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Numerical studies of lattice quantum field theories are conducted in finite spatial volumes, typically with
cubic symmetry in the spatial coordinates. Motivated by these studies, this work presents a general
algorithm to construct multiparticle interpolating operators for quantum field theories with cubic symmetry.
The algorithm automates the block diagonalization required to combine multiple operators of definite linear
momentum into irreducible representations of the appropriate little group. Examples are given for
distinguishable and indistinguishable particles including cases with both zero and nonzero spin.
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I. INTRODUCTION

The determination of energy spectra is a central task in
numerical studies of lattice quantum field theories (QFTs)
and is the precursor to more complex studies of the
properties and interactions of the states in the theory. In
strongly-coupled field theories, very little is known about
the spectra a priori. However, analysis of the Euclidean-
time dependence of two-point correlation functions
between operators with the quantum numbers of the states
of interest provides an avenue for first-principles determi-
nations of spectra. This approach has been used to explore
many different field theories, most notably to determine the
low-energy excitations in the hadronic and nuclear spectra
in quantum chromodynamics (QCD), the theory of the
strong interactions. The wide-reaching goals and achieve-
ments of lattice QCD are summarized, e.g., in Refs. [1–6].
To construct correlation functions sensitive to the eigen-

states of a strongly-interacting theory such as QCD requires
the use of interpolating operators, composite objects built
from products of the elementary fields of the theory. In
numerical studies, the behavior of correlation functions

depends sensitively on the choice of interpolating operators
used in the calculation. To determine the energies of the
eigenstates most effectively, it is advantageous to project
these interpolating operators to particular symmetry sec-
tors, thereby reducing the number of states that contribute
to the corresponding correlation functions.
Numerical studies in lattice QFTs are usually performed

in a finite cubic spatial volume. In this setting, continuous
rotational symmetry is broken down to a discrete subgroup,
which (combined with spatial inversions) is the cubic
group, Oh. Moreover, provided translational symmetry is
preserved (e.g., via the use of periodic boundary condi-
tions), the total momentum of an energy eigenstate is a
conserved quantity which further reduces the spatial
symmetry. Specifically, the little group of rotations that
leave a given total momentum P invariant is the subgroup
GP ≤ Oh. Understanding the transformation properties of
states—and interpolating operators—under the cubic group
and its subgroups is thus critical in analysis of lattice QFT
calculations [7,8].
Multiparticle interpolating operators constructed in coor-

dinate space or through momentum projection typically
transform reducibly under these finite groups, obscuring the
transformation properties of energy eigenstates. However, it
is possible to decompose the operators into linear subspaces
that do not mix with each other and only transform
internally. A complete decomposition into these irreducible
representations (irreps) is possible for any set of operators
that is closed under the little group [9]. For example, suppose
an interpolating operator transforms under a reducible
representation labeled by s, with representation matrices
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DðsÞðRÞ for R∈GP. Decomposing the reducible represen-
tation into a direct sumof irrepsΓðsÞ ¼ Γa ⊕ Γb ⊕ � � �, there
exist block-diagonalization (or change-of-basis) matrices
UðsÞ specific to ΓðsÞ that enact the decomposition into irrep
matrices DðΓÞðRÞ according to

½UðsÞ�†DðsÞðRÞUðsÞ ¼ ⨁
i
DðΓiÞðRÞ: ð1Þ

After changing to the irrep basis, the transformation proper-
ties of multiparticle operators—and the states that they
create—are then simpler to understand. Previous work has
addressed the construction of lattice interpolating operators
for single baryons [10,11], single mesons [12], two-hadron
systems [13,14] with arbitrary spin and momenta [15,16],
and three-boson systems [17]. These results cover the
construction of local and extended operators with definite
cubic transformation properties, aswell as their combination
into irreps of the relevant little group in cases of up to three
local operators.
The present work provides a concrete algorithm and a

numerical implementation [18] that carries out the block
diagonalization for any product ofN operators with definite
momentum, spin, and permutation properties. Each oper-
ator can be a point-like operator, a smeared or extended
operator, or an even more general construction. It is further
shown that the block-diagonalization matrices can be
determined for all N by enumerating a small set of
examples. For spin-zero operators, only examples from
N ¼ 1 and N ¼ 2 operators are required to specify the
decomposition for general N. Additional internal sym-
metries such as flavor, as well as any combination of
fermionic and bosonic operator-exchange symmetries, can
be incorporated with a simple extension of the formalism
that is also described herein.
The remainder of this article is organized as follows.

Section II lays out the formalism for building the
block-diagonalization matrices for the simple case of N
distinguishable, spin-zero operators. Section III addresses
distinguishable operators with spin, including a generic
method for calculating block-diagonalization matrices; con-
crete results are given for several examples. Section IV
presents the generalization of this construction to operators
involving internal symmetries or identical particles.
Section V collects the formalism of the preceding sections
to give the complete block-diagonalization algorithm.
Finally, Sec. VI provides an outlook. The appendices specify
group-theoretical conventions, discuss the method of polari-
zation tensors for evaluating irrep matrices, and give explicit
examples of the block-diagonalization matrices appearing
in Eq. (1).

II. DISTINGUISHABLE SPIN-ZERO OPERATORS

Consider a lattice QFT defined on a geometry whose
spatial structure is a periodic cubic lattice Λ with volume

V ¼ L3, lattice spacing a, and with associated Hilbert
space H and vacuum state jΩiH ∈H.1 The spatial sym-
metry group is therefore the cubic group, Oh. In the
following, all quantities will be given in lattice units with
a ¼ 1, where Λ ∼ ðZLÞ3.
Multiparticle states can be created by acting on the

vacuum with interpolating operators with the quantum
numbers of the desired states. Often, products of N local
operators serve as useful interpolating operators for multi-
particle states. Such a product may generically be written as
O1ðx1Þ � � �ONðxNÞ, where the labels x1;…; xN ∈Λ indi-
cate three-vector coordinates of spatial lattice sites. The
operators Oi are built from the fundamental fields in the
theory and need not be distinguishable. For simplicity,
the initial discussion will focus on distinguishable oper-
ators transforming as scalars under spatial rotations, in
which case only the coordinates x1;…; xN of the operators
transform under the spatial symmetry group. The extension
to operators with nonzero spin or composite operators with
nontrivial Oh-transformation properties is addressed in
Sec. III. The extension to indistinguishable operators is
addressed in Sec. IV.
For a fixed list of N local operators, O1;…;ON , this

work investigates the transformation properties of linear
combinations of products constructed via

X
x1 ∈Λ

� � �
X
xN ∈Λ

cðx1;…; xNÞO1ðx1Þ � � �ONðxNÞ; ð2Þ

where the cðx1;…; xNÞ∈C are VN arbitrary coefficients.2

Acting on the vacuum with any such linear combination
yields a state

jψiH
≡ X

x1 ∈Λ
� � �

X
xN ∈Λ

cðx1;…;xNÞO1ðx1Þ � � �ONðxNÞjΩiH: ð3Þ

Invariance of the vacuum state under spatial rotations
means that any such jψiH inherits the transformation
properties of the multiparticle operator itself.
The space defined by the coefficients cðx1;…; xNÞ forms

a VN-dimensional vector space which will be denoted V.
A symbolic (position-space) basis for V consists of the
vectors jx1;…; xNi for each choice of fxi ∈Λg. These

1The temporal geometry (discrete or continuous) and the
spacetime metric (Euclidean or Minkowski) are left unspecified
because the classification of operator representations under
spatial rotations/translations is insensitive to these choices.

