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The natural grand unified theories (GUT) solve various problems of the supersymmetric GUT and give
realistic quark and lepton mass matrices under the natural assumption that all terms allowed by the
symmetry are introduced with Oð1Þ coefficients. However, because of the natural assumption, it is difficult
to achieve the gauge coupling unification without tuning, while keeping neutrino masses at realistic values.
In this paper, we try to avoid this tension between the neutrino masses and the gauge coupling unification,
by introducing suppression factors for several terms. These suppression factors can be understood by
approximate symmetries in some of the solutions. We show that one of the most important results in the
natural GUT scenario, that the nucleon decay mediated by superheavy gauge fields is enhanced due to a
smaller unification scale while the nucleon decay mediated by superheavy colored Higgs is suppressed,
may change in those models proposed in this paper.
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I. INTRODUCTION

The grand unified theory (GUT) [1] is one of the most
promising models beyond the standard model (SM). The
GUT not only unifies three of the four forces in nature,
except gravity, but also unifies quarks and leptons.
Furthermore, the GUT already has been supported by
experiments for each unification. With respect to the force
unification, it has been shown that by introducing super-
symmetry (SUSY) [2,3], the three running gauge couplings
of the SM coincide at the grand unified scale ΛG ∼ 2 ×
1016 GeV [4]. As for the unification of matter, various
hierarchies of quark and lepton masses and mixings
measured in numerous experiments [5] can be reasonably
explained by the SUð5Þ GUT, in which quarks and leptons
of each generation can be unified into 5̄ and 10 represen-
tations. In the SUð5Þ unification, an assumption that 10
fields induce stronger hierarchies in Yukawa couplings than
5̄ fields explains not only various mass hierarchies of
quarks and leptons (where up-type quarks and neutrinos

have the strongest and the weakest mass hierarchy,1

respectively) but also simultaneously describes that the
quark mixings are smaller than the lepton mixings. This is a
nontrivial result, and hence this can be understood as an
experimental support for the matter unification in SUð5Þ
unification. Unfortunately, SUSY GUT [3] has two main
problems. The first is that the unification of matter also
unifies the mass matrices of quarks and leptons, which are
inconsistent with the observed values [5]. The second
problem is that the mass of the SM Higgs partner (which
is called colored Higgs or triplet Higgs) must be sufficiently
large compared to the SM Higgs mass to obtain a
sufficiently stable proton, which is difficult to achieve
without fine-tuning. The later problem is one of the most
serious problems in the SUSY GUT scenario and is called
the doublet-triplet (DT) splitting problem [6].
The natural GUTs [7–9] solve those SUSY GUT

problems under a natural assumption that all terms allowed
by the symmetry are introduced with Oð1Þ coefficients. As
a result, we obtain a natural GUTwhich becomes the SM at
low energy. Unfortunately, if we take the Oð1Þ coefficients
for the mass terms of all superheavy particles to be 1, three
gauge coupling constants do not unify when the measured
values are used as boundary conditions. In other words, the
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1Here, we assume the normal hierarchy for the neutrino mass
spectrum, and we do not take account of the lightest neutrino
mass which has not been observed yet.
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running gauge coupling constants at low energies will
differ from the measured values when the equal gauge
coupling constants at the unified scale are used as boundary
conditions. To achieve the unification of the gauge coupling
constants, many Oð1Þ coefficients in the range of 0.5 to 2
must be artificially chosen, which is in a sense a fine-tuning
[7]. As will be discussed in detail in this paper, this issue is
related with the measured neutrino masses. That is, under
the assumptions in the natural GUT, there is a tension
between the unification of gauge couplings and the
measured neutrino masses.
In this paper, we discuss how to resolve this tension. In

particular, we consider the possibility of solving this problem
by considering cases in which small suppression factors are
applied to several particular terms rather than Oð1Þ coef-
ficients. After building the models, we discuss the origin of
these small suppression factors, such as approximate sym-
metries. Moreover, we discuss the predictions on the nucleon
decay in those models. Interestingly, the predictions of the
natural GUT that the nucleon decay mediated by the
superheavy gauge fields (the main decay mode is usually
considered to be P → eþπ0 [10,11]) is enhanced due to a
smaller unification scale while that mediated by the super-
heavy colored Higgs (the main decay mode is usually
considered to be P → Kþν̄ [10,11]) is suppressed can
change in those scenarios.2

After this Introduction, we review the natural GUT in
Sec. II. In Sec. III, we discuss the resolutions of this tension
and approximate symmetries to make this solution natural.
We also build explicit natural GUT models and discuss the
nucleon decay therein. Section IV is devoted to discussions
and summary.

II. NATURAL GUT AND ITS PROBLEMS

In this section, we review the natural SOð10Þ GUT
following the papers [7,8] and its problem, which also
appears in the natural E6 GUT [9].
One of the most important features in the natural GUT is

that all terms allowed by the symmetry are introduced with
Oð1Þ coefficients. Because of this feature, once we fix the
symmetry, the model can be defined except Oð1Þ coef-
ficients. Under the symmetry SOð10Þ ×Uð1ÞA × Z2, typ-
ical quantum numbers of the field content is given in
Table I. In this model, the specific charges differ from those
in the papers [7,8]. This model minimizes the tuning of the
Oð1Þ coefficients needed to achieve gauge coupling uni-
fication among models that achieve realistic quark and

lepton masses and mixing angles while solving the DT
splitting problem naturally.
In this paper, we use large characters for fields or

operators and small characters for their Uð1ÞA charges.
The Uð1ÞA [13] has gauge anomalies that are canceled by
the Green-Schwarz mechanism [14],3 and the Fayet-
Iliopoulos (FI) term [16] ξ2

R
d2θVA is assumed, where

VA and ξ are a vector multiplet of Uð1ÞA and a constant
parameter, respectively. It is surprising that various prob-
lems in SUSY GUT scenarios, including the DT splitting
problem, can be solved in this model with the above natural
feature. Unfortunately, there is a tension between the
neutrino masses and the unification of the gauge couplings.
Let us explain them in detail in the review of the natural
GUT below.

A. Anomalous Uð1ÞA gauge symmetry

First, for simplicity, we consider a simpler model in
which we have only three matter fields Ψi, two negatively
charged fields H, and Θ as shown in Table I. The super-
potential invariant under Uð1ÞA is given as

WY ¼ cij
X

i;j¼1;2;3

�
Θ
Λ

�
ψ iþψ jþh

ΨiΨjH; ð1Þ

where Λ and cij are the cutoff of the model and the Oð1Þ
coefficients, respectively. If we assume that only Θ has a
nonvanishing vacuum expectation value (VEV), which is
determined by the D-flatness condition of Uð1ÞA as
hΘi ¼ ξ≡ λΛ, the interaction terms in the above super-
potential become the hierarchical Yukawa interactions as

WY ¼ cijλψ iþψ jþhΨiΨjH; ð2Þ

TABLE I. Field content of natural SOð10Þ GUT with Uð1ÞA
charges. � labels the Z2 parity. The half-integer Uð1ÞA charges
play the same role as R-parity.

SOð10Þ
Negatively

charged fields
Positively

charged fields Matter fields

45 Aða ¼ −1;−Þ A0ða0 ¼ 3;−Þ
16 Cðc ¼ −4;þÞ C0ðc0 ¼ 3;−Þ Ψiðψ1 ¼ 9

2
;ψ2 ¼ 7

2
;

ψ3 ¼ 3
2
;þÞ

16 C̄ðc̄ ¼ −1;þÞ C̄0ðc̄0 ¼ 7;−Þ
10 Hðh ¼ −3;þÞ H0ðh0 ¼ 4;−Þ Tðt ¼ 5

2
;þÞ

1 Θðθ ¼ −1;þÞ;
Zðz ¼ −2;−Þ;
Z̄ðz̄ ¼ −2;−Þ

Sðs ¼ 5;þÞ

2The proton decay mediated by superheavy gauge fields is
called the proton decay via dimension-six operators because it is
caused by an effective interaction in dimension six with four
fermions. On the other hand, the proton decay mediated by a
superheavy colored Higgs field is called the proton decay via
dimension-five operators because it is caused by the effective
interaction in dimension five with two fermions and two scalar
fermions [11,12].

