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We study di-Higgs and tri-Higgs boson productions at a muon collider as functions of the modification
of the muon Yukawa coupling resulting from new physics parametrized by the dimension-six mass
operator. We show that the di-Higgs signal can be used to observe a deviation in the muon Yukawa coupling
at the 10% level for

ffiffiffi
s

p ¼ 10 TeV and at the 3.5% level for
ffiffiffi
s

p ¼ 30 TeV. The tri-Higgs signal improves
the sensitivity dramatically with increasing

ffiffiffi
s

p
, reaching 0.8% at

ffiffiffi
s

p ¼ 30 TeV. We also study all
processes involving Goldstone bosons originating from the same operator, discuss possible model
dependence resulting from other operators of dimension-six and higher, and identify μþμ− → hh,
μþμ− → hhh, and μþμ− → hZLZL as golden channels. We further extend the study to an effective field
theory including two Higgs doublets with type-II couplings and show that di-Higgs and tri-Higgs signals
involving heavy Higgs bosons can be enhanced in the alignment limit by a factor of ðtan βÞ4 and ðtan βÞ6,
respectively, which results in the potential sensitivity to a modified muon Yukawa coupling at the 10−6 level
already at a

ffiffiffi
s

p ¼ 10 TeV muon collider. The results can easily be customized for other extensions of the
Higgs sector.

DOI: 10.1103/PhysRevD.109.095003

I. INTRODUCTION

Among many exciting physics opportunities at a muon
collider are more precise measurements of muon properties
and possible discoveries of new physics through their
deviations from predictions of the standard model (SM)
[1–8]. The Large Hadron Collider (LHC) is expected to
measure the muon Yukawa coupling with about 5% pre-
cision through the decay h → μþμ−, while various options
for a muon collider, characterized by the center of mass
energy and expected integrated luminosity, promise to
increase the precision to a few percent or even 0.3% [1].
A muon Yukawa coupling disagreeing with the SM

prediction would clearly indicate new physics. However,
confirming it by directly observing new particles responsible

for a modification of the muon Yukawa coupling might be
beyond the reach of a given collider. In addition, the sign of
the Yukawa coupling, or a complex phase in general, is not
determined by h → μþμ− measurement, potentially leaving
a large effect of new physics undetected.
In this paper we study multi-Higgs boson signals which

in general accompany a modification of the muon Yukawa
coupling independently of the scale and other details of
new physics. As long as the dominant effect of new physics
on the muon Yukawa coupling is captured by the dimen-
sion-six mass operator, l̄LμRHðH†HÞ, where lL is the
lepton doublet and H is the Higgs doublet, the cross
sections for μþμ− → hh and μþμ− → hhh are uniquely
tied to the modification of the muon Yukawa coupling. As a
result of negligible SM backgrounds for these processes,
these signals could provide the first evidence for new
physics even before a deviation of the muon Yukawa
coupling from the SM prediction is established by
h → μþμ−. For example, the opposite sign of the muon
Yukawa coupling leads to a very strong di-Higgs signal
that can be seen even at a very low energy muon collider.
Furthermore, if mass operators of higher dimensions also
contribute significantly to the muon Yukawa coupling,
signals with more Higgs bosons in final states are
expected (and could be even stronger than hh or hhh).
By measuring all resulting multi-Higgs boson signals, the
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Wilson coefficients of all contributing operators including
the sizes of their complex phases can be determined.
Furthermore, we study possible signals of a modified

muon Yukawa coupling in effective field theories with
extended Higgs sectors where the effects of new physics are
parametrized by additional operators. Focusing on a two
Higgs doublet model (2HDM) with type-II couplings to
fermions, we find that di-Higgs and tri-Higgs signals
involving heavy Higgs bosons can be enhanced in the
alignment limit by a factor of ðtan βÞ4 and ðtan βÞ6,
respectively, compared to hh and hhh for a given modi-
fication of the muon Yukawa coupling. As a result of the
enhancement, these signals are potentially sensitive to even
tiny modifications of the coupling that would not be
observed by measuring h → μþμ− at any currently con-
sidered future collider. For example, an observable HHH
signal, where H is the heavy CP-even Higgs boson, is
predicted at a

ffiffiffi
s

p ¼ 10 TeV muon collider from a modi-
fication of the muon Yukawa coupling at the 10−6 level.
Di-Higgs and tri-Higgs boson productions at a muon

collider were previously studied in connection with the
Muon g − 2 anomaly in Ref. [8]. It has long been known
that chirally enhanced contributions to the Muon g − 2 can
result from the mixing of the muon with new leptons, which
in general modifies muon Yukawa and gauge couplings
[9,10]. If the new leptons are heavy, their impact at low
energies would be specified by the dimension-six mass
operator and operators with covariant derivatives preserv-
ing chirality of the muon, in addition to the dipole operators
contributing to the Muon g − 2. Thus, through a modifi-
cation of the muon Yukawa coupling, the Muon g − 2 is
also related to di-Higgs and tri-Higgs signals resulting from
the same operator. Such a connection between the dipole
operators and the mass operator is generally expected in
models for new physics [11–13]. Similarly, in models with
an extended Higgs sector, such as the 2HDM type-II,
similar connections between the operators can be made,
and the ðtan βÞ6 enhancement advertised above can be
understood from related enhancements in contributions of
heavy Higgses to Muon g − 2 [14,15] or the electric dipole
moment [16]. Additional studies of multi-Higgs boson
signals at the LHC in connection with modified Yukawa
couplings of quarks can be found in [17–20].
Di-boson and tri-boson signals of a modified muon

Yukawa coupling with the focus on final states involving
Goldstone bosons (longitudinal gauge bosons,WL and ZL)
were studied in detail in Ref. [7]. Among the large number
of possible processes, μþμ− → Wþ

LW
−
Lh and ZLhh were

identified as the optimal examples. While it is certainly the
case that all the allowed combinations of di-bosons or tri-
bosons result from a deviation in the muon Yukawa
coupling, in addition to just di-Higgs and tri-Higgs, there
are two main reasons that highly favor pure Higgs final
states. Pure Higgs final states feature negligible SM back-
grounds, and more importantly, the final states with W’s

and Z’s, or mixtures of gauge and Higgs bosons can also
originate from other dimension-six operators that are not
related to the muon Yukawa coupling. We argue that
besides hh and hhh there is only one additional golden
mode (hZLZL) not affected by any other dimension-six
operators and thus directly related to contributions to the
muon Yukawa coupling. We also discuss possible effects of
other dimension-eight operators.
This paper is organized as follows. In Sec. II we consider

a modification of the muon Yukawa coupling assuming the
Higgs sector of the SM. We present detailed predictions for
di-Higgs and tri-Higgs productions resulting from the
dimension-six mass operator and multi-Higgs productions
from operators of higher dimensions. We also present
results for di-boson and tri-boson productions involving
Goldstone bosons, and discuss the relative sizes of the
signals, SM backgrounds, and model dependence of
predictions for various final states. In Sec. III we assume
the Higgs sector is that of the 2HDM type-II and extend
possible signatures of a modified Yukawa coupling to di-
boson and tri-boson signals involving heavy Higgs bosons.
We follow with a similar discussion of various final states
as in the SM case. We summarize results and conclude in
Sec. IV. Unitarity constraints on possible modifications of
the muon Yukawa coupling, used in the main text, are
discussed in Appendix A. Results for other dimension-six
mass operators in the 2HDM case, besides the one
discussed in the main text, are summarized in Appendix B.

II. MODIFIED MUON YUKAWA
COUPLING—SM HIGGS SECTOR

Consider the effective Lagrangian for the second gen-
eration of leptons assuming the SM Higgs sector:

L ¼ −yμl̄LμRH − CμHl̄LμRHðH†HÞ þ H:c:; ð1Þ

where the components of the lepton doublet are lL ¼
ðνμ; μLÞT . The first term is the usual muonYukawa coupling
in the SM. When the Higgs field develops a vacuum
expectation value (VEV), H ¼ ðGþ; vþ ðhþ iGÞ= ffiffiffi

2
p ÞT

with v ¼ 174 GeV, the dimension-six operator in the
second term generates an additional contribution to the
muon mass

mμ ¼ yμvþ CμHv3: ð2Þ

This operator is the only dimension-six operator that
contributes to the muon mass and Yukawa coupling in the
Warsaw basis [21].
In the basis where the muon mass is real and positive,

the resulting interactions with the SM Higgs boson are
described by
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L ⊃ −
1ffiffiffi
2

p λhμμμ̄LμRh −
1

2
λhhμμμ̄LμRh2 −

1

3!
λhhhμμ μ̄LμRh3

þ H:c:; ð3Þ

where the couplings are given by

λhμμ ¼
mμ

v
þ 2CμHv2; ð4Þ

λhhμμ ¼ 3CμHv; ð5Þ

λhhhμμ ¼ 3ffiffiffi
2

p CμH; ð6Þ

and are in general complex.
It is convenient to parametrize the departure of the

Yukawa coupling from the SM prediction by

λhμμ ¼
mμ

v
κμ ð7Þ

and also define

κμ ¼ 1þ Δκμ; ð8Þ

where Δκμ ¼ 2CμHv3=mμ. We can rewrite the couplings
above as

λhhμμ ¼ 3mμ

2v2
Δκμ; ð9Þ

λhhhμμ ¼ 3mμ

2
ffiffiffi
2

p
v3

Δκμ: ð10Þ

The cross sections for μþμ− → hh and μþμ− → hhh,
resulting from the new contact interactions [see Figs. 1(a)
and 1(b)], were calculated in Ref. [8] and, neglecting the
muon mass and the Higgs mass, are given by

σμþμ−→hh ¼
jλhhμμj2
64π

¼ 9

256π

�
mμ

v2

�
2

jΔκμj2; ð11Þ

σμþμ−→hhh ¼
jλhhhμμ j2
6144π3

s ¼ 3s
214π3

�
mμ

v3

�
2

jΔκμj2: ð12Þ

Note that the contributions to the cross sections come from
couplings which scale as v=Λ2 for di-Higgs and 1=Λ2 for tri-
Higgs. Thus, the cross sections must scale with energy as s0

for di-Higgs and s for tri-Higgs, by dimensional analysis.
These formulas are excellent approximations well above the
production thresholds. Exact formulas for cross sections
including threshold effects resulting from nonzero Higgs
mass can be found in Ref. [8]. The cross sections, calculated
from the effective Lagrangian implemented in FeynRules [22]

FIG. 1. Feynman diagrams for the annihilation processes (a) μþμ− → hh and (b) μþμ− → hhh resulting from the dimension-six
contact term. Examples of contributing diagrams to VBF processes in the SM, (c) μþμ− → νμν̄μhh and (d) μþμ− → νμν̄μhhh, which are
the main background for di-Higgs and tri-Higgs signals in (a) and (b).
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using MadGraph5 [23], are plotted in Fig. 2 as functions of
ffiffiffi
s

p
forΔκμ ¼ −2, which corresponds to the opposite sign muon
Yukawa coupling compared to its SM value (κμ ¼ −1).
Shaded regions indicate the current 95% C.L. range for the
opposite sign muon Yukawa coupling [24]. The total cross
section for μþμ− → hh, away from the threshold, is about
210 ab independently of the center of mass energy, while the
cross section for μþμ− → hhh grows quadratically with

ffiffiffi
s

p
and becomes larger than σμþμ−→hh above

ffiffiffi
s

p
≃ 7.6 TeV.

