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The natural grand unified theories (GUT) solve various problems of the supersymmetric GUT and give
realistic quark and lepton mass matrices under the natural assumption that all terms allowed by the
symmetry are introduced with O(1) coefficients. However, because of the natural assumption, it is difficult
to achieve the gauge coupling unification without tuning, while keeping neutrino masses at realistic values.
In this paper, we try to avoid this tension between the neutrino masses and the gauge coupling unification,
by introducing suppression factors for several terms. These suppression factors can be understood by
approximate symmetries in some of the solutions. We show that one of the most important results in the
natural GUT scenario, that the nucleon decay mediated by superheavy gauge fields is enhanced due to a
smaller unification scale while the nucleon decay mediated by superheavy colored Higgs is suppressed,

may change in those models proposed in this paper.
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I. INTRODUCTION

The grand unified theory (GUT) [1] is one of the most
promising models beyond the standard model (SM). The
GUT not only unifies three of the four forces in nature,
except gravity, but also unifies quarks and leptons.
Furthermore, the GUT already has been supported by
experiments for each unification. With respect to the force
unification, it has been shown that by introducing super-
symmetry (SUSY) [2,3], the three running gauge couplings
of the SM coincide at the grand unified scale Ag ~2 x
10'® GeV [4]. As for the unification of matter, various
hierarchies of quark and lepton masses and mixings
measured in numerous experiments [5] can be reasonably
explained by the SU(5) GUT, in which quarks and leptons
of each generation can be unified into 5 and 10 represen-
tations. In the SU(5) unification, an assumption that 10
fields induce stronger hierarchies in Yukawa couplings than
5 fields explains not only various mass hierarchies of
quarks and leptons (where up-type quarks and neutrinos
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have the strongest and the weakest mass hierarchy,'
respectively) but also simultaneously describes that the
quark mixings are smaller than the lepton mixings. This is a
nontrivial result, and hence this can be understood as an
experimental support for the matter unification in SU(5)
unification. Unfortunately, SUSY GUT [3] has two main
problems. The first is that the unification of matter also
unifies the mass matrices of quarks and leptons, which are
inconsistent with the observed values [5]. The second
problem is that the mass of the SM Higgs partner (which
is called colored Higgs or triplet Higgs) must be sufficiently
large compared to the SM Higgs mass to obtain a
sufficiently stable proton, which is difficult to achieve
without fine-tuning. The later problem is one of the most
serious problems in the SUSY GUT scenario and is called
the doublet-triplet (DT) splitting problem [6].

The natural GUTs [7-9] solve those SUSY GUT
problems under a natural assumption that all terms allowed
by the symmetry are introduced with O(1) coefficients. As
a result, we obtain a natural GUT which becomes the SM at
low energy. Unfortunately, if we take the O(1) coefficients
for the mass terms of all superheavy particles to be 1, three
gauge coupling constants do not unify when the measured
values are used as boundary conditions. In other words, the

1Here, we assume the normal hierarchy for the neutrino mass
spectrum, and we do not take account of the lightest neutrino
mass which has not been observed yet.
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running gauge coupling constants at low energies will
differ from the measured values when the equal gauge
coupling constants at the unified scale are used as boundary
conditions. To achieve the unification of the gauge coupling
constants, many O(1) coefficients in the range of 0.5 to 2
must be artificially chosen, which is in a sense a fine-tuning
[7]. As will be discussed in detail in this paper, this issue is
related with the measured neutrino masses. That is, under
the assumptions in the natural GUT, there is a tension
between the unification of gauge couplings and the
measured neutrino masses.

In this paper, we discuss how to resolve this tension. In
particular, we consider the possibility of solving this problem
by considering cases in which small suppression factors are
applied to several particular terms rather than O(1) coef-
ficients. After building the models, we discuss the origin of
these small suppression factors, such as approximate sym-
metries. Moreover, we discuss the predictions on the nucleon
decay in those models. Interestingly, the predictions of the
natural GUT that the nucleon decay mediated by the
superheavy gauge fields (the main decay mode is usually
considered to be P — etz” [10,11]) is enhanced due to a
smaller unification scale while that mediated by the super-
heavy colored Higgs (the main decay mode is usually
considered to be P — K0 [10,11]) is suppressed can
change in those scenarios.

After this Introduction, we review the natural GUT in
Sec. II. In Sec. 111, we discuss the resolutions of this tension
and approximate symmetries to make this solution natural.
We also build explicit natural GUT models and discuss the
nucleon decay therein. Section IV is devoted to discussions
and summary.

II. NATURAL GUT AND ITS PROBLEMS

In this section, we review the natural SO(10) GUT
following the papers [7,8] and its problem, which also
appears in the natural Eq GUT [9].

One of the most important features in the natural GUT is
that all terms allowed by the symmetry are introduced with
O(1) coefficients. Because of this feature, once we fix the
symmetry, the model can be defined except O(1) coef-
ficients. Under the symmetry SO(10) x U(1), X Z,, typ-
ical quantum numbers of the field content is given in
Table I. In this model, the specific charges differ from those
in the papers [7,8]. This model minimizes the tuning of the
O(1) coefficients needed to achieve gauge coupling uni-
fication among models that achieve realistic quark and

The proton decay mediated by superheavy gauge fields is
called the proton decay via dimension-six operators because it is
caused by an effective interaction in dimension six with four
fermions. On the other hand, the proton decay mediated by a
superheavy colored Higgs field is called the proton decay via
dimension-five operators because it is caused by the effective
interaction in dimension five with two fermions and two scalar
fermions [11,12].

TABLE I.  Field content of natural SO(10) GUT with U(1),
charges. + labels the Z, parity. The half-integer U(1), charges
play the same role as R-parity.