3Strictly, the fields in Table I alone may not satisfy the
conditions for the anomaly cancellation by shifting the dilaton
[15], but the arbitrariness of the normalization of Uð1ÞA and the
introduction of a few new SOð10Þ singlet fields can satisfy those
conditions.
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when λ < 1. In this paper, we take λ ∼ 0.22, which is
approximately the Cabibbo angle. Unless otherwise noted,
the Oð1Þ coefficients are omitted and we take Λ ¼ 1 in this
paper. The realization of the hierarchical structure of
Yukawa couplings by higher dimensional effective inter-
actions by developing the VEV of some fields, which
breaks a (flavor) symmetry, is often called the Froggatt-
Nielsen mechanism [17]. The important point is that the
Yukawa hierarchy can be reproduced under the natural
assumption that all terms allowed by the symmetry are
introduced with Oð1Þ coefficients, including higher dimen-
sional terms.
However, it is quite rare to adopt this natural assumption

even in the GUT Higgs sector in which the GUT group is
spontaneously broken into the SM gauge group, mainly
because it is difficult to control an infinite number of higher
dimensional terms. Within the same theory, it is not
reasonable for the Yukawa sector to adopt this natural
assumption and the Higgs sector not. The natural GUTs are
the theories in which this natural assumption is adopted in
the GUT Higgs sector as well as in the Yukawa sector.
Note that the Higgs mass term λ2hH2 is forbidden when

h < 0 because of the holomorphic feature of the super-
potential, which is called the SUSY zero mechanism, or the
holomorphic zero mechanism. The SUSY zero mechanism
plays important roles in controlling the infinite number of
higher dimensional terms and in solving the DT splitting
problem. We will explain them in the next subsection.

B. Higgs sector in natural GUT

In this subsection, we will briefly review the GUT Higgs
sector in the natural GUT, which breaks SOð10Þ into
GSM ≡ SUð3ÞC × SUð2ÞL ×Uð1ÞY and solves the DT
splitting problem under the natural assumption.
One of the most important assumptions is that all

positively Uð1ÞA charged fields have vanishing VEVs.
This assumption not only allows the SUSY zero mecha-
nism to work but also provides control over an infinite
number of higher dimensional terms. Under this
assumption, it is easy to show that the F-flatness conditions
for negatively charged fields are automatically satisfied.
The F-flatness conditions of positively charged fields
determine the VEVs of negatively charged fields. As a
result, we obtain the VEVs of the composite operators O,
which are invariant under the GUT gauge group, with
Uð1ÞA charge o as [7]

hOi ∼
�
λ−o ðo ≤ 0Þ
0 ðo > 0Þ : ð3Þ

Thus, ignoring the D-flatness conditions, if the number of
positively charged fields equals that of negatively charged
fields, the VEVs of all negatively charged fields can in
principle be determined.

To break SOð10Þ into the SM gauge group GSM, an
adjoint Higgs 45A and one pair of spinor 16C and antispinor
16C̄ are minimally required [18]. In addition, to include the
SM Higgs, 10H is needed. These fields must have negative
Uð1ÞA charges because these fields have nonvanishing
VEVs. Moreover, the same number of positively charged
fields are introduced as in Table I to fix the VEVs of these
negatively charged fields. It is nontrivial that simply
introducing the smallest number of fields necessary in
SOð10Þ GUT as in Table I can solve various problems,
including the DT splitting problem. Note that the terms
which include two or more positively charged fields have
no effects in fixing these VEVs of negatively charged fields
under the assumption. Therefore, only those which include
one positively charged field are important to fix the VEVs.
The superpotentials for fixing the VEVs are

W ¼ WH0 þWA0 þWS þWC0 þWC̄0 ; ð4Þ

whereWX denotes the terms linear in the X field. EachWX
includes a finite number of terms because of the SUSY zero
mechanism. Note that only a finite number of terms is
important to fix the VEVs although an infinite number of
higher dimensional terms is introduced.
Now we discuss how to determine the VEVs via WX.

First, we consider WA0, which is given as

WA0 ¼ λa
0þaA0Aþ λa

0þ3aððA0AÞ1ðA2Þ1 þ ðA0AÞ54ðA2Þ54Þ;
ð5Þ

where the subscripts 1 and 54 denote the representation of
the composite operators under the SOð10Þ gauge sym-
metry. The F-flatness condition of A0 fixes the VEV of A.
One of the 6 vacua4 takes the Dimopoulos-Wilczek (DW)
form [19] as hAi ¼ iτ2 × diagðv; v; v; 0; 0Þ, which breaks
SOð10Þ into SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L.
Note that the v is determined by the Uð1ÞA charge of A
as v ∼ λ−a. This VEV of A plays an important role in
solving the DT splitting problem. Actually, through

WH0 ¼ λhþaþh0H0AH ð6Þ

the triplet Higgses become massive while the doublet ones
remain massless. One pair of doublet Higgses becomes
massive through the mass term λ2h

0
H02. (Note that to

determine the mass spectrum, the terms that include
two positively charged fields must be considered.) Then,
only one pair of doublet Higgses becomes massless, and
therefore, the DT splitting problem can be solved. The
effective colored Higgs mass related to the nucleon decay

4Without loss of generality, the VEV is written as
hAi ¼ iτ2 × diagðx1; x2; x3; x4; x5Þ. The vacua are classified by
the number of 0 because the F-flatness condition of A0 gives the
solution xi ¼ 0; v. Therefore, the number of vacua becomes 6.
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becomes λ2h, which is larger than the cutoff scale because
h < 0. Note that Z2 parity has been introduced to forbid the
H0H term which gives the GUT scale mass to the doublet
Higgs and therefore spoils the DT splitting.
The VEVs of C and C̄, which are important to break

SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L into GSM, are
induced by the F-flatness condition of S by the super-
potential

WS ¼ λsS

�
1þ λcþc̄C̄Cþ

X
k

λ2kaA2k

�
: ð7Þ

Since λ2kahA2ki ∼ 1, the last term in Eq. (7) does not
basically change the following result. The F-flatness con-
dition of S gives hC̄Ci ∼ λ−ðcþc̄Þ, and thus the D-flatness
condition of SOð10Þ leads to jhCij ¼ jhC̄ij ∼ λ−ðcþc̄Þ=2.
Note that the VEVs of C and C̄ are again determined by
their charges. The F-flatness conditions of C0 and C̄0 realize
the alignment of the VEVs hCi, hC̄i, and hAi, and impart
masses to the pseudo–Nambu-Goldstone fields.5 This
mechanism proposed by Barr and Raby [20] is naturally
embedded in the natural GUT. WC0 and WC̄0 are given as

WC0 ¼ C̄ðλc̄þc0þaAþ λc̄þc0þz̄Z̄ÞC0; ð8Þ

WC̄0 ¼ C̄0ðλc̄0þcþaAþ λc̄
0þcþzZÞC: ð9Þ

Since the VEV of A is proportional to the B − L generator
QB−L, only one of the four component fields ð3; 2; 1Þ1=3,
ð3̄; 1; 2Þ−1=3, ð1; 2; 1Þ−1, and ð1; 1; 2Þ1 under SUð3ÞC×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, which are obtained by the
decomposition of 16 of SOð10Þ, has a nonvanishing VEV.
When the component ð1; 1; 2Þ1 has a nonvanishing VEV,
GSM can be obtained.