2In a continuum theory,
P

xi ∈Λ is replaced with
R Q

i d
3xi and

cðx1;…; xNÞ should be replaced by a continuous field over N
coordinates, but otherwise the formalism developed in this work
applies.
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basis vectors are defined to be orthonormal with respect to
the inner product on V,

hx01;…; x0N jx1;…; xNi ¼ δx0
1
;x1 � � � δx0N;xN : ð4Þ

To avoid ambiguity, elements of the abstract space V are
written with unadorned kets, while quantum states such as
jΩiH or jψiH carry a subscript. Since the list of operators is
fixed, each vector in V is associated uniquely with an
interpolating operator by the linear map L∶ jx1;…; xNi ↦
O1ðx1Þ � � �ONðxNÞ.
A useful starting point for the decomposition of a state

jψiH into subspaces that transform irreducibly under spatial
symmetries is the plane-wave basis of V, defined by vectors

jn1;…; nNi
≡ X

x1 ∈Λ
� � �

X
xN ∈Λ

ei
2π
Ln1·x1 � � � ei2πLnN ·xN jx1;…; xNi; ð5Þ

for each possible (ordered) set of wave vectors
fni ∈ ðZLÞ3g.3 Here, the distinction between the posi-
tion-space and plane-wave bases is made by the use of
the letters x and n, respectively. Since there is a one-to-one
mapping between wave vectors ni and momenta ð2π=LÞni,
these terms will be used interchangeably for the wave
vectors ni. Each vector jn1;…; nNi is associated with a
plane-wave interpolating operator,

Õ1ðn1Þ � � � ÕNðnNÞ
≡ X

x1 ∈Λ
� � �

X
xN ∈Λ

ei
2π
Ln1·x1O1ðx1Þ � � � ei2πLnN ·xNONðxNÞ: ð6Þ

The position-space basis vectors jx1;…; xNi and plane-
wave basis vectors jn1;…; nNi have simple transformation
properties underOh and its subgroups. Each group element
R∈Oh can be specified by its action on arbitrary three-
vectors x∈Λ, i.e., with each group element defined as a
unique orthogonal 3 × 3 matrix, R∈Oh ≤ Oð3Þ. A con-
crete specification of these matrices is presented in
Appendix A. When acting on vectors in V, the abstract
operator associated with rotation R will be denoted
DðRÞ. Its action on the position-space basis vectors is
given by

DðRÞjx1;…; xNi ¼ jRx1;…; RxNi ð7Þ

and extends linearly to the rest of V, including to the plane-
wave basis vectors, which transform as

DðRÞjn1;…; nNi ¼ jRn1;…; RnNi ð8Þ

based on their definition in Eq. (5). Through the map L
[defined following Eq. (4)], this defines the action of
rotations on the corresponding interpolating operators.
The remainder of this section proceeds as follows.

First, Sec. II A constructs the reducible representations
associated with interpolating operators in the form of
Eq. (6) for distinguishable spin-zero operators. Second,
Sec. II B reviews the irreps of the cubic group and its
subgroups. Section II C presents the algorithm for con-
structing the block-diagonalization matrices that change
basis from the interpolating operators in Eq. (6) into
operators that transform irreducibly. Section II D discusses
a classification of cases with identical block-diagonaliza-
tion matrices using the stabilizer groups of specific
momenta, and finally Sec. II E presents examples of the
block-diagonalization that are sufficient to implement this
process for any number of spin-zero operators.

A. Momentum orbits and their representations

To construct the reducible representations associated
with plane-wave interpolating operators, the space V is
systematically decomposed into subspaces associated with
momentum orbits, i.e., sets of plane-wave momenta closed
under little-group transformations. These subspaces,
labeled by s, each correspond to a definite total momentum
P and carry a reducible representation ΓðsÞ of the little
group GP. The representation matrices DðsÞðRÞ take a
simple form and are explicitly constructed below.
Given a plane wave jn1;…; nNi∈V, the total momen-

tum is P ¼ 2π
L

P
i ni. The ordered list of wave vectors

defining the basis state jn1;…; nNi is denoted by
½n1;…; nN � and will be used to define momentum orbits
below. The set of such lists of wave vectors can be
partitioned into disjoint subsets KP of fixed total momen-
tum P,

KP ≡
�
½n1;…; nN �∶

2π

L

X
i

ni ¼ P

�
: ð9Þ

For each total momentum P, the associated little group is
defined as the subgroup GP ≤ Oh that leaves P invariant,

GP ≡ fR∈Oh∶RP ¼ Pg: ð10Þ

The possible little groups, up to equivalence under rotation
of the total momentum, are denoted C4v, C3v, C2v, CR

2 , C
P
2 ,

and C1 following the notation of Ref. [9], where Cnv is the
symmetry group of the n-gon with 2n elements and Cn is
the cyclic group with n elements. The little groups CR

2 and
CP
2 both have the group structure of C2, but appear as little

groups for inequivalent choices of total momenta. Details
of these groups are presented in Appendix A; note that to
match these definitions the little group may need to be3In a continuum theory, ZL is replaced with Z.
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rotated (by conjugation) so that the total momentum aligns
with the present conventions.
By construction, the space KP is closed under the action

of the little groupGP. However, it can be further partitioned
into minimal invariant subsets that are closed under the

action of GP. These momentum orbits, denoted by KðsÞ
P , are

constructed by computing the sets

KðsÞ
P ≡ fR · ½n1;…; nN �∶R∈GPg ⊆ KP; ð11Þ

where R · ½n1;…; nN � ¼ ½Rn1;…; RnN �. Here, s is an
abstract label distinguishing inequivalent subsets; the label
s can also be defined concretely with one representative or

fiducial list of wave vectors per orbit. Two examples of KðsÞ
P

are given by the orbits of the wave vectors ½n1; n2� ¼
½ð0; 0; 1Þ; ð0; 0;−1Þ� and ½n1; n2� ¼ ½ð0; 2; 1Þ; ð0;−2;−1Þ�
with GP ¼ Oh as these cases both have vanishing total
momentum.
It is useful to provide a conventional way of ordering the

elements of a given momentum orbit. First, select a fiducial
arrangement of momenta ½n1;…; nN �. With P being the
total momentum defined by the fiducial momenta, let
½R1;…; Rn�, with n ¼ jGPj, denote the fixed ordering of
the elements of little group GP given in Appendix A.4 The

orbit KðsÞ
P then inherits its ordering from the little group via

Eq. (11), with the group elements acting in order on the

fiducial arrangement of momenta. The mth element of KðsÞ
P

in this conventional ordering will be denoted by

½n1;…; nN �ðsÞm so that the set can be equivalently written as

KðsÞ
P ¼ f½n1;…; nN �ðsÞm ∶ m∈ f1; 2;…; jKðsÞ

P jgg: ð12Þ
The partitioning into momentum orbits gives rise to a

corresponding decomposition of the space of interpolating
operators. For convenience, the plane-wave vector in V
associated with themth list of wave vectors within the orbit
labeled by s is denoted by

js;mi≡ j½n1;…; nN �ðsÞm i: ð13Þ

It bears emphasis that each momentum orbit KðsÞ
P is defined

in terms of a particular total momentum P with little group
GP; this dependence is left implicit in the notation js;mi.
Each orbit defines an invariant subspace

VðsÞ
P ≡ spanfjs;mi∶m∈ f1; 2;…; jKðsÞ

P jgg ⊂ V ð14Þ

satisfying

DðRÞVðsÞ
P ¼ VðsÞ

P ; for R∈GP: ð15Þ

These subspaces are linearly independent and jointly
compose the full space,

V ¼ ⨁
P;s

VðsÞ
P ; ð16Þ

where the sum ranges over all possible total momenta P and
(for a given P) over all distinct orbits labeled by s.
The vectors in VðsÞ

P inherit their transformation properties
from the plane waves,

DðRÞjs;mi ¼ jR · ½n1;…; nN �ðsÞm i ¼ js;m0i; ð17Þ
which extends by linearity to the entire space. Each element

R∈GP permutes the basis vectors of VðsÞ
P due to the

invariance property Eq. (15) and therefore acts as a linear

operator VðsÞ
P → VðsÞ

P with matrix elements

DðsÞ
m0mðRÞ≡ hs;m0jDðRÞjs;mi∈ f0; 1g: ð18Þ

These matrices are precisely the representation matrices
DðsÞ appearing in Eq. (1). The superscript on DðsÞ empha-
sizes the block-diagonal nature of this representation within
the larger space V, since distinct momentum orbits do not
mix under the cubic group. Each such space therefore
forms a (generally reducible) representation which will be
denoted by ΓðsÞ.

B. Irreducible representations

The irreps Γ of Oh and the irreps of its subgroups have
been previously cataloged in many places. Following
Ref. [9], such representations are completely specified

by basis vectors jBðΓÞ
μ i, where μ∈ f1;…; jΓjg labels the

rows of the irrep Γ. The basis vectors can be written in an

abstract coordinate space as basis functions hrjBðΓÞ
μ i ¼

BðΓÞ
μ ðrÞ on the unit sphere, in terms of the normalized

three-vector coordinate r≡ ðx; y; zÞT ∈R3, with jrj ¼ 1.
The basis functions used in this work, for the irreps of Oh
and its subgroups, are specified in Table I. Additional
details related to the choice of basis functions are described
in Appendix A.
For the present work, the primary utility of the basis

functions is in defining the irrep matrices DðΓÞðRÞ appear-
ing in the block diagonalization of Eq. (1). For instance,
given the basis functions, the matrix representation asso-
ciated with R∈GP in irrep Γ can be computed as

DðΓÞ
μ0μðRÞ ¼

1

NðΓÞ hB
ðΓÞ
μ0 jDðRÞjBðΓÞ

μ i

¼ 1

NðΓÞ

Z
dΩhBðΓÞ

μ0 jrihrjDðRÞjBðΓÞ
μ i

¼ 1

NðΓÞ

Z
dΩBðΓÞ�

μ0 ðrÞBðΓÞ
μ ðR−1rÞ; ð19Þ4Through the present work, jXj indicates the number of

elements in the set X.
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TABLE I. Basis functions hrjBðΓÞ
μ i ¼ BðΓÞ

μ ðrÞ used in this work for the irreps of the cubic group Oh and its
subgroups. As indicated, basis functions for the irreps of the subgroups C4v, C3v, C2v, CR

2 , C
P
2 , and C1 can be written

in terms of the basis functions of irreps of Oh. The final column indicates the z component of the SOð3Þ angular
momentum operator modulo 4, denoted by lz.

