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We present the first direct ab initio computation of unequal-time correlation functions in non-Abelian
lattice gauge theory. We demonstrate nontrivial consistency relations among correlators, time-translation
invariance, and agreement with Monte Carlo results for thermal equilibrium in 3þ 1 dimensions by
employing our stabilized complex Langevin method. Our work sets the stage to extract real-time
observables, relevant to quark-gluon plasma physics within a first-principles real-time framework.
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I. INTRODUCTION

The real-time dynamics of quantum fields in and out of
equilibrium describe some of the most interesting and
important phenomena of our Universe ranging from cos-
mological to subatomic scales. Theoretical predictions for
real-time quantum dynamics are imperative for testing our
understanding of such phenomena. However, a description
from first principles is typically either absent or poses great
computational challenges for sufficiently complex systems.
Of special interest to high-energy particle physics is the

evolution of the strongly interacting medium consisting of
quarks and gluons. Known as the quark-gluon plasma
(QGP), it has likely existed in the earliest instants of our
Universe. On Earth, it is formed in relativistic heavy-ion
collision experiments at large accelerator facilities such as
RHIC and the LHC [1]. Our primary motivation in this
work is to study the real-time dynamics of the QGP. It is
described by quantum chromodynamics (QCD), one of the
fundamental building blocks of the Standard Model of
particle physics. The most successful method for making
nonperturbative predictions for this theory is lattice QCD,
which is usually restricted to real-time-independent observ-
ables [2]. In the absence of an ab initio approach for
real-time QCD, one must rely on effective and phenom-
enological models. A particularly successful description of
the QGP is provided by relativistic hydrodynamics [3].
However, hydrodynamics requires input from the under-
lying theory in terms of viscosities. Moreover, effective

descriptions of experimental probes like jets and heavy
quarks also rely on the knowledge of QCD transport
coefficients [4].
All of these real-time observables can be extracted from

unequal-time correlation functions. In practical simulations,
such quantities suffer from a numerical sign problem [5], as
we exemplify by the correlation of an arbitrary time-
dependent observable OðtÞ. Expressed as a path integral
over all realizations of the field A,

hOðtÞOðt0Þi ¼ 1

Z

Z
DAeiS½A�OðtÞOðt0Þ; ð1Þ

the correlator involves a complex-valued weight expðiSÞ.
The highly oscillatory nature of this integral impedes the
numerical application of standard Monte Carlo techniques.
This becomes particularly hard in Minkowski space-time
since the action S½A� is real valued.
Even though the sign problem has evaded a general and

efficient solution due to its NP-hardness [6], progress on
extracting observables can be made for individual systems
nonetheless. Numerical simulations of real-time scalar fields
have been carried out recently using the functional renorm-
alization group [7–9] and contour deformation [10,11]. For
QCD, transport coefficients and spectral functions have
been computed using spectral reconstruction and analytic
continuation in Euclidean lattice gauge theory [12–17],
which forms an ill-posed inverse problem. Consequently,
extracting accurate results becomes computationally chal-
lenging. Interesting alternative approaches employ analog
and digital quantum simulators of gauge theories [18–20],
which are currently limited in their complexity and lat-
tice size.
In this work, we employ a stabilized version of the

complex Langevin (CL) method to evade the sign problem.
We achieve the first stable ab initio computation of gauge-
invariant real-time correlation functions in thermal SU(2)
lattice gauge theory in 3þ 1 dimensions. This represents a
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breakthrough that in the future may pave the way to extract
transport coefficients and spectral functions directly.
This article is structured as follows: Section II introduces

the CL method applied to Yang-Mills theory on a real-time
lattice. We discuss our simulation approach including our
stabilization and extrapolation strategies. In Sec. III we
show our numerical results for unequal-time correlation
functions and conclude in Sec. IV. Details of our approach,
including further checks of correctness and how to simulate
longer physical times, can be found in the Appendixes.