Negatively Positively
SO(10) charged fields charged fields Matter fields
45 Ala=-1,-) Al(d =3,-)
16 Cle=-4+4) C(=3.-) ¥y, =3.v>=13,

B _ Y3 = %7 +)
16 Cle=-1,+) C@E@=1-)
10 Hh=-34) HU=4-) T@=11+)
1 OO =-1.+). S(s=5.+)

Z(z=-2,-),

z=-2.-)

lepton masses and mixing angles while solving the DT
splitting problem naturally.

In this paper, we use large characters for fields or
operators and small characters for their U(1), charges.
The U(1), [13] has gauge anomalies that are canceled by
the Green-Schwarz mechanism [14],3 and the Fayet-
Hiopoulos (FI) term [16] & [d?0V, is assumed, where
V, and & are a vector multiplet of U(1), and a constant
parameter, respectively. It is surprising that various prob-
lems in SUSY GUT scenarios, including the DT splitting
problem, can be solved in this model with the above natural
feature. Unfortunately, there is a tension between the
neutrino masses and the unification of the gauge couplings.
Let us explain them in detail in the review of the natural
GUT below.

A. Anomalous U(1), gauge symmetry

First, for simplicity, we consider a simpler model in
which we have only three matter fields ¥;, two negatively
charged fields H, and © as shown in Table I. The super-
potential invariant under U(1), is given as

O\ Vitw;+h
Wyzcij Z (K) lPlleI{, (1)

ij=123
where A and c;; are the cutoff of the model and the O(1)
coefficients, respectively. If we assume that only ® has a
nonvanishing vacuum expectation value (VEV), which is
determined by the D-flatness condition of U(1), as
(@) = &= AA, the interaction terms in the above super-
potential become the hierarchical Yukawa interactions as

Wy = Cij/IWi+Wf+hlPi\I’jH, (2)

3Strictly, the fields in Table I alone may not satisfy the
conditions for the anomaly cancellation by shifting the dilaton
[15], but the arbitrariness of the normalization of U(1), and the
introduction of a few new SO(10) singlet fields can satisfy those
conditions.
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when 4 < 1. In this paper, we take A~ 0.22, which is
approximately the Cabibbo angle. Unless otherwise noted,
the O(1) coefficients are omitted and we take A = 1 in this
paper. The realization of the hierarchical structure of
Yukawa couplings by higher dimensional effective inter-
actions by developing the VEV of some fields, which
breaks a (flavor) symmetry, is often called the Froggatt-
Nielsen mechanism [17]. The important point is that the
Yukawa hierarchy can be reproduced under the natural
assumption that all terms allowed by the symmetry are
introduced with O(1) coefficients, including higher dimen-
sional terms.

However, it is quite rare to adopt this natural assumption
even in the GUT Higgs sector in which the GUT group is
spontaneously broken into the SM gauge group, mainly
because it is difficult to control an infinite number of higher
dimensional terms. Within the same theory, it is not
reasonable for the Yukawa sector to adopt this natural
assumption and the Higgs sector not. The natural GUTs are
the theories in which this natural assumption is adopted in
the GUT Higgs sector as well as in the Yukawa sector.

Note that the Higgs mass term A>"H? is forbidden when
h < 0 because of the holomorphic feature of the super-
potential, which is called the SUSY zero mechanism, or the
holomorphic zero mechanism. The SUSY zero mechanism
plays important roles in controlling the infinite number of
higher dimensional terms and in solving the DT splitting
problem. We will explain them in the next subsection.

B. Higgs sector in natural GUT

In this subsection, we will briefly review the GUT Higgs
sector in the natural GUT, which breaks SO(10) into
Gsm=SU(3)e xSU(2), xU(1)y and solves the DT
splitting problem under the natural assumption.

One of the most important assumptions is that all
positively U(1), charged fields have vanishing VEVs.
This assumption not only allows the SUSY zero mecha-
nism to work but also provides control over an infinite
number of higher dimensional terms. Under this
assumption, it is easy to show that the F-flatness conditions
for negatively charged fields are automatically satisfied.
The F-flatness conditions of positively charged fields
determine the VEVs of negatively charged fields. As a
result, we obtain the VEVs of the composite operators O,
which are invariant under the GUT gauge group, with
U(1), charge o as [7]

i (0<0)
<0>~{0 e 3

Thus, ignoring the D-flatness conditions, if the number of
positively charged fields equals that of negatively charged
fields, the VEVs of all negatively charged fields can in
principle be determined.

To break SO(10) into the SM gauge group Ggy, an
adjoint Higgs 45, and one pair of spinor 16, and antispinor
EC are minimally required [18]. In addition, to include the
SM Higgs, 10y is needed. These fields must have negative
U(1), charges because these fields have nonvanishing
VEVs. Moreover, the same number of positively charged
fields are introduced as in Table I to fix the VEVs of these
negatively charged fields. It is nontrivial that simply
introducing the smallest number of fields necessary in
SO(10) GUT as in Table I can solve various problems,
including the DT splitting problem. Note that the terms
which include two or more positively charged fields have
no effects in fixing these VEVs of negatively charged fields
under the assumption. Therefore, only those which include
one positively charged field are important to fix the VEVs.
The superpotentials for fixing the VEVs are

W=Wyg+Wy+Ws+Weo + We, (4)

where Wy denotes the terms linear in the X field. Each Wy
includes a finite number of terms because of the SUSY zero
mechanism. Note that only a finite number of terms is
important to fix the VEVs although an infinite number of
higher dimensional terms is introduced.