Group Irrep μ Basis function BðΓÞ
μ ðrÞ Notes

Oh Aþ
1

1 1ffiffi
3

p ðx2 þ y2 þ z2Þ lz ¼ 0

Oh Aþ
2

1 1ffiffi
6

p ½x4ðy2 − z2Þ þ y4ðz2 − x2Þ þ z4ðx2 − y2Þ� lz ¼ 2

Oh Eþ 1 1ffiffi
6

p ð2z2 − x2 − y2Þ lz ¼ 0

Oh Eþ 2 1ffiffi
2

p ðx2 − y2Þ lz ¼ 2

Oh Tþ
1

1 1ffiffi
2

p xyðx2 − y2Þ lz ¼ 0

Oh Tþ
1

2 1
2
½−yzðy2 − z2Þ þ izxðz2 − x2Þ� lz ¼ 1

Oh Tþ
1

3 1
2
½yzðy2 − z2Þ þ izxðz2 − x2Þ� lz ¼ 3

Oh Tþ
2

1 1ffiffi
2

p ð−zxþ iyzÞ lz ¼ 1

Oh Tþ
2

2 −ixy lz ¼ 2

Oh Tþ
2

3 1ffiffi
2

p ðzxþ iyzÞ lz ¼ 3

Oh A−
1 1 1ffiffi

6
p xyz½x4ðy2 − z2Þ þ y4ðz2 − x2Þ þ z4ðx2 − y2Þ� lz ¼ 0

Oh A−
2 1 xyz lz ¼ 2

Oh E− 1 1ffiffi
2

p xyzðx2 − y2Þ lz ¼ 0

Oh E− 2 − 1ffiffi
6

p xyz½2z2 − x2 − y2� lz ¼ 2

Oh T−
1 1 z lz ¼ 0

Oh T−
1 2 1ffiffi

2
p ð−xþ iyÞ lz ¼ 1

Oh T−
1 3 1ffiffi

2
p ðxþ iyÞ lz ¼ 3

Oh T−
2 1 1

2
½−yðz2 − x2Þ þ ixðy2 − z2Þ� lz ¼ 1

Oh T−
2 2 − iffiffi

2
p zðx2 − y2Þ lz ¼ 2

Oh T−
2 3 1

2
½yðz2 − x2Þ þ ixðy2 − z2Þ� lz ¼ 3

C4v A1 1 B
ðOh;A

þ
1
Þ

1 ðrÞ
C4v A2 1 B

ðOh;A−
1
Þ

1 ðrÞ
C4v B1 1 BðOh;EþÞ

2 ðrÞ
C4v B2 1 B

ðOh;T
þ
2
Þ

2 ðrÞ
C4v E 1 −xz ¼ 1ffiffi

2
p ðBðOh;T

þ
2
Þ

1 ðrÞ − B
ðOh;T

þ
2
Þ

3 ðrÞÞ
C4v E 2 −yz ¼ iffiffi

2
p ðBðOh;T

þ
2
Þ

1 ðrÞ þ B
ðOh;T

þ
2
Þ

3 ðrÞÞ
C3v A1 1 B

ðOh;A
þ
1
Þ

1 ðrÞ
C3v A2 1 B

ðOh;A
þ
2
Þ

1 ðrÞ
C3v E 1 BðOh;EþÞ

1 ðrÞ
C3v E 2 BðOh;EþÞ

2 ðrÞ
C2v A1 1 B

ðOh;A
þ
1
Þ

1 ðrÞ
C2v A2 1 B

ðOh;A−
1
Þ

1 ðrÞ
C2v B1 1 B

ðOh;A−
2
Þ

1 ðrÞ
C2v B2 1 B

ðOh;A
þ
2
Þ

1 ðrÞ
CR
2

A 1 B
ðOh;A

þ
1
Þ

1 ðrÞ
CR
2

B 1 B
ðOh;A−

1
Þ

1 ðrÞ
CP
2

A 1 B
ðOh;A

þ
1
Þ

1 ðrÞ
CP
2

B 1 B
ðOh;A

þ
2
Þ

1 ðrÞ
C1 A 1 B

ðOh;A
þ
1
Þ

1 ðrÞ
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where the integration is over the solid-angle measure on the
unit sphere, i.e., dΩ≡ drδðjrj − 1Þ, and the normalization
constant is

NðΓÞ ¼
Z

dΩBðΓÞ�
μ ðrÞBðΓÞ

μ ðrÞ; ð20Þ

with no summation over μ (by construction, all rows of a
given irrep are identically normalized so NðΓÞ does not
carry a row index). The action of a little group trans-
formation therefore corresponds to right multiplication of
basis vectors,

DðRÞjBðΓÞ
μ i ¼

X
μ0
jBðΓÞ

μ0 iDðΓÞ
μ0μðRÞ: ð21Þ

In explicit calculations, it is convenient to recast the
integral in Eq. (19) algebraically using polarization tensors
as discussed in Appendix B.

C. Block diagonalization

Elements of the momentum orbit KðsÞ
P transform in the

reducible representation ΓðsÞ, which can be decomposed
into a direct sum of irreps

ΓðsÞ ¼ Γ1 ⊕ … ⊕ Γ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k1 copies

⊕ Γ2 ⊕ … ⊕ Γ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k2 copies

⊕ � � � : ð22Þ

Above, Γ1;Γ2;… label the distinct irreps of the group GP,
with each Γi appearing with multiplicity ki ≥ 0 in the
decomposition of the momentum-orbit representation. This
decomposition into irreps induces an associated decom-

position of the vector space VðsÞ
P associated with KðsÞ

P into
subspaces that each transform according to a given irrep:

VðsÞ
P ¼ VðΓ1;sÞ ⊕ VðΓ2;sÞ ⊕ � � � ; ð23Þ

where dependence on P is left implicit on the right-hand
side. Due to the potential for degenerate copies of irreps,5

each summand VðΓi;sÞ has dimension ki · jΓij. Methods
for constructing operators that project this space into
particular irrep rows have been used in many previous
studies [10–17]. However, only cases where irreps have
relatively small multiplicities (1–2) have been considered,
and general methods for consistently decomposing spaces
where irreps have arbitrary multiplicities have not been
discussed.

To separate the ki degenerate copies of each irrep Γi, it is
helpful first to decompose each space VðΓi;sÞ into sectors
associated with the individual rows μ of the irrep Γi as

VðΓi;sÞ ¼ ⨁μV
ðΓi;sÞ
μ . Any set of ki linearly independent

vectors in VðΓi;sÞ
μ , which can be labeled as

fjs;Γi; κ; μi∶κ∈ f1;…; kigg; ð24Þ

provide a basis for this space,

VðΓi;sÞ
μ ¼ spanfjs;Γi; κ; μi∶κ∈ f1;…; kigg: ð25Þ

If a consistent set of ki basis vectors is chosen for all μ, the
transformation properties of the basis vectors follow from
Eq. (21),

DðRÞjs;Γi; κ; μi ¼
X
μ0
js;Γi; κ; μ0iDðΓiÞ

μ0μ ðRÞ; ð26Þ

where the irrep matrices DðΓiÞ
μ0μ ðRÞ for R∈GP are defined as

described in Sec. II B. The explicit construction of such a
basis is detailed below. Note that the labeling of degenerate
copies of irreps by κ is not unambiguously specified. A
particular choice will be made in the following construction.
The unitary matrix UðsÞ that transforms from the reduc-

ible momentum-orbit basis fjs;mig to the irrep basis
fjs;Γi; κ; μig is defined by its elements

UðΓi;κ;sÞ
mμ ≡ hs;mjs;Γi; κ; μi; ð27Þ

where κ∈ f1;…; kig, μ∈ f1;…; jΓijg, and the total
momentum P is left implicit. In particular, these matrices
enact the block diagonalization anticipated by Eq. (1),

DðΓiÞ
μμ0 ðRÞ ¼

X
m;m0

½UðΓi;κ;sÞ
mμ ��DðsÞ

mm0 ðRÞUðΓi;κ;sÞ
m0μ0 ð28Þ

¼ ð½UðsÞ�†DðsÞðRÞUðsÞÞμμ0 : ð29Þ

Although the labels Γi and κ appear as superscripts labeling

the choice of irrep, UðsÞ is indeed a unitary jKðsÞ
P j × jKðsÞ

P j
matrix ifm is taken as a row index and the indices Γi, κ, and
μ are enumerated jointly as a column index.
The change-of-basis matrix UðsÞ for each momentum

orbit can be constructed explicitly using Schur’s lemma,
which says6

jΓj
jGPj

X
R∈GP

DðΓÞ
μν ðRÞ�DðΓ0Þ

μ0ν0 ðRÞ ¼ δΓΓ0δμμ0δνν0 ð30Þ
5Here and below, “degenerate” is used to describe situations

where multiple copies of an irrep appear in a given momentum-
orbit representation. In Hilbert space, the physical states asso-
ciated with these operators are not necessarily degenerate in the
sense of having the same energy.

