded or experimentally out of reach [1,2], a vigorous
effort is presently underway to search for light dark-sector
particles in the MeV–GeV mass range [3,4]. In this context
a new boson X is often posited to be a messenger particle
connecting the known visible sector to a hidden dark
sector [5–8].
The mass of the mediator X determines its decay. It may

either decay invisibly into particles of the hidden dark sector,
or it may decay visibly into particles of the Standard Model.
Herein, we deal with visible decays of the mediator X to an
electron-positron pair, where one typically searches for X by
directing a high-intensity, Oð100 MeV − few GeVÞ elec-
tron beam at a fixed gas-jet target [9–11]. If present, a
potential signal will appear as a narrow resonance on top of a
large, but well-known QED background.
Using these techniques robust exclusion limits on the

coupling of X to an electron-positron pair have been
established, with reactions such as e−p→e−pðX→eþe−Þ,
or e−Z → e−ZðX → eþe−Þ, where Z denotes a heavy target
nucleus [6]. Likewise, results from the NA48=2 experiment,
using π0 → γðX → eþe−Þ, have put strict bounds on the

coupling of X to the proton [12]. And, under the
assumption that X is a pseudoscalar, results from the
SINDRUM Collaboration [13], which measured πþ →
eþνeðX → eþe−Þ, limit the isovector nucleon coupling ofX.
Unlike the effective electron and proton couplings of X,

the effective neutron coupling is not as stringently tested in
the region mX ∼ 10–100 MeV=c2. The reason is simple; in
the lab, no free high-density neutron target exists. Any
extractions of the neutron coupling have to be made by
proxy, which is why the current strongest constraints come
from neutron star phenomenology [2,14,15] or isotope shift
spectroscopy [16,17]. Unfortunately, these bounds fall
short of covering the MeV-to-GeV mass range of interest.
Nevertheless, for several reasons it is desirable to have

better limits on the neutron coupling in this region as well.
First, taken with the existing constraints on the proton
coupling, constraints on the neutron coupling can be
directly translated into limits on the quark couplings of
X, i.e., gu ¼ ð2gp − gnÞ=3 and gd ¼ ð2gn − gpÞ=3. In turn,
these limits directly tell us what new physics models are
permissible. As a specific example consider the dark
photon which, through kinetic mixing with an ordinary
photon, necessarily couples to the quarks in a manner
proportional to their charges, gu ¼ 2gp=3 and gd ¼ −gp=3,
implying gn ¼ 0 [18]. Any deviation from this value
already rules out the dark photon scenario. Another more
immediate reason is connected to the potential discovery of
a narrow resonance around 17 MeV by the ATOMKI
Collaboration—dubbed X17—in the eþe− decay spectrum
of excited states of 8Be, 12C and 4He [19–21]. Limits on the
coupling of X17 to the nucleon, which can be derived
individually from each of the observed nuclear decays,
appear to be in tension with each other [22–24]. Better
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constraints on the neutron coupling would help resolve this
apparent conflict.
The problem, which involves determining the X cou-

pling to the neutron, is mirrored in the program to measure
the neutron polarizabilities [25,26]. There, a successful
strategy is to measure deuteron photodisintegration under
specific kinematic conditions where the bound neutron
behaves as though it were free [27]. One can then access the
polarizabilities indirectly, using the ‘quasifree’ bound
neutron [28]. The purpose of this paper is to explore the
use of a similar approach, a measurement of γd → eþe−pn
in quasifree neutron kinematics, to extract limits on the
neutron coupling of X.
To make our analysis concrete, our work will be centered

around the forthcoming experiment at MAGIX@MESA
[29], though itmay be readily adapted tomeet the constraints
provided by other electron scattering facilities. MESA is an
electron accelerator (presently under construction) that will
be capable of producing a low-energy high-intensity elec-
tron beam (up to 105 MeV in its energy-recovering mode).
With a gas-jet target, luminosities around 1035 cm−2 s−1will
be reached [30]. The MAGIX experiment consists of two
high-resolution electron-positron spectrometers with a rel-
ative momentum resolution of δp=p < 10−4 and an angular
resolution of δθ < 3 mrad [29,30]. Accordingly, the
expected electron-positron invariant-mass resolution is
δmee ≈ 0.1 MeV=c2 or better [10]. Note that earlier dark-
photon searches have already achieved a resolution of
0.2 MeV=c2 [31,32].
In this paper we will investigate which limits on the

neutron coupling to a dark-sector messenger particle X can
be obtained with the MAGIX@MESA setup using
γd → eþe−pn. Our paper is structured as follows. In
Sec. II we start by specifying the kinematics of the γd →
eþe−pn process and derive an expression for the differ-
ential cross section. In Sec. III we subsequently describe
the plane-wave impulse approximation, and outline the
kinematic regime in which the scattering on a quasifree
neutron is valid. In Sec. IV we specify the QED back-
ground and X-boson signal, respectively. In Sec. V we
derive projections for the reach at MAGIX@MESA, and in
Sec. VI we apply our framework to the specific case of the
conjectured X17. We conclude with a brief outlook in
Sec. VII.

II. KINEMATICS AND CROSS SECTION
OF γd → e+ e − pn

We begin our calculation with the kinematics of the
γd → eþe−pn process. We work within the rest frame of
the deuteron and set up our coordinate system such that the
z-axis is along the direction of the incoming photon’s three-
momentum, and the neutron and photon three-momenta
span the x-z plane. We have

γðq; λÞdðpd;MÞ → eþðpþ; sþÞe−ðp−; s−Þ
× pðpp; spÞnðpn; snÞ;

where λ is the polarization of the incoming photon, s� are
the e� helicities, andM, sp and sn are the deuteron, proton
and neutron spin projection along the z-axis. In the lab
frame, the four-momenta are given by

pμ
d ¼ ðmd; 0; 0; 0Þ; qμ ¼ ðEγ; 0; 0; EγÞ;

pμ
i ¼ ðEi; jpijp̂iÞ; for i ¼ �; n;

pμ
p ¼ ðEp;ppÞ;

where

p̂i ¼ðsinθi cosϕi;sinθi sinϕi;cosθiÞ; for i¼�;n; ð1Þ

pp ¼ q − p− − pþ − pn: ð2Þ

We denote the masses of the nucleons, leptons and deuteron
asmN ,me andmd, respectively. It is also useful to introduce
the four-momentum q0 ¼ pþ þ p− and the squared invari-
ant mass of the dilepton system, q02 ¼ m2

ee.
We choose our kinematic variables as Eγ , jp�j, the polar

angles θ� and θn, and the azimuthal angles ϕ� and ϕn. It
follows that the magnitude of the neutron three-momentum
is given by

