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We consider a theory in which a real scalar field is Yukawa coupled to a fermion and has a potential
with two nondegenerate vacua. If the coupling is sufficiently strong, a collection of N fermions
deforms the true vacuum state, creating energetically favored false-vacuum pockets in which fermions
are trapped. We embed this model within general relativity and prove that it admits self-gravitating
compact objects where the scalar field acquires a nontrivial profile due to nonperturbative effects. We
discuss some applications of this general mechanism: (i) “neutron soliton stars” in low-energy
effective QCD, which naturally happen to have masses around 2M⊙ and radii around 10 km even
without neutron interactions; (ii) “Higgs false-vacuum pockets” in and beyond the standard model;
(iii) “dark soliton stars” in models with a dark sector. In the latter two examples, we find compelling
solutions naturally describing centimeter-size compact objects with masses around 10−6M⊙,
intriguingly in a range compatible with the Optical Gravitational Lensing Experiment ðOGLEÞ þ
Hyper Suprime-Cam (HSC) microlensing anomaly. In addition to these interesting examples, the
mechanism of nonperturbative vacuum scalarization may play a role in various contexts in and beyond
the standard model, providing a support mechanism for new compact objects that can form in the early
Universe, can collapse into primordial black holes through accretion past their maximum mass, and
serve as dark matter candidates.
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I. INTRODUCTION

Nontopological solitons (NTSs) are classical solutions of
nonlinear field theories, stabilized by the existence of a
conserved Noether charge [1]. They are naturally studied in
the context of extended and possibly macroscopic con-
figurations. For this reason, several NTSs, such as Q-balls
[2], quark nuggets [3,4], and dark photon stars [5], have
been often associated to nonparticle dark matter candidates
(see e.g. [6–9]).
In this work, we consider a simple model theory for

NTSs in which a real scalar field h is coupled to a fermion
through a Yukawa coupling. The scalar potential features
the typical Mexican-hat shape, with two minima in h ¼
�v and a maximum in h ¼ 0. However, the presence
of the fermionic condensate S ¼ hψ̄ψi effectively modi-
fies the shape of the scalar potential (see Fig. 2). In
particular, if the Yukawa coupling f is sufficiently strong

(or the scalar quartic λ sufficiently small), the point
h ¼ 0 becomes an actual (local) minimum of the theory.
The latter condition is mathematically formulated by
requiring that the parameter η ¼ f=ð2λÞ1=4 ≳ 1. In this
regime, we show the existence of a bound NTS where the
scalar field interpolates between h ¼ 0 (false vacuum)
and h ¼ v (true vacuum),1 working in a fully relativistic
approach.
The physical implication of the latter result is that, if

η≳ 1, a collection of N fermions is able to deform the
h≡ v ground state, giving rise to NTSs that describe false-
vacuum pockets, in which the N fermions are trapped (see
Fig. 1). The latter are unable to escape (at least classically)
because their energy is lower than Nmf, the rest energy of
N free fermions (mf is the fermion bare mass). Thus, the
energy of an everywhere uniform configuration h ≈ v
becomes higher than the energy of a configuration that
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1Without loss of generality, we are assuming that the asymp-
totic (scalar) ground state of the Universe is h ¼ v. One can also
consider a solitonic solution that connects h ¼ 0 with h ¼ −v,
but then we would have a topological soliton (because the
asymptotic value of the scalar field in the solution would be
different from its value in the rest of the Universe).
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shows false-vacuum pockets here and there. Since NTSs
are intrinsically nonperturbative states (see Sec. III), the
ground state of the system acquires a nontrivial scalar
profile by means of nonperturbative effects. We dub this
mechanism “nonperturbative vacuum scalarization.”
Investigations in a similar spirit were recently carried out

by Ref. [10] in the context of exotic neutron stars.
The primordial formation for NTSs has been inves-

tigated by many authors (see e.g. [11–14]), pointing out
two main formation mechanisms, the “solitosynthesis”
and the “solitogenesis.” In the former scenario, NTSs are
formed by the fusion of N free fermions. This implies a
nonzero cosmic asymmetry since it is necessary to
accumulate a net number N of fermions over antifermions
in a given region of space. In the latter scenario, a relic
abundance of NTSs is produced through a first- or second-
order cosmological phase transition. Recently, Ref. [14]
reviewed these formation mechanisms in detail, showing
that in certain cases NTSs can dominate the dark matter
abundance. A further formation channel is provided from
the Yukawa interaction present in Eq. (1), as long as it is
enough long range. In this case, fermions undergo
clustering and structure formation even in a radiation-
dominated era [15–17].
Phenomenological imprints of NTSs could be found

through gravitational waves [18,19] and lensing observa-
tions. In addition to being natural nonparticle dark matter
candidates, these solutions are also well-motivated exam-
ples of exotic compact objects [20] and might share similar
phenomenology with ordinary compact objects such as
black holes and neutron stars [21].

II. MODEL FOR RELATIVISTIC NTSS

Our starting point is the following theory, in which a
(real) scalar boson h and a Dirac fermion ψ are minimally
coupled to Einstein gravity,2

L¼ R
16πG

−
1

2
∂μh∂μh− ψ̄γμDμψ −UðhÞ− fffiffiffi

2
p hψ̄ψ ; ð1Þ

where the scalar potential is (see Fig. 2 for η ¼ 0)

UðhÞ ¼ λ

16

�
h2 − v2

�
2

: ð2Þ

Performing spontaneous symmetry breaking h → hþ v in
the Lagrangian (1) gives rise to a well-defined scalar
mass term,

m2
h ¼

λv2

2
: ð3Þ

However, for clarity of exposition, we prefer to work
directly with (1), which has a simpler analytical expression.
The Yukawa interaction is controlled by the coupling f,
giving an effective mass to the fermion,

meff ¼
fffiffiffi
2

p h: ð4Þ

It is also useful to define

mf ¼ meffðh ¼ vÞ ¼ fffiffiffi
2

p v; ð5Þ

which is the effective fermion mass when the scalar sits on
the minimum v > 0.
The fermionic field has a Uð1Þ global symmetry which

ensures the conservation of the fermion number N (the
Noether charge).
Our setup is similar to that of our previous work [22,23].