6Written in this form, Schur’s lemma is sometimes referred to
as the wonderful orthogonality theorem [9].
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for arbitrary irreps Γ and Γ0. For each irrep Γi of the
little group GP, it is convenient to define a projection
operator

ΠðΓi;sÞ
μ ∶ VðsÞ

P → VðΓi;sÞ
μ ; ð31Þ

ΠðΓi;sÞ
μ ≡ jΓij

jGPj
X
R∈GP

DðΓiÞ
μμ ðRÞ�DðRÞ; ð32Þ

with no sum on μ implied and with matrix elements

ðΠðΓi;sÞ
μ Þm0m ¼ hs;m0jΠðΓi;sÞ

μ js;mi ð33Þ

¼ jΓij
jGPj

X
R∈GP

DðΓiÞ
μμ ðRÞ�DðsÞ

m0mðRÞ: ð34Þ

This projector onto a given row μ of the irrep Γi is closely
related to the desired change-of-basis matrices:

ðΠðΓi;sÞ
μ Þm0m ¼

Xki
κ¼1

hs;m0js;Γi; κ; μihs;Γi; κ; μjs;mi ð35Þ

¼
Xki
κ¼1

UðΓi;κ;sÞ
m0μ ½UðΓi;κ;sÞ

mμ ��: ð36Þ

The first equality follows from Schur’s lemma after
insertions of the identity, 1 ¼ P

Γ;κ;μ js;Γ; κ; μihs;Γ; κ; μj.
By unitarity of the change-of-basis matrices, the projection

operators ΠðΓi;sÞ
μ are idempotent.

The change-of-basis matrix elements UðΓi;κ;sÞ
mμ can be

extracted by suitable orthogonalization of the rows of

ðΠðΓi;sÞ
μ Þm0m. The choice of an orthogonalization scheme,

e.g., a Gram-Schmidt procedure, fixes the otherwise
ambiguous κ labeling of degenerate copies of each irrep.
Degenerate copies must be orthogonalized consistently

for all rows μ within each irrep in order to achieve the
simple transformation rule in Eq. (26).7 A natural pre-
scription is first to orthonormalize the μ ¼ 1 rows within
each irrep and then to use transition operators to move
between the remaining rows. Schur’s lemma applied to the
off-diagonal elements of the rotational irrep matrices
furnishes the transition operators,

TðΓi;sÞ
μν ≡ jΓij

jGPj
X
R∈GP

DðΓiÞ
μν ðRÞ�DðRÞ; ð37Þ

ðTðΓi;sÞ
μν Þm0m ≡ jΓij

jGPj
X
R∈GP

DðΓiÞ
μν ðRÞ�DðsÞ

m0mðRÞ; ð38Þ

¼
Xki
κ¼1

UðΓi;κ;sÞ
m0μ ½UðΓi;κ;sÞ

mν ��: ð39Þ

By definition, TðΓi;sÞ
μμ ≡ ΠðΓi;sÞ

μ . The transition operators are

Hermitian, ½TðΓi;sÞ
μν �† ¼ TðΓi;sÞ

νμ , and satisfy

X
m0

ðTðΓi;sÞ
μν Þmm0 ðTðΓi;sÞ

ρσ Þm0n ¼ δνρðTðΓi;sÞ
μσ Þmn; ð40Þ

which follows from unitarity of the change-of-basis matri-
ces. Likewise, it follows from Eq. (39) and unitarity of the
change-of-basis matrices that the transition operators relate
the different rows μ and ν,

UðΓi;κ;sÞ
mμ ¼

X
n

ðTðΓiÞ;s
μν ÞmnU

ðΓi;κ;sÞ
nν ; ð41Þ

for fixed μ, ν, which allows all elements of the change-of-
basis matrices to be determined once those with μ ¼ 1
are known.

D. Stabilizer subgroups

The block-diagonalization matrices for many different
momentum orbits can be demonstrated to be identical using
general arguments from group theory. The construction and

ordering of a momentum orbitKðsÞ
P are always performed in

terms of a fiducial list of plane waves, with the associated
set of wave vectors denoted by i≡ ½n1;…; nN �. The
stabilizer subgroup of the little group GP can then be

defined as the subgroup of rotations HðsÞ
P ≤ GP that leave i

invariant. For any particular i, the stabilizer is easily
identified by acting with all elements of the (finite) little
group GP. By construction, each stabilizer subgroup is one
of the finite groups listed after Eq. (10).
The orbit-stabilizer theorem then implies that elements

of the momentum orbit are in one-to-one-correspondence
with the left cosets of HðsÞ

P [19],

KðsÞ
P ¼ fR · i∶R∈GPg

↔ fRjH
ðsÞ
P ∶j∈ f1; 2;…jKðsÞ

P jgg; ð42Þ

because the rotations in each coset map the fiducial arrange-

ment i to a single, unique element inKðsÞ
P . In Eq. (42), the jth

coset is defined asRjH
ðsÞ
P ≡ fRjh∶h∈HðsÞ

P gwhereRj ∈GP

is a representative element of the coset. Acting from the left

7For example, applying the Gram–Schmidt procedure to each
row of ðΠðΓi ;sÞ

μ Þm0m independently would lead to a more cumber-
some transformation rule in which states js;Γ; κ; μi are mapped
by the action of R∈GP to linear combinations of states
js;Γ; κ0; μ0i including those with κ0 ≠ κ. The coefficients of these
linear combinations would need to be computed separately for
each momentum orbit and would generically depend upon s, κ,
and κ0 as well as Γ, μ, and μ0.
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with a group element R0 permutes the cosets on the right of
Eq. (42) in the same way as the states on the left of Eq. (42).

Once HðsÞ
P is determined from i, the full structure of the

momentum orbit is encoded in the right-hand side and the
details of the fiducial state i no longermatter. Thismeans that
if twodistinctmomentumorbits, labeled by s and s0, share the
same little group GP and stabilizer group HðsÞ

P ¼ Hðs0Þ
P , they

transform identically under GP, i.e.,

DðsÞ
m0mðRÞ ¼ Dðs0Þ

m0mðRÞ ð43Þ

for all m;m0 ∈ f1;…; jKðsÞ
P jg and each element R∈GP. As

such, the block diagonalization to irreps of the cubic group
can also be achieved with the same set of matrices.

Conjugating HðsÞ
P by some element R∈GP, HðsÞ

P →

R−1HðsÞ
P R, is equivalent to rotating the basis states to pick

a different fiducial state in the same orbit, which amounts to
reordering the basis states. This means that irrep decom-
positions need only be performed for one subgroup within
each conjugacy class of subgroups of GP. The block-
diagonalization matrices for other subgroups in the same
class are related by reordering the columns.
When all operators are distinguishable, the structure of

the stabilizer group HðsÞ
P is also severely restricted. The

stabilizer group HðsÞ
P associated with products of N dis-

tinguishable operators must be the intersection of a set of
individual little groups GP1

;…GPN
⊂ Oh, where each GPj

is the little group of the wave vector of the jth operator.
These intersections can be shown to give other—identical
or smaller—finite groups in every case. Cataloging all two-
operator cases, for which all of the finite groups listed after
Eq. (10) appear as stabilizer groups, thus already deter-
mines the wave functions for all possible distinguishable-
particle operators. For cases with N > 2 operators, iden-

tifying the stabilizer group HðsÞ
P allows one to select the

appropriate block-diagonalization matrices already con-
structed from specific examples in the two-operator case.
The fact that two-operator cases already give rise to all
possible change-of-basis matrices is specific to the case of
distinguishable spin-zero operators and does not hold in the
cases of nonzero spin; however, analogous stabilizer group
considerations still restrict the distinct change-of-basis
matrices to a finite number once the spin and permutation
properties of all operators are specified, as described in
Secs. III and IV below.