jpnj ¼
1

2a

h
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p i
; ð3Þ

where

a ¼ ðEγ þmd − q00Þ2 − jq − q0j2 cos2 θnγγ > 0; ð4Þ

b ¼ ðqþ pd − q0Þ2jq − q0j cos θnγγ; ð5Þ

c ¼ m2
NðEγ þmd − q00Þ2 − 1

4
ðqþ pd − q0Þ4 > 0; ð6Þ

with

jq − q0j cos θnγγ ¼ p̂n · ðq − q0Þ: ð7Þ

For our kinematic regime of interest the positive solution of
Eq. (3) corresponds to physical values of the neutron three-
momentum.
Lastly, the differential cross section is given by

dσ
dΠ

¼ KhjMj2i; ð8Þ

with
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K ¼ 1

64ð2πÞ8mdEγ

jpþj2jp−j2
EþE−

×
jpnj2

jpnjðmd þ Eγ − q00Þ − Enjq − q0j cos θnγγ
; ð9Þ

where dΠ is shorthand for djpþjdjp−jdΩ−dΩþdΩn.
Furthermore, in Eq. (8) jMj2 is the squared Feynman
amplitude and h·i denotes the average over initial helicities
or spin projections and sum over final helicities or spin
projections.

III. THE PLANE-WAVE IMPULSE
APPROXIMATION

As a first step, to calculate the matrix element M we
work within the plane-wave impulse approximation
(PWIA) [28]. In this approximation, shown in Fig. 1, we
can separate the process γd → eþe−pn into two parts; a
part where the proton is a spectator and a part where
the neutron is a spectator. By doing so we disregard

meson exchange currents and final-state interactions.
However, in our kinematic regime of interest the meson
exchange currents are estimated to give corrections of
approximately 5%, meaning they can be safely neglected.
Likewise, for a first approximation, the final state inter-
actions can be omitted (see Fig. 5 and its discussion in
Ref. [28]).
As we are interested in the low-energy regime

(Eγ ∼ 100 MeV) where relativistic corrections are expected
to be small, we use a nonrelativistic framework to imple-
ment the PWIA. We start by inserting a complete set of
two-particle states [33],

MIAðγd → eþe−pnÞ ¼
X
s1;s2

Z
d3p
ð2πÞ3 he

þe−;ppsp;pnsnjMIAjγ;
1

2
pd þ ps1;

1

2
pd − ps2i

×
ð2mdÞ1=2

ð2Ep̃Þ1=2ð2EñÞ1=2 NRhp; s1s2jdð1;MÞiNR; ð10Þ

where ‘NR’ indicates the baryon states are normalized
nonrelativistically and no subscript refers to covariant
normalization,

jp; si ¼ ð2EpÞ1=2jp; siNR;
hp; sjp0; s0i ¼ ð2EpÞð2πÞ3δð3Þðp − p0Þδss0 :

In the second line of Eq. (10) we can identify the
components of the relative deuteron wave function in
momentum space, Ψ̃M

s1s2ðpÞ¼NRhp;s1s2jdð1;MÞiNR. They
are given by

Ψ̃M
s1s2ðpÞ ¼ ð2πÞ3=2

�
ψ̃0ðpÞY0

0ðp̂Þ
�
1

2
s1;

1

2
s2j1M

�

− ψ̃2ðpÞ
X
Ms

YM−Ms
2 ðp̂Þh1Ms; 2M −Msj1Mi

×

�
1

2
s1;

1

2
s2j1Ms

��
; ð11Þ

where p ¼ jpj, hj1m1; j2m2jjmi are Clebsch-Gordan coef-
ficients and Ym

l are the spherical harmonics. For our
numerical estimates we use the CD-Bonn parametrization
[34] for the s- and d-wave functions. Note that we use a
different convention for the Fourier transform as compared

to Ref. [34], which gives rise to the different factors of 2π.
Also note that the relative sign between the s- and d-wave
functions is absorbed into the CD-Bonn parametrization
of Ref. [34]. That is, ψ̃0ðpÞ ¼ ψ̃Bonn

0 ðpÞ and ψ̃2ðpÞ ¼
−ψ̃Bonn

2 ðpÞ. The wave function is normalized as

1¼
Z

d3p
ð2πÞ3 jΨ̃

MðpÞj2 ¼
Z

∞

0

dpp2½ψ̃2
0ðpÞþ ψ̃2

2ðpÞ�: ð12Þ

In this work we will restrict ourselves to kinemat-
ics inside the neutron quasifree peak (NQFP) [28].
Qualitatively, this means we only consider configurations
in which the bound proton is a spectator, i.e., has low
momentum. As a consequence the incoming photon pri-
marily scatters off the bound neutron ñ, and contributions
to the cross section from processes involving the bound
proton are negligible.
A more quantitative definition of the NQFP may be

derived using the relative and total momenta of the bound
neutron and bound proton. In the lab frame the total
momentum is just the deuteron momentum, pd ¼ 0, and
the relative momentum is the momentum of the outgoing
proton, p ¼ pp ¼ −pñ. Near the NQFP jpj → 0, meaning
we approach the singularity of the deuteron wave function,

FIG. 1. In the plane-wave impulse approximation we can
factorize the process γd → eþe−pn into a process on a quasifree
neutron, ñ and a process on a quasifree proton, p̃.
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1

md − Ep − Eñ
¼ 1

2mN − Δ − 2Ep
;

where Δ ≈ 2.2 MeV is the deuteron binding energy. Close
to this singularity, ñ is ‘nearly on shell’, and so we define
the NQFP by [28]

Ep ≲mN þ Δ
2
⇒ jppj≲

ffiffiffiffiffiffiffiffiffiffi
mNΔ

p
≈ 45.7 MeV=c: ð13Þ

Expanding Ψ̃M in Eq. (10) in the NQFP region gives

MIAðγd → eþe−pnÞ ≈Mn
IAðγd → eþe−pnÞ; ð14Þ

with

Mn
IAðγd → eþe−pnÞ

¼ ð2mdÞ1=2
�
Ep

Eñ

�
1=2

×
X
sñ

Ψ̃M
spsñðppÞMðγñ → eþe−nÞ; ð15Þ

where the quasifree neutron has momentum and spin
projection −pp and sñ, respectively. We have explicitly
checked the size of the proton contribution to the cross
section and found it to be negligible in the kinematic region
corresponding with Eq. (13), validating Eq. (14). Note that
in the NQFP kinematic region of interest here any off shell
effects are small, and can be safely neglected.

IV. QED BACKGROUND PROCESSES
AND SIGNAL PROCESSES

Having related the amplitude of γd → eþe−pn to the
amplitude of γñ → eþe−n, we turn to the calculation of
Mðγñ → eþe−nÞ. This calculation is composed of two
steps, the calculation of the QED background amplitude
and the subsequent computation of the signal amplitude.