These di-Higgs and tri-Higgs cross sections are by
many orders of magnitude larger than the corresponding
SM backgrounds, σðμþμ− → hhÞSM ¼ 1.6 × 10−4 ab and
σðμþμ− → hhhÞSM ¼ 2.9 × 10−5 ab at

ffiffiffi
s

p ¼ 3 TeV, and
fall as 1=s2 and 1=s at larger energies, respectively.1 Even for
the Higgs quartic coupling as large as the current upper
limit [25,26], the contributions from the SM diagrams to
μþμ− → hh and hhh are negligible at

ffiffiffi
s

p
> 3 TeV. Thus,

we have neglected standard model and interference terms in
Eqs. (11) and (12).
For the target integrated luminosity at a muon collider

depending on its center of mass energy [1],

Lint ¼ 10 ab−1
�

Ecm

10 TeV

�
2

; ð13Þ

we see that even a low energy muon collider would easily
see the di-Higgs signal associated with the opposite sign
muon Yukawa coupling. For example, 191 di-Higgs and 30
tri-Higgs events are expected already at

ffiffiffi
s

p ¼ 3 TeV.
The cross sections for μþμ− → hh and for μþμ− → hhh

at
ffiffiffi
s

p ¼ 10 TeV are also plotted in the plane of real and

imaginary parts of Δκμ in Fig. 3. The cross sections for tri-
Higgs production at different

ffiffiffi
s

p
can be obtained by simple

rescaling as indicated in the legend. Note that although the
cross sections depend only on the jΔκμj, the constraints
from h → μþμ− cannot be written in terms of jΔκμj only.
Therefore, the combined measurement of h → μþμ− and
μþμ− → hh or μþμ− → hhh determine also the size of the
complex phase of the muon Yukawa coupling.
To extend the range of jΔκμj to small values, to which the

current searches are not yet sensitive, we plot the di-Higgs
and tri-Higgs production cross sections as functions of

ffiffiffi
s

p
for various jΔκμj in Fig. 4. Orange lines indicate the cross
sections corresponding to five signal events for integrated
luminosity given inEq. (13). Taking this as an estimate of the
sensitivity of a muon collider to the modification of the
muon Yukawa coupling, we see that the di-Higgs signal can
be used to observe a deviation in themuonYukawa coupling
at the 10% level for

ffiffiffi
s

p ¼ 10 TeV and at the 3.5% level forffiffiffi
s

p ¼ 30 TeV. The tri-Higgs signal leads to only a slightly
better sensitivity at

ffiffiffi
s

p ¼ 10 TeV, namely 7%, but would
improve dramatically with increasing

ffiffiffi
s

p
, reaching 0.8% atffiffiffi

s
p ¼ 30 TeV (and 0.07% at

ffiffiffi
s

p ¼ 100 TeV).
The quoted sensitivities should beviewed as an estimate of

the ultimate sensitivities of amuon collider that assume close
to perfect signal reconstruction and background rejection, in
addition to combining signals resulting from different decay
modes of the Higgs boson. The SM di-Higgs or tri-Higgs
boson productions at a muon collider are dominated by
vector boson fusion (VBF) [27–29]. Examples of contrib-
uting diagrams are given in Figs. 1(c) and 1(d). This
production mechanism leads to other particles in final states,
and thus is, in principle, distinguishable from pure hh or hhh
signals. For example, the dominantWþW− mediated process
with neutrinos in final states can be distinguished via a cut
on the total invariant mass of the visible particles. Forffiffiffi
s

p ¼ 10 TeV, we find that requiring the total invariant
mass of the visible particles to be larger than 9.6 TeV for di-
Higgs and 6 TeV for tri-Higgs is sufficient to reduce this
source of background below one event.
For specific decay modes of the Higgs boson there are

additional backgrounds resulting from SM processes with
final states that cannot be completely distinguished from the
Higgs boson. For the dominant decaymode, h → bb̄, there is
ZZ or ZZZ background with Z → bb̄, a fraction of which
would be reconstructed as the di-Higgs or tri-Higgs signal.
For quoted sensitivities at

ffiffiffi
s

p ¼ 10 TeV, we find that in
order for the backgrounds from ZZ and ZZZ to be smaller
than the signal, we should be able to distinguish Z → bb̄
from h → bb̄with 95% efficiency for the di-Higgs and about
30%efficiency for the tri-Higgs.We see that the backgrounds
for the di-Higgs signal are more challenging andmight result
in lower sensitivities than the ones quoted above. However,
the tri-Higgs signal is stronger for

ffiffiffi
s

p
> 7.6 TeV and the

backgrounds do not seem to pose a big challenge.

FIG. 2. Total cross sections for μþμ− → hh and μþμ− → hhh
as functions of

ffiffiffi
s

p
corresponding to Δκμ ¼ −2 (solid lines) and

95% C.L. range for the opposite sign muon Yukawa coupling
(shaded regions).

1Note that the di-Higgs or tri-Higgs boson productions at a
muon collider are dominated by vector boson fusion. We will
comment on these and other backgrounds later in this subsection.
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Interactions involving Goldstone bosons resulting from the OμH operator are described by

L ⊃ −
1ffiffiffi
2

p λGμμμ̄LμRG − λhGμμ μ̄LμRhG −
1

2!
λGGμμ μ̄LμRGG − λG

þG−
μμ μ̄LμRGþG− −

1

2!
λhhGμμ μ̄LμRh2G −

1

2!
λhGGμμ μ̄LμRhGG

−
1

3!
λGGGμμ μ̄LμRGGG − λhG

þG−
μμ μ̄LμRhGþG− − λGG

þG−
μμ μ̄LμRGGþG− þ H:c:; ð14Þ

where the couplings are summarized in Table I in terms of
the Wilson coefficient and also in terms of Δκμ. The cross
sections for corresponding di-boson and tri-boson produc-
tions involving longitudinal gauge bosons are summarized
in Tables II and III. These processes, studied in detail in

Ref. [7], suffer from large SM backgrounds (falling with
energy) and thus the rates in Tables II and III are good
approximations only at large

ffiffiffi
s

p
. In addition, we will see

that all the final states involving longitudinal gauge bosons
except for hZLZL also result from other dimension-six

FIG. 4. Di-Higgs and tri-Higgs production cross sections as functions of
ffiffiffi
s

p
for various jΔκμj. Gray shaded regions are excluded at

95% C.L. by the CMS search for h → μþμ− [24]. Orange lines indicate the cross sections corresponding to 5 signal events.

FIG. 3. Contours of constant di-Higgs and tri-Higgs production cross sections and the corresponding jΔκμj in the plane of real and
imaginary parts ofΔκμ. Gray circles and shaded regions correspond to 68% C.L. and 95% C.L. exclusion limits from the CMS search for
h → μþμ− [24].
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operators that do not affect muon mass and Yukawa
coupling, and thus are not necessarily correlated with
the modification of the muon Yukawa coupling.

A. Other operators and the golden channels

As already mentioned, the OμH operator in Eq. (1) is
the only dimension-six operator that contributes to
the muon mass and Yukawa coupling in the Warsaw
basis. However, in specific models, it is generally expected
that the mass operator is accompanied by other dimension-
six operators, most importantly the dipole operators,
ðl̄LσμνμRÞτIHWI

μν and ðl̄LσμνμRÞHBμν, already mentioned
in the Introduction, and operators that involve covariant

derivatives acting on the lepton fields or the Higgs fields,
such as CRðμ̄RH†ÞiDðμRHÞ or CLðl̄LHÞiDðlLH†Þ (see
Ref. [8]). Parts of these operators, where derivatives act
on the lepton fields, can be reduced toOμH via equations of
motion for the muon fields and thus are included in our
discussion. The remaining pieces with derivatives acting on
the Higgs doublet can be decomposed into symmetric and
antisymmetric combinations, H†ðiDμHÞ ¼ ðH†ðiDμHÞ þ
ðH†iD⃖μÞHÞ=2þ ðH†ðiDμHÞ − ðH†iD⃖μÞHÞ=2. Integrating
by parts on the symmetric combination again leads
toOμH (proportional to yμ; up to total derivatives), while the
antisymmetric part results in independent ðLLÞ and ðRRÞ
operators in theWarsaw basis [21]:Cð1Þ

Hl ðH†iD
↔

μHÞðl̄LγμlLÞ;
Cð3Þ
Hl ðH†iD

↔a
μHÞðl̄LτaγμlLÞ, and CHμðH†iD

↔

μHÞðμ̄RγμμRÞ.
While these operators do not affect the muon mass or
Yukawa coupling, they modify muon gauge couplings to Z
and W, and they do lead to di-boson and tri-boson signals.
Covariant derivative operators lead to μþμ− → Wþ

LW
−
L,

ZLh, W�W∓
L , and Zh di-boson processes and μþμ− →

W�W∓
L h,W

�W∓
L ZL,W

þ
LW

−
LZ, Zhh, and ZZLZL tri-boson

processes. The dipole operators lead to hZ, ZLZ, W�
LW

∓,
WþW−, ZLWþW−, ZW�

LW
∓, and hWþW−. Thus, among

the di-boson processes resulting from the dimension-six
mass operator, only μþμ− → hh is not affected by other
operators. Similarly, among the tri-boson processes result-
ing from the dimension-six mass operator, only μþμ− →
hhh and hZLZL are not affected. These conclusions can be
independently verified by the Feynman rules resulting from
effective operators [30]. In addition, due to the ðLLÞ or
ðRRÞ nature of derivative operators, their contributions
interfere with SM backgrounds. Moreover, the resulting
cross sections grow faster at large energies compared to
cross sections for processes resulting from the dimension-
six mass operator: di-boson processes grow as s and tri-
boson processes as s2.
Thus we find that only μþμ− → hh; hhh, and hZLZL

processes are unique signals of a modified muon Yukawa
coupling. From Table III we see that the signal cross section
for hZLZL is 3 times smaller than for the tri-Higgs
production. Besides larger cross sections, di-Higgs and
tri-Higgs final states also benefit from negligible SM
backgrounds, and thus are more sensitive probes of a
modified muon Yukawa coupling.
So far our discussion was limited to dimension-six

operators. If contributions of mass operators of higher
dimensions, OðnÞ

μH ¼ l̄LμRHðH†HÞn, where n ¼ 2; 3;…
correspond to dimension 8; 10;… operators (with n ¼ 1
representing the dimension-six operator) are not negligible,
it would reflect in a different ratio of di-Higgs and tri-Higgs
events, and in new signals with up to 2nþ 1 Higgs bosons
in final states. The previous equations corresponding to a
dimension-six mass operator can be straightforwardly
generalized. The muon Yukawa coupling is then given by

TABLE I. Coupling constants involving goldstone bosons
defined in Eq. (14).