E. Complete classification for N distinguishable
spin-zero particles

As discussed in Sec. II D, for distinguishable spin-zero
particles, solving the block-diagonalization problem for
two operators in fact solves the generic N-operator

problem. Solution of the two-operator problem is divided
into two steps:
(1) Enumerate the little groups and stabilizer groups

associated with all possible two-body momenta.
(2) Compute the block-diagonalization matrices UðsÞ in

each case [cf. Eq. (1)].
The remainder of this section classifies possible two-body
momentum configurations and their associated little groups
andstabilizers.Theresultsof thisclassificationaresummarized
in Table II. The block-diagonalization matrices UðsÞ can be
computed using the method described in Sec. II C. Subsets of
these results have previously been presented in Refs. [13,14].

1. Rest-frame systems

In the rest frame, all seven conjugacy classes of little

groups can act as stabilizer subgroups HðsÞ
P within the total

symmetry group Oh. The stabilizer subgroups and repre-
sentative choices of rest-frame momenta ½n� or ½n1; n2�
corresponding to N ∈ f1; 2g distinguishable particles
stabilized by the group are given by:

(i) HðsÞ
P ¼ Oh: ½n� ¼ ½ð0; 0; 0Þ�

(ii) HðsÞ
P ¼ C4v: ½n1; n2� ¼ ½ð0; 0; nÞ; ð0; 0;−nÞ�

(iii) HðsÞ
P ¼ C3v: ½n1; n2� ¼ ½ðn; n; nÞ; ð−n;−n;−nÞ�

(iv) HðsÞ
P ¼ C2v: ½n1; n2� ¼ ½ð0; n; nÞ; ð0;−n;−nÞ�

(v) HðsÞ
P ¼ CR

2 : ½n1; n2� ¼ ½ð0; m; nÞ; ð0;−m;−nÞ�
(vi) HðsÞ

P ¼ CP
2 : ½n1; n2� ¼ ½ðm; n; nÞ; ð−m;−n;−nÞ�

(vii) HðsÞ
P ¼ C1: ½n1; n2� ¼ ½ðm; l; nÞ; ð−m;−l;−nÞ�.

Examples of explicit block-diagonalization matrices for
rest-frame systems are tabulated in Appendix C, following
the conventions described in Appendix A.

2. Boosted systems

Boosted systems can be analyzed similarly to rest-frame
systems. First, one identifies for each little group GP a
representative total momentum P. Second, one identifies all

(conjugacy classes of) subgroupsHðsÞ
P of the little groupGP

which are compatible with stabilizing a set of plane waves.
Representative examples for all valid choices of GP and

HðsÞ
P can be chosen as follows:
(1) GP ¼ C4v: P ¼ 2π

L ð0; 0; nÞ
(a) HðsÞ

P ¼ C4v: ½n� ¼ ½ð0; 0; nÞ�
(b) HðsÞ

P ¼ CR
2 : ½n1; n2� ¼ ½ð0; m; nÞ; ð0;−m; 0Þ�

Note that CR
2 appears in noncanonical form here

as the set of reflections of the x axis.
(c) HðsÞ

P ¼ CP
2 : ½n1; n2� ¼ ½ðm;m; nÞ; ð−m;−m; 0Þ�

(d) HðsÞ
P ¼ C1: ½n1; n2� ¼ ½ðm; l; nÞ; ð−m;−l; 0Þ�,

(2) GP ¼ C3v: P ¼ 2π
L ðn; n; nÞ

(a) HðsÞ
P ¼ C3v: ½n� ¼ ½ðn; n; nÞ�

(b) HðsÞ
P ¼ CP

2 : ½n1; n2� ¼ ½ðn; n; 0Þ; ð0; 0; nÞ�
(c) HðsÞ

P ¼ C1: ½n1;n2� ¼ ½ðnþm;n;0Þ; ð−m;0; nÞ�,
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(3) GP ¼ C2v: P ¼ 2π
L ð0; n; nÞ

(a) HðsÞ
P ¼ C2v: ½n� ¼ ½ð0; n; nÞ�

(b) HðsÞ
P ¼ CR

2 : ½n1; n2� ¼ ½ð0; 0; nÞ; ð0; n; 0Þ�
(c) HðsÞ

P ¼ CP
2 : ½n1; n2� ¼ ½ð−m; n; nÞ; ðm; 0; 0Þ�

(d) HðsÞ
P ¼ C1: ½n1;n2� ¼ ½ð−m; 0; nÞ; ðm; n; 0Þ�,

(4) GP ¼ CR
2 : P ¼ 2π

L ðn;m; 0Þ
(a) HðsÞ

P ¼ CR
2 : ½n1� ¼ ½ðn;m; 0Þ�

(b) HðsÞ
P ¼ C1: ½n1;n2� ¼ ½ðn; 0; lÞ; ð0; m;−lÞ�,

(5) GP ¼ CP
2 : P ¼ 2π

L ðn; n;mÞ
(a) HðsÞ

P ¼ CP
2 : ½n1� ¼ ½ðn; n;mÞ�

(b) HðsÞ
P ¼ C1: ½n1;n2� ¼ ½ðn; 0; 0Þ; ð0; n; mÞ�,

(6) GP ¼ C1: P ¼ 2π
L ðn;m; pÞ

(a) HðsÞ
P ¼ C1: ½ðn;m; pÞ�.

III. OPERATORS WITH SPIN

This section extends the discussion of the previous
section to operators with nonzero spin. Since operators
with half-integer spin transform in representations of SUð2Þ
(the double cover of SOð3Þ) instead of SOð3Þ in an
unbounded, continuous three-dimensional space, nonzero
spin introduces the complication that the relevant symmetry
group in a cubic lattice is OD

h (the double cover of Oh),

rather than Oh. Consequently, the procedures discussed
above must be generalized. The approach taken here is to
decompose operators into irreps of the cubic group (and its
double cover) using the projection method applied to the
full momentum-spin space.8

Extended operators involving fields evaluated at multiple
lattice sites can also have nontrivial “internal” cubic
transformation properties in addition to the transformation
of the coordinate xi of each operator. The same formalism
presented in this section for particles with spin can be
applied to the case of extended operators with such
properties by replacing spinor representation matrices with

TABLE II. The complete solution to the N-body block diagonalization problem for distinguishable spin-zero operators. The solution

follows from classifying the possible combinations of little groups GP and stabilizers HðsÞ
P arising in the two-body case. Example states

are denoted by jπðn1Þ; Kðn2Þi, as πK operator construction provides a simple example of two distinguishable, spin-zero operators.

GP HðsÞ
P Example state Orbit dim Irrep decomposition

Oh Oh jπð0; 0; 0Þ; Kð0; 0; 0Þi 1 Aþ
1

Oh C4v jπð0; 0; 1Þ; Kð0; 0;−1Þi 6 Aþ
1 ⊕ Eþ ⊕ T−

1

Oh C2v jπð0; 1; 1Þ; Kð0;−1;−1Þi 12 Aþ
1 ⊕ Eþ ⊕ Tþ

2 ⊕ T−
1 ⊕ T−

2

Oh CR
2

jπð2; 1; 0Þ; Kð−2;−1; 0Þi 24 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ Tþ
1 ⊕ Tþ

2 ⊕ 2T−
1 ⊕ 2T−

2

Oh C3v jπð1; 1; 1Þ; Kð−1;−1;−1Þi 8 Aþ
1 ⊕ Tþ

2 ⊕ A−
2 ⊕ T−

1

Oh CP
2

jπð1; 1; 2Þ; Kð−1;−1;−2Þi 24 Aþ
1 ⊕ Eþ ⊕ Tþ

1 ⊕ 2Tþ
2 ⊕ A−

2 ⊕ E− ⊕ 2T−
1 ⊕ T−

2

Oh C1 jπð3; 2; 1Þ; Kð−3;−2;−1Þi 48 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ 3Tþ
1 ⊕ 3Tþ