C. Mass spectra of superheavy particles

Since all the interactions are determined by the sym-
metry, the mass spectra of superheavy particles are also
fixed except theOð1Þ coefficients in the natural GUTs. The
mass spectra are important in calculating the renormaliza-
tion group equations (RGEs) of the gauge couplings. Note
that we have to consider also the terms which include two
positively charged fields in order to examine the mass
spectra.
The spinor 16, the vector 10, and the adjoint 45

of SOð10Þ are decomposed under SOð10Þ ⊃ SUð5Þ ⊃
SUð3ÞC × SUð2ÞL ×Uð1ÞY as

16 → ½QþUc þ Ec�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
10

þ ½Dc þ L�|fflfflfflfflffl{zfflfflfflfflffl}
5̄

þ Nc|{z}
1

; ð10Þ

10 → ½Dc þ L�|fflfflfflfflffl{zfflfflfflfflffl}
5̄

þ ½D̄c þ L̄�|fflfflfflfflffl{zfflfflfflfflffl}
5

; ð11Þ

45 → ½GþW þ X þ X̄ þ Nc�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24

þ ½Qþ Uc þ Ec�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
10

þ ½Q̄þ Ūc þ Ēc�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
10

þ Nc|{z}
1

; ð12Þ

where the quantum numbers of GSM are explicitly written
as Qð3; 2Þ1

6
, Ucð3̄; 1Þ−2

3
, Dcð3̄; 1Þ1

3
, Lð1; 2Þ−1

2
, Ecð1; 1Þ1;

Ncð1; 1Þ0, Xð3; 2Þ−5
6
, Gð8; 1Þ0, and Wð1; 3Þ0.

First, let us consider the mass spectra of 5 and 5̄ of
SUð5Þ. The mass matrices MI [I ¼ DcðHTÞ; LðHDÞ] can
be written as

MI ¼
ĪH
ĪH0

ĪC̄
ĪC̄0

IH IH0 IC IC00
BBBBB@

0 λhþh0αI 0 0

λhþh0αI λ2h
0

0 λh
0þc0þ1

2
ðc−c̄Þ

0 λh
0þ3

2
c̄−1

2
c 0 λc̄þc0βI

λhþc̄0−1
2
ðc−c̄Þ λh

0þc̄0−1
2
ðc−c̄Þ λcþc̄0βI λc

0þc̄0

1
CCCCCA

: ð13Þ

where αLðHDÞ is vanishing and αDcðHTÞ ∼Oð1Þ, while βI ¼ 3
2
ððB − LÞI − 1Þ; that is, βL ¼ −3 and βDc ¼ −1. Only one pair

of doublet Higgs becomes massless, which comes from

5H; 5̄H þ λh−cþ1
2
ðc̄−cÞ5̄C: ð14Þ

Next, we consider the mass matrices for 10 of SUð5Þ, which are given by

5Without WC0 and WC̄0 , the superpotential fixing hAi becomes independent of that fixing the VEVs hCi, hC̄i. It means that an
accidental global symmetry appears, and as a result, pseudo–Nambu-Goldstone fields appear by breaking the global symmetry.
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MI ¼
ĪA
ĪA0

ĪC̄
ĪC̄0

IA IA0 IC IC00
BBBBB@

0 λa
0þaαI 0 λc

0−1
2
ðc−c̄Þþa

λaþa0αI λ2a
0

0 λc
0−1

2
ðc−c̄Þþa0

0 0 0 λc̄þc0βI

λc̄
0þ1

2
ðc−c̄Þþa λc̄

0þ1
2
ðc−c̄Þþa0 λcþc̄0βI λc

0þc̄0

1
CCCCCA

: ð15Þ

Here, αQ and αUc are vanishing because these are Nambu-
Goldstone modes, but αEc ∼Oð1Þ. Also βQ ¼ −1,
βUc ¼ −2, and βEc ¼ 0. Thus, each 4 × 4 matrix has one
vanishing eigenvalue. The mass spectra of the remaining
three modes is (λcþc̄0 , λc

0þc̄, λ2a
0
) for Q and Uc, and (λaþa0 ,

λaþa0 , λc
0þc̄0 ) or (λc̄

0þ1
2
ðc−c̄Þþa, λc

0−1
2
ðc−c̄Þþa, λ2a

0
) for Ec.

Finally, we consider the mass spectrum for 24 of SUð5Þ.
The mass matrices MIðI ¼ G;W;XÞ are given by

MI ¼ ĪA
ĪA0

IA IA0 
0 λaþa0αI

λaþa0αI λ2a
0

!
: ð16Þ

The mass spectra for G and W are ðλa0þa; λa
0þaÞ, while for

X it becomes ð0; λ2h0 Þ. The massless mode of X is eaten by
the Higgs mechanism.

D. Gauge coupling unification

Since all symmetry breaking scales and all mass spectra
of superheavy particles are fixed by anomalous Uð1ÞA
charges, we can calculate the running gauge couplings and
discuss their unification. In the following, we study the
running gauge couplings obtained by one-loop RGEs. Note
that superheavy particles of the matter sector which is
discussed in the next subsection are complete multiplets of
SUð5Þ, and therefore, they do not affect the conditions for
the unification of the gauge coupling constants.
In the natural SOð10Þ GUT, SOð10Þ is broken by the

VEV hAi≡ ΛA ∼ λ−a into SUð3ÞC × SUð2ÞL × SUð2ÞR×
Uð1ÞB−L, which is broken by the VEVs jhCij ¼ jhC̄ij≡
ΛC ∼ λ−ðcþc̄Þ=2 into GSM.
Now let us discuss the conditions of the gauge coupling

unification

α3ðΛAÞ ¼ α2ðΛAÞ ¼
3

5
αYðΛAÞ≡ α1ðΛAÞ; ð17Þ

where α−11 ðμ > ΛCÞ≡ 3
5
α−1R ðμ > ΛCÞ þ 2

5
α−1B−Lðμ > ΛCÞ

with the renormalization scale μ. Here αX ≡ g2X
4π and gXðX ¼

3; 2; R; B − L; YÞ are the gauge couplings of SUð3ÞC,
SUð2ÞL, SUð2ÞR, Uð1ÞB−L, and Uð1ÞY , respectively.
Since the model has the left-right symmetry above ΛC,
we expect g2 ¼ gR at μ > ΛC.

The gauge couplings at the scale ΛA are obtained by one-
loop RGEs as

α−11 ðΛAÞ ¼ α−11 ðMSBÞ þ
1

2π

�
b1 ln

�
MSB

ΛA

�

þ ΣiΔb1i ln
�
mi

ΛA

�
−
12

5
ln
�
ΛC

ΛA

��
; ð18Þ

α−12 ðΛAÞ¼ α−12 ðMSBÞ

þ 1

2π

�
b2 ln

�
MSB

ΛA

�
þΣiΔb2i ln

�
mi

ΛA

��
; ð19Þ

α−13 ðΛAÞ ¼ α−13 ðMSBÞ þ
1

2π

�
b3 ln

�
MSB

ΛA

�

þ ΣiΔb3i ln
�
mi

ΛU

��
; ð20Þ

where MSB is the SUSY breaking scale. Here,
ðb1; b2; b3Þ ¼ ð33=5; 1;−3Þ represent the renormalization
group coefficients for the minimal SUSY standard model
(MSSM) and Δbai (a ¼ 1, 2, 3) denote the corrections to
these coefficients arising from the massive fields with mass
mi, which can be read from the following table:

I Qþ Q̄ Uc þ Ūc Ec þ Ēc Dc þ D̄c Lþ L̄ G W X þ X̄

Δb1I 1
5

8
5

6
5

2
5

3
5

0 0 5
Δb2I 3 0 0 0 1 0 2 3
Δb3I 2 1 0 1 0 3 0 2

The last term in Eq. (18) is caused by the breaking
SUð2ÞR ×Uð1ÞB−L → Uð1ÞY due to the VEV hCi. The
gauge couplings at the SUSY breaking scale MSB can be
obtained by the success of the gauge coupling unification in
the MSSM as

α−11 ðMSBÞ ¼ α−1G ðΛGÞ þ
1

2π

�
b1 ln

�
ΛG

MSB

��
; ð21Þ

α−12 ðMSBÞ ¼ α−1G ðΛGÞ þ
1

2π

�
b2 ln

�
ΛG

MSB

��
; ð22Þ

α−13 ðMSBÞ ¼ α−1G ðΛGÞ þ
1

2π

�
b3 ln

�
ΛG

MSB

��
; ð23Þ
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where α−1G ðΛGÞ ∼ 25 and ΛG ∼ 2 × 1016 GeV. The above conditions for the unification are rewritten as

