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Results obtained with stochastic methods have an inherent uncertainty due to the finite number of
samples that can be achieved in practice. In lattice QCD this problem is particularly salient in some
observables like, for instance, observables involving one or more baryons and it is the main problem
preventing the calculation of nuclear forces from first principles. The method of control variables has been
used extensively in statistics and it amounts to computing the expectation value of the difference between
the observable of interest and another observable whose average is known to be zero but is correlated with
the observable of interest. Recently, control variates methods emerged as a promising solution in the
context of lattice field theories. In our current study, instead of relying on an educated guess to determine
the control variate, we utilize a neural network to parametrize this function. Using 1þ 1 dimensional scalar
field theory as a testbed, we demonstrate that this neural network approach yields substantial improve-
ments. Notably, our findings indicate that the neural network ansatz is particularly effective in the strong
coupling regime.
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I. INTRODUCTION

Monte Carlo methods have achieved enormous success
in studying nonperturbative field theory phenomena
numerically. Still, it faces problems in some models and/
or observables where the statistical noise overwhelms the
signal. That is the case of theories with a sign problem (see
for instance [1–3] for reviews), including all real-time (as
opposed to imaginary time) calculations and models/
observables with infinite variance [4–6]. It is also the case
of certain correlators in lattice QCD whose signal-to-noise
ratio decreases exponentially with (imaginary) time, mak-
ing the extraction of energy levels extremely challenging
[7,8]. The signal-to-noise ratio of n-baryon states correla-
tors, for instance, decays as ∼e−ðM−3mπ=2Þnt (M, mπ are the
baryon and pion masses). Given that excited states con-
taminate the correlator at small t, this decaying signal-to-
noise ratio at larger t is a serious problem and is, in fact, the
main obstacle one faces in computing the nuclear forces
from lattice QCD.

In this paper we study the use of control variates to
minimize the variance of lattice observables. The basic idea
is simple and well known [9,10]. The expectation value hOi
of an observable O can be computed as hO − fi ¼ hOi,
where f is known to have vanishing expectation value
hfi ¼ 0. While the expectation value of the observables O
and O − f are the same, their variance is not:

hðO − fÞ2i ¼ hO2i þ hf2i − 2hfOi: ð1Þ

If a control variate f can be found that is strongly correlated
withO while maintaining hfi ¼ 0, the variance ofO − f is
smaller than the variance ofO and so it is a better estimator
of hOi. This basic strategy has many forms depending on
how one goes about finding a suitable f. For instance,
recently in [11] control variates for a scalar field theory
calculation was found by expressing it as a linear combi-
nation of optimal control variates for a free field theory. It
has also been argued that control variates can be a possible
solution to remove the sign problem exactly [12,13].
In this work, we find control variates for lattice field

theory observables using machine learning techniques,
namely, a very general function f is parametrized by a
feed-forward neural network in such a way that the
condition hfi ¼ 0 is automatically satisfied. Then, standard
minimization techniques are used to minimize the variance.
In the language of machine learning, the variance becomes
the “cost function” whose minimization can be thought of
as a form of unsupervised learning. The fact that general
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neural networks are universal function approximators (in
the sense of being able to approximate any function with a
sufficiently large network) suggests we are looking for a
control variate within a very large class of functions. A
similar approach has been used in Monte Carlo integration
in small dimensional space [14–17].

II. METHOD

The purpose of this section is to review the basic
knowledge of the control variates and to explain the way
to parametrize the control variates through neural networks.