An important difference is that here we relax the fine-tuning
of the Yukawa coupling f imposed in [22,23], which allows
us to explore connections with more realistic particle-
physics content, as later discussed.
We will consider spherically symmetric equilibrium con-

figurations, whose background metric can be expressed as

FIG. 1. Pictorial illustration of the nonperturbative vacuum
scalarization Sketch of the mechanism, showing the energy E of
different configurations as a function of η, a fundamental
parameter defined in Eq. (16). The bigger η the more the theory
becomes strongly coupled. The orange balls represent massive
fermions, whereas the yellow balls represent the false vacuum
pockets of the scalar field in which the fermions are massless (and
therefore depicted by smaller orange balls). (a) Standard ground
state of the system. (b), (c) Whenever η≳ 1, it is energetically
convenient for the system to trap a fraction of fermions in false
vacuum pockets. For η≲ 1, equilibrium configurations describ-
ing bound false vacuum pockets do not exist.

2We use the signature ð−;þ;þ;þÞ for the metric and adopt
natural units (ℏ ¼ c ¼ 1). With the normalization used for the
fermionic kinetic term, the Dirac matrices have an extra −i factor
with respect to the usual ones but satisfy the usual relation
fγμ; γμg ¼ 2gμν. The covariant derivative Dμ takes into account
the spin connection of the fermionic field. We are neglecting
interactions with gauge fields, but it is straightforward to
generalize our model including them.
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ds2 ¼ −e2uðρÞdt2 þ e2vðρÞdρ2 þ ρ2ðdθ2 þ sin2θdφ2Þ; ð6Þ

in terms of two real metric functions uðρÞ and vðρÞ.
Fermions are treated through the Thomas-Fermi approxi-

mation [22–24], practically meaning that they enter
Einstein’s equations as a perfect fluid characterized by
an energy-momentum tensor of the form

T ½f�
μν ¼ ðW þ PÞuμuν þ Pgμν; ð7Þ

where W is the energy density and P is the pressure of the
fluid, while they also enter the scalar field equation through
the scalar density S. These quantities are defined as follows:

W ¼ 2

ð2πÞ3
Z

kF

0

d3k ϵk; ð8Þ

P ¼ 2

ð2πÞ3
Z

kF

0

d3k
k2

3ϵk
; ð9Þ

S ¼ 2

ð2πÞ3
Z

kF

0

d3k
meff

ϵk
; ð10Þ

where ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
. Notice that W ¼ WðxμÞ through

the spacetime dependence of kF and meff (the same holds
for P and S). The integrals in Eqs. (8)–(10) can be
computed analytically as shown, for example, in Ref. [22].
The fermion fluid is fully characterized once the Fermi

momentum kF is given. Within the Thomas-Fermi approxi-
mation, it can be shown that

k2FðρÞ ¼ ω2
Fe

−2uðρÞ −m2
eff ; ð11Þ

where ωF is the Fermi energy at the origin (ρ ¼ 0), which
can be written in terms of the fermion central pressure
Pðρ ¼ 0Þ≡ Pc (see Ref. [22] for details).
In order to simplify the numerical integration, it is

convenient to introduce the dimensionless quantities

x ¼ kF
mf

; y ¼ h
v
; r ¼ mhρ; ω̃F ¼ ωF

mf
; ð12Þ

in terms of which the potential U and kinetic V ¼
1
2
e−2vðρÞð∂ρhÞ2 terms can be written as

U ≡ μ2v2FŨðyÞ; V ≡ μ2v2FṼðyÞ: ð13Þ

Moreover, we introduce the following dimensionless fer-
mionic quantities:

W̃ ¼ W
m4

f

; P̃ ¼ P
m4

f

; S̃ ¼ S
m3

f

: ð14Þ

Finally, the field equations (i.e. the Einstein-Klein-
Gordon equations with the addition of the Fermi momen-
tum equation) take the compact form [22,23]

e−2v − 1 − 2e−2vr∂rv ¼ −Λ2r2½η4W̃ þ Ũ þ Ṽ�;
e−2v − 1þ 2e−2vr∂ru ¼ Λ2r2½η4P̃ − Ũ þ Ṽ�;

e−2v
�
∂
2
ryþ

�
∂ru − ∂rvþ

2

r

�
∂ry

�
−
∂Ũ
∂y

− η4S̃ ¼ 0;

x2 ¼ ω̃2
Fe

−2uðrÞ − y2; ð15Þ

where Ũ, Ṽ, P̃, W̃, and S̃ depend on x, y, and r. The above
equations contain two dimensionless combinations of the
parameters3

Λ ¼
ffiffiffiffiffiffi
8π

p
v

mp
; η ¼ f

ð2λÞ1=4 ¼
mf

m1=2
h v1=2

; ð16Þ

the physical interpretation of which will be discussed in the
next section. Here mp ¼ G−1=2 is the Planck mass.
NTSs in the model (1) are static and spherically

symmetric solutions to the above system of ordinary
differential equations. The boundary conditions are the
same as those used in Refs. [22,23], but in the present case4

yðr ¼ 0Þ ¼ ϵ, where ϵ is the initial displacement with
respect to the false vacuum y ¼ 0. The numerical procedure

FIG. 2. Effective scalar potential [see Eq. (19)] normalized with
respect to U0 ¼ λv4=16 as a function of h=v for various values of
η in the Newtonian regime. In this regime, the zeros of the Fermi
momentum are h=v ¼ �ω̃F (for jhj=v > ω̃F the fermions are
removed from the theory). We fixed a representative value
ω̃F ¼ 0.5. We notice that when η≳ 1 the effective potential
develops a local minimum in h ¼ 0. The shape of the potential is
qualitatively the same also in the fully relativistic regime.