�
ΛA

ΛG

�
14
�
ΛC

ΛA

�
6
�
det M̄L

det M̄Dc

��
det M̄Q

det M̄U

�
4
�
det M̄Q

det M̄Ec

�
3
�
det M̄W

det M̄X

�
5

¼ Λ−r̄Dcþr̄L−4r̄Uc−3r̄Ecþ7r̄Q−5r̄Xþ5r̄W
A ; ð24Þ

�
ΛA

ΛG

�
16
�
ΛC

ΛA

�
4
�
det M̄Dc

det M̄L

��
det M̄Q

det M̄U

��
det M̄Q

det M̄Ec

�
2
�
det M̄G

det M̄X

�
5

¼ Λ−r̄Lþr̄Dc−r̄Uc−2r̄Ecþ3r̄Q−5r̄Xþ5r̄G
A ; ð25Þ

�
ΛA

ΛG

�
4
�
det M̄Dc

det M̄L

��
det M̄U

det M̄Q

��
det M̄G

det M̄W

�
2
�
det M̄G

det M̄X

�
¼ Λ−r̄Lþr̄Dc−r̄Qþr̄U−2r̄W−r̄Xþ3r̄G

A ; ð26Þ

where M̄I are the reduced mass matrices where massless
modes are omitted from the original mass matrices and r̄I
are rank of the reduced mass matrices. In our scenario, the
symmetry breaking scales ΛA ∼ λ−a, ΛC ∼ λ−

1
2
ðcþc̄Þ, and the

determinants of the reduced mass matrices are determined
by the anomalous Uð1ÞA charges:

det M̄Q ∼ det M̄Uc ∼ λ2a
0þcþc̄þc0þc̄0 ; ð27Þ

det M̄Ec ∼ λ2aþ2a0þc0þc̄0 ; ð28Þ

detMDc ∼ λ2hþ2h0þcþc̄þc0þc̄0 ; ð29Þ

det M̄L ∼ λ2h
0þcþc̄þc0þc̄0 ; ð30Þ

detMG ∼ detMW ∼ λ2aþ2a0 ; ð31Þ

det M̄X ∼ λ2a
0
: ð32Þ

The unification conditions α1ðΛAÞ ¼ α2ðΛAÞ, α1ðΛAÞ ¼
α3ðΛAÞ, and α2ðΛAÞ ¼ α3ðΛAÞ lead to Λ ∼ λ

h
7ΛG,

Λ ∼ λ−
h
8ΛG, and Λ ∼ λ−

h
2ΛG, respectively. Finally, the uni-

fication conditions become

h ∼ 0; ð33Þ

Λ ∼ ΛG: ð34Þ

Surprisingly, the above unification conditions do not
depend on the anomalous Uð1ÞA charges other than h.
This can be shown to be a general result in the GUT with
the anomalous Uð1ÞA [8]. It is important that the cutoff
scale in the natural GUT is taken to be around the usual
GUT scale. It means that the true GUT scale ΛA ≡ hAi ∼
λ−aΛ becomes smaller than ΛG. Therefore, the nucleon
decay via superheavy gauge field exchange is enhanced,
and it may be seen in near future experiments.
Unfortunately, in the natural GUT model in Table I, we

take h ¼ −3, and not h ¼ 0. Of course, to forbid the
explicit SM Higgs mass term H2, h must be negative. But
only because of that, we can take larger h, for example,

h ¼ −1. We take h ¼ −3 in order to obtain realistic
neutrino masses. In other words, if we take h ∼ 0, the
neutrino masses become too small. We will explain them in
the next subsection.

E. Matter sector in natural SOð10Þ GUT

In this subsection, we will briefly review how to obtain
realistic quark and lepton masses and mixings in the natural
SOð10Þ GUT. Especially, neutrino masses will be explained
in detail because we will introduce a tension between the
neutrino masses and gauge coupling unification condi-
tions later.
If the Yukawa interactions have been obtained only from

the superpotential in Eq. (1), the model would be unrealistic
because of the unrealistic SOð10Þ GUT relations

Yu ¼ Yd ¼ Ye ¼ YνD; ð35Þ

where Yu, Yd, Ye, and YνD are 3 × 3 Yukawa matrices of
up-type quarks, down-type quarks, charged leptons, and
Dirac type neutrinos, respectively. The easiest way to avoid
these unrealistic SOð10Þ GUT relations is to introduce 10
of SOð10Þ as a matter field in addition to three 16 as in
Table I. The model has four 5̄ and one 5 of SUð5Þ as matter
fields since 16 and 10 of SOð10Þ are decomposed under
SUð5Þ as 16 ¼ 10þ 5̄þ 1 and 10 ¼ 5þ 5̄. One of the four
5̄ s becomes superheavy with a 5 field through the
interactions

W ¼ λψ iþtþcΨiTCþ λ2tT2: ð36Þ

The main modes of three massless 5̄ fields become
ð5̄1; 5̄2; 5̄3Þ ∼ ð5̄Ψ1

; 5̄T; 5̄Ψ2
Þ, and the Yukawa matrices are

obtained as

Yu ¼

0
B@λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

1
CA; Yd∼YT

e ∼YT
νD ∼λ2

0
B@λ4 λ3.5 λ3

λ3 λ2.5 λ2

λ1 λ0.5 1

1
CA;

ð37Þ
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when t − ψ3 − 1
2
ðc − c̄Þ≡ Δ ¼ 5

2
. Here, 5̄2 has the Yukawa

couplings through the Yukawa interactions in Eq. (36) with
the 5̄C Higgs and the Yukawa couplings through the mixing
with 5̄Ψ3

because 5̄2 ∼ 5̄T þ λΔ5̄Ψ3
. Note that the higher

dimensional interactions, λψ iþψjþcþc̄þhΨiΨjC̄CH and
λψ iþψjþ2LaþhΨiΨjA2LH with the positive integer L, give
the same order contributions to these Yukawa couplings as
λψ iþψjþhΨiΨjH after developing the VEVs, hC̄Ci ∼ λ−ðcþc̄Þ

and hAi ∼ λ−a. Because of this feature, the SUð5Þ GUT
relation Yd ¼ YT

e can naturally be avoided in the natural
GUT. Thus, we can obtain the Cabibbo-Kobayashi-
Maskawa (CKM) [21] matrix as

UCKM ¼

0
B@ 1 λ λ3

λ 1 λ2

λ3 λ2 1

1
CA; ð38Þ

which is consistent with the experimental value if we
choose λ ∼ 0.22.6 Note that we have assumed that
ψ1 ¼ ψ3 þ 3, ψ2 ¼ ψ3 þ 2, and ψ3 ¼ −h=2 to obtain
realistic quark and lepton masses and mixings.
The right-handed neutrino masses are obtained from the

interactions

λψ iþψ jþ2c̄ΨiΨjC̄ C̄ ð39Þ

as

MR ¼ λψ iþψ jþ2c̄hC̄i2 ¼ λ2ψ3þc̄−c

0
B@ λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

1
CA: ð40Þ

Thus, we obtain the neutrino mass matrix

Mν ¼MνDM
−1
R MT

νD ¼ λ4−2ψ3þc−c̄

0
B@ λ2 λ1.5 λ

λ1.5 λ λ0.5

λ λ0.5 1

1
CAhHui2;

ð41Þ

where MνD ¼ YνDhHui. The Maki-Nakagawa-Sakata
(MNS) matrix [22] is obtained from Ye in Eq. (37) and
Mν in Eq. (41) as

UMNS ¼

0
B@ 1 λ0.5 λ

λ0.5 1 λ0.5

λ λ0.5 1

1
CA; ð42Þ

which is consistent with observed neutrino data [5]. To
obtain the observed neutrino masses [5],

λ4−2ψ3þc−c̄ hHui2
Λ

∼mντ ∼ 0.05 eV ð43Þ

is required. When Λ ∼ ΛG ∼ 2 × 1016 GeV, this condition
is rewritten as

hþ c − c̄ ∼ −6; ð44Þ

which is satisfied by the natural GUT in Table I. Here we
use hþ 2ψ3 ¼ 0, which is required to obtain Oð1Þ top
Yukawa coupling. It is difficult to obtain larger h by smaller
c and/or larger c̄, because several conditions are required to
obtain realistic natural GUT models as follows:
(1) 2ψ3 þ h ¼ 0: to obtain an Oð1Þ top Yukawa cou-

pling, i.e., to obtain the term λ0Ψ3Ψ3H.
(2) t − ψ3 − 1

2
ðc − c̄Þ ¼ 5

2
: To obtain the MNS matrix

as in Eq. (42), which is consistent with the
observations.