2 ⊕ A−
1 ⊕ A−

2 ⊕ 2E− ⊕ 3T−
1 ⊕ 3T−

2

C4v C4v jπð0; 0; 1Þ; Kð0; 0; 0Þi 1 A1

C4v CR
2

jπð1; 0; 1Þ; Kð−1; 0; 0Þi 4 A1 ⊕ B1 ⊕ E
C4v CP

2
jπð1; 1; 1Þ; Kð−1;−1; 0Þi 4 A1 ⊕ B2 ⊕ E

C4v C1 jπð2; 1; 1Þ; Kð−2;−1; 0Þi 8 A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E
C3v C3v jπð1; 1; 1Þ; Kð0; 0; 0Þi 1 A1

C3v CP
2

jπð1; 1; 0Þ; Kð0; 0; 1Þi 3 A1 ⊕ E
C3v C1 jπð1; 0;−1Þ; Kð0; 1; 2Þi 6 A1 ⊕ A2 ⊕ 2E
C2v C2v jπð0; 1; 1Þ; Kð0; 0; 0Þi 1 A1

C2v CR
2

jπð0; 0; 1Þ; Kð0; 1; 0Þi 2 A1 ⊕ B2

C2v CP
2

jπð2; 1; 1Þ; Kð−2; 0; 0Þi 2 A1 ⊕ B1

C2v C1 jπð−2; 0; 1Þ; Kð2; 1; 0Þi 4 A1 ⊕ A2 ⊕ B1 ⊕ B2

CR
2 CR

2
jπð1; 2; 0Þ; Kð0; 0; 0Þi 1 A

CR
2

C1 jπð1; 0; 1Þ; Kð0; 2;−1Þi 2 A ⊕ B
CP
2 CP

2
jπð1; 2; 2Þ; Kð0; 0; 0Þi 1 A

CP
2

C1 jπð1; 0; 0Þ; Kð0; 1; 2Þi 2 A ⊕ B
C1 C1 jπð1; 2; 3Þ; Kð0; 0; 0Þi 1 A1

8An alternative approach for incorporating spin, not pursued in
this work, would treat the group representation as a tensor
product of the representation under transformation of the spatial
coordinates xi and the internal spin representations. The spatial
representation associated with N coordinates can be decomposed
as above. The problem then reduces to decomposing tensor
products of the rotational-symmetry irreps with the spin repre-
sentations of each operator. Computation of the Clebsch–Gordan
coefficients required for this strategy is straightforward [20], and
this approach has been used in practice for constructing two-
nucleon operators [14]. However, a drawback is that the number
of tensor products grows rapidly with the number of operators
included. The number of terms in, and complexity of, the
resulting block-diagonalization matrices also grow rapidly with
the number of operators.
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the appropriate representation matrices for such extended
operators.
The remainder of this section is organized as follows.

Section III A discusses the irreps of the double-cover group
OD

h . Section III B discusses the transformation properties of
typical spinor operators. Section III C describes the con-
struction of representation matrices associated with
momentum-spin orbits. Section III D presents several
examples of irrep decompositions for distinguishable oper-
ators with nonzero spin.

A. Double-cover irreps and basis vectors

For bosonic irreps, the irreps of Oh immediately furnish
irreps of OD

h (see Appendix A for a concrete specification
ofOD

h ). The key observation is that 2π rotations act trivially
on states in bosonic irreps. Therefore, theOD

h -irrep matrices
for group elements differing by rotations of 2π can be
identified with the relevant Oh-irrep matrix.
For fermionic irreps, note first that the Dirac spinor

representation used to define the group OD
h is a reducible

representation that can be decomposed into a two-dimensional

positive-parity irrep Gþ
1 and a two-dimensional negative-

parity irrep G−
1 of OD

h . By convention, the Dirac spinor
representation is defined in the parity eigenbasis, known as the
Dirac-Pauli basis, with explicit basis states given by

j1=2;þ1=2;þi ¼ ð 1 0 0 0 ÞT;
j1=2;−1=2;þi ¼ ð 0 1 0 0 ÞT;
j1=2;−1=2;−i ¼ ð 0 0 1 0 ÞT;
j1=2;þ1=2;−i ¼ ð 0 0 0 1 ÞT: ð44Þ

where the basis states are labeled as jJ; Jz;�i in terms of
their eigenvalues of total spin J, the spin z-projection Jz,
and parity. These basic irreps can be used to construct the
full set of fermionic irreps. Concrete basis vectors for the
irreps of OD

h and relevant subgroups are given in terms of
these spin–1=2 and higher-spin basis states in Table III.
Higher-spin vectors appearing in Table III are constructed
in the usual way, e.g., j3

2
; 3
2
;�i follows from the tensor

product of three spin-1
2
vectors. Additional details related to

the choice of basis vectors are given in Appendix A.

TABLE III. Basis vectors used in this work for the fermionic irreps of the double-cover group OD
h and its

subgroups. As discussed in the main text, bosonic irreps of OD
h follow immediately from those of Oh given in

Table I. The basis vectors are identical to those used in Ref. [11], and they lead to identical representation matrices to
those in Ref. [15] for all fermionic irreps.

Group Irrep μ Basis vector

OD
h G�

1
1 j1=2;þ1=2;�i

OD
h G�

1
2 j1=2;−1=2;�i

OD
h H� 1 j3=2;þ3=2;�i

OD
h H� 2 j3=2;þ1=2;�i

OD
h H� 3 j3=2;−1=2;�i

OD
h H� 4 j3=2;−3=2;�i

OD
h G�

2
1

ffiffiffiffiffiffiffiffi
1=6

p j5=2;−5=2;�i − ffiffiffiffiffiffiffiffi
5=6

p j5=2;þ3=2;�i
OD

h G�
2

2
ffiffiffiffiffiffiffiffi
1=6

p j5=2;þ5=2;�i − ffiffiffiffiffiffiffiffi
5=6

p j5=2;−3=2;�i
Dic4 G1 1 j1=2;þ1=2;þi
Dic4 G1 2 j1=2;−1=2;þi
Dic4 G2 1

ffiffiffiffiffiffiffiffi
1=6

p j5=2;−5=2;þi − ffiffiffiffiffiffiffiffi
5=6

p j5=2;þ3=2;þi
Dic4 G2 2

ffiffiffiffiffiffiffiffi
1=6

p j5=2;þ5=2;þi − ffiffiffiffiffiffiffiffi
5=6

p j5=2;−3=2;þi
Dic3 G 1 j1=2;þ1=2;þi
Dic3 G 2 j1=2;−1=2;þi
Dic3 F1 1 Eq. (A12)
Dic3 F2 2 Eq. (A13)

Dic2 G 1 j1=2;þ1=2;þi
Dic2 G 2 j1=2;−1=2;þi
CR
4

F1 1 j1=2;þ1=2;þi
CR
4

F2 1 j1=2;−1=2;þi
CP
4

F1 1
ffiffiffiffiffiffiffiffi
1=2

p j1=2; 1=2;þi þ ð1 − iÞ=2j1=2;−1=2;þi
CP
4

F2 1
ffiffiffiffiffiffiffiffi
1=2

p j1=2; 1=2;þi − ð1 − iÞ=2j1=2;−1=2;þi
CD
1

F 1 j1=2; 1=2;þi
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B. Operator representations

Having defined the double-cover group structure and
irreps for OD

h and its little groups, it is useful to record the
transformation properties of typical spinor interpolating
operators.
Creation and annihilation operators for spin-1=2 par-

ticles, denoted ψ̄ðxÞ and ψðxÞ respectively, transform as the
spinor representation and its conjugate:

ÛðRDÞψ̄ðxÞαÛ†ðRDÞ ¼
X
β

ψ̄βðRxÞSβαðRDÞ;

ÛðRDÞψðxÞαÛ†ðRDÞ ¼
X
β

ψβðRxÞSβαðRDÞ�: ð45Þ

Here ÛðRDÞ indicates the quantum operator that implements
the OD

h transformation RD and SðRDÞ is the spinor repre-
sentation matrix associated with the group element RD,

SðRDÞ≡ RD ∈OD
h ; ð46Þ

since this is the defining representation.
Since products of ψ̄αðxÞ operators act on the vacuum to

create single- and multiparticle states, the same trans-
formation rule for ψ̄αðxÞ operators is chosen as for irrep
basis vectors in Eq. (21). Spinor operators with larger spin
(e.g., spin 3=2) can be constructed using tensor products of
spin-1=2 operators.
With these conventions, one readily confirms the

invariance of the usual kinetic terms of the Hamiltonian
for free relativistic spin-1=2 fermions, Hψ ¼ R

d3x×P
j ψ̄ðxÞγj∂jψðxÞ. This invariance also applies on a dis-

crete spatial lattice under the subgroup Oh of all rotations,
meaning these conventions are compatible with familiar
Hamiltonians (or actions) appearing in practical calcula-
tions in lattice gauge theory.
These transformation properties lead to a natural gener-

alization of the space of operators introduced in Sec. II.
Operators with spin can be specified in various ways; the
generalized algorithm defined in the following is insensi-
tive to this choice. Particularly for products of local
operators, one useful representation arises from construct-
ing operators with definite total spin J under SUð2Þ. In this
case, besides wave numbers ni specifying the momenta,
the extended space is defined by the total spin J, spin
component Jz, and intrinsic parity �. Given the operator
transformation rules above, these states transform as

DðRÞjn; J; Jz;�i ¼
XJ
J0z¼−J

jRn; J; J0z;�iD½J�
J0z;Jz

ðRDÞ; ð47Þ

where D½J�ðRDÞ is the appropriate representation matrix
for the spin-J operator. In general, one could choose
operators in any reducible or irreducible representation

of the little group instead of those defined by continuum
spin J. Though most of the OD

h irreps coincide with the
jJ; Jz;�i basis states, for large-J states and extended
operators, the OD

h representation is typically reducible.