In terms of CμH In terms of Δκμ

λGμμ i mμ

v i mμ

v

λhGμμ ivCμH
imμ

2v2 Δκμ
λGGμμ vCμH

mμ

2v2 Δκμ
λG

þG−
μμ vCμH

mμ

2v2 Δκμ
λhhGμμ

iffiffi
2

p CμH
imμ

2
ffiffi
2

p
v3
Δκμ

λhGGμμ
1ffiffi
2

p CμH
mμ

2
ffiffi
2

p
v3
Δκμ

λGGGμμ
3iffiffi
2

p CμH
3imμ

2
ffiffi
2

p
v3
Δκμ

λhG
þG−

μμ
1ffiffi
2

p CμH
mμ

2
ffiffi
2

p
v3
Δκμ

λGG
þG−

μμ
iffiffi
2

p CμH
imμ

2
ffiffi
2

p
v3
Δκμ

TABLE II. Cross sections for di-boson productions involving
longitudinal gauge bosons.

In terms of Δκμ
In units of
σμþμ−→hh

σμþμ−→hZL
1

128π ð
mμ

v2 Þ2jΔκμj2 2
9

σμþμ−→ZLZL
1

256π ð
mμ

v2 Þ2jΔκμj2 1
9

σμþμ−→Wþ
LW

−
L

1
128π ð

mμ

v2 Þ2jΔκμj2 2
9

TABLE III. Cross sections for tri-boson productions involving
longitudinal gauge bosons.

In terms of Δκμ
In units of
σμþμ−→hhh

σμþμ−→hhZL
s

214π3
ðmμ

v3 Þ2jΔκμj2 1
3

σμþμ−→hZLZL
s

214π3
ðmμ

v3 Þ2jΔκμj2 1
3

σμþμ−→ZLZLZL
3s

214π3
ðmμ

v3 Þ2jΔκμj2 1

σμþμ−→hWþ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 2
3

σμþμ−→ZLW
þ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 2
3
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λhμμ ¼
mμ

v
þ
X
n

2nCðnÞ
μHv

2n; ð15Þ

where CðnÞ
μH is the Wilson coefficient of OðnÞ

μH, and thus

Δκμ ¼
X
n

2nCðnÞ
μH

v2nþ1

mμ
: ð16Þ

Similarly, the effective di-Higgs and tri-Higgs couplings are

λhhμμ ¼
X
n

ð2nþ 1ÞnCðnÞ
μHv

2n−1; ð17Þ

λhhhμμ ¼
X
n

ð2nþ 1Þnð2n − 1Þffiffiffi
2

p CðnÞ
μHv

2n−2: ð18Þ

The contributions resulting from an individual OðnÞ
μH oper-

ator, including the contributions to couplings involving
Goldstone bosons, are summarized in Table IV.
In general, the effective muon coupling to k Higgs

bosons, defined by extending the Lagrangian in Eq. (3) to

L ⊃ −
1ffiffiffi
2

p λhμμμ̄LμRh −
X
k≥2

1

k!
λh

k

μμμ̄LμRhk; ð19Þ

can be written as

λh
k

μμ ¼
X
n

ð2nþ 1Þ!
2k=2ð2nþ 1 − kÞ!C

ðnÞ
μHv

2nþ1−k; ð20Þ

and the total cross section for μþμ− → hk, neglecting the
Higgs mass, is given by

σμþμ−→hk ¼
sk−2

24k−3π2k−3k!ðk − 1Þ!ðk − 2Þ! jλ
hk
μμj2: ð21Þ

From these results we can make several interesting obser-
vations. If the contribution of one operator to Δκμ domi-
nates, or for simplicity only one of the operators is present,
then the cross sections for k-Higgs productions are all
proportional to jΔκμj. Cross sections for di-Higgs and tri-
Higgs productions are also proportional to ð2nþ 1Þ2 and
ð4n2 − 1Þ2, respectively, and thus the rates resulting from
operators of dimensions higher than six are dramatically

larger than those presented in the main results. The ratio of
these cross sections in such a case is given by

σμþμ−→hhh

σμþμ−→hh
¼ ð2n − 1Þ2

192π2
s
v2

; ð22Þ

and thus with increasing n the tri-Higgs signal starts
dominating at lower

ffiffiffi
s

p
. In addition, for n > 1, large

signals with more Higgs bosons in final states are expected
and could provide further sensitive probes of a modified
muon Yukawa coupling. For example, assuming that only
the dimension-eight mass operator is present (n ¼ 2),
we get

λhhhhμμ ¼ 15

2

mμ

v4
Δκμ; ð23Þ

λhhhhhμμ ¼ 15

2
ffiffiffi
2

p mμ

v5
Δκμ; ð24Þ

and

σμþμ−→hhhh ¼
52s2

220π5

�
mμ

v4

�
2

jΔκμj2; ð25Þ

σμþμ−→hhhhh ¼
5s3

3 · 227π7

�
mμ

v5

�
2

jΔκμj2: ð26Þ

These cross sections are plotted as functions of
ffiffiffi
s

p
for

various jΔκμj in Fig. 5. Indicated unitarity constraints on
the largest possible jΔκμj resulting from the dimension-
eight mass operator, given by Eqs. (A11) and (A12), will
be discussed in detail in the following section and
Appendix A. We see that compared to the tri-Higgs signal
resulting from the dimension-six operator, the four or five
Higgs final states are potentially sensitive to an order of
magnitude smaller jΔκμj.
However, if two or more operators of various dimensions

contribute to Δκμ, it is possible that, due to accidental
cancellations, some of the k-Higgs final states are highly
suppressed. Although this is not expected, we note that, by
measuring cross sections for all μþμ− → hk together with
h → μþμ−, the magnitudes of all Wilson coefficients can be
determined, and further constraints on their phases can be
obtained. Specifically, the nth-Wilson coefficient contrib-
utes to k ≤ 2nþ 1 Higgs final states, whereas the (n − 1)th

TABLE IV. Contributions to Δκμ and muon couplings to two and three Higgs or Goldstone bosons resulting from OðnÞ
μH in units

of CðnÞ
μHv

2n−2.

Δκμ λhhμμ λhGμμ λGGμμ λG
þG−

μμ λhhhμμ λhhGμμ λhGGμμ λGGGμμ λhG
þG−

μμ λGG
þG−

μμ

2n v3
mμ

ð2nþ 1Þnv inv nv nv ð2nþ1Þnð2n−1Þffiffi
2

p inð2n−1Þffiffi
2

p nð2n−1Þffiffi
2

p 3inffiffi
2

p nð2n−1Þffiffi
2

p inffiffi
2

p
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coefficient contributes to k ≤ 2n − 1, meaning the magni-

tude of CðnÞ
μH can only be probed by measurements involving

k ¼ 2nþ 1 or k ¼ 2n Higgses. The lower multiplicity 2 ≤
k ≤ 2n − 1 processes will contain information about the
magnitudes and interferences between the remaining

Cðn−1Þ
μH terms. Lastly, by using h → μþμ− as the remaining

observable, a total of 2n constraints are found, determining
the magnitudes and phases of all n-contributing Wilson
coefficients, up to a possible sign of each phase.
It is interesting to note that there are several effective

couplings involving Goldstone bosons that are directly
related toΔκμ regardless of its origin. From Table IV we see
that, for example,

λGGμμ ¼
X
n

nCðnÞ
μHv

2n−1 ¼ mμ

2v2
Δκμ; ð27Þ

and thus the contribution of mass operators to μþμ− →
ZLZL is always directly related to a modification of the
muon Yukawa coupling. The contributions to other di-
boson processes, μþμ− → W�

LW
∓
L and ZLh are also

directly related to a modification of the muon Yukawa
coupling. Among all possible tri-boson processes this is the
case for only μþμ− → Wþ

LW
−
LZL and ZLZLZL (see

Table IV). Thus one might be tempted to conclude that
these processes are more direct probes of a modified
Yukawa coupling. However, as discussed above, all these
final states are also affected by other dimension-six
operators not related to the Yukawa coupling at all.
Considering other dimension-eight operators that do not
contribute to the muon Yukawa coupling, we find that also
hh, hhh, and hZLZL are affected at this level [31].

III. MODIFIED MUON YUKAWA
COUPLING—2HDM TYPE-II

In the low energy theory described by a 2HDM with
type-II couplings of Higgs doublets to SM leptons, there are
four independent dimension-six operators parametrizing the
effect of newphysics thatmodify themuonmass andYukawa
coupling. The effective Lagrangian of mass operators up to
dimension-six is given by [16]

L ¼ −yμl̄LμRHd − CμHd
l̄LμRHdðH†

dHdÞ
− Cð1Þ

μHu
l̄LμRHdðH†

uHuÞ − Cð2Þ
μHu

l̄LμR ·H†
uðHd ·HuÞ

− Cð3Þ
μHu

l̄LμR ·H†
uðH†

d ·H
†
uÞ þ H:c:; ð28Þ

where OμHd
closely resembles the dimension-six mass

operator discussed in the previous section, while Oð1Þ
μHu

,

Oð2Þ
μHu

, andOð3Þ
μHu

contain bothHiggs doublets simultaneously.
The components of the two Higgs doublets are Hd ¼
ðHþ

d ; H
0
dÞT and Hu ¼ ðH0

u; H−
u ÞT . For example, the OμHd

operator can be written in component notation as
−CμHd

μ̄LμRðH0
dH

þ
d H

−
d þH0

dH
0
d
�H0

dÞ. The SUð2Þ ×Uð1ÞY
quantum numbers and the Z2 charges of the fields resulting
in type-II couplings are lLð2−1=2;þÞ, μRð1−1;−Þ,
Huð2−1=2;þÞ, and Hdð21=2;−Þ. The explicit “·” represents
contraction of SUð2Þ doublets via the antisymmetric ϵij,
where ϵ12 ¼ −ϵ21 ¼ þ1. Note that there is yet another
operator,−C0

μHu
l̄LμRHuðH†

uHdÞ, allowed by all symmetries,
which, however, can be written as a linear combination of

Oð1Þ
μHu

and Oð2Þ
μHu

operators:

O0
μHu

¼ Oð1Þ
μHu

−Oð2Þ
μHu

: ð29Þ

FIG. 5. Production cross sections for four and five Higgs bosons as functions of
ffiffiffi
s

p
for various jΔκμj assuming that only

the dimension-eight mass operator is present. Gray shaded regions are excluded at 95% C.L. by the CMS search for h → μþμ− [24].
The red shaded regions are excluded by unitarity constraints. Orange lines indicate the cross sections corresponding to five
signal events.
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Furthermore, this operator after electroweak symmetry
breaking (EWSB) does not contribute to the muon mass.
Although in general all the dimension-six mass operators

can be present simultaneously, specific UV completions
typically generate just one or two of them as dominant
ones. There are 22 possible UV completions that generate
these operators at tree level, categorized in Table V
according to gauge and Z2 charge assignments of new
leptons, L ⊕ E, that are assumed to come in vectorlike
pairs. Note that the models which generate CμHd

at tree
level do not generate any operator involving Hu, and that
only representations containing an SUð2Þ triplet or a SM

singlet can generate two operators (Oð1Þ
μHu

and Oð2Þ
μHu

)
simultaneously at tree level.2 When these operators are
simultaneously generated, the corresponding Wilson coef-

ficients are correlated, Cð2Þ
μHu

¼ a × Cð1Þ
μHu

, where a is shown
in the fourth column of Table V by the multiplying factor in
front of ð�;�Þ. Note that for the models with SM singlets

(fifth line in the table), the generated Cð1Þ
μHu

and Cð2Þ
μHu

can be
replaced by just −C0

μHu
through Eq. (29), and thus these

models do not contribute to the muon mass for any Z2

charges. Finally, besides the models in Table V, there is an
infinite number of possible UV completions that generate
the mass operators at loop level [13].
In the main text we will present detailed results for the

OμHd
operator only. The results for other operators suffi-

cient for obtaining predictions in any specific model will be
summarized in Appendix B. We focus on theOμHd

operator
because it is generated by the new leptons with the same
quantum numbers as SM leptons (including the Z2

charges). Furthermore, as we will see, the di-Higgs and
tri-Higgs signals resulting from this operator feature the
largest possible tan β enhancements.