3If we work in units such that c ¼ 1;ℏ ≠ 1, η has dimensions
of the square root of a coupling, i.e. ½η� ¼ ℏ−1=4.

4In the absence of fermions, there is also a solitonic solution
that connects the two minima of the potential (h ¼ �v). This
configuration represents a domain wall (which is a topological
soliton) [25].
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to build these solutions is the same as in Ref. [22], to which
we refer for more details.
Considering more than one Dirac fermion or including

Majorana fermions in Eq. (1) is a straightforward gener-
alization. In the Thomas-Fermi approximation, this simply
requires associating a Fermi momentum to each fermionic
component and adding the relative energy density, pressure,
and scalar density to the equations.

III. PROPERTIES AND INTERPRETATION

Before presenting the numerical results, it is useful to
discuss some general properties of these solutions.
The NTSs arising from Eq. (1) are essentially fermion

soliton stars with an effective positive cosmological con-
stant inside, recently studied in [23]. Therein, it was found
that the energy of these solutions gets two contributions:
one from the volume energy of the field and the other from
a surface term. The relative importance of these two terms
depends on the actual region of the parameter space.
In a field theory with spontaneous symmetry breaking, it

is reasonable to expect v ≪ mp, which also guarantees that
quantum gravity effects can be safely neglected. From
Eq. (16), this implies Λ ≪ 1, which corresponds to the
regime where the energy is dominated by the volume
contribution [see Eq. (24) in Ref. [23] ]. In this regime both
the mass and the radius scale as 1=Λ, while the parameter
ω̃F scales as 1=η. Moreover, the binding energy EB ¼
M −mfN of a configuration with N trapped fermions
scales as [23]

mhEB

m2
p

∼
1

Λ

�
1 − η

�
: ð17Þ

Thus, for fixed Λ ≪ 1, the dimensionless binding energy is
a linear decreasing function of η. Consequently, the bigger
η the more bound the configurations,5 with η ≈ 1 marking
the transition from bound to unbound states. As we will
discuss in detail later, for η≲ 1 the false-vacuum pockets
indeed disappear and so does the nontrivial scalar profile of
the ground state. Heuristically, this happens because the
system has no benefit in investing some of its energy to
build a false-vacuum pocket to trap fermions that have a
small mass gap between the two vacua of the scalar field.
On the other hand, when η≳ 1 the mass gap is big enough
that it becomes energetically convenient to confine fer-
mions in false-vacuum pockets. For this reason, we will call
the region

η≳ 1; ð18Þ

the “confining regime”6 (in analogy to Refs. [22,23]).
Moreover, the latter condition ensures that the point
h ¼ 0 in Eq. (2) becomes a local minimum. Indeed, the
effective scalar potential arising from Eq. (1) is

Ueff

U0

¼ ðy2 − 12Þ2 þ 8η4S̃y; ð19Þ

whereU0 ¼ λv4=16. In order to analyze the behavior of the
potential around the origin y ¼ 0, we compute

�
Ueff

U0

�00
ðy ¼ 0Þ ¼ 8η4ω̃2

F

π2
− 4: ð20Þ

Thus, the point y ¼ 0 will be a local minimum of the
potential only if

�
Ueff

U0

�00
ðy ¼ 0Þ > 0; ð21Þ

which in turn yields

ω̃F >
πffiffiffi
2

p
η2

: ð22Þ

Using the fact that ω̃F ∼ 1=η, one gets again Eq. (18). In
Fig. 2 we explicitly show the behavior of the effective
potential for different values of η in the Newtonian regime,
where the fermion scalar density S is analytically expressed
as a function of y only.
It is important to stress that the NTSs discussed here are

genuinely nonperturbative states. Indeed, in the limit in
which one of the relevant couplings (λ or f) is sent to zero,
the energy diverges. When λ → 0, this happens because
η → ∞. When f → 0, instead, the fermion mass vanishes
(and so does the mass gap) and consequently the hydro-
static equilibrium implies h → v (see Sec. III A), as already
anticipated from the previous heuristic argument.
Therefore, NTSs arising from Eq. (1) actually become
standard fermion stars [28] made of nearly massless
fermions. In the zero-mass limit, the configuration does
not have a finite radius and its energy diverges. In both
cases, it is impossible to describe these solutions perturba-
tively around f ≈ 0 or λ ≈ 0.
Notice that if the two vacuum states are degenerate,

whenever Λ ≪ 1 there is no need for a strongly coupled
fermion since the confining regime is achieved as long as
η≳ Λ1=2 (see Ref. [22]), so η can also be small. Indeed, in
the latter case, the volume density of the scalar is zero, and
the system needs much less energy to form a false-vacuum
pocket.

5This behavior could be modified by quantum corrections (see
[26,27] for investigations along this line in the absence of
gravity).