Now we discuss how to determine the VEVs via Wy.
First, we consider W/, which is given as

W = 2T OATA 4 2434 ((ATA) 1 (A%)y + (ATA)54(A%)s4),
(5)

where the subscripts 1 and 54 denote the representation of
the composite operators under the SO(10) gauge sym-
metry. The F-flatness condition of A’ fixes the VEV of A.
One of the 6 vacua® takes the Dimopoulos-Wilczek (DW)
form [19] as (A) = ir, x diag(v, v, v,0,0), which breaks
SO(10) into SU(3) xSU(2), x SU(2)g x U(1)g_;.
Note that the v is determined by the U(1), charge of A
as v~47% This VEV of A plays an important role in
solving the DT splitting problem. Actually, through

Wy = Ahtath o A | (6)

the triplet Higgses become massive while the doublet ones
remain massless. One pair of doublet Higgses becomes
massive through the mass term A" H2. (Note that to
determine the mass spectrum, the terms that include
two positively charged fields must be considered.) Then,
only one pair of doublet Higgses becomes massless, and
therefore, the DT splitting problem can be solved. The
effective colored Higgs mass related to the nucleon decay

*Without loss of generality, the VEV is written as
(A) = ity x diag(xy, x,, x3, x4, X5). The vacua are classified by
the number of 0 because the F-flatness condition of A’ gives the
solution x; = 0, v. Therefore, the number of vacua becomes 6.
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becomes A%, which is larger than the cutoff scale because C. Mass spectra of superheavy particles

h < 0. Note that Z, parity has been introduced to forbid the Since all the interactions are determined by the sym-
H'H term which gives the GUT scale mass to the doublet metry, the mass spectra of superheavy particles are also
Higgs and therefore spoils the DT splitting. fixed except the O(1) coefficients in the natural GUTs. The

The VEVs of C and C, which are important to break  mass spectra are important in calculating the renormaliza-
SU3)e x SU(2), x SU(2)g x U(1)p_;, into Ggy, are  tion group equations (RGEs) of the gauge couplings. Note

induce.d by the F-flatness condition of S by the super- that we have to consider also the terms which include two
potential positively charged fields in order to examine the mass
spectra.
s The spinor 16, the vector 10, and the adjoint 45
— s 1 c+c 2ka A2k . P > > 1
Ws =4 S( A CC+;A > ) of SO(10) are decomposed under SO(10) D SU(5) D

SUB3)exSU(2), xU(1)y as
Since A%4(A%) ~ 1, the last term in Eq. (7) does not
basically change the following result. The F-flatness con- 16 — [Q + U° + E°] + [D¢ + L] + N°, (10)
dition of S gives (CC) ~A=(c*?), and thus the D flatness —_— Y

: 1
condition of SO(10) leads to |[(C)| = [(C)|~ A~(c+C)/2, 1 °
Note that the VEVs of C and C are again deterrmned by
. .. / _/ . _ _
their cfharges. The F-flatness condltlons of C" and C ?eahze 10 - [D¢ + L] + [D° + L), (11)
the alignment of the VEVs (C), (C), and (A), and impart —_— ——
masses to the pseudo-Nambu-Goldstone fields.” This 5 5

mechanism proposed by Barr and Raby [20] is naturally
embedded in the natural GUT. W and W¢ are given as _
45 > [G+W+X+X+ N+ [0+ U+ E]

W = C(ATHTaA 4 JFHe+27) (8) 2 10
i + [0+ U+ E]+ N°, (12)
We = C/(A7HeHaA 4 )8 +eriz)C, 9) Y

10
Since the VEV of A is proportional to the B — L generator o )
Qp-1, only one of the four component fields (3,2,1), 3, where the quantum numbers of Ggy; are explicitly written
(3.1,2)_y5 (1,2,1)_, and (1,1,2), under SUB)x 2 23:2) UG 1)z DB.1). L(1.2) 4 E(LI),.
SU(2), x SU(2)p x U(1)_,, which are obtained by the ~ N°(1, 1)y, X(3,2)_s, G(8,1);, and W(1,3),.

decomposition of 16 of SO(10), has a nonvanishing VEV. First, let us con51der the mass spectra of 5 and 5 of
When the component (1,1,2); has a nonvanishing VEV,  SU(S). The mass matrices M; [I = D°(Hr), L(Hp)] can
Ggv can be obtained. be written as
|
Iy Iy Ic I
Iy 0 A g 0 0
M, = Iy g, a2 0 AW+ H5(e=e) | (13)
I¢ 0 Al +3e—5c 0 jetc B
lor \ phte=5(c=e)  pW+T5(c=e)  pet? B ¢+

where @y (y,) is vanishing and ape(y,) ~ O(1), while ; = 3((B—L),— 1); thatis, #;, = =3 and - = —1. Only one pair
of doublet Higgs becomes massless, which comes from

54, 5y 4 Aena(eas (14)

Next, we consider the mass matrices for 10 of SU(5), which are given by

*Without W and Wg, the superpotential fixing (A) becomes independent of that fixing the VEVs (C), (C). It means that an
accidental global symmetry appears, and as a result, pseudo—-Nambu-Goldstone fields appear by breaking the global symmetry.
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IA IA/

TA 0 /Ia’+a

M; = TA’ /Ia+a’a A2a’
. 0 0

7@’ ye +3(c—2)+ ﬂ(“#»%(c—

Here, ay and ayc are vanishing because these are Nambu-
Goldstone modes, but ag ~O(1). Also p,= -1,
Pue = =2, and Py = 0. Thus, each 4 x 4 matrix has one
Vanlshlng e1genvalue The mass spectra of the remaining
three modes is (AT, A<+¢, 12¢) for Q and U¢, and (A**¢,
Jatd /16’+Z") or (/16"+%(c—€‘)+a’ AC/—%(C—(_,’)‘FG, /12(1’) for EC.

Finally, we consider the mass spectrum for 24 of SU(5).
The mass matrices M;(I = G, W, X) are given by

IA IA/
M;= 1, 0  1etdg, (16)
TA’ /1a+a’a1 /12:1’

The mass spectra for G and W are (1979, A% *%), while for

X it becomes (0, A**"). The massless mode of X is eaten by
the Higgs mechanism.

D. Gauge coupling unification

Since all symmetry breaking scales and all mass spectra
of superheavy particles are fixed by anomalous U(1),
charges, we can calculate the running gauge couplings and
discuss their unification. In the following, we study the
running gauge couplings obtained by one-loop RGEs. Note
that superheavy particles of the matter sector which is
discussed in the next subsection are complete multiplets of
SU(5), and therefore, they do not affect the conditions for
the unification of the gauge coupling constants.