II. COMPLEX LANGEVIN METHOD

TheCL approach is based on stochastic quantization [21].
In this method, the path integral expression in Eq. (1) is
substituted by an average over a stochastic process for the
fields. Although stochastic quantization was originally
proposed for real-valued weights expð−SÞ, it was soon
extended to the complex case, which is known as the CL
method [22]. For Eq. (1), the stochastic process of gauge
fields is described by

∂

∂θ
Aa
μðx; θÞ ¼ i

δS
δAa

μðxÞ
����
θ

þ ηaμðx; θÞ; ð2Þ

where x denotes the space-time point, θ the fictitious
Langevin time, and ηaμðx; θÞ is a real-valued Gaussian
random field. The stationary limit θ → ∞ of the process
Aa
μðx; θÞ can be used to approximate the path integral.

While issues with stability and wrong convergence can
occur, important conceptual improvements including con-
vergence criteria [23–25] and numerical achievements have
reinvigorated the field more recently. Adaptive [26,27]
and implicit [28] solvers for the CL equation have been
shown to lessen problems associated with unstable runaway
trajectories. For gauge theories, convergence properties
have been improved by gauge cooling [29], which
exploits the gauge freedom of the CL process. In the realm
of QCD at finite chemical potential, gauge cooling partially
in combination with dynamical stabilization [30] has led to
advances in the computation of the equation of state [31–39].
Recently, there has been renewed interest in kernels [40,41],
which are modifications of the CL equation that potentially
improve convergence properties. Machine-learning-based
kernels have been successfully applied to real-time scalar
fields in up to 1þ 1 dimensions [42–44] extending the
results of earlier studies with nonstabilized CL and contour
deformation techniques [45–47]. Further successful appli-
cations of the CLmethod include quantummany-body, cold
atom, and spin systems [48–51].
However, so far, the application of the real-time

CL method to non-Abelian gauge theories has been
elusive [46,52,53]. This has changedwith our recent revision
of the CL equation for non-Abelian gauge theories [54,55],
which enables unprecedentedly stable simulations on

complex time contours. Here we use this new approach to
extract real-time correlation functions in Yang-Mills theory.

A. CL for real-time lattice gauge theories

We consider real-time SU(Nc) Yang-Mills theory in
3þ 1 dimensions in thermal equilibrium. Formally, this
system can be described within the Schwinger-Keldysh
(SK) formalism [56,57], which puts the theory on a
complex time contour C shown as the black curve in
Fig. 1. The real part of the contour (real-time path)
describes the extent up to tmax in physical Minkowski time
with a forward (tþ) and backward (t−) time path. In
contrast, the Euclidean path follows the imaginary time
axis (τ) whose extent corresponds to the inverse temper-
ature β ¼ 1=T. The SK contour enters the action,

S½A� ¼ −
1

2g2

Z
C
dt
Z

d3xTr½FμνFμν�; ð3Þ

with the field-strength tensor Fμν and the coupling constant
g. The contour is closed, which implies periodic boundary
conditions for the field Aðt ¼ −iβÞ ¼ Aðt ¼ 0Þ.
To simulate this system, we use a standard lattice gauge

theory formulation that guarantees gauge invariance by
construction [58]: we discretize the gauge fields on a lattice
of size Nt × N3

s and introduce unitary link variables
UμðxÞ ≃ exp ½iaμtaAa

μðxþ μ̂=2Þ� (no sum over μ), where
μ̂ is a unit vector, aμ are the lattice spacings, and ta are the
generators of SU(Nc). The lattice analog of Eq. (3) is given
by the Wilson action

Sw ¼ 1

g2
X
x;μ≠ν

ρμνðxÞTr½UμνðxÞ − 1�; ð4Þ

with UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU−1
μ ðxþ ν̂ÞU−1

ν ðxÞ and
prefactors ρ0iðxÞ ¼ −as=atðxÞ, ρijðxÞ ¼ atðxÞ=as. The

FIG. 1. Schwinger-Keldysh contour (black) in the complex
time plane and a regularized SK contour (blue) with tilt angle α
and complex time step at. Both contours include a (tilted) real-
time path and a Euclidean path. The presented figure is a
schematic sketch of the SK contour and its lattice discretized
version. The scales and number of points depicted do not reflect
the actual model parameters.
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SK contour enters through the time-dependent temporal
spacings atðxÞ, whereas the spatial lattice spacing as is
constant. In this work, dimensionful quantities are given in
units of as.
The discretized CL equation corresponding to (2) reads