(3) ψ3 þ tþ c ≥ 0: To allow the term Ψ3TC which
makes 5̄Ψ3

superheavy.
(4) ψ3 þ ψ1 þ 2c̄ ≥ 0: To allow the term Ψ3Ψ1C̄2

which makes the right-handed neutrino mass ma-
trix’s rank three.

(5) cþ c̄þ a0 þ a < 0: To forbid the term C̄A0AC
which destabilizes the DW type VEV.

(6) cþ c̄ ≥ −6: To obtain realistic quark masses and
mixings.

Let us explain the last two new conditions. It would be
unnatural to obtain the DW form of the VEVof A, which is
important in solving the DT splitting problem, if WA0 has
included the spinor Higgs C and C̄, which break SOð10Þ
into SUð5Þ. This is because the DW form of the VEV can
be obtained naturally in SOð10Þ but not in SUð5Þ.
Therefore, all the terms that include C and C̄, for example,
C̄A0AC, must be forbidden in WA0 . This gives the fifth
condition. The last condition is required to obtain the
sufficiently small up quark mass. Without the term
Ψ1C̄CΨ1H, the up and down quark masses cannot be
the measured values simultaneously.
Note that due to the conditions 2, 3, and 5 in addition to

the condition (44), it becomes difficult to approach zero for
h. The largest value for h is −3, and typical Uð1ÞA charges
are given in Table I. It is worth noting that this model
provides realistic quark and lepton masses and mixing
angles, and realizes the DT splitting. However, the gauge
couplings at low energies do not match the measured values
when allOð1Þ coefficients for the masses of the superheavy
particles are taken to one. Nonetheless, if we artificially
select the Oð1Þ coefficients to be between 0.5 and 2, the
gauge couplings can match the measured values because
the models have a lot of superheavy particles. In this sense,
this model is a realistic GUT model. However, such
artificial selections of the Oð1Þ coefficients amount to
fine-tuning, making the model unnatural. This is the
tension between the neutrino masses and the gauge

6Here, it is also important that the massless Higgs doublet
comes from 5̄H þ λh−cþ1

2
ðc̄−cÞ5̄C.
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coupling unification in the natural GUT scenario. The
above six conditions are considered to build explicit natural
GUT models with suppression factors in the next section.

III. SOLUTIONS FOR TENSION BETWEEN
NEUTRINO MASSES AND GAUGE COUPLING

UNIFICATION

In this section, we examine several possibilities to avoid
the tension between the neutrino masses and the gauge
coupling unification. Since this tension is strongly depen-
dent on the basic assumption that all terms allowed by the
symmetry are introduced with Oð1Þ coefficients, we
explore the possibilities in which some of the terms have
much smaller coefficients than 1. We introduce the terms
with small coefficients that maintain the VEV relations (3)
because the VEV relations play critical roles in the natural
GUT scenario.
After identifying sets of terms with small coefficients

that avoid this tension, we discuss the reason for their
smallness, such as an approximate symmetry.
Furthermore, we build concrete natural GUT models

which avoid the tension between the neutrino masses and
the gauge coupling unification. And we discuss the nucleon
decay within these models.

A. Model 1: Suppression factor for terms related
to the masses of right-handed neutrinos

One of the easiest ways to avoid the tension is to
introduce small coefficients proportional to εν ≪ 1 for
the terms which give the right-handed neutrino masses as

ενλ
ψ iþψjþ2c̄ΨiΨjC̄ C̄; ð45Þ

where we omit the Oð1Þ coefficients. Since the right-
handed neutrino masses become smaller, the (left-handed)
neutrino masses become larger. The heaviest neutrino mass
can be given as

mντ ¼
1

εν
λ4þhþc−c̄ hHui2

Λ
; ð46Þ

which must be the observed valuemντ ∼ 0.05 eV. Note that
this suppression factor does not change the VEV relation
(3) and the mass spectra of superheavy particles except
right-handed neutrinos. This means that the beta functions
do not change, and therefore, the gauge coupling unifica-
tion conditions remain unchanged as h ∼ 0 and Λ ¼ ΛG.
Since h ¼ 0 allows the Higgs mass term H2 which spoils
the DT splitting, we take h ¼ −1. A concrete natural GUT
model with h ¼ −1 is given in Table II. Note that the half
integer Uð1ÞA charges for matter fields play the same role
as the R-parity, and all requirements listed at the end of the
previous section are satisfied in this model.

From Eq. (46), the heaviest neutrino mass is given by

mντ ¼ 1
εν
λ2 hHui2

Λ ∼ 0.05 eV, which determines the suppres-

sion factor εν ∼ 10−3.
The effective colored Higgs mass for the nucleon decay

becomes meff
HC

∼ λ2hΛ ∼ 1018 GeV, which results in a
sufficient suppression of the nucleon decay via colored
Higgs mediation. On the other hand, since the nucleon
decay via gauge boson mediation is enhanced, it may be
seen in near future experiments as in the usual natural GUT
scenario.
Unfortunately, we have not found any approximate

symmetry to understand this suppression factor. We need
other reasoning for this suppression factor.

B. Suppression factors for terms with
positively charged fields

In the natural GUT, terms linear in positively charged
fields play an important role in determining the VEVs of
fields. Therefore, if a common suppression factor for terms
with positively charged fields is introduced, the VEV
relations of Eq. (3) do not change. And terms that include
two positively charged fields are important to determine the
mass spectra of superheavy particles. Therefore, if we
introduce an independent suppression factor for terms with
a certain two positively charged fields, the gauge coupling
unification conditions may change. In the following sub-
sections, we consider this possibility.
Concretely, we introduce the following suppression

factors:

WA0 ¼ εA0 ðλa0þaA0Aþ λa
0þ3aA0A3Þ; ð47Þ

WC0 ¼ εC0C̄ðλc̄þc0þaAþ λc̄þc0þz̄Z̄ÞC0; ð48Þ

WC̄0 ¼ εC̄0C̄0ðλc̄0þcþaAþ λc̄
0þcþzZÞC; ð49Þ

WH0 ¼ εH0λhþh0þaH0AH; ð50Þ

WX0Y 0 ¼
X

X0;Y 0¼A0;C0;C̄0;H0
εX0Y 0λx

0þy0X0Y 0; ð51Þ

TABLE II. In the case of ðt; c; c̄Þ ¼ ð5
2
;−3;−2Þ in model 1.