A. QED background amplitudes

For photon energies around 100 MeV, i.e., below the
pion production threshold, the QED background may be
parametrized by a combination of the Bethe-Heitler process
and Compton scattering process. The latter is described by
the Born process, the π0 t-channel exchange process and
the non-Born contributions parametrized by the neutron
electric (αE) and magnetic (βM) polarizabilities. These are
all shown in Fig. 2, where we have omitted the crossed
diagrams for the Bethe-Heitler and Born contributions. All
diagrams in Fig. 2 are embedded in the quasifree neutron
blob of Fig. 1. Technical details of the calculation of the
QED background have been relegated to Appendix A and a
comparison of our calculated QED background and pre-
vious calculations is given in Appendix B.

B. Signal amplitudes

The X signal process is identical to Fig. 2(b), with X
replacing the virtual photon. In principle, X may also
contribute via the Bethe-Heitler process. However, to extract
limits on the neutron coupling from γd → eþe−pn, we are
only interested in processes whereX is on resonance (that is,
m2

ee ¼ m2
X). Consequently, any Bethe-Heitler contributions

stemming from virtual X exchange are negligibly small and
may be safely omitted.
We assume that X is either scalar, pseudoscalar, vector or

axial vector (S, P, V or A, respectively) and that it couples
to the fermions f, where f may be a neutron, proton or
electron (f ¼ n, p or e, respectively). We can then
generically parametrize its interaction using the effective
interactions,

Li ¼
X
f

giff̄Γif · X; for i ¼ S; P; V; A; ð16Þ

where ΓS ¼ 1, ΓP ¼ iγ5, Γ
μ
V ¼ γμ and Γμ

A ¼ γμγ5. The dot
in Eq. (16) indicates all Lorentz indices, should they be
present, are to be contracted. In this approach we remain
agnostic to any models describing X; constraints on the
effective couplings gif can always be matched to constraints
on couplings from a UV-complete model by integrating out
the corresponding degrees of freedom of the microscopic
theory.
Using Eq. (16) we find that the signal amplitude is

given by

(a) (b)

(c) (d)

FIG. 2. Below the pion production threshold the reaction
γd → eþe−pn is described by the Bethe-Heitler process (a),
the Born process (b), π0 t-channel exchange (c) and non-Born
neutron scalar polarizability contributions (d). Crossed diagrams
for the Bethe-Heitler and Born processes are not shown explicitly.
All diagrams are embedded in the quasifree neutron blob
in Fig. 1.
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Mi ¼
Bi

m2
ee −m2

X þ imXΓX
; for i ¼ S; P; V; A; ð17Þ

where Bi ¼ εðq; λÞ ·Hi · Ci · Li, with

CðμνÞ
i ¼ −egiegin½δSi þ δPi − gμνδVi

− ðgμν − q0μq0ν=m2
XÞδAi�; ð18Þ

LðμÞ
i ¼ ūðp−; s−ÞΓðμÞ

i vðpþ; sþÞ; ð19Þ

HμðνÞ
i ¼ ūðpn; snÞ

	
ΓðνÞ
i

ð=pñ þ =qþmNÞ
ðpñ þ qÞ2 −m2

N
Γμ
q

þ Γμ
q
ð=pñ − =q0 þmNÞ
ðpñ − q0Þ2 −m2

N
ΓðνÞ
i



uðpñ; sñÞ: ð20Þ

The photon nucleon vertex Γμ
q, is described in Eq. (A10),

with e > 0.

C. Signal averaged over a single invariant
lepton-mass bin

As can be seen from Eq. (17), the final cross section
around the NQFP with mee ¼ mX will generally depend on
the coupling of X to the neutron and electron, as well as the
(narrow) width of X, ΓX. In an experiment we would not be
able to set mee ¼ mX exactly—instead, we will collect all
events falling in ½mee − δmee=2; mee þ δmee=2�. If δmee is
sufficiently narrow, ∼Oð0.1 MeV=c2Þ, the QED back-
ground will remain nearly constant across this bin and,
given that ΓX ≪ δmee, this is also the only bin in which the
signal will reside.
To calculate the signal averaged over a single bin we start

by fixing δmee ¼ 0.1 MeV=c2 (bin widths achievable by
MAGIX@MESA). Moreover, on resonance we may safely
neglect any interference terms between the QED back-
ground and the X-boson signal due to the narrowness of the
resonance,

dσ
dΠ

≈
�
dσ
dΠ

�
QED

þ
�
dσi
dΠ

�
X
; for i ¼ S; P; V; A; ð21Þ

where

�
dσi
dΠ

�
X
≔

1

δmee

Z
mXþδmee=2

mX−δmee=2
dmee

�
dσi
dΠ

�
X
; ð22Þ

is the signal averaged over a bin. We assume thatmX ≫ ΓX,
so that in Eq. (22) we may replace,

���� 1

m2
ee −m2

X þ imXΓX

����
2

→
π

mXΓX
δðm2

ee −m2
XÞ: ð23Þ

This gives

�
dσi
dΠ

�
X
¼ 1

δmee

π

2m2
XΓX

ðKhjBij2iÞ
����
m2

ee¼m2
X

; ð24Þ

where K is given in Eq. (9) and Bi is given in Eq. (17).
We can rewrite ΓX using

BðX → eþe−Þ ¼ ΓðX → eþe−Þ
ΓX

:

A short calculation gives

ΓiðX → eþe−Þ ¼ ðgieÞ2
π

½ðδPi þ δViÞpcm

þ ðδSi þ δAiÞp3
cm=m2

X�βi; ð25Þ

where βS ¼ 1, βP ¼ 1=4, βV ¼ ð1þ 2m2
e=m2

XÞ=6 and
βA ¼ 2=3, with pcm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X − 4m2
e

p
=2.

Using the above, dσ=dΠ no longer directly depends on
ΓX and gie, and only depends on the electronic branching
fraction, which appears as an overall scaling factor.
Throughout this work we set BðX → eþe−Þ ¼ 1. If the
branching fraction is not equal to unity, any result can be
easily rescaled by a simple multiplication.

V. NEUTRON-COUPLING REACH
FOR MAGIX@MESA

Next, we present projections for the reach of the neutron
couplings for an experiment at MAGIX@MESA. We
consider a signal significant if it is nσ standard deviations
over the QED background. Then, the reach at the nσ
confidence level is given by [11]

jgreachn j ¼
�
σQED
σXjgn¼1

nσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L × σQED

p
�
1=2

; ð26Þ

where σi are the integrated signal and background cross
sections and we denote the integrated luminosity by
L ¼ R

dtL, with L the luminosity. Equation (26) implies
an approximate scaling of the reach with the bin width
like

ffiffiffiffiffiffiffiffiffiffi
δmee

p
.