In the natural SO(10) GUT, SO(10) is broken by the
VEV (A) = A, ~2" into SU(3), x SU(2), x SU(2)gx
U(1)g_,, which is broken by the VEVs [(C)| = [(C)| =
Ac ~ A~/ into Gy

Now let us discuss the conditions of the gauge coupling
unification

3

a3(Ay) = ar(Ay) = gaY<AA) = a;(Ay), (17)
ai' (> Ae) =3az' (> Ac) +3apl,(n > Ac)
with the renormalization scale u. Here ay = % and gy (X =
3,2,R,B—L,Y) are the gauge couplings of SU(3).,
SU2),, SUQ2)g, U(l)g_,, and U(1)y, respectively.
Since the model has the left-right symmetry above Ac,
we expect g, = gp at u > Ac.

where

Ic 1o
0 lc’—%(c—c)-‘ra
0 lc’—%(c—c)—}—a’ (15)
0 e+ p
c)+d j'CJrZJ/BI e+

The gauge couplings at the scale A, are obtained by one-

loop RGEs as
M
ACEEY
Ay
% Aby;In( -
e

su(ie)) o
o' (Mgp)

S
! Mg
+3o (bzln( A ) 43 Ab2,1n<AA)), (19)

o' (Ag) = a7 (M) +

m;

5

' (Ay) =

1 M
;' (As) = a5 (Mgp) + o <b3 In (AiB>
1 5,Aby; In (ﬂ> ) , (20)
Ay
where Mgz is the SUSY breaking scale. Here,

(b1, by, b3) = (33/5,1,=3) represent the renormalization
group coefficients for the minimal SUSY standard model
(MSSM) and Ab,; (a =1, 2, 3) denote the corrections to
these coefficients arising from the massive fields with mass
m;, which can be read from the following table:

I Q+Q U 4+U¢ EE+E D°+D°L+L GW X+X
by L% & 3 1 00 s
Aby, 3 0 0 0 1 02 3
Aby, 2 1 0 1 0 30 2

The last term in Eq. (18) is caused by the breaking
SUR2)g xU(1)z_;, = U(1)y due to the VEV (C). The
gauge couplings at the SUSY breaking scale Mgz can be
obtained by the success of the gauge coupling unification in
the MSSM as

Ag

i) e
217[ <b2 1n<A[/>—>> (22)
(i)

ar (Msp) = ag' (Ag) +L (b 1n<

@ (Msp) = ag' (Ag) +

w1

a3 (Mgp) = ag'(Ag) + o
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where az!'(Ag) ~ 25 and Ag ~ 2 x 10'® GeV. The above conditions for the unification are rewritten as

AA 14 AC 6 detML detMQ 4 detMQ
Ag Ay) \detMp. ) \detM, ) \det Mg

AA 16 AC 4 detl\_/ID(: detMQ detMQ
AG AA det ML det MU det ME"

AA 4 detMDc detMU detMG
AG detML det MQ detMW

where M, are the reduced mass matrices where massless
modes are omitted from the original mass matrices and 7;
are rank of the reduced mass matrices. In our scenario, the
symmetry breaking scales A, ~ A7%, A¢ ~ 272+ and the
determinants of the reduced mass matrices are determined
by the anomalous U(1), charges:

det My ~ det M e ~ J3¢+etete s, (27)
det A_/IEc ~ 12a+2a’+0/+5’, (28)
det Mp. ~ 12h+2h’+c+5+c/+5” (29)
det ML ~ /12h’+c+6+c’+6” (3())
det M ~ det My, ~ 22424 (31)
det My ~ 2> (32)

The unification conditions a;(Ay) = ay(Ay), a1(Ay) =
as(A,), and ay(A,) = a3(A,) lead to A~AiAg,
A ~A8Ag, and A ~ A2Ag, respectively. Finally, the uni-
fication conditions become

(33)
(34)

Surprisingly, the above unification conditions do not
depend on the anomalous U(1), charges other than A.
This can be shown to be a general result in the GUT with
the anomalous U(1), [8]. It is important that the cutoff
scale in the natural GUT is taken to be around the usual
GUT scale. It means that the true GUT scale Ay = (A) ~
A7*A becomes smaller than Ag. Therefore, the nucleon
decay via superheavy gauge field exchange is enhanced,
and it may be seen in near future experiments.
Unfortunately, in the natural GUT model in Table I, we
take h = =3, and not h = 0. Of course, to forbid the
explicit SM Higgs mass term H?, h must be negative. But
only because of that, we can take larger A, for example,

3 (detMy\? e H T —4F e —3F e +TF =5y 5T
_ :AAl’D rr rU rg "Q rx rW’ (24)
det My
2 (det Mg \> —Fp +Fpe —Fye —2Fpe +3F o= STy +57
i :AArL r[) rU rE rQ rx rG’ (25)
det My
2 (detMg _ AT o Ty=2Ty Ty 37 (26)
det My A ’
|
h=-1. We take h = -3 in order to obtain realistic

neutrino masses. In other words, if we take h ~ 0, the
neutrino masses become too small. We will explain them in
the next subsection.

E. Matter sector in natural SO(10) GUT

In this subsection, we will briefly review how to obtain
realistic quark and lepton masses and mixings in the natural
SO(10) GUT. Especially, neutrino masses will be explained
in detail because we will introduce a tension between the
neutrino masses and gauge coupling unification condi-
tions later.