Uμðx;θþϵÞ¼e
ita
�
iϵΓμðxÞ δSw

δAaμ ðxÞ

��
θ
þ

ffiffiffiffiffiffiffiffiffiffi
ϵΓμðxÞ

p
ηaμðx;θÞ

�
Uμðx;θÞ; ð5Þ

where ϵ represents the Langevin time step and ΓμðxÞ is the
kernel. The Gaussian noise field satisfies

hηaμðx;θÞi¼ 0; hηaμðx;θÞηbνðy;θ0Þi¼ 2δθθ0δxyδ
abδμν: ð6Þ

Note that the real-time part of the SK contour leads to a
complex-valued drift term iδSw=δAa

μðxÞ. This necessitates
the generalization of gauge links from SU(Nc) to SL(Nc,C)
and the analytical continuation of the action.

B. Simulation and stabilization strategy

In the CL approach, we have the freedom to introduce a
kernel Γμ [40,41]. Such a modification of the CL equation
leaves the stationary solution unchanged. In our simula-
tions, we employ

Γ0ðxÞ ¼ jatðxÞj2=a2s ; ΓiðxÞ ¼ 1: ð7Þ

This is motivated by a time contour parametrization applied
to the CL equation and originally introduced by us in [54].
There we have demonstrated that, in combination with
gauge cooling, this kernel enhances the stability and con-
vergence of our simulations systematically as the lattice
anisotropy as=jatj increases.We note that field-independent
kernels have been used in Euclidean Langevin simulations
to shorten the autocorrelation time [59], which, as we
emphasize, has a different objective than in our case.
Additionally, we employ an improved update step [60] to
mitigate systematic errors (see Appendix A).
In our simulations, we iteratively solve the discretized

CL equation. At sufficiently late Langevin times, the gauge
links are distributed according to the desired stationary
probability density. We ensure this by computing observ-
ables such as Wilson loops and comparing them to
Euclidean results where applicable. Expectation values
hOi are calculated by sampling uncorrelated gauge con-
figurations fUðiÞg,

hOi ≈ 1

Ncfgs

XNcfgs

i

O½UðiÞ�: ð8Þ

To further validate our simulations, we calculate the
unitarity norm in Appendix B. We find that it assumes
small, stable values, which have been empirically associ-
ated with the correct convergence of CL [29].

We regulate the path integral (1) by introducing a tilt
angle α > 0 for the real-time part of the contour, as
depicted in Fig. 1. This angle additionally softens the sign
problem. While the discretized path integral for α ¼ 0 is ill
defined [61], the SK contour is reached in the limit α → 0þ.
In our approach, we generate configurations for multiple tilt
angles, compute expectation values hOiα, and obtain real-
time observables in the α → 0 limit,

hOi ¼ lim
α→0þ

hOiα: ð9Þ

We illustrate this extrapolation in Fig. 1 where the gray
arrow symbolizes the convergence of the tilted regularized
contour (blue) toward the SK contour (black). Details of
this procedure are discussed in the following.

C. Time contour discretization and extrapolation

The discretized contour is shown in blue in Fig. 1 and
consists of two tilted real-time paths and a Euclidean path.
It is defined by the real-time extent tmax, its extent in
imaginary time β, and the tilt angle α∈ ½0; π=2Þ. We
discretize the contour by choosing Ntilt points on each
of the two tilted paths and NEuclid points on the Euclidean
path, such that the total number of temporal points is
Nt ¼ 2Ntilt þ NEuclid. The complex temporal steps are

at;k ¼

8><
>:

þãe−iα 0 ≤ k < Ntilt

−ãeþiα Ntilt ≤ k < 2Ntilt

−iaτ 2Ntilt ≤ k < Nt

; ð10Þ

where k∈ f0; 1; 2;…; Nt − 1g enumerates the points
on the contour. We set ã ¼ tmax=ðNtilt cos αÞ and
aτ ¼ ðβ − 2tmax tan αÞ=NEuclid. Given specific values of
the angle α, we choose Ntilt and NEuclid such that ã ≈ aτ
and thus jat;kj ≈ const. In Table I we provide the parameters
used in our simulations. We denote the varying lattice
spacing at;k by atðxÞ. Here, the dependence on the lattice
site x is understood to reduce to the dependence on the
contour point index k.
Care has to be taken when observables are extrapolated to

the SK contour (α → 0). First, wemeasure a time-dependent

TABLE I. Numerical parameters of the discretized time contour
in our simulations.