The range over which we can integrate the signal and
background cross sections is restricted by a) the quasifree
neutron condition (13), b) the requirement that mee falls
into the correct bin (with width δmee ¼ 0.1 MeV=c2),
and c) geometric constraints from MAGIX@MESA [30].
The latter limit jθ�j ≤ 165° and jθnj ≥ 5°. Even with these
constraints the accessible phase space is much larger than
can be realistically measured in a single run. To that end,
we consider several more restrictive detector settings.
Across all settings we fix
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jp�j∈ ½10.0; 100.0� MeV=c;

ϕþ ∈ ½150.0°; 210.0°�;
ϕ− ∈ ½−30.0°; 30.0°�;
θn ∈ ½−30.0°;−5.0°� ∪ ½5.0°; 30.0°�;

and vary the other kinematic variables as outlined in
Table I.
In all settings we only consider backward lepton kinemat-

ics because the signal-to-background ratio is considerably
more favorable as compared to forward lepton kinematics.
This is because in forward lepton kinematics the Bethe-
Heitler part of the QED background increases, thereby
significantly worsening the signal-to-background ratio.
We stress that the integration limits we provide are

estimates. Naturally, they are to be refined once the
parameters for the MAGIX@MESA setup are established.
However, projections in Ref. [30] suggest our estimates are
likely to be realistic. Furthermore, should there be any
significant changes then our analysis can easily be
repeated. Finally, note that in practice the lepton spectrom-
eters are restricted to in-plane kinematics only [30]. To
cover a larger range of ϕ� one can equivalently measure the
neutron at an out-of-plane angle.
We perform the integration using Monte Carlo integra-

tion with 10,000 integration points, at which results
converge to within 1–2% of each other, which we deem
to be sufficiently accurate for our purposes here. We use
rejection sampling to implement the NQFP condition (13)
and to ensure all events fall within the desired mee bin [35].
The reach, assuming nσ ¼ 2, is shown in Fig. 3, for a

scalar (a), pseudoscalar (b), vector (c) and axial-vector
(d) X scenario. To calculate the reach we have taken the
projected luminosity of MAGIX@MESA’s gas-jet target,
L ¼ 1035 cm−2 s−1 [30], together with a beam time of 2000
h, giving an integrated luminosity L ¼ 7.2 × 108 nb−1. Of
course, results in Fig. 3 can easily be rescaled using
Eq. (26) to account for different luminosities.
It is evident that a higher Eγ correlates with an improved

reach, and the best (lowest) reach is obtained in the

20–85 MeV=c2 range with Eγ ¼ 105 MeV. To access
masses ≲20 MeV=c2 at Eγ ¼ 105 MeV requires measure-
ments in which the leptonic polar angles θ� are further
backwards than is geometrically feasible for the
MAGIX@MESA setup. To access the lower mass region,
one instead has to lower Eγ. As can be seen by comparing
settings 1a–c, this unfortunately worsens the reach for the
lower masses.
To further explore the relation between the reach and

our kinematic variables, in Fig. 4 we show several
projections of the phase space (sampled 10,000 times)
assuming a vectorlike scenario for setting 1c, with δmee ¼
0.1 MeV=c2 and mee ¼ 25 MeV=c2, 40 MeV=c2 and
55 MeV=c2. In Fig. 4 we have, at each kinematic point,
taken the inverse of Eq. (26) using the differential cross
section instead of the integrated cross section, yielding
jreachj−1. In addition, we have normalized each point to the
maximum value of jreachj−1 out of the 10,000 sampled
points, denoted by max jreachj−1. We have checked, and
broadly our conclusions also hold for other parity assign-
ments, bin sizes and settings.
In Fig. 4(a) one sees that a smaller mee corresponds to

more backward leptonic polar angles θ�. This is because
mee is proportional to the relative angle between three-
momentum of the lepton pair, meaning if mee is small, this
relative angle has to be small as well. It is also evident that
backward lepton kinematics give a better reach than
forward kinematics. The reason for this is, as previously
mentioned, that in the forward regime the Bethe-Heitler
contribution is enhanced, thus washing away the signal.
In Fig. 4(b) we have plotted the lepton momenta jp�j.

Here one sees that higher momenta generally correlate to a
better reach. In passing, let us also mention that projections
in ϕ� (not shown) are fairly evenly distributed.
Finally, in Fig. 4(c) we have plotted the proton momen-

tum jppj against the neutron angle θn. For all mee a clear
pattern is visible; a lower protonic three-momentum cor-
responds to a better reach, which is not surprising. From
Eq. (26) we see that the reach is determined by the signal-
to-background ratio as well as the absolute size of the
integrated QED cross section. The absolute value of the
proton three-momenta enters the cross section in Ψ̃MðppÞ.
The most prominent contribution there, the deuteron
s-wave function, is peaked at small momenta values.
Thus, one obtains a larger cross section for small jppj,
which is exactly reflected in Fig. 4.
As an aside, we remark that a cut on small jppjwould not

be advantageous. We have checked that the gain in signal-
to-background [the first fraction in Eq. (26)] is smaller than
the loss in phase space [the second fraction in Eq. (26)]
after placing the cut. Therefore, the net result is a worse
reach. We discuss this further in Appendix C.
In Fig. 5 we have plotted the differential cross section of

the background and signal as a function of θn. Here we

TABLE I. The detector settings considered in this work,
consistent with the projected values for MAGIX@MESA [30].
The mee range follows immediately from m2

ee ¼ ðpþ þ p−Þ2,
where we have rounded the range to the nearest multiple of
5 MeV=c2. Note that limits similar to setting 2 but with a lower
photon energy are fully covered by settings 1b and 1c.

Setting Eγ (MeV) θ� (deg)
mee range
(MeV=c2)

1a 55 135.0–165.0 10.0–35.0
1b 85 135.0–165.0 15.0–50.0
1c 105 135.0–165.0 20.0–65.0
2 105 105.0–135.0 45.0–90.0
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assumed an axial-vector X scenario with mX¼17MeV=c2,
though similar conclusions hold for other parity assign-
ments and masses as well. We fixed Eγ ¼ 105 MeV,
δmee ¼ 0.1 MeV=c2 and the other kinematic variables to,

jpþj ¼ 65.7 MeV=c2; θþ ¼ 165.0°; ϕþ ¼ −180.0°;

jp−j ¼ 20.1 MeV=c2; θ− ¼ 165.0°; ϕ− ¼ 0.0°;

ϕn ¼ 0.0°:

The QED background is shown in red. In the above
kinematics mee ¼ mX, leading to the enhanced signal
shown in blue. For the blue curve, gAn ¼ 7 × 10−5, while
the light blue bands correspond to the range gAn ¼
ð5–9Þ × 10−5. The angular dependence shown in Fig. 5

is typical for kinematics in the NQFP. The maximum of the
peaked cross section corresponds approximately to the
angle θn at which jppj reaches its minimum, assuming all
other kinematic variables are kept fixed.
Lastly, in Fig. 6 we have plotted the integrated back-

ground and signal cross section for an axial-vector X
scenario as a function of mee, with mX ¼ 30 MeV=c2

and δmee ¼ 0.1 MeV=c2 using detector setting 1c.
Analogous results hold for different values of mX, the
bin width, and different parity assignments. The signal
height is proportional to jgAn j2; for illustrative purposes only
we have chosen gAn ¼ 10−5. In an experiment, the strongly-
enhanced signal would clearly be visible inside a single bin.
We may compare the obtained reach with some available

limits in the literature. As can be seen in Fig. 3(a), for the
scalar scenario limits from Ref. [36],