C. Momentum-spin orbits and their representations

For operators with spin, the notion of a momentum orbit
from Sec. II A is extended to a combined momentum-spin
orbit. Because the spatial coordinates and spin degrees of
freedom transform in distinct spaces, the combined orbit
belongs to their tensor product. The spin portion of the orbit
can itself be understood as the tensor product of the
individual spin-J1 through spin-JN basis states. In other
words, the extended momentum-spin orbit can be written as

K̃ðsÞ
P ≡fRD · ½n1;α1…;nN;αN �∶RD∈GD

P gg
¼f½n1;α1…;nN;αN �ðsÞm ∶m∈f1;2;…; jK̃ðsÞ

P jgg; ð48Þ

where the αi contain the spin and parity quantum numbers.
As above, elements within this orbit are indexed by
the integer label m. The value for αi of the mth element

in the orbit will be denoted α½m�
i . The dimension of the

momentum-spin orbit, jK̃ðsÞ
p j, is given by the product of the

dimension of the momentum orbit with the dimensions of
the individual spin representations jJij ¼ 2Ji þ 1, i.e.,

jK̃ðsÞ
p j ¼ jKðsÞ

p j ×
YN
i¼1

jJij: ð49Þ

Once the momentum-spin orbit has been constructed, the

representation matrices D̃ðsÞ
m0mðRDÞ follow using the analog

of Eq. (18) as matrix elements, labeled by m0 and m,
between states of the momentum-spin operators. For the
case of N spin-1=2 operators, these matrix elements are
explicitly given by

D̃ðsÞ
m0mðRDÞ≡ h½n1;α1;…; nN; αN �m0

× jDðRDÞj½n1; α1;…; nN; αN �mi:
¼ h½n1;…; nN �m0 jDðRÞj½n1;…; nN �mi
× hα½m0�

1 jDðRDÞjα½m�
1 i…hα½m0�

N jDðRDÞjα½m�
N i

¼ DðsÞ
m0mðRÞSα½m0 �

1
α½m�
1

ðRDÞ � � � S
α½m

0 �
N α½m�

N

ðRDÞ; ð50Þ

where SðRDÞ denotes the spinor representation matrices
defined in Eq. (46) and R denotes the restriction of RD to
Oh. Expressions involving a mixture of spin-0 and spin-1=2
operators are obtained simply by removing spin labels αi
from spin-0 states and removing the corresponding trans-
formation factors of SðRDÞ.
For operators (e.g., spin-J operators or operators describ-

ing spatially extended objects) in a generic representation Γ̃
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of the little group, the associated representation matrices

are denotedD½Γ̃�
αβðRDÞ, with α; β∈ f1; 2;…jΓ̃jg. Given these

representations for the individual operator transformations,
products of N such plane-wave operators transform with

D̃ðsÞ
m0mðRDÞ¼DðsÞ

m0mðRÞD½Γ̃1�
α½m

0 �
1

α½m�
1

ðRDÞ � � �D½Γ̃N �
α½m

0 �
N α½m�

N

ðRDÞ: ð51Þ

Once the representation matrices D̃ðsÞ
m0mðRDÞ are deter-

mined, precisely the same steps described in Sec. II are
used to determine block-diagonalization matrices of

Eq. (1): project against the irrep matrices DðΓÞ
μ0μðRDÞ using

Schur’s lemma, orthogonalize degenerate irreps, and fill out

the remaining rows using the transition operators TðΓ;sÞ
μν .

D. Examples

Unlike the spin-zero case, the irrep decompositions for
products of N plane-wave operators with nonzero spin
depend on the spins of the operators and cannot be
cataloged completely in terms of two-body results. For a
given set of spins, however, the irrep decompositions that
can arise are severely restricted and can be fully classified

for each of the little groups GD
P and stabilizer groupsHDðsÞ

P ,

where GD
P ≤ OD

h and HDðsÞ
P ≤ GD

P indicate the little group
and stabilizer group constructed from the momenta as
before, now within the double cover group OD

h . The

possible GD
P and HDðsÞ

P can then be enumerated, and their
irrep decompositions and block-diagonalization matrices

can be tabulated analogously to the case of N spin-zero
plane-wave operators. This section collects several
explicit examples of phenomenologically relevant systems
described by products of operators with nonzero spin and
presents the irrep decompositions that arise during their
block diagonalization. Explicit change-of-basis matrices
are constructed in the accompanying code package [18].

1. np

The np system provides an example of a system with the
quantum numbers of two distinguishable spin-1

2
particles.

The cubic irreps of the n and p operators both correspond
to Gþ

1 . Consideration of isospin will be deferred until
discussion of internal symmetry groups in Sec. IV.
Table IV classifies the different orbit patterns in terms of

little groups and stabilizer groups and shows the associated
irrep decompositions of np, extending the results presented
in Ref. [14]. Several general features arising in decom-
positions for operators with nonzero spin are illustrated by
this example. In particular, the orbit dimensions are four
times larger than in the spin-zero case because the two-
nucleon spin space ð1

2
⊗ 1

2
¼ 0 ⊕ 1Þ has dimension four.

Different patterns of irreps arise for np than for the case of
distinguishable spin-zero particles.

2. pπ +

The pπþ system is an example of a fermionic system
with distinguishable operators transforming in different

TABLE IV. Combinations of irreps arising in decompositions of np operator orbits. Details are as in Table II.

GP HðsÞ
P Example state Orbit dim Irrep decomposition

Oh Oh jnð0; 0; 0Þ; pð0; 0; 0Þi 4 Aþ
1 ⊕ Tþ

1

Oh C4v jnð0; 0; 1Þ; pð0; 0;−1Þi 24 Aþ
1 ⊕ Eþ ⊕ 2Tþ

1 ⊕ Tþ
2 ⊕ A−

1 ⊕ E− ⊕ 2T−
1 ⊕ T−

2

Oh C2v jnð0; 1; 1Þ; pð0;−1;−1Þi 48 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ 3Tþ
1 ⊕ 3Tþ

2 ⊕ A−
1 ⊕ A−

2 ⊕ 2E− ⊕ 3T−
1 ⊕ 3T−

2

Oh C3v jnð1; 1; 1Þ; pð−1;−1;−1Þi 32 Aþ
1 ⊕ Aþ

2 ⊕ Eþ ⊕ 2Tþ
1 ⊕ 2Tþ

2 ⊕ A−
1 ⊕ A−

2 ⊕ E− ⊕ 2T−
1 ⊕ 2T−

2

Oh CR
2

jnð2; 1; 0Þ; pð−2;−1; 0Þi 96 2Aþ
1 ⊕ 2Aþ

2 ⊕ 4Eþ ⊕ 6Tþ
1 ⊕ 6Tþ

2 ⊕ 2A−
1 ⊕ 2A−

2 ⊕ 4E− ⊕ 6T−
1 ⊕ 6T−

2

Oh CP
2

jnð2; 1; 1Þ; pð−2;−1;−1Þi 96 2Aþ
1 ⊕ 2Aþ

2 ⊕ 4Eþ ⊕ 6Tþ
1 ⊕ 6Tþ

2 ⊕ 2A−
1 ⊕ 2A−

2 ⊕ 4E− ⊕ 6T−
1 ⊕ 6T−

2

Oh C1 jnð3; 2; 1Þ; pð−3;−2;−1Þi 192 4Aþ
1 ⊕ 4Aþ

2 ⊕ 8Eþ ⊕ 12Tþ
1 ⊕ 12Tþ

2 ⊕ 4A−
1 ⊕ 4A−

2 ⊕ 8E− ⊕ 12T−
1 ⊕ 12T−

2

C4v C4v jnð0; 0; 1Þ; pð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ E
C4v CR