When the neutral components of the two Higgs doublets
develop vacuum expectation values, hH0

di ¼ vd ¼ v cos β
and hH0

ui ¼ vu ¼ v sin β, the neutral and charged compo-
nents of the doublets can be written in terms of mass
eigenstates and Goldstone bosons as

H0
d ¼ vd þ

1ffiffiffi
2

p ð−h sin αþH cos αÞ

þ iffiffiffi
2

p ðG cos β − A sin βÞ; ð30Þ

H0
u ¼ vu þ

1ffiffiffi
2

p ðh cos αþH sin αÞ

−
iffiffiffi
2

p ðG sin β þ A cos βÞ; ð31Þ

and

H�
d ¼ cos βG� − sin βH�; ð32Þ

H�
u ¼ − sin βG� − cos βH�; ð33Þ

where h and H are the light and heavy CP-even Higgs
bosons, A is the CP-odd Higgs boson, H� are the charged
Higgs bosons, and G and G� are the neutral and charged
Goldstone bosons, respectively. The angle α is a rotation
angle that diagonalizes the CP-even Higgs boson mass
matrix. For more details on the notation, see Ref. [16].
The OμHd

operator generates an additional contribution
to the muon mass

mμ ¼ yμvd þ CμHd
v3d; ð34Þ

and, in the basis where the muon mass is real and positive,
the resulting interactions with the Higgs bosons in the
2HDM are described by

TABLE V. SUð2ÞL × Uð1ÞY × Z2 quantum numbers of 22 possible UV completions involving vectorlike leptons
L and E. ð�;�Þ represents Z2 charge assignments of L and E, respectively, required to generate at tree level the
dimension-six mass operators labeled at the top of each column. When two operators are generated simultaneously
in the same model, the corresponding Wilson coefficients are correlated by a factor indicated in front of ð�;�Þ.

L ⊕ E OμHd
Oð1Þ

μHu
Oð2Þ

μHu
Oð3Þ

μHu

2−1=2 ⊕ 1−1 ðþ;−Þ ð−;−Þ ðþ;þÞ ð−;þÞ
2−1=2 ⊕ 3−1 ðþ;−Þ ðþ;þÞ; ð−;−Þ − 1

2
ðþ;þÞ;−2ð−;−Þ ð−;þÞ

2−3=2 ⊕ 1−1 ðþ;−Þ ð−;−Þ ð−;þÞ ðþ;þÞ
2−3=2 ⊕ 3−1 ðþ;−Þ ð−;−Þ; ð−;þÞ −2ð−;−Þ;− 1

2
ð−;þÞ ðþ;þÞ

2−1=2 ⊕ 10 ðþ;þÞ; ð−;þÞ −1ðþ;þÞ;−1ð−;þÞ
2−1=2 ⊕ 30 ðþ;−Þ ðþ;þÞ; ð−;þÞ þ1ðþ;þÞ;þ1ð−;þÞ ð−;−Þ

2However, in general all the operators are expected to be
generated at loop level. For example, the model with 2−1=2 ⊕ 1−1
and ðþ;−ÞZ2 charges generates only CμHd

at tree level, but
generates all other operators at loop level, which was studied in
detail in Ref. [16].
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L ⊃ −
1ffiffiffi
2

p λhμμμ̄LμRh −
1ffiffiffi
2

p λHμμμ̄LμRH −
1ffiffiffi
2

p λAμμμ̄LμRA −
1

2!
λhhμμμ̄LμRh2 −

1

2!
λAAμμ μ̄LμRA2 −

1

2!
λHH
μμ μ̄LμRH2 − λhHμμ μ̄LμRhH

− λhAμμ μ̄LμRhA − λHA
μμ μ̄LμRHA − λH

þH−
μμ μ̄LμRHþH− −

1

3!
λhhhμμ μ̄LμRh3 −

1

3!
λAAAμμ μ̄LμRA3 −

1

3!
λHHH
μμ μ̄LμRH3

−
1

2!
λhhHμμ μ̄LμRh2H −

1

2!
λhhAμμ μ̄LμRh2A −

1

2!
λhAAμμ μ̄LμRhA2 −

1

2!
λhHH
μμ μ̄LμRhH2 −

1

2!
λAHH
μμ μ̄LμRAH2 −

1

2!
λHAA
μμ μ̄LμRHA2

− λhH
þH−

μμ μ̄LμRhHþH− − λHHþH−
μμ μ̄LμRHHþH− − λAH

þH−
μμ μ̄LμRAHþH− − λhHA

μμ μ̄LμRhHAþ H:c:; ð35Þ

where the couplings are summarized in Table VI in terms of
the Wilson coefficient, the VEV, α and β, and also in the
alignment limit, α ¼ β − π

2
, where h is SM-like. The last

column contains couplings in the alignment limit written in
terms of Δκμ that, with the same definitions of κμ and Δκμ
as in Eqs. (7) and (8), is given by

Δκμ ¼ 2CμHd

v3d
mμ

: ð36Þ

In specific models, after integrating out heavy degrees
of freedom at a given scale Λ, the maximum size of
generated CμHd

can be limited by perturbativity of the
couplings. Without specifying the model, the size of
higher-dimensional operators can be constrained by the
requirement of preserving S-matrix unitarity via partial
wave analysis for scattering processes involving the oper-
ators themselves in the high energy limit [32,33]. Because
of the dimensionality of the operators,Ci ∝ Λ4−d for d > 4,
high energy scattering processes are limited by powers of

TABLE VI. Coupling constants describing interactions with the 2HDM Higgs bosons in Eq. (35).

In general Alignment limit (α ¼ β − π
2
) In terms of Δκμ

λhμμ mμþ2v3cos3βCμHd
v ð− sin α

cos β Þ
mμþ2v3cos3βCμHd

v

mμ

v ð1þ ΔκμÞ
λHμμ mμþ2v3 cos3 βCμHd

v ðcos αcos βÞ
mμþ2v3 cos3 βCμHd

v tan β
mμ

v ð1þ ΔκμÞ tan β
λAμμ −i mμ

v tan β −i mμ

v tan β −i mμ

v tan β
λhhμμ 3v cos β sin2 αCμHd

3v cos3 βCμHd
3mμ

2v2 Δκμ
λAAμμ v cos β sin2 βCμHd

v sin2 β cos βCμHd

mμ

2v2 Δκμ tan
2 β

λHH
μμ 3v cos β cos2 αCμHd

3v sin2 β cos βCμHd
3mμ

2v2 Δκμ tan
2 β

λhHμμ −3v cos β sin α cos αCμHd 3v sin β cos2 βCμHd
3mμ

2v2 Δκμ tan β
λhAμμ iv cos β sin β sin αCμHd −iv sin β cos2 βCμHd − imμ

2v2 Δκμ tan β
λHA
μμ −iv cos β sin β cos αCμHd −iv sin2 β cos βCμHd − imμ

2v2 Δκμ tan
2 β

λH
þH−

μμ v cos β sin2 βCμHd
v sin2 β cos βCμHd

mμ

2v2 Δκμ tan
2 β

λhhhμμ − 3ffiffi
2

p sin3 αCμHd

3ffiffi
2

p cos3 βCμHd

3mμ

2
ffiffi
2

p
v3
Δκμ

λAAAμμ − 3ffiffi
2

p i sin3 βCμHd
− 3ffiffi

2
p i sin3 βCμHd − 3imμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λHHH
μμ

3ffiffi
2

p cos3 αCμHd

3ffiffi
2

p sin3 βCμHd

3mμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λhhHμμ
3ffiffi
2

p sin2 α cos αCμHd

3ffiffi
2

p sin β cos2 βCμHd

3mμ

2
ffiffi
2

p
v3
Δκμ tan β

λhhAμμ − iffiffi
2

p sin β sin2 αCμHd
− iffiffi

2
p sin β cos2 βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan β

λhAAμμ − 1ffiffi
2

p sin2 β sin αCμHd

1ffiffi
2

p sin2 β cos βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λhHH
μμ − 3ffiffi

2
p sin α cos2 αCμHd

3ffiffi
2

p sin2 β cos βCμHd

3mμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λAHH
μμ − iffiffi

2
p sin β cos2 αCμHd

− iffiffi
2

p sin3 βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λHAA
μμ

1ffiffi
2

p sin2 β cos αCμHd

1ffiffi
2

p sin3 βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λhH
þH−

μμ − 1ffiffi
2

p sin2 β sin αCμHd

1ffiffi
2

p sin2 β cos βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λHHþH−
μμ

1ffiffi
2

p sin2 β cos αCμHd

1ffiffi
2

p sin3 βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λAH
þH−

μμ − iffiffi
2

p sin3 βCμHd
− iffiffi

2
p sin3 βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan3 β

λhHA
μμ

iffiffi
2

p sin β sin α cos αCμHd
− iffiffi

2
p sin2 β cos βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan2 β
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ffiffiffi
s

p
≤ Λ rather than

ffiffiffi
s

p
→ ∞ when on-shell resonances of

new particles occur at the cutoff scale Λ in the theory.
Specifically, for the operator of our interest, a unitarity limit
on CμHd

can be found from the 2 → 2 and 2 → 3 scattering
amplitudes for physical states. Details of the calculation can
be found in Appendix A. We find that

jCμHd
j ≤

�
16π

3 cos βsin2β

�
1

vΛ
and

jCμHd
j ≤

�
128π2ffiffiffi
3

p
sin3β

�
1

Λ2
ð37Þ

for μþμ− → HH and μþμ− → HHH, respectively, where
we have neglected the masses of heavy Higgses. In
the range of the parameter space with Λ ≥ 1 TeV,
1 ≤ tan β ≤ 50, and jΔκμj ≤ 2.50, the constraint from
μþμ− → HHH is always stronger. It can be rewritten as
a bound on the largest possible Δκμ through Eq. (36),

jΔκμj ≤
256π2ffiffiffi
3

p
tan3 β

v3

mμΛ2
; ð38Þ

or, for fixed Δκμ, as a unitarity bound on tan β,

tan β ≤
�

256π2ffiffiffi
3

p jΔκμj
v3

mμΛ2

�
1=3

: ð39Þ

The maximum jΔκμj that can be obtained for a given tan β
and a scale of new physics Λ is plotted in Fig. 6.
The cross sections for all combinations of di-Higgs

final states and tri-Higgs final states are summarized in
Tables VII and VIII. Representative cross sections for
Δκμ ¼ −2 as functions of tan β are shown in Fig. 7. As
in the SM case, di-Higgs production cross sections do not

depend on
ffiffiffi
s

p
, while tri-Higgs cross sections grow quad-

ratically with
ffiffiffi
s

p
. The plotted cross sections are excellent

approximations when the combined masses of given final
states are much smaller than

ffiffiffi
s

p
. The unitarity bound on

tan β given in Eq. (39) for this choice ofΔκμ is indicated for
various Λ. For tri-Higgs production cross sections onlyffiffiffi
s

p
< Λ should be considered. We see that models with

2HDM type-II Higgs sector can generate Δκμ ¼ −2 only
for tan β ≲ 16 due to unitarity constraints for Λ≳ 3 TeV.
However, if heavy Higgses are kinematically accessible,
the di-Higgs and tri-Higgs final states containing heavy
Higgses provide signals of the opposite sign muon Yukawa
coupling which potentially exceed the SM di-Higgs and tri-
Higgs signals by orders of magnitude. For example, forffiffiffi
s

p ¼ 10 TeV and tan β ¼ 5, the cross section for μþμ− →
HHH is 4 orders of magnitude larger than the cross section
for μþμ− → hhh.
The cross section for μþμ− → HH is also plotted as a

function of tan β for various jΔκμj in Fig. 8. The orange line
FIG. 6. Contours of constant jΔκμ;MAXj in tan β − Λ plane. The
gray shaded region is excluded at 95% C.L. by the CMS search
for h → μþμ− [24].