(a) (b)

(c) (d)

FIG. 3. 2σ reach plots for the effective neutron coupling assuming a scalar (a), pseudoscalar (b), vector (c) or axial-vector (d) boson,
where any signal in the shaded yellow, orange, blue or cyan regions would be detectable. In all plots the bin width δmee ¼ 0.1 MeV=c2

and the integrated luminosity L ¼ 7.2 × 108 nb−1. Results may be easily rescaled using Eq. (26). The detector settings are given in
Table I. Existing bounds from neutron-lead scattering [22,36] are shown in gray, while bounds from the ATOMKI experiments at
17 MeV=c2 are shown in purple. The latter are discussed in detail in Sec. VI and Fig. 7. We note that for all scenarios there exist several
bounds on either the difference of the neutron coupling and an (unbounded) proton coupling, and many bounds on parameters other than
the neutron coupling. Both cannot be directly shown in the above figure. For further discussion regarding constraints on parameters
other than the neutron coupling, see Sec. V and, for instance, Refs. [2,22–24,37–39] and references therein.
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jgSnj × ðmX MeV=c2Þ−2 ≲ 2.1 × 10−5; ð27Þ

already exclude the accessible parameter space.
Similarly, for a vectorlike X we have constraints from

208Pb-n scattering [22], limiting

jgVn j×
���� 126208

gVn þ 82

208
gVp

���� × ðmX MeV=c2Þ−4 ≲ 4.3 × 10−10:

ð28Þ

The intensive search program for the dark photon has yielded
strong bounds on the proton coupling [12], which we may
reinterpret as bounds on a more general vector X [40],

jgVp j≲ 2.5 × 10−4: ð29Þ

Combining both constraints implies

jgVn j × ðmX MeV=c2Þ−2 ≲ 4.3 × 10−6; ð30Þ

which also already excludes the accessible parameter space,
as can be seen in Fig. 3(c).
For a pseudoscalar X current limits on the nucleon

coupling are given in terms of the isovector coupling [37],

jgPp − gPn j≲ 1.2 × 10−3: ð31Þ

Such an inequality may be easily satisfied if the proton and
neutron coupling are of a similar order, so the purely
neutron exclusion limits one gets from γd → eþe−pn
become relevant again.
A similar situation arises for an axial-vector X, where,

out of all parity assignments, the couplings are least

FIG. 5. The differential signal cross section (blue) assuming
an axial-vector scenario and the differential QED background
cross sections (red) with uncertainties due to the neutron polar-
izabilities. We fix Eγ ¼ 105 MeV, mX ¼ 17 MeV=c2, δmee ¼
0.1 MeV=c2 and gnA ¼ 7 × 10−5. The bands correspond to the
range gAn ¼ ð5–9Þ × 10−5. A further specification of the kinemat-
ics is given in the body of the text.

FIG. 6. The integrated signal (blue) and QED background
(red) with uncertainties due to the neutron polarizabilities for
mX ¼ 30 MeV=c2, δmee ¼ 0.1 MeV=c2 and gnA ¼ 10−5 using
detector setting 1c (see Table I). A hypothetical axial-vector
boson, X, would show up inside a single bin where mee ¼ mX.

FIG. 4. Projections of the phase space from 10,000 uniformly
sampled points specified by detector setting 1c (see Table I) for
mee ¼ 25 MeV=c2, 40 MeV=c2 and 55 MeV=c2 (left to right,
respectively) and δmee ¼ 0.1 MeV=c2, assuming a vectorlike
scenario. The color code shows the inverse reach normalized to
its maximum value of the considered sample [see Eq. (26)].
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constrained. The strictest bounds comes from the KTeV
anomaly [22,41],

1.3 × 10−10 ≤
ðgAp − gAnÞgAe

ðmX MeV=c2Þ2 ≤ 5.2 × 10−10; ð32Þ

where the upper and lower bounds are given in units of
ðMeV=c2Þ−2. The electron coupling can be estimated to be

gAe ¼ �ð1.52� 0.31Þ × 10−4; ð33Þ

which gives two possible bands in which the neutron
coupling may fall (see Fig. 7 in Sec. VI and Fig. 5 of
Refs. [22,24]). Moreover, just as the pseudoscalar coupling,
one can fine-tune the proton and neutron couplings to
largely evade the bound on their difference. Therefore,
bounds solely on the neutron coupling would be a very
welcome complement to the constraints given above.
On the other hand, one should also consider recent

results from the isotope-shift analysis of xenon [17] (and
similar systems [16,42]). At low energies both a pseudo-
scalar and an axial-vector interaction are described by a
Yukawa potential in position space [43]. When included in
isotope shift analyses, one obtains bounds on the product of
the electron and neutron couplings. These bounds typically
go up to 1 MeV=c2 and are of Oð10−11Þ. If we extrapolate
them to our energy range, we get an order-of-magnitude

estimate jgegnj≲Oð10−9Þ. Current bounds on the electron
coupling are Oð10−4Þ [37], which would mean the isotope-
shift analyses would give limits on the neutron coupling of
Oð10−5Þ, much stricter than the ones we get in Figs. 3(b)
and 3(d). Of course, it remains an open question whether
atomic methods can be improved enough to access the
10–100 MeV=c2 mass range any time soon.
Next, we discuss how one may further improve the

bounds in Fig. 3. A possible approach would be to decrease
δmee. However, given that halving δmee to 0.05 MeV=c2

only gives an improvement of the reach with a factor
∼1=

ffiffiffi
2

p
, significant improvements from this area are

unlikely. As previously stated and demonstrated in
Appendix C, the reach can also be enhanced by increasing
the measured phase space. Given that the ranges given in
Table I already represent (roughly) the largest ranges that
would be realistically possible for MAGIX@MESA to
measure, the only remaining variable is the integrated
luminosity. As we already consider a fairly long experiment
given our choice of 2000 hours, we turn to the luminosity. It
is unlikely that L of the gas-jet target with a deuteron gas
can be increased enough at MAGIX@MESA to make up
the difference, as the luminosity enters as L−1=4 into the
reach. However, the gas-jet target does allow for different
gases with more neutrons—for example xenon, with
around 80 neutrons. One naively expects the luminosity
(and by extension the reach) to scale with the number of

(a) (b)