SOð10Þ
Negatively

charged fields
Positively

charged fields Matter fields

45 Aða ¼ −1;−Þ A0ða0 ¼ 3;−Þ
16 Cðc ¼ −3;þÞ C0ðc0 ¼ 4;−Þ Ψiðψ1 ¼ 7

2
;ψ2 ¼ 5

2
;

ψ3 ¼ 1
2
;þÞ

16 C̄ðc̄ ¼ −2;þÞ C̄0ðc̄0 ¼ 5;−Þ
10 Hðh ¼ −1;þÞ H0ðh0 ¼ 2;−Þ Tðt ¼ 5

2
;þÞ

1 Θðθ ¼ −1;þÞ;
Zðz ¼ −2;−Þ;
Z̄ðz̄ ¼ −2;−Þ

Sðs ¼ 5;þÞ
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where the F-flatness conditions of the first four superpotentials determine the VEVs of negatively charged fields, while the
last superpotential is important to fix the mass spectra of superheavy particles. The mass matrices of 5 and 5̄ of SUð5Þ
become

MI ¼
ĪH
ĪH0

ĪC̄
ĪC̄0

IH IH0 IC IC00
BBBBB@

0 εH0λhþh0αI 0 0

εH0λhþh0αI εH0H0λ2h
0

0 εH0C0λh
0þc0þ1

2
ðc−c̄Þ

0 εH0λh
0þ3

2
c̄−1

2
c 0 εC0λc̄þc0βI

εC̄0λhþc̄0−1
2
ðc−c̄Þ εH0C̄0λh

0þc̄0−1
2
ðc−c̄Þ εC̄0λcþc̄0βI εC̄0C0λc

0þc̄0

1
CCCCCA

: ð52Þ

The determinants of reduced mass matrices, which are important to obtain the RGEs, are written as

det M̄Dc ∼ λ2hþ2h0þcþc̄þc0þc̄0ε2H0εC0εC̄0 ; ð53Þ

det M̄L ∼ λ2h
0þcþc̄þc0þc̄0 max ½εH0H0εC0εC̄0 ; εH0εC̄0εH0C0 ; εH0εC̄0εH0C0λh−

3
2
cþ1

2
c̄�: ð54Þ

Here, max[A, B, C] means the largest number among A, B, and C.
Similarly, the mass matrices of 10 of SUð5Þ become

MI ¼
ĪA
ĪA0

ĪC̄
ĪC̄0

IA IA0 IC IC00
BBBBB@

0 εA0λa
0þaαI 0 εC0λc

0−1
2
ðc−c̄Þþa

εA0λaþa0αI εA0A0λ2a
0

0 εA0C0λc
0−1

2
ðc−c̄Þþa0

0 0 0 εC0λc̄þc0βI

εC̄0λc̄
0þ1

2
ðc−c̄Þþa εA0C̄0λc̄

0þ1
2
ðc−c̄Þþa0 εC̄0λcþc̄0βI εC̄0C0λc

0þc̄0

1
CCCCCA

; ð55Þ

and the determinants of reduced mass matrices are given as

det M̄Q ∼ det M̄Uc ∼ λ2a
0þcþc̄þc0þc̄0εA0A0εC0εC̄0 ; ð56Þ

det M̄Ec ∼ λ2aþ2a0þc0þc̄0 max ½ε2A0εC̄0C0 ; εA0A0εC0εC̄0 ; εA0εC̄0εA0C0 ; εA0εC0εA0C̄0 �: ð57Þ

For the adjoint fields G, W, X, and X̄, the mass matrices
are given by

MI ¼ ĪA
ĪA0

IA IA0 
0 εA0λaþa0αI

εA0λaþa0αI εA0A0λ2a
0

!
; ð58Þ

and the determinants of the reduced mass matrices are

det M̄G ∼ det M̄W ∼ λ2aþ2a0ε2A0 ; ð59Þ

det M̄X ∼ λ2a
0
εA0A0 : ð60Þ

When we define the suppression parameters as

DDc ¼ ε2H0εC0εC̄0 ; ð61Þ

DL ¼ max ½εH0H0εC0εC̄0 ; εH0εC̄0εH0C0 ; εH0εC̄0εH0C0λh−
3
2
cþ1

2
c̄�;
ð62Þ

DQ;Uc ¼ εA0A0εC0εC̄0 ; ð63Þ

DEc ¼ max ½ε2A0εC̄0C0 ; εA0A0εC0εC̄0 ; εA0εC̄0εA0C0 ; εA0εC0εA0C̄0 �;
ð64Þ

DG;W ¼ ε2A0 ; ð65Þ
DX ¼ εA0A0 ; ð66Þ

the gauge coupling unification conditions Eqs. (24)–(26)
can be rewritten as

Λ ¼ ΛG

�
DEc

DQ;Uc

�1
6

�
DX

DG;W

�1
3

; ð67Þ
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λ2h ¼
�
DL

DDc

��
DQ;Uc

DEc

�2
3

�
DG;W

DX

�1
3

: ð68Þ

Furthermore, we obtain the heaviest neutrino mass

mντ ¼ λ4þhþc−c̄ hHui2
Λ

¼ 3 × 10−6λc−c̄
�
DLDQ;UcDG;W

DDcDEcDX

�1
2

eV: ð69Þ

In the next subsection, using the above results, we
discuss several possibilities to avoid the tension between
neutrino masses and the gauge coupling unification.

C. Models

In this subsection, we build several explicit natural GUT
models that have no tension between the neutrino masses
and the gauge coupling unification by introducing various
suppression factors as discussed in the previous subsection.
First, let us explain the features common to the natural

GUT models built in this paper. They have no tension
between the neutrino masses and the gauge coupling
unification while they have all the advantages of the usual
natural GUTs except the basic principle that all terms
allowed by symmetry are introduced with Oð1Þ coeffi-
cients. We fix a ¼ −1 and a0 ¼ 3, which allow the terms
A0A and A0A3, and forbid A0A5 and more higher dimen-
sional terms to obtain the DW type VEV naturally, although
we have other options to take a ¼ −1=2 and a ¼ 3=2
which predict a longer lifetime for nucleon decay mediated
by superheavy gauge fields because of the larger unifica-
tion scale. To obtain the realistic natural GUTs, they must
satisfy the conditions listed at the end of the previous
section, which can be rewritten as

tþ 1

2
h −

1

2
ðc − c̄Þ ¼ 5

2
; ð70Þ

−
1

2
hþ tþ c ≥ 0; ð71Þ

−hþ 3þ 2c̄ ≥ 0; ð72Þ

−6 ≤ cþ c̄ < −2; ð73Þ

in addition to the three relations (67)–(69) we obtained at
the end of the last subsection.

1. Model 2: εH0 ≪ 1, others ∼Oð1Þ
In this model, we assume that εH0 ≪ 1 while the others

are Oð1Þ. The εH0 dependence of the determinants of the
reduced mass matrices becomes

DDc ∼ ε2H0 ; DL∼DQ;Uc ∼DEc ∼DG;W ∼DX ∼ 1: ð74Þ

Equations (67)–(69) are rewritten as

Λ ∼ ΛG; ð75Þ

λ2h ∼ ε−2H0 ; ð76Þ

mντ ∼ 3 × 10−6λc−c̄ε−1H0 eV ∼ 0.05 eV: ð77Þ

From the last two relations given above, we obtain

h ¼ −ðc − c̄Þ − 6: ð78Þ
Then, condition (70) becomes

tþ h ¼ −
1

2
: ð79Þ

Among several solutions that satisfy all the conditions, two
solutions ðh; t; c; c̄Þ ¼ ð−3; 5

2
;−4;−1Þ and ðh; t; c; c̄Þ ¼

ð−3; 5
2
;−3; 0Þ have the largest h and an interesting feature

that the half integerUð1ÞA charges play the same role as the
R-parity. An example of Uð1ÞA charges for the former
solution is nothing but the model given in Table I. In these
models, the suppression factor becomes

εH0 ∼ λ−h ∼ λ3 ∼ 10−2: ð80Þ

The origin of this suppression factor can be understood by
an approximate Z2 symmetry under which H0 is the unique
field with the odd Z2 parity. When this approximate
symmetry is imposed, the other suppression factor εH0C0 ∼
εH0 appears, but this additional suppression factor does not
change the physical results.
Since the effective colored Higgs mass is calculated as

mHT;eff ∼
ðεH0λhþh0 Þ4

ðεH0λhþh0 Þ2λ2h0 ∼ 1; ð81Þ

which equals cutoff scale Λ ¼ ΛG ¼ 2 × 1016 GeV, the
signal for the nucleon decay mediated by colored Higgs
(see Fig. 1) may be seen in future experiments. However,

FIG. 1. Proton decay mediated by colored Higgs.
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the predictions depend on the SUSY breaking scale and the
explicit structure of Yukawa couplings. For example, the
natural GUT with spontaneous SUSY breaking predicts
quite large sfermion masses as m2

f̃
∼ ð103−4 TeVÞ2 [23],

and therefore the proton decay mediated by colored Higgs
is suppressed.