6In units such that c ¼ 1;ℏ ≠ 1, the perturbativity bound is
ℏ1=4η≲ ffiffiffiffiffi

4π
p

∼Oð1Þ. Restoring natural units, the condition (18)
corresponds to a strongly coupled theory.
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Finally, we highlight that our semiclassical approach, in
which the scalar field is described as a classical solution
(while quantum effects are taken into account for fer-
mions), is valid whenever the scalar self-interactions are
weak, i.e. λ≲ ð4πÞ2.

A. Numerical results

In Fig. 3 we show an example of a solution with the
radial profiles for the metric, scalar field, and fermion
pressure.
In Fig. 4 we present the mass-radius and compactness-

mass diagrams for various values of η in the confining regime
η≳ 1. As anticipated, we observe that the mass-radius
diagram is very weakly dependent on η. Moreover, the
compactness becomes arbitrarily small along the tail of the
mass-radius diagram, giving rise to a Newtonian regime.
In Fig. 5 (left panel), we show the rescaled massMΛ and

rescaled radius RΛ, confirming the expected scaling in the

Λ ≪ 1 limit. Overall, the mass-radius diagram is qualita-
tively similar to that of strange (quark) stars [29,30].
It is straightforward to identify a critical mass Mc (and

corresponding radius Rc) as the point of maximum mass in
the M − R diagram. As confirmed in Fig. 5, for Λ≲ 0.1
those quantities behave according to

mhMc

m2
p

¼ AðηÞ 1
Λ
; mhRc ¼ BðηÞ 1

Λ
: ð23Þ

As shown in Fig. 4, in the confining regime the dependence
of the critical quantities on η is very weak. Thus, A and B
are approximately constant, and numerical fits show that
A ≈ 0.36 and B ≈ 1.35. We therefore obtain

Mc ≈M⊙

�
0.34 GeV

q

�
2

; Rc ≈ 5.5 km

�
0.34 GeV

q

�
2

;

ð24Þ

FIG. 3. Radial profiles of scalar field h, normalized with respect to v, metric functions u, v (left) and fermion pressure (right) for a
typical configuration (Λ ¼ 0.075, η ¼ 4). Continuous lines represent numerical data, whereas dashed lines reconstruct the asymptotic
behavior of the solution by fitting with the Schwarzschild spacetime. The mass and radius of this configuration are μM=m2

p ≈ 4.08 and
μR ≈ 14.96, the compactness is C ≈ 0.27, while the solution parameters are P̃c ¼ 8.8 × 10−3 and log10 ϵ ¼ −19.00. The binding energy
is μEB=m2

p ≈ −5.10.

FIG. 4. Mass-radius (left) and compactness-mass (right) diagrams for various values of η. We fixed Λ ¼ 0.075. Varying Λ does not
change the results qualitatively. There exists a turning point in theM − R diagrams at low masses, which cannot be seen from the figure,
that proceeds toward the Newtonian limit of small M and large R, similar to what was already shown in [22].
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where q ¼ ðmhvÞ1=2, in terms of which the condition (18)
can be written as

mf ≳ q: ð25Þ

Finally, the compactness of the critical configuration is
GMc=Rc ∼ A=B ∼ 0.27, slightly higher than that of a
typical neutron star.
In Fig. 5 (right panel) we plot the mass as a function of

ω̃F for various values of η at fixed Λ ¼ 0.075, in the
confining regime. In the low-mass region of these curves,
where mhM=m2

p ≈ 0, ω̃F → 1. In that limit ϵ → 1, the fluid
energy density (together with its number density) vanishes,
and thus the false-vacuum pocket is lost. As long as we
depart from the mhM=m2

p ≈ 0 branch, ϵ becomes a small
number and the false-vacuum pocket is recovered. From
Fig. 5 (right panel) we also notice that, for any given η, ω̃F
cannot be arbitrarily small. This means that configurations
in which ϵ are small (i.e. truly false-vacuum pockets) exist
only above a minimum value ω̃min

F . We numerically verified
that the scaling for ω̃min

F is

ω̃min
F ≈

2

η
: ð26Þ

Notice that this quantity is independent of Λ. Since the
number density n in the core is proportional to ω3

F (see
Sec. II C in Ref. [23] for further details), we estimate

nmin ≈
1

3π2
m3

fðω̃min
F Þ3 ≈ 8

3π2
ðmhvÞ3=2: ð27Þ

The latter quantity can be interpreted as the minimum
Noether charge per unit volume that allows for the
existence of false-vacuum pockets in the model (1). The
configuration with the minimum possible Noether charge
density has some peculiar properties. Calling Mmin and

Rmin, respectively, its mass and radius, numerical analysis
shows that

mhMmin

m2
p

≈ 1.00; mhRmin ≈
2.24

Λ2=3 : ð28Þ

Hence, in the Λ ≪ 1 limit this special configuration is
pushed toward the tail of the mass-radius diagram, where
the compactness GMmin=Rmin ∼ Λ2=3 → 0. We conclude
that NTSs arising from Eq. (1) scan a range of masses and
radii starting from the configuration in Eq. (28) deep in the
tail of the mass-radius diagram, where relativistic gravita-
tional effects are negligible, up to the critical configuration
in Eq. (24), above which the NTS is expected to undergo
gravitational collapse.
In Fig. 6, we show the initial displacement ϵ and the

binding energy of the configurations as a function of η. As
expected from the discussion in Sec. III, the bigger is η the
lower is the binding energy. In particular, we observe that
the binding energy of the critical configurations, marked
with a violet dot in Fig. 6, decreases linearly in η, as
expected. Around η ≈ 1, we find configurations with
positive binding energy, in agreement with the estimate
in Eq. (17).
From the left panel of Fig. 6, we observe that the bigger

is η, the lower is the displacement ϵ, whereas, for η ≈ 1, the
displacement is ϵ ≈ 1, meaning that the scalar field is
practically already on the true vacuum. In the latter case, as
anticipated from the discussion in Sec. III, the effective
fermion mass is already very near to mf and the picture of
the configuration as a false-vacuum pocket is lost.
Therefore, we confirm that the ground state acquires a
nontrivial scalar profile only if η is above a particular
threshold. The numerical analysis done within the Thomas-
Fermi approximation shows that already with η≲ 2 we
enter the deconfining regime (with the appearance of
several turning points in both the mass and the radius,