A. Control variates

Let us denote by h·i the average with respect to the
Boltzmann factor:

hOðϕÞi ¼ 1

Z

Z
DϕOðϕÞe−S½ϕ�; ð2Þ

with Z ¼ R
Dϕe−S½ϕ�. If hfi ¼ 0, O and Õ ¼ O − f will

have the same expectation value:

hÕi ¼ hO − fi ¼ hOi: ð3Þ

However, their variances differ:

VarðÕÞ ¼ hðO − fÞ2i − hO − fi2
¼ VarðOÞ þ hf2i − 2hOfi: ð4Þ

The function f is called a control variate. The goal is then
to find a function f that is highly correlated with the
observable O in order to minimize the variance of Õ.
We write our control variate candidate f as

fðϕÞ ¼
X
x

�
∂g½ϕ�x
∂ϕx

− g½ϕ�x
∂S
∂ϕx

�
; ð5Þ

where x indexes the sites on the spacetime lattice and
g½ϕ�∶RV → RV (V is the spacetime volume) has yet to be
defined. For any gx½ϕ�, where g ¼ ðg1;…; gVÞ, integration
by parts shows that

�
∂gx
∂ϕx

�
¼

�
gx

∂S
∂ϕx

�
; ð6Þ

and therefore, hfi ¼ 0 by construction.

B. Machine learning

While Eq. (5) does not define the most general function
f½ϕ�, we aim at having a universal representation of g½ϕ�.
The only constraint we will impose is space-time transla-
tional symmetry

fðTy½ϕ�Þ ¼ fðϕÞ; ð7Þ

where the translation operator Ty displaces a field con-
figuration by y: Ty½ϕx� ¼ ϕxþy. This can be achieved if g is
covariant:

g½Ty½ϕ��x ¼ g½ϕ�xþy: ð8Þ

We can impose translational invariance by defining a
function g0∶ RV → R from which we define a g½ϕ�x by

g½ϕ�x ¼ g0ðTx½ϕ�Þ: ð9Þ

It can be easily shown that the control variate f is
translational invariant:

fðTy½ϕ�Þ ¼
X
x

�
∂g½Ty½ϕ��x
∂ϕxþy

−g½Ty½ϕ��x
∂SðTy½ϕ�Þ
∂ϕxþy

�

¼
X
x

�
∂g0ðTxþy½ϕ�Þ

∂ϕxþy
−g0ðTxþy½ϕ�Þ

∂SðTxþy½ϕ�Þ
∂ϕxþy

�

¼
X
x0

�
∂g0ðTx0 ½ϕ�Þ

∂ϕx0
−g0ðTx0 ½ϕ�Þ

∂SðTx0 ½ϕ�Þ
∂ϕx0

�

¼ fðϕÞ: ð10Þ

We will define g0½ϕ� by a fully connected feed-forward
neural network with V inputs and only one output. For
theories with parity symmetry ϕ → −ϕ, as the model we
will consider in the next section, we choose the activation
function σðxÞ ¼ arcsinhðxÞ which is odd. In addition, we
remove the bias term in the linear transformation so that the
network is an odd function. In this way, we can reduce the
number of parameters, which makes training faster.
The ideal cost function for the training of g0 is the

variance of O − f. We will estimate the variance of Õ by
the variance of a sample fϕag, a ¼ 1;…;N , of N field
configurations:

LðwÞ ¼ 1

N

XN
a¼1

�
OðϕaÞ − fwðϕaÞ

�
2

; ð11Þ

where fw, given by Eqs. (5) and (9), depends on the
parameters w of the network defining g0. Note that the term
from hO − fi2 can be omitted since Eq. (3) does not affect
the new variance.
Since, in practice,N will be small (typically of the order

of hundreds in lattice QCD) while the neural network can
easily contain a much larger number of parameters, the risk
of overfitting exists. In that case, even though hfi ¼ 0 by

construction, ¯̃O is minimized by having fðϕaÞ ≈OðϕaÞ for
every ϕa in the sample, leading to the sample average
f̄ ≈ Ō. This is not a good approximation to the ideal control
variate f. This problem was recognized in [14] where the
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authors suggest to minimize instead the quantity:

LðwÞ ¼ 1

N

XN
a¼1

�
OðϕaÞ − fwðϕaÞ − μ0

�
2

: ð12Þ

where μ0 is the sample average of the observable μ0 ¼ Ō.
In this case, overfitting leads to fwðϕaÞ ≈OðϕaÞ − μ0 for
every ϕa in the sample and fw ≈ 0, a much better
approximation to the ideal control variate. In fact,
[14,18] suggested to use, instead of a fixed value μ0, a
variable μ that is updated during the training process just
like the parameters w of fw. We verified that in our
examples this last procedure was significantly better and
all results presented below are obtained with this last
procedure.1 Finally, to further avoid overfitting we applied
the L2 regularization

Lðw;μÞ¼ 1

N

XN
a¼1

ðOðϕaÞ−fwðϕaÞ−μÞ2þδ
X

w2; ð13Þ

where
P

w2 is the sum of the squares of all neural network
parameters and δ is the regularization parameter.

III. RESULTS

In order to test our approach we use a scalar field theory
in 1þ 1 dimensions. Due to its simplicity, the same model
has been used as a testbed for other approaches to the
signal-to-noise problem and sign problem [11,19–21], so a
direct comparison is possible.
We will consider a L0 × L1 lattice (so V ¼ L0L1). We

work in units where the lattice spacing is 1. Then the action
on the lattice can be written as

S ¼
X
x;μ

�ðϕxþμ − ϕxÞ2
2

þm2

2
ϕ2
x þ

λ

4!
ϕ4
x

�
; ð14Þ

where μ ¼ 0, 1 indexes the directions on the lattice and
x ¼ ðx0; x1Þ. The observable we choose to consider is the
two-point correlator at momentum p ¼ 0:

OðtÞ ¼ 1

L0

X
y0

��
1

L1

X
x1

ϕy0þt;x1

��
1

L1

X
y1

ϕy0;y1

��
: ð15Þ

Table I summarizes the bare parameters and neural
network parameters used in this paper. We use two values
of the coupling λ, couplings 0.5 and 24.0 in order to explore
both the weak and strong regimes. The number of hidden
layers is chosen from 1 to 5, and the number of neurons for
hidden layers varies from 1 to 32. The training of neural

networks is performed with the usual stochastic gradient
method and the ADAM optimizer [22] implemented with
the help of the JAX [23] and Flax [24] libraries.
The choice of learning rate η is critical to the success of

the training. If the learning rate is too small, the training
might be stuck at local minima. A too large learning rate
leads to a process that misses minima of Lðw; μÞ altogether.
After a lengthy trial-and-error process we find that it is
efficient to use an exponentially decreasing learning rate in
the beginning of the training and a constant one after that:

ηðnÞ ¼
�
10−3 × 0.99

n
1000; if n ≤ n0

10−6; if n ≥ n0
; ð16Þ

where n is the training step and n0 is in the range
ð6.8 × 105; 6.9 × 105Þ.
Since the gradient of Lðw; μÞ is estimated stochastically,

we need to decide the number n of samples used. The
stochastic error in every step in the gradient descent scales
as ∼η=

ffiffiffi
n

p
while the computational cost of following the

gradient descent path by unit of “time” scales as ∼n=η.
Therefore, the optimal choice is n ¼ 1, the value we used in
all our calculations. We have tried other choices, n ≠ 1, and
confirmed n ¼ 1 works better empirically.
In Fig. 1 we show the training history on 20 × 20 lattice,

both at small and large couplings and with networks with
and without hidden layers. The observable we aim at
improving was a mid-lattice correlator, that is, Eq. (15)
with L0 ¼ L1 ¼ 20; t ¼ L0=2 ¼ 10. Figure 1 shows the
ratio of standard deviations (the improvement in the
uncertainty) as a function of the training step for small
and large couplings. We used 104 and 103 fully decorre-
lated field configurations to train the network and 103

samples to estimate the variance. An epoch is defined as
N ¼ 104 or 103 gradient descent steps, that is, one step
with each training configuration. The result shows that the
variance can be greatly improved, but it also implies that
the result of training depends on the size of the training set.
These results can be compared to the ones in [11] where a
different, more direct method was used to obtain control
variates for the same theory. Their method is exact for a free
theory and it performs better than at weak coupling. Neural
control variates also work better as weak coupling but
outperforms the method in [11] at strong coupling. As
Fig. 1 shows, a linear transformation (network with no
hidden layers) performs well at small coupling since a

TABLE I. Bare parameters of scalar field and neural network
parameters in Sec. III.