FIG. 7. The 1σ (dark) and 2σ (light) allowed parameter space for a vector (a) or axial-vector (b) X17. Projections from γd → eþe−pn
from Fig. 3 are shown in yellow. As can also be seen in Fig. 3, for the vector case, this constraint is subdominant to other constraints. The
8Be, 4He and 12C-derived constraints are given in orange, red and pink, respectively, where we use the isospin mixing angle θ1þ ¼
0.35ð8Þ° for the 8Be states (see Sec. VI). A different mixing angle rotates the 8Be bands around the origin. For the vector scenario
additional constraints from NA48=2 [12] and lead-neutron scattering [36] are shown in green and gray, respectively. Pion decay
constraints [24] are shown in blue, where the upper and lower bands correspond to a positive and negative electron coupling,
respectively. For the axial-vector scenario additional constraints from the KTeV anomaly [41] and pion decay [24] are shown in green
and blue respectively, where the upper bands corresponds to a positive electron coupling and the lower bands to a negative electron
coupling.
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available neutrons. To that end, interesting further research
would be to investigate the coupling limits around the
NQFP of a more neutron-rich system.
In sum, deuteron photodisintegration gives competitive

limits on the neutron coupling for a pseudoscalar or axial
vector X, though it is likely that in the future methods such
as isotope-shift spectroscopy will yield improved limits.
That being said, whereas other methods give limits on the
product of gn with another coupling, an extraction using
γd → eþe−pn gives limits directly on gn. Moreover, it is
expected that by replacing the deuteron with a more
neutron-rich system the reach can be improved further.

VI. FURTHER RESULTS RELATED
TO THE X17 ANOMALY

As mentioned in the introduction, recent results of the
ATOMKI Collaboration have garnered significant theoreti-
cal and experimental interest; in a series of experiments
[19–21,44] the collaboration claims to have found evidence
of a new, light boson dubbed X17.
The ATOMKI Collaboration looked at internal pair

creation in decays of excited 8Be, 4He and, recently, 12C
nuclei. In all three cases, an anomalous bump was found in
the distribution of the emitted electron-positron pair’s
relative angle, with a statistical significance consistently
exceeding 6σ (see Ref. [45] for a review). Working with
members of the ATOMKI Collaboration, researchers at
VNU University of Science claim to have independently
verified the original 8Be measurements [46].
In the Standard Model, nuclear transitions in which an

eþe− pair is emitted are mediated by electromagnetic
interactions and are well understood. They are sensitive
to new physics appearing at the MeV scale, and thus the
ATOMKI Collaboration attributes their anomaly to the as-
of-yet unseen X17, with a reported averaged mass around
17.02ð10Þ MeV=c2 [19–21]. Assuming definite parity, the
beryllium results indicate X17 can be a pseudoscalar,
vector or axial-vector particle [47], while the carbon results
point to a scalar, vector or axial-vector particle [22].
Theoretically, based on the 8Be decays, models for X17
have been developed for the pseudoscalar, vector and axial-
vector cases [37,38,40,48,49] that attempt to explain the
ATOMKI anomalies while conforming to existing exclu-
sion bounds. In particular, according to the vector model
put forward by Feng et al. [40,50] X17 additionally must be
protophobic (couple weakly to protons) to meet existing
bounds from the NA48=2 experiment [12]. Experimentally,
a global effort is underway to scrutinize the results of the
ATOMKI anomaly, with new experiments at facilities such
as CCPAC [51], MEG II at the PSI [52], JLAB [53], New
JEDI [54], among many others [45].
We investigate how the neutron-coupling limits from

deuteron photodisintegration discussed above can be of
added value in the current search for X17. To estimate the
coupling of X17 to the nucleon we compare models by

Alves and Weiner [37] for the pseudoscalar case, by Feng
et al. [40] for the vector case and by Kozaczuk et al. [38] for
the axial-vector case. To match their notation with ours
we have

gð0ÞXNN ¼ ðgPp þ gPn Þ=2; gð1ÞXNN ¼ ðgPp − gPn Þ=2;
εf ¼ gVf =e; af ¼ gAf ;

for f ¼ p, n and e.
We can constrain X17’s couplings by using the branch-

ing fractions of the 8Be and 12C decays reported by the
ATOMKI Collaboration [19,21],

ΓX

Γγ

����
8Beð18.15Þ

¼ 6ð1Þ × 10−6: ð34Þ

ΓX

Γγ

����
12Cð17.23Þ

¼ 3.6ð3Þ × 10−6: ð35Þ

as well as from the branching fraction of 4He decays. The
latter are more complicated with furthers details given in
Refs. [20,22,55]. Because the couplings of X17 have been
extensively discussed in other works we shall only give a
brief summary. For more details we refer the reader to the
relevant papers.
The 8Beð18.15Þ state, which is predominately isoscalar,

is isospin mixed with the 8Beð17.64Þ state, which is
predominately isovector. In our analysis we parametrize
this isospin mixing with an isospin-mixing angle, θ1þ , and
an isospin-breaking parameter, κ [40]. Following Ref. [37],
we take θ1þ ¼ 0.35ð8Þ°, whence κ ¼ 0.681 [40].
For a pseudoscalar X17 scenario, results from the

SINDRUM Collaboration [13] put a strong bound on the
isovector coupling,

jgð1ÞXNN j ≤ 0.6 × 10−3: ð36Þ

By following the procedure described in Ref. [37] we
derive bounds on the isoscalar coupling from Eq. (34). This
gives

jgð0ÞXNN j ¼ ð2.0−5.4Þ×10−3; jgð1ÞXNN j ¼ ð0.0−0.6Þ×10−3:

Clearly, from Fig. 3(b) our projected limits from deuteron
photodisintegration for a pseudoscalar X17 are not
competitive.
For a vector X17 scenario the constraint provided by the

NA48=2 experiment [12] leads to the protophobia con-
dition [the green band in Fig. 7(a)],

jεpj ≤ 1.2 × 10−3: ð37Þ
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We derive the remaining neutron coupling from the 8Be data
as outlined in Ref. [40], and from the 12C data using [22],

ΓX

Γγ

����
12Cð17.23Þ

¼ k
ΔE

�
1þ m2

X

2ΔE2

�
jεp − εnj2; ð38Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2

X

p
. We find

8Be∶ jεnj ¼ ð1.1 − 1.7Þ × 10−2;
12C∶ jεnj ¼ ð2.6 − 5.3Þ × 10−3:

The projected limits from γd → eþe−pn, shown in Fig. 3,
would have to be improved by at least a factor of two to test
these couplings. This is also visible in Fig. 7(a), where the
γd → eþe−pn projections span the entire parameter space.
In passing, we remark that like Refs. [22–24], we find

some tension between the carbon, beryllium and helium
results for a vectorlike X17. The neutron couplings
only overlap when the uncertainty of the 8Be results is
increased to around 3σ [see the orange, red and pink bands
in Fig. 7(a)]. In view of this there is an ongoing discussion
in the literature surrounding X17’s couplings. There is a
general consensus that, as it stands, one cannot explain the
8Be, 4He and 12C anomalies simultaneously without intro-
ducing some form of tension (see Refs. [23,24] for more
discussion thereon). From pion decays, the blue bands in
Fig. 7(a), one may obtain additional constraints which
increase the tension even more). Our carbon-derived
neutron couplings agree with Ref. [23], which would
indicate that one should critically reexamine the beryllium
data; a similar finding is echoed in Ref. [24]. A possible
resolution of the discrepancy would be if X17 simply is not
a vector particle. If X17 exists, and if it were in truth an
axial vector, then interpreting its axial couplings as vector
couplings would, naturally, lead to erroneous results.
To derive couplings for the scenario of an axial-vector