FIG. 5. Left: rescaled mass-radius diagrams for various Λ. We fix η ¼ 4. Varying η does not produce appreciable changes as long as
we stay in the confining regime η≳ 1. As expected, there is an approximate scaling law as ∼1=Λ, which becomes more and more
accurate as Λ → 0. Right: mass as a function of ω̃F for various values of η. We fixed Λ ¼ 0.075. Varying Λ does not change the results
qualitatively. Notice the existence of a minimum value for ω̃F at any given η.
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similar to what is shown in Ref. [22]) and for η ¼ 1 all the
configurations with EB < 0 have h ≈ v.

B. Stability of NTSs

There are three main independent mechanisms through
which a NTS may decay in time. First of all, if the binding
energy is positive, a configuration with N fermions trapped
inside is triggered to disperse into free N particles by
quantum and/or thermal fluctuations [1]. As discussed in
Sec. III A, as long as Eq. (25) is satisfied, the configurations
are bound.
Second, NTSs may be unstable under classical pertur-

bations. A full investigation of the latter point goes beyond
the scope of this work. However, in the confining regime,
the shape of the mass-radius diagram is qualitatively similar
to that of strange (quark) stars [29,30]. Therefore, we
expect the configurations below the critical mass to be at
least radially stable, as it happens for ordinary stars [31].
Third, the configurations could be unstable under fission

into smaller configurations. Calling EðNÞ the energy of a
NTS with N trapped particles inside, whenever

EðN1Þ þ EðN2Þ > EðN1 þ N2Þ ð29Þ

fission is forbidden. The above equation can be recast in the
following condition (also known as the Vakhitov-
Kolokolov stability criterion [32,33]):

d2E
dN2

< 0: ð30Þ

For the configurations laying below the critical mass, we
numerically checked that Eq. (30) holds.

IV. APPLICATIONS OF THE MODEL

In this section, we discuss explicit realizations of the
model under investigation, embedded in various theories.

A. Neutron soliton stars

A simple application of nonperturbative vacuum
scalarization is in the context of the linear σ model [34],
a low-energy effective theory of QCD that implements
spontaneous chiral symmetry breaking. In this context, the
fermion in Eq. (1) is just a nucleon, while the scalar field is
a scalar meson called σ. Using the benchmark values mh ∼
500 MeV [35], v ∼ fπ ∼ 130 MeV in Eq. (28), the minimal
configuration is estimated to be

Mmin ≈ 10−19M⊙; Rmin ≈ 1 cm; ð31Þ

while the critical one in Eq. (24) is

Mc ≈ 2M⊙; Rc ≈ 10 km; ð32Þ

with a compactness ofMc=Rc ∼ 0.27, that is slightly larger
than that of an ordinary neutron star. Moreover, being the
mass of the nucleon mf ∼ 1 GeV, we get η ≈ 4, ensuring
that the configurations lay in the confining regime. These
estimates are in agreement with the ones given in Ref. [3].
Remarkably, the heaviest neutron stars discovered [36]

have a mass compatible with the estimate in Eq. (32). In the
absence of a scalarization mechanism, it is well known that
a standard degenerate Fermi gas of neutrons can support
compact stars only up to ∼0.7M⊙ [37], and nuclear
interactions are therefore needed to explain heavy neutron
stars. In our model, instead, we can achieve the same result
by simply coupling the degenerate Fermi gas to a sca-
lar field.
We are neglecting the energy density of the pions

assuming that their mean values on the ground state are
zero. However, they are inevitably present in the linear σ
model and the inclusion of a pion condensate could lead to
interesting phenomenology [38]. Exploring these effects,
however, would require a more involved analysis.
Our simple estimate suggests that the ground state of the

heaviest neutron stars can in fact be scalarized and their

FIG. 6. The initial displacement (left) and binding energy (right) for various values of η. We fixed Λ ¼ 0.075. Varying Λ does not
change the results qualitatively. As expected, the bigger η, the lower the binding energy. The configurations corresponding to the critical
ones are highlighted with a violet marker.
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core is made of a false-vacuum pocket where the chiral
symmetry is unbroken [10,39]. Such NTSs may be formed
in the early Universe, through the mechanisms mentioned
in the Introduction, or during the merger of two neutron
stars, if the energy involved is high enough (∼fπ) to allow
for the formation of false-vacuum pockets and consequent
trapping of nucleons.