If the Yukawa interactions have been obtained only from
the superpotential in Eq. (1), the model would be unrealistic
because of the unrealistic SO(10) GUT relations
=Y

e =Yy, (35)
where Y, Y,, Y,, and Y, ~are 3 X 3 Yukawa matrices of
up-type quarks, down-type quarks, charged leptons, and
Dirac type neutrinos, respectively. The easiest way to avoid
these unrealistic SO(10) GUT relations is to introduce 10
of SO(10) as a matter field in addition to three 16 as in
Table 1. The model has four 5 and one 5 of SU(5) as matter
fields since 16 and 10 of SO(10) are decomposed under
SU(5)as 16 = 10 + 5 + 1 and 10 = 5 + 5. One of the four
55 becomes superheavy with a 5 field through the
interactions

W = Wittew, TC + )21 T2, (36)
The main modes of three massless 5 fields become
(51.5,.5;) ~ (59,.57.5y,), and the Yukawa matrices are
obtained as

/16 }LS /13 /14 /13.5 13

Y= |2 2 22|, Yy~YinYl ~221 23 225 2%,
FRRVEEE | AL 205

(37)
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when 7 —y3 —1(c — ¢) = A = 3. Here, 5, has the Yukawa
couplings through the Yukawa interactions in Eq. (36) with
the 5. Higgs and the Yukawa couplings through the mixing
with 5y, because 5, ~ 57 + 145y, Note that the higher
dimensional interactions, AYitViTtEHWY.CCH  and
pvitvitbathg g A2LH with the positive integer L, give
the same order contributions to these Yukawa couplings as
Vitvithy Y | after developing the VEVs, (CC) ~ A=(¢+9)
and (A) ~A7%. Because of this feature, the SU(5) GUT
relation Y, = Y7 can naturally be avoided in the natural
GUT. Thus, we can obtain the Cabibbo-Kobayashi-
Maskawa (CKM) [21] matrix as

1 22
UCKM - /1 1 /12 5 (38)
YRRVE |

which is consistent with the experimental value if we
choose A~0.22° Note that we have assumed that
v =w3+3, yo=w3+2, and w3 = —h/2 to obtain
realistic quark and lepton masses and mixings.

The right-handed neutrino masses are obtained from the
interactions

WY Y.C C (39)
as
RRRVERVE
MR — /1"’f+l”./+25<a>2 —_ /12y/3+5—c /15 /14 12 . (40)
YRV

Thus, we obtain the neutrino mass matrix

/12 /11.5 y)

M, = Muan_elMZD — )4 2yste—t | 415 4 405 <Hu>27
A A% 1

(41)

where M, =Y, (H,). The Maki-Nakagawa-Sakata
(MNS) matrix [22] is obtained from Y, in Eq. (37) and
M, in Eq. (41) as

129 2
UMNS = /10'5 1 10'5 s (42)
A2

which is consistent with observed neutrino data [5]. To
obtain the observed neutrino masses [5],

®Here, it is also important that the massless Higgs doublet
comes from 5, 4 Actie=a)5

_(H,)?
42w tc—¢ % ~m, ~ 0.05 eV (43)

is required. When A ~ Ag ~2 x 10'® GeV, this condition
is rewritten as

h+c—¢n~—6, (44)

which is satisfied by the natural GUT in Table I. Here we
use h+ 2y3 =0, which is required to obtain O(1) top
Yukawa coupling. It is difficult to obtain larger /4 by smaller
¢ and/or larger ¢, because several conditions are required to
obtain realistic natural GUT models as follows:

(1) 2w3 4+ h = 0: to obtain an O(1) top Yukawa cou-
pling, i.e., to obtain the term A"W;W;H.

(2) t—w3—5(c—¢) =3 To obtain the MNS matrix
as in Eq. (42), which is consistent with the
observations.

3) y3+t+c¢>0: To allow the term W;7C which
makes S5y, superheavy.

4) w3 +y; +2¢>0: To allow the term ¥;¥,C?
which makes the right-handed neutrino mass ma-
trix’s rank three.

5) c+¢+d +a<0: To forbid the term CA’AC
which destabilizes the DW type VEV.

(6) ¢+ ¢ > —6: To obtain realistic quark masses and
mixings.

Let us explain the last two new conditions. It would be
unnatural to obtain the DW form of the VEV of A, which is
important in solving the DT splitting problem, if W, has
included the spinor Higgs C and C, which break SO(10)
into SU(5). This is because the DW form of the VEV can
be obtained naturally in SO(10) but not in SU(5).
Therefore, all the terms that include C and C, for example,
CA'AC, must be forbidden in W,. This gives the fifth
condition. The last condition is required to obtain the
sufficiently small up quark mass. Without the term
¥,CC¥,H, the up and down quark masses cannot be
the measured values simultaneously.

Note that due to the conditions 2, 3, and 5 in addition to
the condition (44), it becomes difficult to approach zero for
h. The largest value for & is —3, and typical U(1), charges
are given in Table I. It is worth noting that this model
provides realistic quark and lepton masses and mixing
angles, and realizes the DT splitting. However, the gauge
couplings at low energies do not match the measured values
when all O(1) coefficients for the masses of the superheavy
particles are taken to one. Nonetheless, if we artificially
select the O(1) coefficients to be between 0.5 and 2, the
gauge couplings can match the measured values because
the models have a lot of superheavy particles. In this sense,
this model is a realistic GUT model. However, such
artificial selections of the O(1) coefficients amount to
fine-tuning, making the model unnatural. This is the
tension between the neutrino masses and the gauge
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coupling unification in the natural GUT scenario. The
above six conditions are considered to build explicit natural
GUT models with suppression factors in the next section.

III. SOLUTIONS FOR TENSION BETWEEN
NEUTRINO MASSES AND GAUGE COUPLING
UNIFICATION

In this section, we examine several possibilities to avoid
the tension between the neutrino masses and the gauge
coupling unification. Since this tension is strongly depen-
dent on the basic assumption that all terms allowed by the
symmetry are introduced with O(1) coefficients, we
explore the possibilities in which some of the terms have
much smaller coefficients than 1. We introduce the terms
with small coefficients that maintain the VEV relations (3)
because the VEV relations play critical roles in the natural
GUT scenario.

After identifying sets of terms with small coefficients
that avoid this tension, we discuss the reason for their
smallness, such as an approximate symmetry.

Furthermore, we build concrete natural GUT models
which avoid the tension between the neutrino masses and
the gauge coupling unification. And we discuss the nucleon
decay within these models.