X17 we need its nuclear matrix elements. For the beryllium
transition we take the matrix elements as calculated in
Ref. [38],

h8Beðg:s:Þkσ̂ðpÞk8Beð18.15Þi ¼ ð−0.38� 2.19Þ × 10−12;
h8Beðg:s:Þkσ̂ðnÞk8Beð18.15Þi ¼ ð−10� 2.6Þ × 10−12;

which may be used in [22]

ΓXj8Beð18.15Þ ¼
kX
18π

½2þðΔE=mXÞ2�
× jh8Beðg:s:Þkapσ̂ðpÞ þanσ̂ðnÞk8Beð18.15Þij2:

ð39Þ

Because there are no bounds on the proton coupling or
neutron coupling individually, the axial vector coupling is
only loosely constrained. Even taking into account

the additional KTeV anomaly (32) [the green bands in
Fig. 7(b)] still leaves a large part of the parameter space
accessible.
Unlike the beryllium decay, the required axial carbon

matrix element, h12Cðg:s:ÞkD̂σ
3k12Cð17.23Þi, with D̂σ

3 the
corresponding spin dipole operator, is not known [22].
This relates back to the aforementioned tension. We view
the computation of hD̂σ

3i as a pressing open problem. Its
resolution would immediately tell us whether one has a true
discrepancy between the carbon and beryllium results—
there would be no overlap between the carbon and
beryllium measurements in the parameter space of the
axial-vector couplings—or whether one has merely mis-
interpreted the data. Order-of-magnitude estimates suggest
that the 8Be and 12C data could be harmonized using an
axial vector X17 [22].
Following the analyses in Refs. [22,24] we summarize

the aforementioned constraints in Fig. 7 for the two most
promising X17 scenarios, vector and axial-vector, with
projected limits from Fig. 3 overlaid on top. Note that,
unlike in Fig. 3, here the shaded regions indicate allowed
regions of the parameter space. Our 8Be limits differ
slightly from Refs. [22,24] as we use a different mixing
angle θ1þ . We have checked that when using their mixing
angle we recover the their results. The actual value of the
mixing angle has not been pinned down exactly (for
example Refs. [37,38,40] use different values, see also
the discussion in Ref. [23]), meaning the available param-
eter space may be slightly larger than shown in Fig. 7. For
both the vector and axial-vector scenarios, changing the
mixing angle effectively rotates the 8Be bands around the
origin. Especially for the axial-vector scenario limits from
γd → eþe−pn would constrain to what extent this rotation
is permissible.
In summary, if a calculation of the axial transition matrix

element of 12Cð17.23Þ to the ground state remains out-
standing, constraints from γd → eþe−pn would be sub-
dominant for a vector X17 scenario, but for what is at
present the most likely X17 scenario, an axial vector,
helpful to limit the available coupling range.

VII. SUMMARY AND OUTLOOK

Low-mass dark sector searches are a very active area of
research, fueled further by possible sightings of a new
17 MeV=c2 boson, X17. Compared to the electron and
proton couplings, the coupling of a new boson in the
10–100 MeV=c2 mass range to the neutron is poorly
constrained. To that end, we studied the efficacy of the
deuteron photodisintegration process γd → eþe−pn at
MAGIX@MESA in limiting the effective coupling of a
new scalar, pseudoscalar, vector or axial-vector boson in
the 10–100 MeV=c2 mass range, using kinematics corre-
sponding to quasifree production on a neutron. It turns out
that for a scalar or vector scenario other methods yield
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better constraints on the neutron coupling. However, for a
pseudoscalar and axial vector scenario current bounds only
limit the difference between the proton and neutron
coupling. In this case, deuteron photodisintegration has
the potential to yield limits directly on the neutron
coupling. Specifically, for the axial vector scenario our
projections from γd → eþe−pn yield competitive con-
straints for the neutron coupling in light of X17.
Furthermore, besides providing exclusion limits on the

neutron, via the reaction γd → eþe−pn one can also study
the neutron polarizabilities, as has been previously done
using γd → γpn [27,28]. Such a study would be a worth-
while extension of the present work.
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APPENDIX A: CALCULATIONS
OF THE QED BACKGROUND

1. Conventions

Our computation of the QED background starts with
the QED vertex following from the QED interaction
Lagrangian. In our convention,

LQED ¼ −JμAμ ¼ eψ̄γμψAμ; ðA1Þ

The photon nucleon vertex Γμ
q, is defined as

hNðp0ÞjJμð0ÞjNðpÞi
¼−eūðp0ÞΓμ

quðpÞ

¼−eūðp0Þ
�
F1ðq2Þγμþ

i
2mN

F2ðq2Þσμνqν
�
uðpÞ; ðA2Þ

where N ¼ p, n and JμðxÞ is the electromagnetic current
operator, with q ¼ p0 − p. For the Dirac and Pauli form
factors, F1 and F2 respectively, we use the parametrization
given in Ref. [56].

2. Bethe-Heitler amplitude

The tree-level diagram for the Bethe-Heitler process is
shown in Fig. 2(a). The amplitude is given by

MBH ¼ ie3

ðq − q0Þ2 εμðq; λÞL
μν
BHH

BH
ν ; ðA3Þ

where εμ is the photon polarization vector, with

Lμν
BH ¼ ūðp−; s−Þ

	
γμ
�
=p− − =qþme

−2p− · q

�
γν

þ γν
�
=q − =pþ þme

−2pþ · q

�
γμ


vðpþ; sþÞ; ðA4Þ

Hν
BH ¼ ūðpn; snÞΓν

q−q0uðpñ; sñÞ: ðA5Þ

3. Born amplitude

The tree-level Born amplitude is shown in Fig. 2(b), and
its amplitude is given by

MBorn ¼ −
ie3

q02
εμðq; λÞLBorn

ν Hμν
Born; ðA6Þ

where

Lν
Born ¼ ūðp−; s−Þγνvðpþ; sþÞ; ðA7Þ

Hμν
Born ¼ ūðpn; snÞ

	
Γν
−q0

ð=pñ þ =qþmNÞ
ðpñ þ qÞ2 −m2

N
Γμ
q

þ Γμ
q
ð=pñ − =q0 þmNÞ
ðpñ − q0Þ2 −m2

N
Γν
−q0



uðpñ; sñÞ; ðA8Þ

with Γμ
q given in Eq. (A2).