2. Model 3: εH0 ∼ λδεA0 ≪ 1, others ∼Oð1Þ
Here, we try to build a natural GUT in which not only

the tension is avoided but also the cutoff scale becomes
larger than ΛG since the cutoff scale is quite important in
predicting the nucleon lifetime.
In addition to εH0 ≪ 1, we introduce εA0 ∼ λ−δεH0 ≲ 1

(δ > 0) in order to change the cutoff. Since

DDc ∼ ε2H0 ; DG;W ∼ ε2A0 ∼ λ−2δε2H0 ;

DL ∼DQ;Uc ∼DEc ∼DX ∼ 1: ð82Þ

Equations (67)–(69) become

Λ ∼ ΛGλ
2
3
δε

−2
3

H0 ; ð83Þ

λ2h ∼ λ−
2
3
δε

−4
3

H0 ; ð84Þ

mντ ∼ 3 × 10−6λc−c̄λ−δ eV ∼ 0.05 eV: ð85Þ

Note that if λδ ¼ εH0 , the above conditions become nothing
but those in the previous model. Here, for simplicity, we
assume that the cutoff is around the reduced Planck scale,
Λ ∼MPlanck ∼ 2 × 1018 GeV. As a result, the first two
equations (83) and (84) become

εH0 ∼ λδþ9
2; ð86Þ

h ∼ −δ − 3: ð87Þ

The condition (85) can be rewritten as

c − c̄ ¼ δ − 6 ¼ −h − 9: ð88Þ

Substituting this relation into Eq. (70), we obtain

t ¼ −h − 2: ð89Þ

Among the solutions that satisfy conditions (71)–(73) in
addition to (89), the solution with the largest h has
ðh ¼ −4; t ¼ 2; c ¼ −4; c̄ ¼ 1Þ, resulting in δ ¼ 1.
Typical Uð1ÞA charges are shown in Table III.
The suppression factors are determined as

εH0 ∼ λ4.5þδ ¼ λ5.5; ð90Þ

εA0 ∼ λ−δεH0 ∼ λ4.5: ð91Þ

Such suppression factors can be naturally realized by the
approximate symmetries Z2H0 and Z2A0 , where Z2X is a Z2

symmetry under which only the X field has odd parity.
When these approximate symmetries are imposed, the other
suppression factors appear, for example, εA0C̄0 , but these
additional suppression factors do not change the physical
results.
The effective colored Higgs mass related to the proton

decay becomes

mHT;eff ∼ Λε2λ2h ∼ ΛG ∼ 2 × 1016 GeV; ð92Þ

which means that the proton decay mediated by colored
Higgs may be seen in future experiments although the
predictions of the lifetime depend on the Yukawa structure
and the SUSY breaking scale.
It is a rather general result that the effective colored

Higgs mass becomes close toΛG. Actually, it is shown only
by Eqs. (83)–(85). In the next subsubsection, we try to
build the natural GUT with a larger effective colored
Higgs mass.

3. Model 4: εH0H0 ≪ εH0 ≪ 1, others ∼Oð1Þ
Generically, the effective colored Higgs mass can be

obtained as

mHT;eff ∼
ðεH0λhþh0 Þ4

ðεH0λhþh0 Þ2εH0H0λ2h
0 Λ ∼ ε2H0ε−1H0H0λ2hΛ ∼ ε2H0ε−1H0H0

×

�
DL

DDc

��
DQ;Uc

DEc

�1
2

ΛG; ð93Þ

where the last similarity is shown by Eqs. (67) and (68).

Obviously, DL
DDc

≥ εH0H0
ε2
H0

and DQ;Uc

DEc
≤ 1 due to the definitions of

DDc , DL, DQ;Uc , and DEc (61)–(64). Therefore, to obtain a
larger effective colored Higgs mass than ΛG,

DL
DDc

> εH0H0
ε2
H0

is

necessary. In addition, if DQ;Uc

DEc
∼ 1 is satisfied,mHT;eff > ΛG

is realized. These sufficient conditions are fulfilled when
εH0H0 ≪ εH0 ≪ 1, while the others are ∼Oð1Þ. Since

TABLE III. Uð1ÞA charge assignment in model 3.

SOð10Þ
Negatively

charged fields
Positively

charged fields Matter fields

45 Aða ¼ −1;−Þ A0ða0 ¼ 3;−Þ
16 Cðc ¼ −4;þÞ C0ðc0 ¼ 1;−Þ Ψiðψ1 ¼ 5;ψ2 ¼ 4;

ψ3 ¼ 2;þÞ
16 C̄ðc̄ ¼ −1;þÞ C̄0ðc̄0 ¼ 6;−Þ
10 Hðh ¼ −4;þÞ H0ðh0 ¼ 5;−Þ Tðt ¼ 2;þÞ
1 Θðθ ¼ −1;þÞ;

Zðz ¼ −2;−Þ;
Z̄ðz̄ ¼ −2;−Þ

Sðs ¼ 3;þÞ
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DDc ∼ ε2H0 ; DL∼ εH0 ; DQ;Uc ∼DEc ∼DG;W ∼DX ∼ 1;

ð94Þ
we obtain the effective colored Higgs mass as

mHT;eff ∼
εH0

εH0H0
ΛG > ΛG: ð95Þ

The explicit Uð1ÞA charge assignment is the same as what
is shown in Table I. From Eqs. (67) and (68), we obtain

Λ ¼ ΛG; ð96Þ
εH0 ¼ λ−2h ¼ 10−4: ð97Þ

Since the unification scale λ−aΛ < ΛG, the nucleon decay
mediated by superheavy gauge fields may be seen in future
experiments, while the proton decay mediated by colored
Higgs is suppressed although it strongly depends on εH0H0 .
Unfortunately, these suppression factors cannot be real-

ized by an approximate symmetry. For example, in an
approximate symmetry where only H0 has a nontrivial
charge, εH0C0 is replaced by εH0. This leads to the following
relations:

DDc ∼ ε2H0 ; DL∼ εH0H0 ; DQ;Uc ∼DEc ∼DG;W ∼DX ∼1:

ð98Þ
As a result, the effective colored Higgs mass mHT;eff

becomes ΛG. Here, we assumed inequalities ε2H0 ≲ εH0H0

commonly found in approximate symmetries. However, if
there have been any symmetries that can satisfy the relation
ε2H0 ≫ εH0H0 , the symmetries would explain the suppression
factors.

IV. DISCUSSION AND SUMMARY

Under the natural assumption that all terms allowed by
symmetry are introduced with Oð1Þ coefficients, the natural
GUT solves various problems of SUSY GUT and gives a
GUT that leads to the Standard Model, which is consistent
with almost all observations and experiments. Unfortunately,
the natural GUT has an unsatisfactory point that many Oð1Þ
coefficients must be artificially chosen between 0.5 and 2 to
achieve the unification of the gauge coupling constants. This
problem is due to the fact that the neutrino masses become
too small to satisfy the measured values under the conditions
of the unification of the gauge coupling constants without
the above artificial choice of the Oð1Þ coefficients.
In this paper we discussed how to avoid the tension

between the unification of gauge coupling constants and
neutrino masses in the natural GUT. In particular, we
considered the possibilities that the tension could be
eliminated by assuming that, for some reason, some terms
have suppression factors in addition to the suppression
factors determined by the Uð1ÞA symmetry. We found
several solutions and explicitly built natural GUT models.