tan α Ntilt NEuclid Nt ã aτ

Euclidean � � � 16 16 � � � 0.0625
1=3 25 � � � 50 0.0633 � � �
1=6 24 8 56 0.0634 0.0625
1=12 24 12 60 0.0627 0.0625
1=24 24 14 62 0.0625 0.0625
1=48 24 16 64 0.0625 0.0586
1=96 24 16 64 0.0625 0.0606
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observable hOkiα along the contour for different values of α
in our simulations. Note that for each α the number of points

NðαÞ
tilt may be different. Next, we resample the observable

onto the finest discretization N�
tilt ¼ maxα N

ðαÞ
tilt via poly-

nomial interpolation. Using the resampled data for hOkiα,
we then perform a cubic polynomial fit for the dependence
on α for each contour grid point k. Finally, the cubic
polynomials are extrapolated to α → 0 to obtain our final
result. The same method can also be applied to arbitrary
n-point correlation functions. We emphasize that the tilt
angles need to be sufficiently close to zero in order for the
extrapolation to be well behaved.

D. Numerical setup

We simulate SU(2) gauge theory in thermal equilibrium
on a lattice with N3

s ¼ 163 spatial lattice points. The
number of temporal lattice points Nt is chosen to maintain
a constant anisotropy as=jatj ≈ 16 along the entire regu-
larized complex time contour (Fig. 1), while decreasing the
tilt angle tanðαÞ ¼ 1=3 → 1=96. We employ the bare
coupling g ¼ 0.5, the inverse temperature β ¼ 1=T ¼ 1,
and a maximal real-time extent of tmax ¼ 1.5β. We note that
these parameter choices correspond to the deconfined
regime: at g ¼ 0.5, the Polyakov loop admits an expect-
ation value of hPi ≈ 0.98 and the phase transition occurs
roughly at gcrit ≈ 2. Our calculations are thereby conducted
in a weakly coupled regime away from the true continuum
limit. However, following indications of our previous study
on complex time contours [54], we note that both tmax and g
can be, in principle, increased systematically by using a
finer temporal discretization, albeit at a higher computa-
tional cost. For instance, increasing the anisotropy to
as=jatj ¼ 128, and thus also Nt, enables us to obtain
correct results for tmax ¼ 2β, as showcased in Appendix C.
In addition to the kernel in Eq. (7), we apply gauge

cooling [29] with one cooling step after each update,
using a step size αGC ¼ 0.05, to stabilize our simulations
(see Ref. [54] for details). The simulations start cold
with unit matrices Ux;μðθ ¼ 0Þ ¼ 1 and evolve with a
constant Langevin time step ϵ ¼ 10−4. Field configurations
for the measurement of observables are extracted within
10 ≤ θ ≤ 20 after thermalization at Langevin times sepa-
rated by Δθ ¼ 0.1, which is well above the autocorrelation
time of the observables in which we are interested. We also
average over configurations generated from 100 to 1000
independent simulations. Error bars in the presented figures
are determined using a bias-corrected jackknife method.

III. UNEQUAL REAL-TIME
CORRELATIONS

An important class of observables accessible in real-time
simulations of lattice gauge theory are unequal-time corre-
lation functions of the energy-momentum tensor

Cμν;ρσðt;x; t0;x0Þ ¼ hTμνðt;xÞTρσðt0;x0Þi; ð11Þ

with Tμν ¼ 2Tr½Fμ
αFαν þ 1

4
gμνFαβFαβ�. The spectral func-

tion associated with Eq. (11) contains information about the
transport properties of the system. In particular, Cμμ;νν and
Cxy;xy encode the bulk and shear viscosities η and ζ entering
hydrodynamic equations [3].
In this work, we focus on the magnetic contribution to

the energy density calculated in terms of cloverleaves (see
Appendix D),

Oðt;xÞ ¼ 1

2
Tr½Fijðt;xÞFijðt;xÞ�; ð12Þ

and the corresponding unequal-time correlator

Cðt;x; t0;x0Þ ¼ hOðt;xÞOðt0;x0Þi
− hOðt;xÞihOðt0;x0Þi; ð13Þ

Cðt; t0Þ ¼ 1

N3
s

X
x

Cðt;x; t0;xÞ: ð14Þ

The main advantage of studying Cðt; t0Þ is its close relation
to the correlator of the energy-momentum tensor (11),
while requiring fewer configurations due to the average
over the spatial lattice sites x. Nonetheless, Cðt; t0Þ exhibits
nontrivial features that are manifest to such correlators in
the SK limit α → 0þ, many of which we will explicitly
check numerically.