A. Model 1: Suppression factor for terms related
to the masses of right-handed neutrinos

One of the easiest ways to avoid the tension is to
introduce small coefficients proportional to ¢, < 1 for
the terms which give the right-handed neutrino masses as

SDAWHFW/‘JFZE\P}P]'C C, (45)

where we omit the O(1) coefficients. Since the right-
handed neutrino masses become smaller, the (left-handed)
neutrino masses become larger. The heaviest neutrino mass
can be given as

2
— lﬂ4+h+c—f <HM>

4
N A (46)

my,

which must be the observed value m, ~ 0.05 eV. Note that
this suppression factor does not change the VEV relation
(3) and the mass spectra of superheavy particles except
right-handed neutrinos. This means that the beta functions
do not change, and therefore, the gauge coupling unifica-
tion conditions remain unchanged as & ~0 and A = Ag.
Since & = 0 allows the Higgs mass term H> which spoils
the DT splitting, we take 7 = —1. A concrete natural GUT
model with 4 = —1 is given in Table II. Note that the half
integer U(1), charges for matter fields play the same role
as the R-parity, and all requirements listed at the end of the
previous section are satisfied in this model.

TABLE II. In the case of (¢,¢,¢) = (%,—3, —2) in model 1.

Negatively Positively
SO(10) charged fields charged fields Matter fields
45 Ala=-1,-) A'(d =3,-)
16 Cle—-34) C(=4-) Wiy =Ly, =1,
Y3 = %7 +
16 Cc=-2,4) C(¢=5-)
10 Hh=-1,4) H(" =2,-) T(t=3.+)
1 0O =-1,+), S(=5+)
Z(z=-2,-),
2(2=-2.-)

From Eq. (46), the heaviest neutrino mass is given by

m, = 817/12 % ~ (.05 eV, which determines the suppres-

sion factor &, ~ 1073,

The effective colored Higgs mass for the nucleon decay
becomes m§ ~ A~ 10" GeV, which results in a
sufficient suppression of the nucleon decay via colored
Higgs mediation. On the other hand, since the nucleon
decay via gauge boson mediation is enhanced, it may be
seen in near future experiments as in the usual natural GUT
scenario.

Unfortunately, we have not found any approximate
symmetry to understand this suppression factor. We need
other reasoning for this suppression factor.

B. Suppression factors for terms with
positively charged fields

In the natural GUT, terms linear in positively charged
fields play an important role in determining the VEVs of
fields. Therefore, if a common suppression factor for terms
with positively charged fields is introduced, the VEV
relations of Eq. (3) do not change. And terms that include
two positively charged fields are important to determine the
mass spectra of superheavy particles. Therefore, if we
introduce an independent suppression factor for terms with
a certain two positively charged fields, the gauge coupling
unification conditions may change. In the following sub-
sections, we consider this possibility.

Concretely, we introduce the following suppression
factors:

W = e (A7 TIATA 4 19134 A3), (47)
Weo = e C(ATTHAA 4 JFHe+i7) O, (48)
We = e Cl(ATHeHaA 4 )@+ etz C, (49)
Wy = et H'AH., (50)

exy XY, (51)

Wyy = >

X' Y'=A'.C'.C'H

095001-8
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where the F-flatness conditions of the first four superpotentials determine the VEVs of negatively charged fields, while the
last superpotential is important to fix the mass spectra of superheavy particles. The mass matrices of 5 and 5 of SU(5)
become

Iy Iy Ic I
Ty 0 e At o 0 0
M= T, | epda e A2 0 et tale=d) | (52)
I¢ 0 e Al 0 e ATy
I o\ ep At =3(c=0) e A +E—5(c=2) £ et by Ere ¢+

The determinants of reduced mass matrices, which are important to obtain the RGEs, are written as
Y 220 et +E 2
det MDI' ~ A T2H fetitte SH/E'C/é'(':/, (53)
— I oA A 3.1
det M, ~ PP+ max [epmecee, emep e o Epep e o A0 (54)

Here, max[A, B, C] means the largest number among A, B, and C.
Similarly, the mass matrices of 10 of SU(5) become

Iy Iy Ic Ie
7A 0 ey Jd+a a; 0 ec ¢/ =3(c=2)+a
M;= 1, ey At a eqp A2 0 PP G A I (55)
Iz 0 0 0 ec AT B,

7 Fal(o_z alia_z ! A J =l
IC’ 8@%‘ +3(c=¢)+a SA’CJ'L +3(c=¢)+a SC,iLJrL ﬂl SC’C’/IL +c
and the determinants of reduced mass matrices are given as
=, -, / N J =
detMQ ~ det MUz' ~ /IZa ettt ENANECED S (56)

— R,
det MEC ~ 12u+2a to+e max [Sirga/c/, ENANECED s EAECEAC s EAIE'C/SA/C/]. (57)

.. . 5 . 3 1=
Fo.r the adjoint fields G, W, X, and X, the mass matrices D, = max lenmecer . epep e, epemema T,
are given by

(62)
IA IA/
- ) Do ye = exnecee, (63)
MI = IA 0 SA//’{a-Hl (XI N (58) e
jA' gA,/laJ"a,aI €A’A//12a/ DE" = max [Si/gé/c/,£A/A/€C/£CI,SA/£C/£A/C/,SA/SC/SArCr],
. . 64
and the determinants of the reduced mass matrices are (64)
_ _ , DG,W = 82/, (65)
det M ~ det My, ~ 120420 g2, (59) 4
Dy = eqn, (66)
det My ~ 22 e gy (60)  the gauge coupling unification conditions Egs. (24)—(26)
can be rewritten as
When we define the suppression parameters as 1 1
DEc >K < DX )i
A=A , 67
DD{‘ = 8%-1’8C/€C/’ (61) G <DQ.UL’ DG,W ( )

095001-9



NOBUHIRO MAEKAWA and TAIJU TANII

PHYS. REV. D 109, 095001 (2024)

D Doy \i/D 5
o= (2L (22 ) (Zew)” (68)
Dp: )\ Dp Dy
Furthermore, we obtain the heaviest neutrino mass

— J4thte—t <Hu>2
’ A

my,

_(D; Dy D 3
— 3% 1076 ¢ <ﬁ)2 eV. (69)

In the next subsection, using the above results, we
discuss several possibilities to avoid the tension between
neutrino masses and the gauge coupling unification.