B. Higgs false-vacuum pockets

Nonperturbative vacuum scalarization may play a role
also in the Higgs sector of the standard model (SM).
Indeed, neglecting gauge interactions, Eq. (1) naturally
arises after electroweak symmetry breaking, as shown in
the Appendix. In this scenario, h is the physical Higgs field
and ψ is a SM fermion. Using mh ∼ 125 and v ∼ 246 GeV,
the minimal configuration is found to be

Mmin ≈ 10−21M⊙; Rmin ≈ 0.2 μm; ð33Þ

while the critical mass and radius are

Mc ≈ ð4 × 10−6ÞM⊙; Rc ≈ 2 cm: ð34Þ

These configurations are compelling candidates for non-
particle dark matter and exotic compact objects. Indeed, it is
intriguing to note that the critical mass range is naturally
compatible with the Optical Gravitational Lensing
Experimentþ Hyper Suprime-Cam (OGLEþ HSC) obser-
vation of some microlensing events [40,41]. However, non-
perturbative vacuum scalarization occurs only if there is a
strongly coupled fermion to the Higgs boson, that is, only if
the condition in Eq. (18) is satisfied. For the Higgs param-
eters, Eq. (18) gives mf ≳ 175 GeV, which is very near the
top quarkmassmtop. Nevertheless, as discussed in Sec. III A,
numerical computations show that we need η≳ 2 to form
bound false-vacuum pockets, meaning that mf should be at
least∼350 GeV. This suggests that nonperturbative vacuum
scalarization does not occur in the SM.7 In addiction, even if
the quark top mass was above the threshold, the electric
charge carried by the fermions would produce a repulsive
Coulomb force that in general renders large configurations
unstable [43,44]. Indeed, the total electric charge is estimated
to be Q ∼ ð2=3eÞnR3. For the minimal configuration this
gives Qmin ∼ 1014 C, whereas for the critical one
Qc ∼ 1029 C. In both cases, the total electric charge is
way above themaximum charge compatiblewith hydrostatic
equilibrium [45], i.e. 10−22 C for the minimal configuration
and 10−7 C for the critical one.

However, top quarks also carry color charges. This gives
a possible caveat to the previous arguments and leaves open
the possibility of forming Higgs false-vacuum pockets
using only SM fields. To support the latter hypothesis, it
is enough to estimate the fermion number density n inside
the object. Using Eq. (27), we obtain

n ∼m3
fω̃

3
F ∼

m3
f

η3
∼ ðmhvÞ3=2: ð35Þ

For the Higgs field parameters, n ∼ 7 × 1047 cm−3, which
is orders of magnitude larger than the nuclear matter
density, nnucl ∼ 1038 cm−3. Such high densities are
expected to give rise to exotic states, in which interactions
among fermions cannot be anymore neglected, such as a
top/antitop bound state [46] or a colored superconductor
[47]. These scenarios could allow for bulk matter neutral-
ity with respect to both electric and color charges. A self-
consistent computation where Eq. (7) is substituted
by a new energy-momentum tensor, in which all these
effects are taken into account, may lower the aforemen-
tioned threshold and allow for the existence of bound
configurations.
Nonperturbative vacuum scalarization may naturally

occur in extensions of the SM by a fourth generation of
(heavy) fermions. However, the simplest models along this
direction are ruled out [48]. A viable possibility is adding
only a fourth family of chiral leptons strongly coupled to
the Higgs sector, without modifying the quark content. This
would allow for evading bounds on the number of gen-
erations coming from the Higgs decay into gluons.
It is important to stress that, regardless of the particular

beyond-SM context in which Eq. (1) is obtained, as long as
h is the Higgs boson, there are no free parameters in the
model, being the mass and radius of the configurations very
weakly dependent on mf.

1. False-vacuum pockets evaporation

Beyond the three standard mechanisms mentioned in
Sec. III B, there could be other ways of destroying the
object, depending on the specific embedding of the model.
Here we mostly focus on the case of (compact) Higgs false-
vacuum pockets, but the argument can be extended also to
other models in which the scalar h has Higgs-like couplings.
Let us assume that the fermions interact with (asymp-

totically) lighter SM particles (other than the Higgs boson).
Inside the pocket, being the fermions effectively massless,
their lifetime is expected to be extremely long. However, on
the boundary of the pocket, the fermions reacquire their
mass and decays into lighter SM particles become kineti-
cally allowed. Under the assumption that all the decay
products leave the pocket (effectively subtracting energy
from the configuration), it is possible to give a rough
estimate of the lifetime. The number of fermions in the
boundary is Nf

shell ∼m−1
h R2ω3

F, where m
−1
h is the size of the

7A similar conclusion is found in Ref. [42], where however the
authors look for Higgs vacuum deformation around just one top
quark (and not a collection thereof). Moreover, they neglect
gauge interactions (and also gravity, since they are interested in
microscopic states).
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region where the fermions acquire their mass and ω3
F is the

fermion number density. The number of fermions that leave
the object per unit time is estimated as

dNf
shell

dt
∼m−1

h R2ω3
F × Γðmf → somethingÞ: ð36Þ

A naive guess is Γðmf → somethingÞ ∼mf. Moreover,
each fermion decay subtracts from the object an energy
∼mf. Therefore, the total rate of energy loss is

dEloss

dt
∼mf

dNf
shell

dt
∼m−1

h R2ω3
Fm

2
f: ð37Þ

The lifetime is estimated as

tdecay ∼
M

dEloss=dt
∼

M
m−1

h R2ω3
Fm

2
f

: ð38Þ

Since M ∼m2
p=mhΛ, R ∼ 1=mhΛ, ωF ¼ mfω̃F ∼mf=η,

one finally gets

tdecay ∼
m2

pm2
hΛη3

m5
f

×
v2

v2
¼ 1

Λη
1

mf
∼
Ñ1=3

mf
: ð39Þ

We notice that in the limit N → ∞ the lifetime would be
infinity. Now,

tdecay ∼
1

Λη
1

η

1ffiffiffiffiffiffiffiffiffi
mhv

p ∼
1

Λη2
10−27 sec : ð40Þ

Using the Higgs parameters, one gets Λ ∼ 10−16 and

tdecay ∼
10−11 sec

η2
: ð41Þ

The actual computation of the lifetime should be carried out
using a background field method (see e.g. Ref. [49]) and is
complicated by the fact that we are in a regime of strong
gravitational field.8