A. Statistical correlation
and spectral function

We present our main result in Fig. 2. It shows the
correlation function Cðt; t0Þ extrapolated to α → 0þ and
restricted to the real-time forward and backward paths. A
striking feature of Fig. 2 is that Cðt; t0Þ splits into four
distinct quadrants, where each quadrant represents a
propagator,

D<ðt; t0Þ ¼ Cðtþ; t0−Þ; DF̄ðt; t0Þ ¼ Cðt−; t0−Þ;
DFðt; t0Þ ¼ Cðtþ; t0þÞ; D>ðt; t0Þ ¼ Cðt−; t0þÞ; ð15Þ

and t is either tþ or t−, and similarly for t0. HereDF andDF̄

are known as (anti-)Feynman propagators, and D> and D<

are Wightman functions. Additionally, we see that Cðt; t0Þ
exhibits a symmetry: in each quadrant, we find that the
propagators become independent of the central time coor-
dinate t̄ ¼ ðtþ t0Þ=2,

Dðt; t0Þ ¼ Dðt − t0Þ≡DðΔtÞ: ð16Þ

This symmetric structure ofCðt; t0Þ is a direct consequence of
time-translation invariance in thermal equilibrium and only
appears in the SK limit α → 0þ, as we will show below.
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In Fig. 3, we present results for the statistical correlation
function and the spectral function

F¼ReDF; ρ¼−sgnðΔtÞImDF; ð17Þ

averaged over the central time t̄ at various tilt angles of the
discretized time contour, with signum function sgnðΔtÞ. As
the tilt angle decreases, both F and ρ converge to well-
defined curves (black lines), demonstrating successful
extrapolation.

B. Euclidean correlator

We simulate the gauge fields on the discretized SK
contour—this gives us also access to the Euclidean corre-
lator

DEðτ; τ0Þ ¼ Cðτ; τ0Þ; ð18Þ

where τ and τ0 are restricted to the imaginary Euclidean
path of the contour (see Fig. 1). Our results are shown in
Fig. 4, where we present DE for various values of the tilt
angle α and compare these correlators to the result of a
Euclidean simulation (gray), where no sign problem is
present. The Euclidean results are obtained by real
Langevin simulations [21]. We find remarkable agreement
for a wide range of α, showing the consistency of our
simulations on the SK contour. We emphasize that, due to
the nonlocality in Euclidean time, this result is signifi-
cantly more robust to indicate correct convergence than
the comparisons conducted in [46,54] where only time-
translation-invariant one-point functions have been used.
This indicates the absence of boundary terms, which
suggests that the criterion for correct convergence is
fulfilled [23,62,63].

C. Emergent consistency among propagators

There are well-established relations in field theory for
different correlation functions. Analytically, the Feynman
propagator can be expressed in terms of Wightman func-
tions [64]

DFðt; t0Þ ¼Θðt− t0ÞD>ðt; t0ÞþΘðt0− tÞD<ðt; t0Þ; ð19Þ

where Θðt − t0Þ is the Heaviside step function. With our
approach, we can reproduce this correspondence numeri-
cally. In Fig. 5 we show that, in the limit α → 0þ, Eq. (19)
is indeed satisfied.

FIG. 2. Real part (left) and imaginary part (right) of the
unequal-time correlation function Cðt; t0Þ extrapolated onto the
SK contour using a cubic polynomial in α. Forward and back-
ward paths are indicated by t�.

FIG. 3. Statistical correlation function F and spectral function ρ
as functions of the real-time difference Δt ¼ t − t0 for varying tilt
angles α. For finite α, the real times t, t0 are obtained by projecting
the tilted time contour onto the real-time axis. The data
extrapolates toward α → 0, indicating a clear convergence to
finite real-time observables.