C. Models

In this subsection, we build several explicit natural GUT
models that have no tension between the neutrino masses
and the gauge coupling unification by introducing various
suppression factors as discussed in the previous subsection.

First, let us explain the features common to the natural
GUT models built in this paper. They have no tension
between the neutrino masses and the gauge coupling
unification while they have all the advantages of the usual
natural GUTs except the basic principle that all terms
allowed by symmetry are introduced with O(1) coeffi-
cients. We fix a = —1 and o’ = 3, which allow the terms
A’A and A’A3, and forbid A’A3 and more higher dimen-
sional terms to obtain the DW type VEV naturally, although
we have other options to take a = —1/2 and a = 3/2
which predict a longer lifetime for nucleon decay mediated
by superheavy gauge fields because of the larger unifica-
tion scale. To obtain the realistic natural GUTs, they must
satisfy the conditions listed at the end of the previous
section, which can be rewritten as

1 1 _ 5

1
—5httte=0, (71)
—h+3 4220, (72)
6<ctE<-2, (73)

in addition to the three relations (67)—(69) we obtained at
the end of the last subsection.

1. Model 2: ey < 1, others ~O(1)
In this model, we assume that £y << 1 while the others
are O(1). The e dependence of the determinants of the
reduced mass matrices becomes

DDI'Ngé/, DLNDQ’U(:NDE('NDG.W"’DXNI. (74)

Equations (67)—(69) are rewritten as
A~ Ag, (75)
P~ e?, (76)
m, ~3x 10704} eV ~0.05 eV. (77)
From the last two relations given above, we obtain
h=—-(c—¢)—6. (78)

Then, condition (70) becomes

1

t+h=- 5 (79)
Among several solutions that satisfy all the conditions, two
solutions (h,1,¢,¢) = (=3,3,—4,—1) and (h,t,c,c) =
(-3, % ,—3,0) have the largest & and an interesting feature
that the half integer U(1), charges play the same role as the
R-parity. An example of U(1), charges for the former
solution is nothing but the model given in Table I. In these
models, the suppression factor becomes

e ~ A7~ 23~ 1072, (80)

The origin of this suppression factor can be understood by
an approximate Z, symmetry under which A’ is the unique
field with the odd Z, parity. When this approximate
symmetry is imposed, the other suppression factor ez ~
&y appears, but this additional suppression factor does not
change the physical results.

Since the effective colored Higgs mass is calculated as

(8H,/1h+h’)4

My, off NWN 1, (81)

which equals cutoff scale A = Ag =2 x 10'° GeV, the
signal for the nucleon decay mediated by colored Higgs
(see Fig. 1) may be seen in future experiments. However,

10 5

’ ’ ’
)\h-{-h )\2h Expr )\h+h

_____X____x___
Su  S5w  Sw  Bu

190

10 10

FIG. 1. Proton decay mediated by colored Higgs.
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the predictions depend on the SUSY breaking scale and the
explicit structure of Yukawa couplings. For example, the
natural GUT with spontaneous SUSY breaking predicts
quite large sfermion masses as m% ~ (10°~* TeV)? [23],

and therefore the proton decay mediated by colored Higgs
is suppressed.

2. Model 3: ey ~ APe, < 1, others ~O(1)

Here, we try to build a natural GUT in which not only
the tension is avoided but also the cutoff scale becomes
larger than A; since the cutoff scale is quite important in
predicting the nucleon lifetime.

In addition to e < 1, we introduce &4 ~ A%y <1
(6 > 0) in order to change the cutoff. Since

~/126

DDcNE%_]/, DGW"’E 8H"
DLNDQ’UL'NDECNDXNI. (82)
Equations (67)-(69) become
A~ AGAP ,;‘,, (83)
22~ i_“se;,, (84)
m, ~3 X 10707179 eV ~ 0.05 eV. (85)

Note that if A° = &5/, the above conditions become nothing
but those in the previous model. Here, for simplicity, we
assume that the cutoff is around the reduced Planck scale,
A~ Mppa ~2 x 10'® GeV. As a result, the first two
equations (83) and (84) become

g ~ A3, (86)

h~-8-3. (87)
The condition (85) can be rewritten as
=6—-6=—-h-09. (88)
Substituting this relation into Eq. (70), we obtain

t=—-h-2. (89)

Among the solutions that satisfy conditions (71)—(73) in
addition to (89), the solution with the largest /& has

(h=-4,t=2,c=-4,c=1), resulting in &=1.
Typical U(1), charges are shown in Table III
The suppression factors are determined as
e ~ ARITO =253, (90)
eqr ~ A0 ~ A4, (91)

TABLE III.  U(1), charge assignment in model 3.
Negatively Positively
SO(10)  charged fields charged fields Matter fields
45 Ala=-1,-) A(d =3,-)
16 Cle=-4,+) C(c'=1,-) P(y, =5y, =4,
o ) ) w3 =2,+)
16 Clc=-1,4) C(c=6,-)
10 H(h=—-4,+) H(MW =5-)  T{t=2+)
1 00 =-1,+4), S(s=3,4+)
Z(z=-2,-),
Z(z=-2,-)

Such suppression factors can be naturally realized by the
approximate symmetries Z,y and Z,,, where Z,y is a Z,
symmetry under which only the X field has odd parity.
When these approximate symmetries are imposed, the other
suppression factors appear, for example, €4.¢, but these
additional suppression factors do not change the physical
results.