Moreover, there are several subtleties that can drastically
change the latter estimate. First of all, our computation
relies on the assumption that the fermions are a gas of
weakly interacting particles. Conversely, if one adds sizable
interactions between fermionic particles, the lifetime may
become much bigger, just like the lifetime of the neutron
inside a nucleus could be bigger than the age of the
Universe, whereas the lifetime of a free neutron is very
short. Second, in a beyond-SM scenario, the decay into
lighter SM particles can be forbidden if the fermions in the

configuration possess extra symmetries (see e.g. [50]) or do
not couple with other SM particles.
What can never be disentangled from the other SM

content is the Higgs field. In principle, some Higgs quanta
of the system may be converted into other SM particles,
producing a net particle flux. Being the Higgs in a nonlinear
wave configuration, computing the latter quantity is a
nontrivial problem.
We give an estimate through the following argument. A

NTS can be quantum mechanically described as a super-
position of many coherent states (see e.g. [51]). Each
soliton quantum represents an interacting state which has in
principle nothing to do with the standard perturbative states
of the theory. The soliton size R is set by the energy μ of
these soliton quanta and the configuration is dominated by
modes with momentum k≲ μ. In particular,

R ∼
1

μ
: ð42Þ

Since in our model R ∼ 1
mhΛ

, it is natural to estimate

μ ∼mhΛ ∼ 10−14 GeV ¼ 10−5 eV. Therefore, just by
energy conservation, the soliton quanta are not able to
produce asymptotically a SM (massive) particle. Even
neutrino (asymptotically) production is forbidden
since mneutrino ∼ 10−2 eV ≫ μ.
What we cannot exclude is asymptotically photon

production. However, since the Higgs does not couple to
photons at the tree level, the overall effect is suppressed by
loop effects. A rough estimate for the number of photons
produced Nγ gives

dNγ

dt
∼ Nμ × Γðμ → γγÞ ∼ 1

Λ4
× α2μ; ð43Þ

where α is the fine-structure constant and Nμ is the number
of soliton quanta which is estimated to be ∼m2

hv
2R3=

μ ∼ 1=Λ4. Since the energy of each photon is ∼μ, the
change in the total energy is roughly μdNγ=dt, which in
turn gives the time needed to destroy the object

M
μdNγ=dt

∼
1

Λ
1

α2mh
∼ 10−6 sec : ð44Þ

An important caveat of Eq. (44) is that we are estimating
the matrix element Γðμ → γγÞ as if the soliton quanta were
the standard perturbative Higgs quanta of mass μ. However,
we have already highlighted that the soliton quanta are
purely interacting states which have nothing to do with the
standard perturbative states. Therefore, a proper computa-
tion is needed to reliably estimate Γðμ → γγÞ.

2. Accretion-driven collapse in the early Universe?

Even in those scenarios where the solitons evaporate (as
in the case of the false-vacuum Higgs solitons), they might
still play a role during the evolution of the Universe, for

8We expect that strong gravity can only increase the lifetime of
the object.
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example, if they survive long enough to accrete a sizable
fraction of their mass.
Indeed, while for purely scalar solitons (such as boson

stars) scalar accretion-driven collapse to a black hole is
prevented by gravitational cooling [52–54], our solutions
have a fermionic core which can undergo gravitational
collapse upon accretion of ordinary matter.
In the simplest scenario, Higgs balls are produced in the

radiation-domination era with an initial mass Mi. In
principle, such objects are able to accrete significantly
before evaporation and one can therefore estimate the time
needed to reach the critical massMc abovewhich the object
can collapse into a (primordial) black hole. Following
Refs. [55,56], we estimate the mass M of the object at the
time t as

GM ¼ t
1þ t

ti
ð ti
GMi

− 1Þ ; ð45Þ

where ti is the time of soliton formation and ti ≳GMi since
Mi must be smaller than the horizon mass ti=G. At t ≫ ti,
the final mass asymptotically is

M →
Mi

1 − GMi=ti
ð46Þ

and can be significantly higher than Mi if GMi ∼ ti.
Assuming that the object decays in a time td and

requiring MðtdÞ > Mc for black-hole formation, we obtain

Mi >
Mc

1þ GMcð1ti − 1
td
Þ ∼

Mc

1þ GMc
ti

; ð47Þ

where the last step is valid if td ≫ ti.
The above condition might or might not hold in specific

models. For the case of the Higgs ball, we assume
Mc ∼ 4 × 10−6M⊙, td ¼ ti þ tdecay, and formation at the
electroweak phase transition (ti ≈ 2 × 10−11 sec).
Therefore, for η ≈ 1, these objects will collapse to black
holes before evaporation only if

Mi ≳ 3 × 10−6M⊙; ð48Þ
which is slightly smaller than the maximum mass and the
horizon mass at the time of formation.

C. Dark soliton stars

The simplest beyond-SM scenario where nonperturbative
vacuum scalarization is realized is in the context of the dark
sector paradigm [57],wherewe interpretEq. (1) as embedded
in the dark sector. The SMHiggs field hSM interacts with the
dark scalar h through the unavoidable scalar portal
∝ h2SMh

2; hSMh2; h2SMh. We assume mh ≳mhSM, in order
to kinematically forbid the Higgs direct decay into the dark
scalar, allowing for evading collider constraints on the listed
couplings.