4. Pion-pole amplitude

For the pion-pole contribution we need the pion-photon
and pion-nucleon vertices. The pion-photon vertex follows
from,

Lπ0γγ ¼
e2

4
Fπ0γγF

μνF̃μνπ
0; ðA9Þ

where F̃μν ¼ 1
2
εμναβFαβ and Fπ0γγð0Þ ¼ 1=ð4π2fπÞ, with

Fμν the photon field strength and fπ ≈ 92.4 MeV the pion
decay constant. Our convention is ε0123 ¼ þ1. The photon-
nucleon vertex follows from,

LπNN ¼ gπNNN̄πaτaiγ5N; ðA10Þ

where τa are the Pauli matrices, N ¼ ðp; nÞ and
gπNN ¼ gAmN=fπ , with the axial-vector coupling from
nuclear β-decay gA ¼ 1.27. The pion-pole amplitude is
shown in Fig. 2(c), and is given by

Mπ0 ¼ −Fπ0γγgπNN
ie3

q02
εμðq; λÞLν

π0
Hπ0

μν; ðA11Þ
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where

Lν
π0
¼ ūðp−; s−Þγνvðpþ; sþÞ; ðA12Þ

Hπ0
μν ¼

i
ðq − q0Þ2 −m2

π
εμναβqαq0βūðpn; snÞγ5uðpñ; sñÞ:

ðA13Þ

5. Non-Born neutron polarizability amplitude

Lastly,we account for nucleon polarizability contributions
following the formalism in Ref. [57]. In short, one may
parametrize the unpolarized Compton process, NðkÞγðqÞ →
Nðk0Þγðq0Þ, often subtracting the Born and pion exchange
contribution, with 18 independent tensors Tμν

i and their
corresponding coefficients Biðq2; q02; q · q0; q · PÞ, where
P ¼ 1

2
ðkþ k0Þ. For unpolarized real Compton scattering

only two tensors contribute (see Appendix A in Ref. [57]),

Mμν
RCS; spin avg ¼ B1ð0; 0; q · q0; q · PÞTμν

1

þ B2ð0; 0; q · q0; q · PÞTμν
2 ; ðA14Þ

where

Tμν
1 ¼ −ðq · q0Þgμν þ q0μqν; ðA15Þ

Tμν
2 ¼ ð2mNνÞ2

�
−gμν þ q0μqν

k · q0

�
ðA16Þ

−4ðq ·q0Þ
�
Pμ−

q ·P
q ·q0

q0μ
��

Pν−
q ·P
q ·q0

qν
�
; ðA17Þ

with ν ¼ ðq · PÞ=mN . The low-energy expansions forB1 and
B2 are given by

B1ð0; 0; q · q0; q · PÞ ¼ 1

α
βM1; ðA18Þ

B2ð0; 0; q · q0; q · PÞ ¼ −
1

α

1

ð2mNÞ2
ðαE1 þ βM1Þ; ðA19Þ

where the values for the neutron polarizabilities are [2]

βnM1 ¼ ð3.7� 1.2Þ × 10−4 fm3;

αnE1 þ βnM1 ¼ ð15.2� 0.5Þ × 10−4 fm3:

The polarizability amplitude is illustrated in Fig. 2(d)
and given by

MPol: ¼ −
ie3

q02
εμðq; λÞLν

Pol:H
Pol:
μν ; ðA20Þ

with

Lν
Pol: ¼ ūðp−; s−Þγνvðpþ; sþÞ; ðA21Þ

HPol
μν ¼ ūðpn; snÞMRCS;spin avg

μν uðpñ; sñÞ: ðA22Þ

where the blob in Fig. 1 indicates the polarizability
contribution. Note that in our case

ffiffiffiffiffiffi
q02

p
≪ 1 GeV, so

using the real Compton amplitude in place of the single-
virtual Compton amplitude is a very good approximation.

APPENDIX B: VERIFICATION
OF THE QED BACKGROUND

In general, there is no calculation of the QED back-
ground of γd → eþe−pn that we can directly compare to;
however, there has been a calculation of the QED back-
ground in γd → γpn [28]. Up to phase-space factors this is,
in principle, identical to our calculation with the Bethe-
Heitler contribution removed. Therefore, it can serve as a
useful intermediate cross check. Of course, the methods
used in Ref. [28] are not identical to our methods, so we
cannot expect a completely identical result. Nevertheless,
our results should agree to at least the same order of
magnitude.
To that end, we have repeated the PWIA calculation of

Ref. [28]. Using their notation, we have computed the in-
plane differential cross section dσ=dΩγ0dΩnTn as a function
of Tn, where Tn is the kinetic energy of the outgoing
neutron and Ωγ0 and Ωn are the solid angles of the outgoing
photon and neutron, respectively (see Ref. [28] for details
of the calculation). This is shown in Fig. 8 and should be
compared to the dotted line in Fig. 5(a) of Ref. [28]. As can
be seen, both calculations agree, giving a useful cross check
of our QED background.

FIG. 8. The in-plane differential cross section of γd → γpn as a
function of the neutron kinetic energy, Tn. We fix Eγ¼100MeV,
θ0γ ¼ 135° and θn ¼ −20°.
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APPENDIX C: DEPENDENCE REACH
OF NEUTRON COUPLING
ON INTEGRATION RANGE

From Eq. (26) it is clear that the reach of the coupling of
X to the neutron depends on the size of the phase space we
integrate over. Given that the detector settings in Table I are
estimates, it is important to see to what degree changing the
accessible phase space influences the reach. The ranges of
jp�j are unlikely to change in the final MAGIX@MESA
setup, and cutting the range of θn has little influence on the
reach (see Sec. V). Therefore, we focus on the influence of
θ�, ϕ� and Eγ .
The general trend is that increasing the available phase

space improves the reach, albeit with diminishing returns.
This is illustrated in Fig. 9. Here, we take detector setting 2
(with mX¼65MeV=c2 and δmX¼0.1MeV=c2) and either
increase the integration range of ϕ� or θ� symmetrically,

ϕþ ∈ ½180° − Δϕ�; 180°þ Δϕ��;
ϕ− ∈ ½−Δϕ�;Δϕ��;

or

θ� ∈ ½120° − Δθ�; 120°þ Δθ��;

respectively, keeping the other parameters fixed. We
have assumed a vectorlike scenario, however we have
checked that the same conclusions hold for the other parity
assignments.
In Fig. 9(a) we see that, as a function of Eγ, the reach has

an optimum. The reason here is that shifting the energy
roughly corresponds to translating the exclusion limits in
Fig. 3; at a certain point one hits the kinematic boundaries.

In Fig. 9(b) we see that increasing the integration range
to be more out of plane quickly increases the reach, before
flattening out. A similar trend is visible in Fig. 9(c), when
one increases the range of the polar angles. So, if one
integrates over a very small part of the phase space, it is
worthwhile to try to access more. If one already can
integrate over a large area of phase space, increasing the
phase space further is not as useful.
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