The effective colored Higgs mass related to the proton
decay becomes

My efe ~ AP ~ Ag ~2x10'° GeV,  (92)

which means that the proton decay mediated by colored
Higgs may be seen in future experiments although the
predictions of the lifetime depend on the Yukawa structure
and the SUSY breaking scale.

It is a rather general result that the effective colored
Higgs mass becomes close to Ag. Actually, it is shown only
by Egs. (83)—(85). In the next subsubsection, we try to
build the natural GUT with a larger effective colored
Higgs mass.

3. Model 4: ey < e < 1, others ~0(1)

Generically, the effective colored Higgs mass can be
obtained as

~ (€H//1h+h/)4 A ~ g2 2hA ~ 1
mHT.eff (é‘H//thrhl )28H/H//12hl EH/EH/H/ gH/gH/H/
D D c l
DDC DEC

where the last similarity is shown by Egs. (67) and (68).
Obviously, 1?—" > i and % < 1 due to the definitions of
H E¢

Dpe, Dy, Do ye, and Dge (61)—(64). Therefore, to obtain a
larger effective colored Higgs mass than Ag, D Dot g
H

Q” ~ lis satisfied, my, e > Ag

necessary. In addition, if =%
is realized. These sufﬁclent conditions are fulfilled when

e < e < 1, while the others are ~O(1). Since
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DDK'Ngil/, DLNSH/, DQ,UCNDE"NDG.WNDXva
(94)
we obtain the effective colored Higgs mass as
Ey
mg., eff ~ Ag > Ag. (95)
EH/H/

The explicit U(1), charge assignment is the same as what
is shown in Table I. From Eqgs. (67) and (68), we obtain

A=A, (96)
e = A2 = 1074, (97)

Since the unification scale A7A < Ag, the nucleon decay
mediated by superheavy gauge fields may be seen in future
experiments, while the proton decay mediated by colored
Higgs is suppressed although it strongly depends on ez .
Unfortunately, these suppression factors cannot be real-
ized by an approximate symmetry. For example, in an
approximate symmetry where only H’ has a nontrivial
charge, &y is replaced by ¢;. This leads to the following
relations:
Dy ~epm,

2
DDL'NgH/, DQ.U"NDE"NDG.WNDXNI'

(98)

As a result, the effective colored Higgs mass mpy, o
becomes A;. Here, we assumed inequalities 8%1’ Sepw
commonly found in approximate symmetries. However, if
there have been any symmetries that can satisfy the relation
gé, > ey, the symmetries would explain the suppression
factors.

IV. DISCUSSION AND SUMMARY

Under the natural assumption that all terms allowed by
symmetry are introduced with O(1) coefficients, the natural
GUT solves various problems of SUSY GUT and gives a
GUT that leads to the Standard Model, which is consistent
with almost all observations and experiments. Unfortunately,
the natural GUT has an unsatisfactory point that many O(1)
coefficients must be artificially chosen between 0.5 and 2 to
achieve the unification of the gauge coupling constants. This
problem is due to the fact that the neutrino masses become
too small to satisfy the measured values under the conditions
of the unification of the gauge coupling constants without
the above artificial choice of the O(1) coefficients.

In this paper we discussed how to avoid the tension
between the unification of gauge coupling constants and
neutrino masses in the natural GUT. In particular, we
considered the possibilities that the tension could be
eliminated by assuming that, for some reason, some terms
have suppression factors in addition to the suppression
factors determined by the U(1), symmetry. We found
several solutions and explicitly built natural GUT models.

For some solutions (models 2 and 3), we also found that
their additional suppression factors can be understood
naturally with approximate symmetries.

We focused on how the nucleon decay, which is an
important prediction of GUT, changes in these solutions. In
the original SUSY GUT scenario, the nucleon decay
mediated by colored Higgs is important, while the nucleon
decay mediated by superheavy gauge fields is suppressed
because of the larger unification scale. In the original
natural GUT scenario, the nucleon decay mediated by
superheavy gauge fields becomes interesting because the
unification scale becomes generally lower, while the
nucleon decay mediated by colored Higgs is strongly
suppressed because the effective colored Higgs mass
becomes A*"A; with negative h. This is an important
prediction of the natural GUT. In the natural GUT with
suppression factors, which is discussed in this paper to
avoid the tension between the gauge coupling unification
and the neutrino masses, the predictions on nucleon decay
have changed in some models. The model with suppression
factors of terms for right-handed neutrino masses gives
similar predictions on nucleon decays as the original
natural GUT because the colored Higgs mass becomes
22" A with h = —1. In the models with suppression factors
explained by the approximate symmetry for terms with
positively charged fields, the predictions on the nucleon
decay mediated by colored Higgs becomes more important
generically, while the nucleon decay mediated by super-
heavy gauge fields can be suppressed. This is an important
observation of this paper, although we also showed that in
model 4 the nucleon decay mediated by colored Higgs may
be suppressed in a natural GUT with suppression factors
which are not understood by an approximate symmetry.

Note that in the natural GUT, in which the suppression
factors can be understood by approximate symmetry, the
suppression factor discussed above cannot be understood in
terms of the spontaneous breaking of the symmetry under
the VEV relations (3). For example, if we try to explain the
suppression factor of the H'H term by the VEV of the Z,
odd and U(1), negatively charged field Z_ from a
symmetric term A>-*"t"Z_H'H. Here, H' and H have
an odd and an even Z, parity, respectively. However, the
suppression factor does not appear at all because the VEV
relation (Z_) ~ A% is canceled by the enhancement factor
A*-. If the VEV of Z_ is much smaller than the value fixed
by the VEV relation A7%-, the approximate symmetry can
be understood by spontaneous symmetry breaking. Such a
small VEV may be possible if the direction of the VEV of
Z_ is a flat direction. Building models in this direction is
beyond the scope of this paper. Indeed, the approximate
symmetries that may appear in the natural GUT with
suppression factors can be understood by other reasons,
for example, extradimension, additional U(1)/, symmetry,
or other stringy reasons. We hope that our consideration
may be a hint to find the model beyond the natural GUT.
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