For some solutions (models 2 and 3), we also found that
their additional suppression factors can be understood
naturally with approximate symmetries.
We focused on how the nucleon decay, which is an

important prediction of GUT, changes in these solutions. In
the original SUSY GUT scenario, the nucleon decay
mediated by colored Higgs is important, while the nucleon
decay mediated by superheavy gauge fields is suppressed
because of the larger unification scale. In the original
natural GUT scenario, the nucleon decay mediated by
superheavy gauge fields becomes interesting because the
unification scale becomes generally lower, while the
nucleon decay mediated by colored Higgs is strongly
suppressed because the effective colored Higgs mass
becomes λ2hΛG with negative h. This is an important
prediction of the natural GUT. In the natural GUT with
suppression factors, which is discussed in this paper to
avoid the tension between the gauge coupling unification
and the neutrino masses, the predictions on nucleon decay
have changed in some models. The model with suppression
factors of terms for right-handed neutrino masses gives
similar predictions on nucleon decays as the original
natural GUT because the colored Higgs mass becomes
λ2hΛG with h ¼ −1. In the models with suppression factors
explained by the approximate symmetry for terms with
positively charged fields, the predictions on the nucleon
decay mediated by colored Higgs becomes more important
generically, while the nucleon decay mediated by super-
heavy gauge fields can be suppressed. This is an important
observation of this paper, although we also showed that in
model 4 the nucleon decay mediated by colored Higgs may
be suppressed in a natural GUT with suppression factors
which are not understood by an approximate symmetry.
Note that in the natural GUT, in which the suppression

factors can be understood by approximate symmetry, the
suppression factor discussed above cannot be understood in
terms of the spontaneous breaking of the symmetry under
the VEV relations (3). For example, if we try to explain the
suppression factor of the H0H term by the VEV of the Z2

odd and Uð1ÞA negatively charged field Z− from a
symmetric term λz−þh0þhZ−H0H. Here, H0 and H have
an odd and an even Z2 parity, respectively. However, the
suppression factor does not appear at all because the VEV
relation hZ−i ∼ λ−z− is canceled by the enhancement factor
λz− . If the VEVof Z− is much smaller than the value fixed
by the VEV relation λ−z− , the approximate symmetry can
be understood by spontaneous symmetry breaking. Such a
small VEV may be possible if the direction of the VEVof
Z− is a flat direction. Building models in this direction is
beyond the scope of this paper. Indeed, the approximate
symmetries that may appear in the natural GUT with
suppression factors can be understood by other reasons,
for example, extradimension, additional Uð1Þ0A symmetry,
or other stringy reasons. We hope that our consideration
may be a hint to find the model beyond the natural GUT.

NOBUHIRO MAEKAWA and TAIJU TANII PHYS. REV. D 109, 095001 (2024)

095001-12



ACKNOWLEDGMENTS

N.M. thanks K. Chahara and T. Himekawa for the collaborations and discussions in the early stage of this work. This
work is supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports,
Science and Technology in Japan No. 19K03823 (N. M.).

[1] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438
(1974).

[2] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974); E.
Witten, Nucl. Phys. B188, 513 (1981).

[3] S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150
(1981); N. Sakai, Z. Phys. C 11, 153 (1981).

[4] H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett.
33, 451 (1974); P. Langacker and N. Polonsky, Phys. Rev. D
47, 4028 (1993); S. Dimopoulos, S. Raby, and F. Wilczek,
Phys. Rev. D 24, 1681 (1981).

[5] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[6] For the review see L. Randall and C. Csaki, arXiv:hep-ph/
9508208, and the references are included.

[7] N. Maekawa, Prog. Theor. Phys. 106, 401 (2001); 107, 597
(2002).

[8] N. Maekawa and T. Yamashita, Phys. Rev. Lett. 90, 121801
(2003).

[9] M. Bando and N. Maekawa, Prog. Theor. Phys. 106, 1255
(2001); N. Maekawa and T. Yamashita, Prog. Theor. Phys.
107, 1201 (2002).

[10] See, for example, the textbook: R. N. Mohapatra, Unifica-
tion and Supersymmetry.

[11] P. Langacker, Phys. Rep. 72, 185 (1981).
[12] N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982).
[13] E. Witten, Phys. Lett. B 149, 351 (1984); M. Dine, N.

Seiberg, and E. Witten, Nucl. Phys. B289, 589 (1987); J. J.
Atick, L. J. Dixon, and A. Sen, Nucl. Phys. B292, 109

(1987); M. Dine, I. Ichinose, and N. Seiberg, Nucl. Phys.
B293, 253 (1987).

[14] M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117
(1984); M. Paraskevas and K. Tamvakis, Phys. Rev. D 86,
015009 (2012).

[15] T. Kobayashi and H. Nakano, Nucl. Phys. B496, 103
(1997).

[16] P. Fayet and J. Iliopoulos, Phys. Lett. 51B, 461 (1974).
[17] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277

(1979); L. E. Ibanez and G. G. Ross, Phys. Lett. B 332, 100
(1994); P. Binetruy and P. Ramond, Phys. Lett. B 350, 49
(1995).

[18] R. Slansky, Phys. Rep. 79, 1 (1981).
[19] S. Dimopoulos and F. Wilczek, Report No. NSF-ITP-82-07;

M. Srednicki, Nucl. Phys. B202, 327 (1982); D. G. Lee and
R. N. Mohapatra, Phys. Lett. B 324, 376 (1994); Z. Chacko
and R. N. Mohapatra, Phys. Rev. D 59, 011702 (1999);
Phys. Rev. Lett. 82, 2836 (1999); K. S. Babu and S. M. Barr,
Phys. Rev. D 48, 5354 (1993); 50, 3529 (1994); F.
Björkeroth, F. J. de Anda, I. de Medeiros Varzielas, and
S. F. King, Phys. Rev. D 94, 016006 (2016).

[20] S. M. Barr and S. Raby, Phys. Rev. Lett. 79, 4748 (1997).
[21] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652

(1973).
[22] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.

28, 870 (1962).
[23] N. Maekawa, Y. Omura, Y. Shigekami, and M. Yoshida,

Phys. Rev. D 100, 115030 (2019).

TENSION BETWEEN NEUTRINO MASSES AND GAUGE … PHYS. REV. D 109, 095001 (2024)

095001-13

https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1016/0550-3213(74)90355-1
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1007/BF01573998
https://doi.org/10.1103/PhysRevLett.33.451
https://doi.org/10.1103/PhysRevLett.33.451
https://doi.org/10.1103/PhysRevD.47.4028
https://doi.org/10.1103/PhysRevD.47.4028
https://doi.org/10.1103/PhysRevD.24.1681
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://arXiv.org/abs/hep-ph/9508208
https://arXiv.org/abs/hep-ph/9508208
https://doi.org/10.1143/PTP.106.401
https://doi.org/10.1143/PTP.107.597
https://doi.org/10.1143/PTP.107.597
https://doi.org/10.1103/PhysRevLett.90.121801
https://doi.org/10.1103/PhysRevLett.90.121801
https://doi.org/10.1143/PTP.106.1255
https://doi.org/10.1143/PTP.106.1255
https://doi.org/10.1143/PTP.107.1201
https://doi.org/10.1143/PTP.107.1201
https://doi.org/10.1016/0370-1573(81)90059-4
https://doi.org/10.1016/0550-3213(82)90457-6
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1016/0550-3213(87)90395-6
https://doi.org/10.1016/0550-3213(87)90639-0
https://doi.org/10.1016/0550-3213(87)90639-0
https://doi.org/10.1016/0550-3213(87)90072-1
https://doi.org/10.1016/0550-3213(87)90072-1
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1103/PhysRevD.86.015009
https://doi.org/10.1103/PhysRevD.86.015009
https://doi.org/10.1016/S0550-3213(97)00210-1
https://doi.org/10.1016/S0550-3213(97)00210-1
https://doi.org/10.1016/0370-2693(74)90310-4
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/0370-2693(94)90865-6
https://doi.org/10.1016/0370-2693(94)90865-6
https://doi.org/10.1016/0370-2693(95)00297-X
https://doi.org/10.1016/0370-2693(95)00297-X
https://doi.org/10.1016/0370-1573(81)90092-2
https://doi.org/10.1016/0550-3213(82)90073-6
https://doi.org/10.1016/0370-2693(94)90209-7
https://doi.org/10.1103/PhysRevD.59.011702
https://doi.org/10.1103/PhysRevLett.82.2836
https://doi.org/10.1103/PhysRevD.48.5354
https://doi.org/10.1103/physrevd.50.3529
https://doi.org/10.1103/PhysRevD.94.016006
https://doi.org/10.1103/PhysRevLett.79.4748
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1103/PhysRevD.100.115030