TABLE VII. Cross sections for all combinations of di-Higgs
final states.

In terms of Δκμ In units of σμþμ−→hh

σμþμ−→hh
9

256π ð
mμ

v2 Þ2jΔκμj2 1

σμþμ−→AA
1

256π ð
mμ

v2 Þ2jΔκμj2 tan4 β 1
9
tan4 β

σμþμ−→HH
9

256π ð
mμ

v2 Þ2jΔκμj2 tan4 β tan4 β
σμþμ−→hH

9
128π ð

mμ

v2 Þ2jΔκμj2 tan2 β 2 tan2 β
σμþμ−→hA

1
128π ð

mμ

v2 Þ2jΔκμj2 tan2 β 2
9
tan2 β

σμþμ−→HA
1

128π ð
mμ

v2 Þ2jΔκμj2 tan4 β 2
9
tan4 β

σμþμ−→HþH− 1
128π ð

mμ

v2 Þ2jΔκμj2 tan4 β 2
9
tan4 β

TABLE VIII. Cross sections for all combinations of tri-Higgs
final states.

In terms of Δκμ In units of σμþμ−→hhh

σμþμ−→hhh
3s

214π3
ðmμ

v3 Þ2jΔκμj2 1

σμþμ−→AAA
3s

214π3
ðmμ

v3 Þ2jΔκμj2 tan6 β tan6 β
σμþμ−→HHH

3s
214π3

ðmμ

v3 Þ2jΔκμj2 tan6 β tan6 β
σμþμ−→hhH

9s
214π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 3 tan2 β
σμþμ−→hhA

s
214π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 1
3
tan2 β

σμþμ−→hAA
s

214π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 1
3
tan4 β

σμþμ−→hHH
9s

214π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 3 tan4 β
σμþμ−→AHH

s
214π3

ðmμ

v3 Þ2jΔκμj2 tan6 β 1
3
tan6 β

σμþμ−→HAA
s

214π3
ðmμ

v3 Þ2jΔκμj2 tan6 β 1
3
tan6 β

σμþμ−→hHþH− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β

σμþμ−→HHþH− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan6 β 2
3
tan6 β

σμþμ−→AHþH− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan6 β 2
3
tan6 β

σμþμ−→hHA
s

213π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β
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indicates the cross section corresponding to five signal
events assuming the luminosity expected at a

ffiffiffi
s

p ¼
10 TeV muon collider [see Eq. (13)]. We see that, as a
result of tan4 β enhancement, the μþμ− → HH signal, if
kinematically open, can be used to observe a deviation in
the muon Yukawa coupling at the 2% level for tan β ¼ 1
and at the 0.004% level for tan β ¼ 50.
The cross section for μþμ− → HHH is plotted as a

function of
ffiffiffi
s

p
for various jΔκμj and several choices of

tan β in Fig. 9. The red shaded regions are excluded by the
unitarity limits on the cross section obtained from Eq. (38)
and the formula for the cross section in terms of jΔκμj
in Table VIII. The boundary of the excluded region

corresponds to the maximum Δκμ allowed by unitarity
obtained from Eq. (38)

σμþμ−→HHH ¼ 4π

s
; ð40Þ

which is independent of tan β and thus the same in all plots.
As orange lines indicate, as a result of tan6 β enhancement,
the μþμ− → HHH signal, if kinematically open, could
lead to dramatically stronger sensitivity to muon Yukawa
coupling. For example, at a

ffiffiffi
s

p ¼ 10 TeV muon collider,
deviations in the muon Yukawa coupling at the 7 × 10−5

level could be tested for tan β ¼ 10 and at the 6 × 10−7

level for tan β ¼ 50.
Cross sections for other Higgs final states can be

obtained by simple rescaling according to the last column
of Tables VII and VIII. However, for the final states that
have sizable contributions from the 2HDM type-II without
the dimension-six mass operator, the cross sections listed in
these tables are good approximations only for large

ffiffiffi
s

p
.

For example, among the di-Higgs final states, HA and
HþH− are also produced by μþμ− → Z� → HA and
μþμ− → Z�; γ� → HþH−. Note that the cross sections
for these processes behave as 1=s and that the interference
with the processes for the same final states originating from
the dimension-six mass operator is negligible because of
the different chiralities of muons required. These cross
sections, calculated from the effective Lagrangian imple-
mented in FeynRules [22] using MadGraph5 [23], assuming
1 TeVmasses of heavy Higgs bosons, are plotted in Fig. 10.
The line for jΔκμj ¼ 0 corresponds to the production cross
section in the 2HDM type-II. The same comments apply to
other tri-Higgs final states. In addition, for some of the
other tri-Higgs final states there are contributions from
Higgs cubic and quartic couplings that depend on the exact
form of the potential.

FIG. 8. The total cross section for μþμ− → HH as a function of
tan β ¼ 1 for various jΔκμj. The gray shaded region is excluded at
95% C.L. by the CMS search for h → μþμ− [24]. The red lines
with arrows indicate regions excluded by unitarity constraints for
Λ ¼ 30, 10, 3, and 1 TeV. The orange line indicates the cross
section corresponding to five signal events assuming the lumi-
nosity expected at a

ffiffiffi
s

p ¼ 10 TeV muon collider.

FIG. 7. Representative di-Higgs and tri-Higgs production cross sections in 2HDM as functions of tan β corresponding to Δκμ ¼ −2.
The unitarity bounds on tan β are indicated by vertical red lines for Λ ¼ 30, 10, and 3 TeV from left to right.
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Interactions involving Goldstone bosons resulting from the OμHd
operator are described by

L ⊃ −
1ffiffiffi
2

p λGμμμ̄LμRG− λhGμμ μ̄LμRhG− λHG
μμ μ̄LμRHG− λAGμμ μ̄LμRAG−

1

2!
λGGμμ μ̄LμRGG− λH

þG−
μμ μ̄LμRHþG−

− λH
−Gþ

μμ μ̄LμRH−Gþ − λG
þG−

μμ μ̄LμRGþG− −
1

2!
λhhGμμ μ̄LμRh2G− λhHG

μμ μ̄LμRhHG− λhAGμμ μ̄LμRhAG

−
1

2!
λHHG
μμ μ̄LμRHHG− λHAG

μμ μ̄LμRHAG−
1

2!
λAAGμμ μ̄LμRAAG−

1

2!
λhGGμμ μ̄LμRhGG−

1

2!
λHGG
μμ μ̄LμRHGG

−
1

2!
λAGGμμ μ̄LμRAGG−

1

3!
λGGGμμ μ̄LμRGGG− λhG

þG−
μμ μ̄LμRhGþG− − λHGþG−

μμ μ̄LμRHGþG− − λAG
þG−

μμ μ̄LμRAGþG−

− λGG
þG−

μμ μ̄LμRGGþG− − λhH
þG−

μμ μ̄LμRhHþG− − λhG
þH−

μμ μ̄LμRhGþH− − λHHþG−
μμ μ̄LμRHHþG− − λHGþH−

μμ μ̄LμRHGþH−

− λAH
þG−

μμ μ̄LμRAHþG− − λAG
þH−

μμ μ̄LμRAGþH− − λGH
þH−

μμ μ̄LμRGHþH− − λGH
þG−

μμ μ̄LμRGHþG− − λGG
þH−

μμ μ̄LμRGGþH−

þH:c:; ð41Þ

where the couplings are summarized in Table IX in terms of the Wilson coefficient, v, α, and β, and also in the alignment
limit, α ¼ β − π

2
. The last column contains couplings in the alignment limit written in terms of Δκμ. The cross sections for

corresponding di-boson and tri-boson productions involving longitudinal gauge bosons are summarized in Tables X and XI.
For comparison, we plot Zh in Fig. 10 (only for tan β ¼ 1 since this process does not depend on tan β).

FIG. 9. The total cross section for μþμ− → HHH as a function of
ffiffiffi
s

p
for various jΔκμj and tan β ¼ 1, 5, 10, and 50. The gray shaded

regions are excluded at 95% C.L. by the CMS search for h → μþμ− [24]. The red shaded regions are excluded by unitarity constraints.
Orange lines indicate the cross sections corresponding to five signal events.
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A. Other operators, the golden channels,
and other Higgs sectors

Results for other dimension-six mass operators in

Eq. (28), Oð1Þ
μHu

, Oð2Þ
μHu

, and Oð3Þ
μHu

, are summarized in
Appendix B. The main differences are the tan β depend-
ences of various processes.
With the Higgs sector of the 2HDM type-II, there are

also more possible dimension-six operators with covariant
derivatives than in the SM case that can contribute to di-
boson and tri-boson processes. For example, symmetries
allow for CR;Hd

ðμ̄RH†
dÞiDðμRHdÞ, CR;Hu

ðμ̄RHuÞiDðμRH†
uÞ,

CL;Hd
ðl̄LHdÞiDðlLH†

dÞ, or CL;Hu
ðl̄L ·H†

uÞiDðlL ·HuÞ. As in
the SM case, operators with derivatives acting on the
muon fields are reduced via equations of motion to

the mass operators OμHd
, Oð1Þ

μHu
, or Oð2Þ

μHu
. Similarly,

operators with derivatives acting on the Higgs doublets
in symmetric combinations can be written as the mass
operators above. The antisymmetric combinations result

in the following six independent ðLLÞ and ðRRÞ operators:
Cð1Þ
Hdl

ðH†
diD

↔

μHdÞðl̄LγμlLÞ, Cð3Þ
Hdl

ðH†
diD

↔a
μHdÞðl̄LτaγμlLÞ,

Cð1Þ
Hul

ðH†
uiD

↔

μHuÞðl̄LγμlLÞ, Cð3Þ
Hul

ðH†
uiD

↔a
μHuÞðl̄LτaγμlLÞ,

CHdμðH†
diD

↔

μHdÞðμ̄RγμμRÞ, and CHuμðH†
uiD

↔

μHuÞðμ̄RγμμRÞ,
which do not contribute to the muon mass or the Yukawa
coupling.
However, the operators with covariant derivatives con-

tribute to μþμ− → H�W∓
L ,H

þH−, Ah, AH, ZLH, ZH, and
W�H∓ di-boson processes, in addition to those identified
in the SM case. Similarly, these operators contribute to
μþμ− → ZW�

LH
∓, ZH�H∓, ZHH, ZhH, ZAZL, ZAA,

W�W∓
L A, W�W∓

LH, W�H∓ZL, W�H∓h, W�H∓A,
and W�H∓H tri-boson processes, in addition to those
identified in the SM case. Furthermore, the dipole oper-
ators contribute to μþμ− → HZ, AZ, H�W∓, HWþW−,
ZH�W∓, and AWþW− processes, in addition to those
identified in the SM case. All other di-Higgs processes in

FIG. 10. The total cross sections for μþμ− → HA, μþμ− → HþH−, and μþμ− → hZ as functions of
ffiffiffi
s

p
for various jΔκμj and

tan β ¼ 1, 5, 10, and 50. Each line ends where the unitarity constraint is saturated for given jΔκμj and tan β.
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Table VII are not affected, namely μþμ− → HH, AA, and
hH, in addition to hh already identified in the SM case.
Furthermore, all tri-Higgs final states in Table VIII are
not affected. Among di-boson and tri-boson processes

involving Goldstone bosons in Tables X and XI the only
unaffected processes are μþμ− → HZLZL, HAZL, and
hAZL in addition to hZLZL already identified in the
SM case.
The 2HDM type-II backgrounds for all the identified di-

Higgs processes, μþμ− → hh, HH, AA, and hH, are
negligible (proportional to the muon Yukawa coupling).
Among the tri-Higgs final states not affected by other
dimension-six operators, only hhh, HHH, hhH, hAA,
hHH, and HAA have negligible backgrounds.3 Finally,
among the identified tri-boson final states involving

TABLE IX. Coupling constants involving goldstone bosons defined in Eq. (41).

In general Alignment limit (α ¼ β − π
2
) In terms of Δκμ

λGμμ i mμ

v i mμ

v i mμ

v

λhGμμ −iv cos2 β sin αCμHd
iv cos3 βCμHd

imμ

2v2 Δκμ
λHG
μμ iv cos2 β cos αCμHd

iv cos2 β sin βCμHd

imμ

2v2 Δκμ tan β
λAGμμ −v cos2 β sin βCμHd

−v cos2 β sin βCμHd
− mμ

2v2 Δκμ tan β
λGGμμ v cos3 βCμHd

v cos3 βCμHd

mμ

2v2 Δκμ
λH

þG−
μμ , λH

−Gþ
μμ −v cos2 β sin βCμHd

−v cos2 β sin βCμHd
− mμ

2v2 Δκμ tan β
λG

þG−
μμ v cos3 βCμHd

v cos3 βCμHd

mμ

2v2 Δκμ
λhhGμμ

iffiffi
2

p cos β sin2 αCμHd

iffiffi
2

p cos3 βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ

λhHG
μμ − iffiffi

2
p cos β cos α sin αCμHd

iffiffi
2

p cos2 β sin βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ tan β

λhAGμμ
1ffiffi
2

p cos β sin β sin αCμHd
− 1ffiffi

2
p cos2 β sin βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan β

λHHG
μμ

iffiffi
2

p cos β cos2 αCμHd

iffiffi
2

p cos β sin2 βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λHAG
μμ − 1ffiffi

2
p cos β cos α sin βCμHd

− 1ffiffi
2

p cos β sin2 βCμHd
− mμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λAAGμμ
3iffiffi
2

p cos β sin2 βCμHd
3iffiffi
2

p cos β sin2 βCμHd
3imμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λhGGμμ − 1ffiffi
2

p cos2 β sin αCμHd

1ffiffi
2

p cos3 βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ

λHGG
μμ

1ffiffi
2

p cos2 β cos αCμHd

1ffiffi
2

p cos2 β sin βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan β

λAGGμμ − 3iffiffi
2

p cos2 β sin βCμHd
− 3iffiffi

2
p cos2 β sin βCμHd − 3imμ

2
ffiffi
2

p
v3
Δκμ tan β

λGGGμμ
3iffiffi
2

p cos3 βCμHd

3iffiffi
2

p cos3 βCμHd

3imμ

2
ffiffi
2

p
v3
Δκμ

λhG
þG−

μμ − 1ffiffi
2

p cos2 β sin αCμHd

1ffiffi
2

p cos3 βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ

λHGþG−
μμ

1ffiffi
2

p cos2 β cos αCμHd

1ffiffi
2

p cos2 β sin βCμHd

mμ

2
ffiffi
2

p
v3
Δκμ tan β

λAG
þG−

μμ − iffiffi
2

p cos2 β sin βCμHd
− iffiffi

2
p cos2 β sin βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan β

λGG
þG−

μμ
iffiffi
2

p cos3 βCμHd

iffiffi
2

p cos3 βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ

λhH
þG−

μμ , λhG
þH−

μμ
1ffiffi
2

p cos β sin β sin αCμHd
− 1ffiffi

2
p cos2 β sin βCμHd

− mμ

2
ffiffi
2

p
v3
Δκμ tan β

λHHþG−
μμ , λHGþH−

μμ − 1ffiffi
2

p cos β cos α sin βCμHd
− 1ffiffi

2
p cos β sin2 βCμHd

− mμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λAH
þG−

μμ , λAG
þH−

μμ
iffiffi
2

p cos β sin2 βCμHd

iffiffi
2

p cos β sin2 βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λGH
þH−

μμ
iffiffi
2

p cos β sin2 βCμHd

iffiffi
2

p cos β sin2 βCμHd

imμ

2
ffiffi
2

p
v3
Δκμ tan2 β

λGH
þG−

μμ , λGG
þH−

μμ − iffiffi
2

p cos2 β sin βCμHd
− iffiffi

2
p cos2 β sin βCμHd − imμ

2
ffiffi
2

p
v3
Δκμ tan β

TABLE X. Cross sections for di-boson productions involving
longitudinal gauge bosons.

In terms of Δκμ In units of σμþμ−→hh

σμþμ−→hZL
1

128π ð
mμ

v2 Þ2jΔκμj2 2
9

σμþμ−→HZL
1

128π ð
mμ

v2 Þ2jΔκμj2 tan2 β 2
9
tan2 β

σμþμ−→AZL
1

128π ð
mμ

v2 Þ2jΔκμj2 tan2 β 2
9
tan2 β

σμþμ−→ZLZL
1

256π ð
mμ

v2 Þ2jΔκμj2 1
9

σμþμ−→HþW−
L=W

þ
LH

− 1
128π ð

mμ

v2 Þ2jΔκμj2 tan2 β 2
9
tan2 β

σμþμ−→Wþ
LW

−
L

1
128π ð

mμ

v2 Þ2jΔκμj2 2
9

3Note, however, that if masses of H and A are close, some of
the processes with negligible backgrounds might not be distin-
guishable from those with large backgrounds. For example,
μþμ− → HH might not be distinguishable from μþμ− → HA or
μþμ− → HHH might not be distinguishable from μþμ− → AAA.
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Goldstone bosons, only hAZL and HZLZL have negligible
backgrounds (in the alignment limit). However, we should
note that the non-negligible 2HDM background might not
be the limiting factor for a process to be a sensitive probe of
a modified muon Yukawa coupling, as can be seen
from Fig. 10.
The discussion of dimension-eight operators closely

follows the discussion in the SM case.

IV. CONCLUSIONS

We studied multi-Higgs boson signals which in general
accompany a modification of the muon Yukawa coupling
independently of the scale and other details of new physics.
As long as the dominant effect of new physics on the muon
Yukawa coupling is captured by the dimension-six mass
operator, the cross sections for μþμ− → hh and μþμ− →
hhh are uniquely tied to the modification of the muon
Yukawa coupling. As a result of negligible SM back-
grounds for these processes, these signals could provide the
first evidence for new physics even before a deviation of the
muon Yukawa coupling from the SM prediction is estab-
lished by h → μþμ−.
Even a low energy muon collider would easily see clear

signals associated with the opposite sign muon Yukawa
coupling. For example, 191 di-Higgs and 30 tri-Higgs
events are expected already at

ffiffiffi
s

p ¼ 3 TeV. In addition,
the di-Higgs signal can be used to observe a deviation in the
muon Yukawa coupling at the 10% level for

ffiffiffi
s

p ¼ 10 TeV

and at the 3.5% level for
ffiffiffi
s

p ¼ 30 TeV. The tri-Higgs
signal leads to only a slightly better sensitivity atffiffiffi
s

p ¼ 10 TeV, namely 7%, but would improve dramati-
cally with increasing

ffiffiffi
s

p
, reaching 0.8% at

ffiffiffi
s

p ¼ 30 TeV
(and 0.07% at

ffiffiffi
s

p ¼ 100 TeV).
We further argued that if mass operators of higher

dimensions also contribute significantly to the muon
Yukawa coupling, signals with more Higgs bosons in final
states are expected and could be even stronger than hh or
hhh (as an example, we showed predictions for final states
with four and five Higgs bosons resulting from the
dimension-eight mass operator). In such a case, the cross
section of an individual process might not be directly linked
to the modification of the muon Yukawa coupling, but by
measuring all resulting multi-Higgs boson signals along
with h → μþμ−, the Wilson coefficients of all contributing
operators including the sizes of their complex phases can be
determined.
We also studied all processes involvingGoldstone bosons

originating from the same dimension-six mass operator. We
argued that among the large number of such processes only
μþμ− → hZLZL is directly related to a modification of the
muon Yukawa coupling. All other final states can also
originate from other dimension-six operators (operators
with covariant derivatives and dipole operators), which
are not related to the muon Yukawa coupling. However,
the third identified unique signal of a modified muon
Yukawa coupling, μþμ− → hZLZL, has a 3 times smaller

TABLE XI. Cross sections for tri-boson productions involving longitudinal gauge bosons.