In this framework, the evaporation bounds discussed in
the previous section can be easily evaded. Indeed, assuming
that ψ is the lightest fermion in the dark sector, decays on
the boundaries are forbidden. Moreover, remembering that
NTSs arising from Eq. (1) are made of scalar quanta with
characteristic energy μ ∼mhΛ, as long as

mhΛ < mhSM ∼ 125 GeV; ð49Þ

the soliton quanta cannot produce asymptotically SM
Higgs particles. Combining the latter equation with the
requirement mh ≳mhSM , we finally get

Λ <
mhSM

mh
≲ 1: ð50Þ

Since it is natural to assume Λ ≪ 1, as discussed in Sec. III,
Eq. (50) is easily satisfied even for a dark scalar much
heavier than the SM Higgs.
If the scalar quartic λ is an Oð1Þ number, the condition

mh ≳mhSM translates into q≳ qSM ≈ 175 GeV. Therefore,
we conclude that these dark soliton stars are expected to be
stable and support compact objects of masses naturally in
the subsolar regime, according to Eq. (24). In particular, for
mh ∼ v ∼ 102 GeV, we have a stable configuration with
parameters similar to Eq. (34).
The dynamical formation of NTSs arising in a similar

framework has been recently studied in [9], through a first-
order cosmological phase transition. The configurations
produced, dubbed by the authors “Fermi balls,” are the
nonrelativistic limit of our solutions. If an initial distribu-
tion of Fermi balls is able to accrete and cool down, the
final state will be a scalarized ground state [see Fig. 1(c)],
well described by our solutions.

V. CONCLUSIONS

In this work, we outlined the nonperturbative vacuum
scalarization as a general mechanism to support new soli-
tonic objects that can form in the early Universe and serve as
dark matter candidates. For concreteness, we considered a
theory with a real scalar field coupled to a fermion in the
context of general relativity and found solutions describing
self-gravitating compact objects where the scalar field
acquires a nontrivial profile due to nonperturbative effects.
In addition to the specific examples discussed in this

work, other scenarios where this nonperturbative vacuum
scalarization mechanism can play a role are fourth-
generation models with extended Higgs sector [58], asym-
metric dark matter models [59], mirror symmetries, minimal
supersymmetric SM [60,61], type II seesaw mechanism
[62], grand unified theories, inflation, and cosmological
phase transitions [63,64]. Moreover, the inclusion of gauge
fields into the solutions could give rise to important effects
(see e.g. Refs. [43,44,65]), which we plan to explore in
future work.
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Although NTSs are energetically favored and stable
under (at least) radial perturbations, couplings to other
fields or self-interactions might induce evaporation of the
solution, the details of which depend on the specific
embedding of the model in a given theory. Future work
should assess the role of fermion interactions for the
evaporation timescale in given models. Even in cases in
which this timescale is short relative to typical astrophysi-
cal scales, in the early Universe NTSs might have enough
time to accrete past the maximum mass or merge with other
objects, with the possibility of forming primordial black
holes in both cases [17,66–71]. Interestingly, this scenario
would produce primordial black holes with a mass fixed in
terms of the maximum mass of the soliton, regardless of the
formation epoch. As we have shown, certain realizations of
our model naturally lead to compact objects in a mass range
that is compatible with the OGLEþ HSC anomaly for
some microlensing events [40,41].
A further important extension concerns the dynamical

formation of these solutions. Many different channels have
already been proposed in the literature. For example, NTSs
arising from Eq. (1) can be produced by a first-order
cosmological phase transition [9]. Alternatively, the
Yukawa interaction, if enough long range, drives clustering
and leads to the formation of compact NTSs [15–17]. Further
possible formation channels, worth exploring in futurework,
are the following. First of all, statistical fluctuations inevi-
tably present, even during a crossover, are in principle able to
provide a large concentration of fermions [72] and can be,
therefore, the dominant source of charge fluctuations which
leads to NTS formation through solitosynthesis. Moreover,
one could consider a configuration where there is a gas of N
free (massive) fermions moving in the true scalar vacuum
h≡ v. If η≳ 1 and for a sufficiently large perturbation of the
scalar field with energy above a certain threshold, we expect
to end up in the true (scalarized) ground state.
The idea that a system can scalarize nonlinearly, i.e. only

if perturbed above a certain threshold, has been already
numerically studied for scalar perturbations around a
Schwarzschild black hole in scalar-Gauss-Bonnet gravity
theories [73]. An interesting extension of our work would
be performing similar simulations in our model, possibly
within a cosmological scenario.
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APPENDIX: EMBEDDING WITH THE SM

A simple way to derive Eq. (1) is starting from the
standard electroweak theory minimally coupled to Einstein
gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
− Lfields

�
; ðA1Þ

where

Lfields¼−ð∂μHÞ†ð∂μHÞ−L†DL−R†DR−
λ

4

�
H†H−

v2

2

�
2

−fðL†HRþR†H†LÞ; ðA2Þ

and H is the Higgs field, doublet under SUð2Þ, whereas

L ¼
�
vL
ψL

�
; R ¼ ψR ðA3Þ

are a SUð2Þ doublet of left-handed fermions and a SUð2Þ
singlet of right-handed fermions, respectively.
By exploiting the SUð2Þ ×Uð1Þ gauge symmetry to

remove the spurious degrees of freedom, we write

H ¼
�

0
hffiffi
2

p

�
: ðA4Þ

Substituting in Eq. (A1), we recover Eq. (1) where

ψ ¼
�
ψL

ψR

�
: ðA5Þ
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