Lattice m2 λ Layers Neurons δ

Fig. 1 20 × 20 0.1 0.5, 24.0 5, 5 4, 4 0
Fig. 2 40 × 40 0.1 0.5, 24.0 1, 5 1, 32 0.05, 0.0005
Fig. 3 40 × 10 0.01 0.1 1 16 0.1

1Notice that hOi is still estimated by ðO − fwÞ, not
ðO − fw − μÞ.
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FIG. 2. Training histories of control variates at t ¼ L0=2 ¼ 20 on 40 × 40 lattice. The left plot shows the improvement of standard
deviation with hidden layers. The right panel displays the training histories of different depths of networks with the large coupling,
λ ¼ 24.0. 103 samples are used to train the neural control variates and 103 samples are employed to estimate the standard deviation.

FIG. 1. Training histories of the small and large couplings on 20 × 20 lattice. The figure shows the improvement of standard deviation
using control variates with respect to the raw one ðσRaw=σCVÞ. The dashed line represents the zero hidden layer result (linear
transformation), and the solid line represents the result with hidden layers. Networks for small and large couplings have 5 hidden layers
and each has 4 neurons. For left and right panels, 104 and 103 samples are reserved for training the network respectively, and 103

samples are used to estimate the variance.

FIG. 3. Correlation functions with m2 ¼ 0.01 and λ ¼ 0.1 on 40 × 10 lattice. The raw result and the result with control variates are
shown. 2 × 103 samples are used in total and for the control variate result, 103 samples are used for training and the whole samples are
used for estimating observables. For the raw result with large sets, the correlators are calculated with 2 × 105 samples. The left plot
shows the correlation functions with their fitting. Results are shifted horizontally for better visualization. The right plot displays the
errors of the correlators in the left plot.
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control variate linear on the fields is sufficient for a free
theory. At strong coupling, the variance is not reduced
much with just a linear combination ansatz, which is shown
as the dashed line in the figure. However, a better control
variate is found by introducing more nonlinear terms
through increasing hidden layers of neural networks.
The same method, applied to larger 40 × 40 lattices,

shows a smaller improvement than the 20 × 20 lattice case,
both at weak and strong coupling (see Fig. 2). It is notable
that networks of different sizes lead to similar results and,
in some cases, larger networks do not lead to a larger
improvement in the variance. This is in contradiction to the
theoretical expectation since, as one increases the number
of hidden layers or the number of neurons at each hidden
layer, the representability of the neural network increases
and, therefore, the larger network should have a better
performance than the smaller one. Our conclusion is that
there is room for improvement in the training of large
networks which we have not yet been able to accomplish.
Future work will concentrate on that.
Reducing the uncertainty of one time slice of a propa-

gator, even by a large factor, does not necessarily imply a
reduction of the uncertainties of parameters extracted from
it, like the value of masses. To investigate this question we
applied our method to anisotropic 40 × 10 lattices with
couplings fairly close to the continuum limit. Ideally, one
would use a different control variate at each time slice but
this procedure is too expensive. Instead, we found neural
control variates optimizing the uncertainty at the t ¼
L0=2 ¼ 20 or t ¼ L0=4 ¼ 10 time slices. The correlators
are shown in Fig. 3 and the results of the fits of the
correlator to the form