In terms of Δκμ In units of σμþμ−→hhh

σμþμ−→hhZL
s

214π3
ðmμ

v3 Þ2jΔκμj2 1
3

σμþμ−→hHZL
s

213π3
ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β

σμþμ−→hAZL
s

213π3
ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β

σμþμ−→HHZL
s

214π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 1
3
tan4 β

σμþμ−→HAZL
s

213π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β

σμþμ−→AAZL
9s

214π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 3 tan4 β
σμþμ−→hZLZL

s
214π3

ðmμ

v3 Þ2jΔκμj2 1
3

σμþμ−→HZLZL
s

214π3
ðmμ

v3 Þ2jΔκμj2 tan2 β 1
3
tan2 β

σμþμ−→AZLZL
9s

214π3
ðmμ

v3 Þ2jΔκμj2 tan2 β 3 tan2 β
σμþμ−→ZLZLZL

3s
214π3

ðmμ

v3 Þ2jΔκμj2 1

σμþμ−→hWþ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 2
3

σμþμ−→HWþ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β

σμþμ−→AWþ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β

σμþμ−→ZLW
þ
LW

−
L

s
213π3

ðmμ

v3 Þ2jΔκμj2 2
3

σμþμ−→hHþW−
L=hW

þ
LH

− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β

σμþμ−→HHþW−
L=HWþ

LH
− s

213π3
ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β

σμþμ−→AHþW−
L=AW

þ
LH

− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β

σμþμ−→ZLHþH− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan4 β 2
3
tan4 β

σμþμ−→ZLHþW−
L=ZLW

þ
LH

− s
213π3

ðmμ

v3 Þ2jΔκμj2 tan2 β 2
3
tan2 β
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cross section than hhh, and the SMbackground for this final
state is not negligible.We also noted, that sizable dimension-
eight operators can affect all three final states.Measuring the
relative strength of these signals can indicate whether other
dimension-eight operators play a significant role.
We further extended the study to the two Higgs doublet

model type-II and showed that di-Higgs and tri-Higgs
signals involving heavy Higgs bosons can be enhanced in
the alignment limit by a factor of ðtan βÞ4 and ðtan βÞ6,
respectively, which results in the potential sensitivity to a
modified muon Yukawa coupling at the 10−6 level already
at a

ffiffiffi
s

p ¼ 10 TeV muon collider. Considering only dimen-
sion-six operators, we identified μþμ− → HH, AA, hH, all
tri-Higgs final states in Table VIII, and HZLZL, HAZL,
and hAZL as possible additional unique signals of a
modified muon Yukawa coupling that involve heavy
Higgs bosons. The 2HDM background is more model
dependent; however, as a result of possibly very large
predicted cross sections, it might not play a significant role.
Among the signals with the largest predicted cross sections
and smallest backgrounds are μþμ− → HH and μþμ− →
HHH, which were the main focus of the paper. However,
depending on the masses of heavy Higgs bosons and

ffiffiffi
s

p
of a muon collider, these processes might not be kinemat-
ically open or might be highly suppressed. In that case,
μþμ− → hH, hHH, or hhH might be the most sensitive
probes.
The results could be applied to models with different

Higgs sectors. If a new scalar S results from a multiplet
participating in electroweak symmetry breaking and enter-
ing the dimension-six mass operator, the effective couplings
of themuon to SS, SSS, andmixed couplings involving both
S and h are generated. In general, SS and SSS productions
are expected to be related to Δκμ. Depending on the details,
the production cross sections could be enhanced (or sup-
pressed) by the fourth and sixth powers of the ratio ofmixing
parameters. This motivates a broad exploration of pure new
di-boson and tri-boson signatures.
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APPENDIX A: UNITARITY
OF SCATTERING PROCESSES

In this appendix, we provide details regarding partial
wave unitarity imposed on effective operators in our study.
The operator OμH generates 2 → 2 and 2 → 3 scattering of
muons into Higgs final states. To begin, we are interested
in providing a bound on Wilson coefficients through
unitarity of the S-matrix. Three-body processes, such as

l̄Lðp1ÞμRðp2Þ → Hðp3ÞðH†ðp4ÞHðp5ÞÞ, are usually diffi-
cult to compute due to the number of free parameters
integrated over the phase space. However, to simplify
the calculation, we follow the procedure of [32,33] by
constructing an effective two-body final state in the
following way. We define θ4 as the angle of p4 in its
center-of-mass (COM) frame with particle 5, p⃗4 þ p⃗5 ¼ 0.
From here, in the COM frame of the three particles,
p⃗3 þ p⃗4 þ p⃗5 ¼ 0, the angle θ45 defines the position of
p⃗4 þ p⃗5 with angular momentum J45. Lastly, we define
s1 ¼ −ðp1 þ p2 − p3Þ2 ¼ −ðp4 þ p5Þ2, which integrates
over the 4–5 system’s invariant mass up to s. For massless
states, the partial wave amplitude is

aJfiðs; s1Þ ¼
1ffiffiffiffi
S

p
ffiffiffiffiffiffiffiffiffiffiffiffi
s − s1

p
256π2

ffiffiffi
s

p
�X

J45

1

2J45 þ 1

�
−1=2

×
Z

1

−1
dðcos θ4Þ

Z
1

−1
dðcos θ45ÞdJλ;λðθ45Þ

× dJ45λþh5;h3−h4ðθ4ÞT ðs; s1; θ4; θ45Þ; ðA1Þ

where djmnðθÞ are the Wigner small d-matrices for two
particle states with total angular momentum j and m, n
are the helicity projections between incoming and outgoing
two-body systems. hi are the helicities of the ith particle,
λ ¼ h1 þ h2 in the COM frame of particles 1 and 2, and S is
the symmetry factor for indistinguishable final states.T is the
matrix element of the 2 → 3 scattering amplitude in momen-
tum space, T ðs;s1;θ4;θ45Þ¼ð2πÞ4δ4ðPi−PfÞhfjTjii for T
being the interaction part of theS-matrix,S ¼ 1þ iT. A final
integration over s1 is taken to complete the three-body phase
space and yields the full partial wave,

jaJfiðsÞj2 ¼
Z

s

0

ds1jaJfiðs; s1Þj2: ðA2Þ

Unitarity of S†S ¼ 1 relates the partial wave amplitudes as

1

2i
ðaJfi − aJ�if Þ ¼

X
k

aJ�kfa
J
ki; ðA3Þ

for all intermediate k states. In the limit of forward scattering,
f → i, the left-hand side reduces to Im½aJii�, and the right-
hand side is bounded from below by jaJiij2. This now implies
Im½aJii� ≥ ðRe½aJii�Þ2 þ ðIm½aJii�Þ2, which can be rearranged
as Im½aJii�ð1 − Im½aJii�Þ ≥ ðRe½aJii�Þ2 and is bounded by 1=4
on the unit circle. Hence, the condition for unitarity translates
as [32–34]

jRe½aJii�j ≤
1

2
; ðA4Þ

applied to the result of Eq. (A2). The forward limit can
be obtained by diagonalizing aJfi including all relevant
channels. Our bounds are obtained by applying equation
Eq. (A4) to the largest eigenvalue of aJfi. For the operator
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l̄LμRHðH†HÞ we can separate the doublet components into
2þ 2 × 2 ¼ 6 scattering states attributing to the partial
wave. In the basis of states defined as fjðl̄LÞ1μRi; jðl̄LÞ2μRi;
jH1ðH†

1H1Þi; jH1ðH†
2H2Þi; jH2ðH†

1H1Þi; jH2ðH†
2H2Þig

where ðl̄LÞiδij is understood to contract with the first Hj

label, we additionally take the J ¼ 0 partial wave based on
the helicities of the left- and right-handed fields, i.e.,
h1 ¼ −1=2 and h2 ¼ þ1=2 scattering into spinless scalars,
which helps the phase space integration become trivial:
d000ðθ4Þ ¼ d000ðθ45Þ ¼ 1. We find the partial wave to be

aJ¼0
fi ðs;s1Þ ¼−

ffiffiffiffiffiffiffiffiffiffiffi
s− s1

p
64π2

CμH

0
BBBBBBBBB@

0 0
ffiffiffi
2

p
1 0 0

0 0 0 0 1
ffiffiffi
2

p
ffiffiffi
2

p
0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0
ffiffiffi
2

p
0 0 0 0

1
CCCCCCCCCA
;

ðA5Þ

whose largest eigenvalue of the matrix is
ffiffiffi
3

p
. Integrating

over the remaining variable s1 and implementing the bound
in Eq. (A4), we find

jCμHj ≤
�
64π2ffiffiffi

6
p

�
1

s
→

�
64π2ffiffiffi

6
p

�
1

Λ2
; ðA6Þ

where we require that the low energy theory preserves
unitarity up to

ffiffiffi
s

p ¼ Λ.
Note that if we rather considered scattering of physical

states after electroweak symmetry breaking, we can obtain
bounds for all inelastic scattering cross sections for 2 → k
processes. For example, at the dimension-eight level,
one now has access to h4 and h5 processes and generally,
the operator l̄LμRHðH†HÞn for n ≥ 1 (mass dimension
d ¼ 2nþ 4) generates up to h2nþ1 final states, becoming
highly inelastic. For general 2 → k scattering, the inelastic
cross section is bounded by σð2 → kÞ ≤ 4π=s, obtained
from unitarity of the forward scattering amplitude [35].
Applying this bound on the cross section for μþμ− → hk

with k ≤ 2nþ 1 Higgses in the final state [Eq. (21)], we
find

sk−2

24k−3π2k−3k!ðk − 1Þ!ðk − 2Þ! jλ
hk
μμj2 ≤

4π

s
: ðA7Þ

Thus, by using the definition of λh
k

μμ in Eq. (20) and Δκμ in
Eq. (16), we find a general unitarity bound on jΔκμj:

jΔκμj ≤ 2ð5kþ1Þ=2πk−1n
�ð2nþ 1 − kÞ!

ð2nþ 1Þ!
�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!ðk − 1Þ!ðk − 2Þ!

p �
Λ
mμ

��
v
Λ

�
k
; ðA8Þ

which assumes the only contribution comes from the nth
Wilson coefficient. When n ¼ 1 for k ¼ 2 and k ¼ 3, we
find, respectively,

jΔκμj ≤
�
32π

3

�
v2

mμΛ
ðA9Þ

and

jΔκμj ≤
�
256π2ffiffiffi

3
p

�
v3

mμΛ2
: ðA10Þ

For n ¼ 2 for k ¼ 4 and 5, we find, respectively,

jΔκμj ≤
�
211π3

5

�
v4

mμΛ3
ðA11Þ

and

jΔκμj ≤
�
214π4

ffiffiffi
6

5

r �
v5

mμΛ4
: ðA12Þ

For the 2HDM-II-equivalent operator, l̄LμRHdðH†
dHdÞ,

the expression in Eq. (A4) is the same because of identical
SUð2Þ structure upon replacing CμH → CμHd

. However,
additional information constraining the parameter space of
CμHd

can be exploited after EWSB. Particularly, for
physical states, we can apply the inelastic cross section
bound on μþμ− → hhh and μþμ− → HHH channels,
revealing different tan β dependencies. We conclude that

jCμHd
j ≤

�
128π2ffiffiffi
3

p j sin3 αj

�
1

Λ2
→

�
128π2ffiffiffi
3

p
cos3 β

�
1

Λ2
ðA13Þ

and

jCμHd
j ≤

�
128π2ffiffiffi
3

p
cos3 α

�
1

Λ2
→

�
128π2ffiffiffi
3

p
sin3 β

�
1

Λ2
ðA14Þ

in the alignment limit for μþμ− → hhh and μþμ− → HHH,
respectively, ignoring the heavy Higgs masses. Furthermore,
one should apply the stronger of the two expressions
depending on the domain of tan β considered. Similarly
for the 2 → 2 processes, μþμ− → hh and μþμ− → HH, we
arrive at

jCμHd
j ≤

�
16π

3 cos β sin2 α

�
1

vΛ
→

�
16π

3 cos3 β

�
1

vΛ
; ðA15Þ

jCμHd
j ≤

�
16π

3 cos β cos2 α

�
1

vΛ
→

�
16π

3 cos β sin2 β

�
1

vΛ
:

ðA16Þ
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APPENDIX B: OTHER DIMENSION-SIX MASS
OPERATORS IN THE 2HDM TYPE-II

Here, we derive the effects of other dimension-six mass
operators in 2HDM type-II, namely Cð1Þ

μHu
l̄LμRHdðH†

uHuÞ;
Cð2Þ
μHu

l̄LμR ·H†
uðHd ·HuÞ, and Cð3Þ

μHu
l̄LμR ·H†

uðH†
d ·H

†
uÞ, on

the muon Yukawa coupling and summarize resulting
effective di-boson and tri-boson couplings of the muon.
In a similar way as in Eq. (34), these operators,

considered one at a time, generate additional contributions
to the muon mass,

mμ ¼ yμvd þ CðiÞ
μHu

vdv2u; ðB1Þ

where i ¼ 1, 2, or 3, and modify the muon Yukawa
coupling by

ΔκðiÞμ ¼ 2CðiÞ
μHu

vdv2u
mμ

: ðB2Þ

If more operators are present simultaneously, their
contributions should be added. The resulting coupling
constants describing interactions between the muon and
2HDM Higgs bosons are summarized in Tables XII–XIV
for Cð1Þ

μHu
; Cð2Þ

μHu
, and Cð3Þ

μHu
, respectively. As can be seen from

the tables, for a given Δκμ, the couplings are tan β
suppressed compared to corresponding couplings in
Table VI, except for those with at most one H or A: λhhμμ ,
λhHμμ , λhAμμ , λhhhμμ , λhhHμμ , and λhhAμμ .
For the operator O0

μHu
that can be written as a linear

combination of Oð1Þ
μHu

and Oð2Þ
μHu

[see Eq. (29)], the resulting
couplings can be obtained by the corresponding linear
combinations of couplings in Tables XII and XIII. It is
straightforward to see that all the couplings are zero
except for λH

þH−
μμ and λhH

þH−
μμ . Thus this operator can only

contribute to μþμ− → HþH− and μþμ− → hHþH−. As
already discussed in the main text, this operator does not
contribute to the muon mass, and thus its contributions to
the processes above are not related to the modification of
muon Yukawa coupling.