FIG. 4. Euclidean correlator of the magnetic contribution to the
energy density. Top: Euclidean correlator DðαÞ

E at different tilt

angles. Bottom: Ratio DðαÞ
E =DðEuclÞ

E where DðEuclÞ
E is extracted

from a Euclidean simulation. The ratio approaches 1 in the limit
α → 0. The small deviations stem from statistical errors and
minor differences in the lattice spacing.
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In contrast, Fig. 6 shows that the relation (19) is not
satisfied for finite tilt angle such as tanðαÞ ¼ 1=12, as
indicated by the gray-shaded region that highlights the
deviation between both correlators. It rather emerges in the
limit α → 0þ, where the relation is satisfied to high
accuracy. This underpins the necessity for the extrapolation
procedure of our simulation strategy. The numerical con-
sistency among different correlation functions represents a
nontrivial property manifest in the real-time evolution.

D. Emergent time-translation invariance

In thermal equilibrium, observables are time-translation
invariant. For one-point functions, this implies hOðtÞi ¼
constwhile two-point functions hOðtÞOðt0Þi are independent

of the central time ðtþ t0Þ=2 and only depend on the time
difference Δt≡ t − t0. However, we find that this time-
translation invariance is violated for the regularized SK
contour. The reason for this is as follows: at finite angles
α, real-time values are extracted by projecting t and t0

onto the real-time axis. The tilt angle pulls apart different
points on the forward and backward branches of the SK
contour for the same real-time. This can effectively
introduce an unphysical dependence on the central time
for correlation functions, hence violating time-translation
invariance. This symmetry is restored in the limit of
vanishing tilt angle.
In Fig. 7, we numerically confirm our expectations for

the imaginary part of the Wightman function D>. It shows
the correlation function as a function of the central time
ðtþ t0Þ=2 for varying time differences Δt, each repre-
sented by a different color. Horizontal lines in this
representation indicate that the time-translation invariance
is intact. We observe that this feature is not present at the
finite tilt angle tanðαÞ ¼ 1=12 shown in the top panel.
When we extrapolate this correlator to the SK contour
α → 0, we find that the independence of the central time
becomes well preserved, as depicted in the bottom panel.
A similar assertion holds for other correlation functions
that we have calculated in this study; however, it is most
pronounced in the case of the Wightman functions as they
reflect correlations between forward and backward real-
time branches. Additionally, we emphasize that not only
time independence is violated, but also the values of the
correlations are systematically distorted with respect to the
central time.

FIG. 5. Relation between Feynman propagator and Wightman
functions extracted independently from different quadrants of
Cðt; t0Þ in Fig. 2. The top and bottomparts show real and imaginary
parts of Eq. (19), respectively. Our simulations demonstrate that
this consistency relation is satisfied with remarkable accuracy.

FIG. 6. Explicit check of Eq. (19) for t0 > t with vanishing tilt
angle α → 0 (black and orange) and finite tanðαÞ ¼ 1=12 (gray).
One observes that the nontrivial correspondence (19) between
these correlations only emerges for α → 0.

FIG. 7. The imaginary part of the Wightman function D> is
shown as a function of central time ðtþ t0Þ=2 for different fixed
Δt ¼ t − t0 slices, indicated by different colors. The figure shows
the correlation for a finite tilt angle tanðαÞ ¼ 1=12 (top) and the
extrapolated correlation for tanðαÞ → 0 (bottom). We stress that
the time-translation invariance is broken for finite tilt angles,
while it is satisfied for the extrapolated data.
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IV. CONCLUSION