CðtÞ ¼ Aðe−mt þ e−mðL0−tÞÞ ð17Þ

are summarized in Table II. Note that the correlation
between different points of the correlator is considered
when fittings are implemented. The regularization strength
δ is chosen as 0.1. The reduction of the uncertainty due to
the use of a control variate is about a factor ≈20 at the time
slice t ¼ L0=2 ¼ 20 (or t ¼ L0=4 ¼ 10). Since the data at
different time slices are correlated, we find that reducing
the variance of one time slice also reduces the variance of
nearby time slices, albeit by a smaller amount. In the
example we discussed the uncertainty in the mass estimate

is reduced by a factor ≈3 corresponding to a configuration
set ∼9 times larger.
While we improved the error around 20 times at one

point, the error of the fit giving the mass estimate is
improved by a smaller factor (∼3). A better mass estimate is
obtained if a different control variate is used at each time
slice. In order to reduce the computational cost of training
we use as a starting point of the training at one time slice,
the final result of a previous time slice (transfer training2).
In doing so, we obtain around 20 times improvement of the
standard deviation at every point and the uncertainty of the
mass estimate is also improved with the same amount. We
include in Table II the results of fitting the correlator
obtained with much higher statistics in order to verify that
the reduced variance result obtained with neural control
variates and low statistics is consistent with it.

IV. DISCUSSION

We showed how control variates parametrized by neural
networks reduce the variance in lattice field theories. By
using the simple example of a 1þ 1 dimensional ϕ4 theory
we established the feasibility of themethod and learned some
qualitative features that can be summarized as follows:

(i) Reductions of variance by tens or hundreds are
feasible.

(ii) It is essential to design the neural network to
automatically incorporate the symmetries of the
model as those symmetries are difficult to “learn”
from a sample of configurations of a realistic size
(hundreds to thousands of configurations). Although
we have not explored them yet, other techniques can
plausibly work better.

(iii) Techniques to avoid overfitting, like the ones we
used, are essential for good results.

(iv) More direct methods, like in [11], are more efficient
at small coupling but neural networks tend to win
out at larger couplings.

A natural question is whether how control variates
results compare to more standard methods. After all, the
variance of an observable can be reduced by just collecting
a larger number N of configurations. This process is slow
as the uncertainties scale as ∼1=

ffiffiffiffiffi
N

p
. On the other hand,

the training of the neural control variate is computationally
expensive, even if it needs to be performed only once per
observable. The “break-even” point where our method wins
out over the brute force increase in statistics depends on the
cost of collecting a new independent configuration. For the
scalar theory we studied, the computational cost of
the configuration is very small, and for the precision we
achieved, it is clearly more efficient simply to increase the
statistics. In other theories, specially those with dynamical

TABLE II. The fitted values of correlators in Fig. 3.

A m χ2=dof

Raw, N ¼ 2 × 103 0.000112(18) 0.1935(40) 0.55
CV at t ¼ 20 0.0001191(51) 0.1920(13) 0.29
CV at t ¼ 10 0.0001083(44) 0.1944(13) 0.55
CV at all points 0.0001096(7) 0.1938(2) 0.91
Raw, N ¼ 2 × 105 0.0001088(18) 0.1940(4) 0.34

2We thank the anonymous referee for insisting that we tried
this method.
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fermions, the configurations are very expensive and it
makes sense to use substantial computing power extracting
as much information as possible from them. Thus, the
answer to whether (neural) control variates are more
efficient or not has to be studied in every model separately.
Among the direction for future work, the most pressing is

the extension of neural control variates to gauge theories.
There are conceptual issues to be solved. Given our
observation that it is important to impose the symmetries
of the model on the neural network, a method to impose
gauge invariance seems essential. Also, it is unclear what

an analog to Eq. (5) would be. Other issues are of a more
practical nature and may be more important. For instance,
finding more efficient ways of training neural networks
will be crucial to extend the method to realistic, four-
dimensional theories.
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