TABLE XII. Coupling constants describing interactions with the 2HDM Higgs bosons in Eq. (35) resulting

from Cð1Þ
μHu

.

Alignment limit (α ¼ β − π
2
) In terms of Δκð1Þμ

λhhμμ 3v cos β sin2 βCð1Þ
μHu

3mμ

2v2 Δκ
ð1Þ
μ

λAAμμ v cos3 βCð1Þ
μHu

mμ

2v2 Δκ
ð1Þ
μ ðtan βÞ−2

λHH
μμ ðv cos3 β − 2v cos β sin2 βÞCð1Þ

μHu
− mμ

v2 Δκ
ð1Þ
μ þ mμ

2v2 Δκ
ð1Þ
μ ðtan βÞ−2

λhHμμ ðv sin3 β − 2v cos2 β sin βÞCð1Þ
μHu

mμ

2v2 Δκ
ð1Þ
μ tan β − mμ

v2 Δκ
ð1Þ
μ ðtan βÞ−1

λhAμμ −iv sin3 βCð1Þ
μHu

−i mμ

2v2 Δκ
ð1Þ
μ tan β

λHA
μμ iv sin2 β cos βCð1Þ

μHu
i mμ

2v2 Δκ
ð1Þ
μ

λH
þH−

μμ v cos3 βCð1Þ
μHu

mμ

2v2 Δκ
ð1Þ
μ ðtan βÞ−2

λhhhμμ 3ffiffi
2

p cos β sin2 βCð1Þ
μHu

3mμ

2
ffiffi
2

p
v3
Δκð1Þμ

λAAAμμ −i 3ffiffi
2

p cos2 β sin βCð1Þ
μHu

−i 3mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λHHH
μμ 3ffiffi

2
p cos2 β sin βCð1Þ

μHu

3mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λhhHμμ ð− ffiffiffi
2

p
cos2 β sin β þ 1ffiffi

2
p sin3 βÞCð1Þ

μHu

mμ

2
ffiffi
2

p
v3
Δκð1Þμ tan β − mμffiffi

2
p

v3
Δκð1Þμ ðtan βÞ−1

λhhAμμ −i 1ffiffi
2

p sin3 βCð1Þ
μHu

−i mμ

2
ffiffi
2

p
v3
Δκð1Þμ tan β

λhAAμμ 1ffiffi
2

p cos3 βCð1Þ
μHu

mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−2

λhHH
μμ ð 1ffiffi

2
p cos3 β −

ffiffiffi
2

p
cos β sin2 βÞCð1Þ

μHu
− mμffiffi

2
p

v3
Δκð1Þμ þ mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−2

λAHH
μμ −i 1ffiffi

2
p cos2 β sin βCð1Þ

μHu
−i mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λHAA
μμ 1ffiffi

2
p cos2 β sin βCð1Þ

μHu

mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λhH
þH−

μμ
1ffiffi
2

p cos3 βCð1Þ
μHu

mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−2

λHHþH−
μμ

1ffiffi
2

p cos2 β sin βCð1Þ
μHu

mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λAH
þH−

μμ −i 1ffiffi
2

p cos2 β sin βCð1Þ
μHu

−i mμ

2
ffiffi
2

p
v3
Δκð1Þμ ðtan βÞ−1

λhHA
μμ i 1ffiffi

2
p cos β sin2 βCð1Þ

μHu
i mμ

2
ffiffi
2

p
v3
Δκð1Þμ
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TABLE XIII. Coupling constants describing interactions with the 2HDM Higgs bosons in Eq. (35) resulting

from Cð2Þ
μHu

.

Alignment limit (α ¼ β − π
2
) In terms of Δκð2Þμ

λhhμμ 3v cos β sin2 βCð2Þ
μHu

3mμ

2v2 Δκ
ð2Þ
μ

λAAμμ v cos3 βCð2Þ
μHu

mμ

2v2 Δκ
ð2Þ
μ ðtan βÞ−2

λHH
μμ ðv cos3 β − 2v cos β sin2 βÞCð2Þ

μHu
− mμ

v2 Δκ
ð2Þ
μ þ mμ

2v2 Δκ
ð2Þ
μ ðtan βÞ−2

λhHμμ ðv sin3 β − 2v cos2 β sin βÞCð2Þ
μHu

mμ

2v2 Δκ
ð2Þ
μ tan β − mμ

v2 Δκ
ð2Þ
μ ðtan βÞ−1

λhAμμ −iv sin3 βCð2Þ
μHu

−i mμ

2v2 Δκ
ð2Þ
μ tan β

λHA
μμ iv sin2 β cos βCð2Þ

μHu
i mμ

2v2 Δκ
ð2Þ
μ

λH
þH−

μμ −v cos β sin2 βCð2Þ
μHu

− mμ

2v2 Δκ
ð2Þ
μ

λhhhμμ 3ffiffi
2

p cos β sin2 βCð2Þ
μHu

3mμ

2
ffiffi
2

p
v3
Δκð2Þμ

λAAAμμ −i 3ffiffi
2

p cos2 β sin βCð2Þ
μHu

−i 3mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λHHH
μμ 3ffiffi

2
p cos2 β sin βCð2Þ

μHu

3mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λhhHμμ ð− ffiffiffi
2

p
cos2 β sin β þ 1ffiffi

2
p sin3 βÞCð2Þ

μHu

mμ

2
ffiffi
2

p
v3
Δκð2Þμ tan β − mμffiffi

2
p

v3
Δκð2Þμ ðtan βÞ−1

λhhAμμ −i 1ffiffi
2

p sin3 βCð2Þ
μHu

−i mμ

2
ffiffi
2

p
v3
Δκð2Þμ tan β

λhAAμμ 1ffiffi
2

p cos3 βCð2Þ
μHu

mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−2

λhHH
μμ ð 1ffiffi

2
p cos3 β −

ffiffiffi
2

p
cos β sin2 βÞCð2Þ

μHu
− mμffiffi

2
p

v3
Δκð2Þμ þ mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−2

λAHH
μμ −i 1ffiffi

2
p cos2 β sin βCð2Þ

μHu
−i mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λHAA
μμ 1ffiffi

2
p cos2 β sin βCð2Þ

μHu

mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λhH
þH−

μμ − 1ffiffi
2

p cos β sin2 βCð2Þ
μHu

− mμ

2
ffiffi
2

p
v3
Δκð2Þμ

λHHþH−
μμ

1ffiffi
2

p cos2 β sin βCð2Þ
μHu

mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λAH
þH−

μμ −i 1ffiffi
2

p cos2 β sin βCð2Þ
μHu

−i mμ

2
ffiffi
2

p
v3
Δκð2Þμ ðtan βÞ−1

λhHA
μμ i 1ffiffi

2
p cos β sin2 βCð2Þ

μHu
i mμ

2
ffiffi
2

p
v3
Δκð2Þμ

TABLE XIV. Coupling constants describing interactions with the 2HDM Higgs bosons in Eq. (35) resulting

from Cð3Þ
μHu

.

Alignment limit (α ¼ β − π
2
) In terms of Δκð3Þμ

λhhμμ 3v cos β sin2 βCð3Þ
μHu

3mμ

2v2 Δκ
ð3Þ
μ

λAAμμ ð−2v cos β sin2 β − v cos3 βÞCð3Þ
μHu

− mμ

v2 Δκ
ð3Þ
μ − mμ

2v2 Δκ
ð3Þ
μ ðtan βÞ−2

λHH
μμ ðv cos3 β − 2v cos β sin2 βÞCð3Þ

μHu
− mμ

v2 Δκ
ð3Þ
μ þ mμ

2v2 Δκ
ð3Þ
μ ðtan βÞ−2

λhHμμ ðv sin3 β − 2v cos2 β sin βÞCð3Þ
μHu

mμ

2v2 Δκ
ð3Þ
μ tan β − mμ

v2 Δκ
ð3Þ
μ ðtan βÞ−1

λhAμμ ðiv sin3 β þ 2iv cos2 β sin βÞCð3Þ
μHu

i mμ

2v2 Δκ
ð3Þ
μ tan β þ i mμ

v2 Δκ
ð3Þ
μ ðtan βÞ−1

λHA
μμ −iv cos3 βCð3Þ

μHu
−i mμ

2v2 Δκ
ð3Þ
μ ðtan βÞ−2

λH
þH−

μμ −v cos β sin2 βCð3Þ
μHu

− mμ

2v2 Δκ
ð3Þ
μ

λhhhμμ 3ffiffi
2

p cos β sin2 βCð3Þ
μHu

3mμ

2
ffiffi
2

p
v3
Δκð3Þμ

λAAAμμ −i 3ffiffi
2

p cos2 β sin βCð3Þ
μHu

−i 3mμ

2
ffiffi
2

p
v3
Δκð3Þμ ðtan βÞ−1

λHHH
μμ 3ffiffi

2
p cos2 β sin βCð3Þ

μHu

3mμ

2
ffiffi
2

p
v3
Δκð3Þμ ðtan βÞ−1

λhhHμμ ð− ffiffiffi
2

p
cos2 β sin β þ 1ffiffi

2
p sin3 βÞCð3Þ

μHu

mμ

2
ffiffi
2

p
v3
Δκð3Þμ tan β − mμffiffi

2
p

v3
Δκð3Þμ ðtan βÞ−1

λhhAμμ ði 1ffiffi
2

p sin3 β þ i
ffiffiffi
2

p
cos2 β sin βÞCð3Þ

μHu
i mμ

2
ffiffi
2

p
v3
Δκð3Þμ tan β þ i mμffiffi

2
p

v3
Δκð3Þμ ðtan βÞ−1

(Table continued)
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