We have performed the first direct computation of
unequal-time correlation functions in 3þ 1-dimensional
real-time Yang-Mills theory in thermal equilibrium. These
results are achieved by utilizing the complex Langevin
method that we revised for complex time contours in [54]
and applied here to the SK contour using a polynomial
extrapolation.
We have found that our new setup allows us to reliably

extract real-time observables, as demonstrated by the
correlation function of the magnetic contribution to the
energy density. An important result is that the extracted
correlators on the SK contour satisfy numerically nontrivial
consistency relations that connect Wightman and Feynman
propagators and are time-translation invariant. In contrast,
such properties are violated on other complex time con-
tours. Moreover, we have verified that our Euclidean
correlator along the thermal path of the SK contour
agrees with independent simulations using a traditional
Monte Carlo method.
These results give a strong indication that our method

can be extended to other gauge-invariant observables such
as correlations of the energy-momentum tensor Tμν or other
transport coefficients for heavy quarks and jets. While the
generalization to SU(3) is straightforward, stable simula-
tions at larger couplings g and real-time extents tmax require
significantly more computational resources with the cur-
rently available methods. Therefore, applications may need
further stabilization strategies in practice. We emphasize
that the simplicity of our approach allows the combination
with other possible stabilization techniques such as field-
dependent kernels. With additional improvements, CL
simulations could be used to access the spectral functions
of various operators. So far, their direct nonperturbative
real-time computation in gauge theories can be performed
in classical-statistical lattice simulations [65–71], which are
justified far from equilibrium at weak couplings and large
occupancies. To avoid these underlying approximations,
another exciting prospect of our framework is the simu-
lation of gauge theories outside of thermal equilibrium.
This would improve our understanding of the thermal-
ization process of gauge theories, which has significant
phenomenological consequences, particularly in the con-
text of the preequilibrium phase of heavy-ion collisions.
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APPENDIX A: IMPROVED LANGEVIN STEP

In our CL simulations, we utilize an improved update
scheme that replaces Eq. (5) in Sec. II. This improves the
convergence of the algorithm and alleviates systematic
errors stemming from a finite Langevin step size [60,72].
The update step reads

Uμðx; θ þ ϵÞ ¼ e
iγta

h
iϵΓμ

eδSw
δAaμ

þ
ffiffiffiffiffi
ϵΓμ

p
ηaμðx;θÞ

i
Uμðx; θÞ; ðA1Þ

with γ ¼ 1þ ϵCA=6 and the quadratic Casimir CA ¼ 2 for
SU(2). The effective drift term is given by

gδSw
δAa

μ
¼ 1

2

�
δSw
δAa

μ
½U� þ δSw

δAa
μ
½Ũ�

�
ðA2Þ

and averages the usual drift at Langevin time θ (denoted by
links U) with an auxiliary drift with links

Ũμðx; θ þ ϵÞ ¼ e
ita
h
iϵΓμ

δSw
δAaμ

½U�þ
ffiffiffiffiffi
ϵΓμ

p
ηaμðx;θÞ

i
Uμðx; θÞ: ðA3Þ

The noise correlator is altered to

hηaμðx; θÞηbνðy; θ0Þi ¼ 2ð1 − ϵCA=2Þδθθ0δxyδabδμν: ðA4Þ

This procedure may be understood as a second-order
Runge-Kutta-Munthe-Kaas solver for differentiable Lie
groups [73], adapted for stochastic differential equations.

APPENDIX B: STABILITY
AND THE UNITARITY NORM

Empirical observations have shown that the stability of
the CL evolution is closely associated with the “nonun-
itarity” of the field configuration [29]. This property is
typically quantified by the unitarity norm

F½U� ¼ 1

4NtN3
s

X
x;μ

Tr½ðUμðxÞU†
μðxÞ − 1Þ2�; ðB1Þ

where UμðxÞ∈ SLðNc;CÞ denote the link variables.
Unitary link configurations have a vanishing unitarity norm
F½U�¼0.
In all simulations, we initialize the field with identity

matrices Uμðx; θ ¼ 0Þ ¼ 1, thereby starting at F½U� ¼ 0.
Figure 8 shows the unitarity norm with respect to
Langevin time, averaged over all runs that we used to
evaluate the correlation function. We observe that reducing
the tilt angle leads to an increase in F½U�, indicating a
more challenging sign problem. Crucially, however, the
unitarity norm reaches a plateau after the thermalization of
the CL process for all tilt angles. This suggests that the
application of the anisotropic kernel in conjunction with
the gauge cooling procedure successfully stabilizes the
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simulations. Observables are measured when the plateau is
reached, and thermalization can be assumed. This region,
10 ≤ θ ≤ 20, is highlighted by the gray band in Fig. 8.
Simulations without the use of the anisotropic kernel

quickly converge to wrong results, or in the case of small
tilt angles, even become unstable. The latter is demon-
strated in Fig. 9, where we compare a “kerneled” and an
“unkerneled” CL process for tanðαÞ ¼ 1=96, leaving all
other numerical and physical parameters the same.

APPENDIX C: SIMULATING LONGER
PHYSICAL TIMES

In our previous work [54], we established that the
anisotropic kernel counteracts the increasing instabilities
encountered for shrinking tilt angles by tweaking the
anisotropy. Analogously, we can extend the simulated real

time at the same tilt angle by increasing the anisotropy. In
Fig. 10, we showcase this effect by using the magnetic
contribution to the energy density of Eq. (12) averaged over
time and space O≡ 1

NtN3
s

P
t;x Oðt;xÞ for a system with a

larger maximum real-time extent of tmax ¼ 2β as compared
to the system with tmax ¼ 1.5β studied in the main text. We
used the lattice anisotropy ξ≡ as=jatj ¼ 128 to stabilize
the simulations since ξ ¼ 16, as in the main text, is
insufficient. The blue and orange curves show the CL
trajectories of the real and imaginary parts of the magnetic
contribution of the energy density, respectively. The black
error band indicates the correct expectation value with the
statistical error computed via Euclidean Langevin simu-
lations. The expectation values of the CL simulation,
computed from the sampling range highlighted in gray,
are shown as bands in the respective colors for the real and
imaginary parts. The overlap of the bands shown in the
main panel and the insets suggests that the CL simulation
successfully reproduces the correct expectation value. This
confirms that the anisotropic kernel can be utilized to
perform CL simulations for longer physical times.

APPENDIX D: CLOVERLEAF DEFINITION
OF THE MAGNETIC ENERGY DENSITY

On the lattice, we obtain the field-strength tensor by
relating it to the plaquette variable

UμνðxÞ ¼ exp ½iaμaνFμνðxÞ þOða3Þ�: ðD1Þ

FIG. 8. Unitarity norm F½U� in (B1) as a function of the
Langevin time θ for different tilt angles of the simulated tilted
time contour. As the tilt angle decreases, higher levels of
nonunitarity are observed. Crucially, after a quick initial growth,
all simulations lead to a plateau of the unitarity norm. The area
highlighted by the gray background indicates where observables
are measured.

FIG. 9. Unitarity norm F½U� as a function of the Langevin time
θ with (dark purple line) and without (orange) the use of our
anisotropic kernel. Simulations without the kernel exhibit fast
growth and become unstable after a short time.

FIG. 10. Real (purple) and imaginary (orange) part of the
magnetic contribution to the energy densityO as a function of the
Langevin time θ for the larger real-time extent of tmax ¼ 2β and
tilt angle tanðαÞ ¼ 1=48 at the same coupling g ¼ 0.5. To obtain a
sufficient degree of stability, a lattice anisotropy of ξ ¼ 128 was
employed. The gray-shaded background indicates the sampling
region of the stochastic process for determining the expectation
values, which are indicated by blue and orange bands for the real
and imaginary parts. The correct value, obtained by Euclidean
simulations, is shown as a black error band. The CL simulations
show good agreement with the correct result.
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This allows us to determine the magnetic contribution to the
energy density as

Oðt;xÞ ¼ 1

2
Tr½Fijðt;xÞFijðt;xÞ�

≈ −
X
i<j

1

a2i a
2
j
Tr
�
PA

	
CijðxÞ



2
�
; ðD2Þ

with

PAðCÞ≡ 1

2

�
C − C−1 −

1

Nc
TrðC − C−1Þ

�
: ðD3Þ

For an SUðNcÞ matrix, this expression reduces to the anti-
Hermitian trace-zero part of C. The cloverleaf CμνðxÞ is
given by

CμνðxÞ ¼
1

4
½UμνðxÞ þ Uνð−μÞðxÞ

þUð−μÞð−νÞðxÞ þ Uð−νÞμðxÞ� ðD4Þ

and forms an average of four neighboring plaquettes. In
contrast to using the plaquettes themselves, this results in a
quantity that is defined on the lattice site x and reduces
lattice artifacts [74].
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