2
jnð1; 0; 1Þ; pð−1; 0; 0Þi 16 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E

C4v CP
2

jnð1; 1; 1Þ; pð−1;−1; 0Þi 16 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E
C4v C1 jnð2; 1; 1Þ; pð−2;−1; 0Þi 32 4A1 ⊕ 4A2 ⊕ 4B1 ⊕ 4B2 ⊕ 8E
C3v C3v jnð1; 1; 1Þ; pð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ E
C3v CP

2
jnð1; 1; 0Þ; pð0; 0; 1Þi 12 2A1 ⊕ 2A2 ⊕ 4E

C3v C1 jnð1; 0;−1Þ; pð0; 1; 2Þi 24 4A1 ⊕ 4A2 ⊕ 8E
C2v C2v jnð0; 1; 1Þ; pð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ B1 ⊕ B2

C2v CR
2

jnð0; 0; 1Þ; pð0; 1; 0Þi 8 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2

C2v CP
2

jnð2; 1; 1Þ; pð−2; 0; 0Þi 8 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2

C2v C1 jnð−2; 0; 1Þ; pð2; 1; 0Þi 16 4A1 ⊕ 4A2 ⊕ 4B1 ⊕ 4B2

CR
2 CR

2
jnð1; 2; 0Þ; pð0; 0; 0Þi 4 2A ⊕ 2B

CR
2

C1 jnð1; 0; 1Þ; pð0; 2;−1Þi 8 4A ⊕ 4B
C1 C1 jnð1; 2; 3Þ; pð0; 0; 0Þi 4 4A
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irreps. The operator spins in this example correspond to the
Gþ

1 irrep for the proton and the A−
1 irrep for the pion.

Table V shows the distinct irrep decompositions of pπþ
orbits, which are again classified by the corresponding little

groups and stabilizer groups. This extends the results pre-
sented in Ref. [16]. The orbit dimensions are twice as large as
in the spin-zero particle case because of the nucleon spin and
can be decomposed into direct sums of fermionic irreps.

TABLE V. Combinations of irreps arising in decompositions of pπþ operator orbits. Details are as in Table II.

GP HðsÞ
P Example state Orbit dim Irrep decomposition

Oh Oh jpð0; 0; 0Þ; πþð0; 0; 0Þi 2 G−
1

Oh C4v jpð0; 0; 1Þ; πþð0; 0;−1Þi 12 Gþ
1 ⊕ Hþ ⊕ G−

1 ⊕ H−

Oh C2v jpð0; 1; 1Þ; πþð0;−1;−1Þi 24 Gþ
1 ⊕ Gþ

2 ⊕ 2Hþ ⊕ G−
1 ⊕ G−

2 ⊕ 2H−

Oh C3v jpð1; 1; 1Þ; πþð−1;−1;−1Þi 16 Gþ
1 ⊕ Gþ

2 ⊕ Hþ ⊕ G−
1 ⊕ G−

2 ⊕ H−

Oh CR
2 jpð2; 1; 0Þ; πþð−2;−1; 0Þi 48 2Gþ

1 ⊕ 2Gþ
2 ⊕ 4Hþ ⊕ 2G−

1 ⊕ 2G−
2 ⊕ 4H−

Oh CP
2 jpð2; 1; 1Þ; πþð−2;−1;−1Þi 48 2Gþ

1 ⊕ 2Gþ
2 ⊕ 4Hþ ⊕ 2G−

1 ⊕ 2G−
2 ⊕ 4H−

Oh C1 jpð3; 2; 1Þ; πþð−3;−2;−1Þi 96 4Gþ
1 ⊕ 4Gþ

2 ⊕ 8Hþ ⊕ 4G−
1 ⊕ 4G−

2 ⊕ 8H−

C4v C4v jpð0; 0; 1Þ; πþð0; 0; 0Þi 2 G1

C4v CR
2 jpð1; 0; 1Þ; πþð−1; 0; 0Þi 8 2G1 ⊕ 2G2

C4v CP
2 jpð1; 1; 1Þ; πþð−1;−1; 0Þi 8 2G1 ⊕ 2G2

C4v C1 jpð2; 1; 1Þ; πþð−2;−1; 0Þi 16 4G1 ⊕ 4G2

C3v C3v jpð1; 1; 1Þ; πþð0; 0; 0Þi 2 G
C3v CP

2 jpð1; 1; 0Þ; πþð0; 0; 1Þi 6 F1 ⊕ F2 ⊕ 2G
C3v C1 jpð1; 0;−1Þ; πþð0; 1; 2Þi 12 2F1 ⊕ 2F2 ⊕ 4G
C2v C2v jpð0; 1; 1Þ; πþð0; 0; 0Þi 2 G
C2v CR

2 jpð0; 0; 1Þ; πþð0; 1; 0Þi 4 2G
C2v CP

2 jpð2; 1; 1Þ; πþð−2; 0; 0Þi 4 2G
C2v C1 jpð−2; 0; 1Þ; πþð2; 1; 0Þi 8 4G
CR
2 CR

2 jpð1; 2; 0Þ; πþð0; 0; 0Þi 2 F1 ⊕ F2

CR
2

C1 jpð1; 0; 1Þ; πþð0; 2;−1Þi 4 2F1 ⊕ 2F2

C1 C1 jpð1; 2; 3Þ; πþð0; 0; 0Þi 2 2F

TABLE VI. Combinations of irreps arising in decompositions of pπþπ0 operator orbits. Details are as in Table II.

GP HðsÞ
P Example state Orbit dim Irrep decomposition

Oh Oh jpð0; 0; 0Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 Gþ
1

Oh C4v jpð0; 0; 1Þ; πþð0; 0;−1Þ; π0ð0; 0; 0Þi 12 Gþ
1 ⊕ Hþ ⊕ G−

1 ⊕ H−

Oh C2v jpð0; 1; 1Þ; πþð0;−1;−1Þ; π0ð0; 0; 0Þi 24 Gþ
1 ⊕ Gþ

2 ⊕ 2Hþ ⊕ G−
1 ⊕ G−

2 ⊕ 2H−

Oh C3v jpð1; 1; 1Þ; πþð−1;−1;−1Þ; π0ð0; 0; 0Þi 16 Gþ
1 ⊕ Gþ

2 ⊕ Hþ ⊕ G−
1 ⊕ G−

2 ⊕ H−

Oh CR
2 jpð2; 1; 0Þ; πþð−2;−1; 0Þ; π0ð0; 0; 0Þi 48 2Gþ

1 ⊕ 2Gþ
2 ⊕ 4Hþ ⊕ 2G−

1 ⊕ 2G−
2 ⊕ 4H−

Oh CP
2 jpð2; 1; 1Þ; πþð−2;−1;−1Þ; π0ð0; 0; 0Þi 48 2Gþ

1 ⊕ 2Gþ
2 ⊕ 4Hþ ⊕ 2G−

1 ⊕ 2G−
2 ⊕ 4H−

Oh C1 jpð3; 2; 1Þ; πþð−3;−2;−1Þ; π0ð0; 0; 0Þi 96 4Gþ
1 ⊕ 4Gþ

2 ⊕ 8Hþ ⊕ 4G−
1 ⊕ 4G−

2 ⊕ 8H−

C4v C4v jpð0; 0; 1Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 G1

C4v CR
2 jpð1; 0; 1Þ; πþð−1; 0; 0Þ; π0ð0; 0; 0Þi 8 2G1 ⊕ 2G2

C4v CP
2 jpð1; 1; 1Þ; πþð−1;−1; 0Þ; π0ð0; 0; 0Þi 8 2G1 ⊕ 2G2

C4v C1 jpð2; 1; 1Þ; πþð−2;−1; 0Þ; π0ð0; 0; 0Þi 16 4G1 ⊕ 4G2

C3v C3v jpð1; 1; 1Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 G
C3v CP

2 jpð1; 1; 0Þ; πþð0; 0; 1Þ; π0ð0; 0; 0Þi 6 F1 ⊕ F2 ⊕ 2G
C3v C1 jpð1; 0;−1Þ; πþð0; 1; 2Þ; π0ð0; 0; 0Þi 12 2F1 ⊕ 2F2 ⊕ 4G
C2v C2v jpð0; 1; 1Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 G
C2v CR

2 jpð0; 0; 1Þ; πþð0; 1; 0Þ; π0ð0; 0; 0Þi 4 2G
C2v CP

2 jpð2; 1; 1Þ; πþð−2; 0; 0Þ; π0ð0; 0; 0Þi 4 2G
C2v C1 jpð−2; 0; 1Þ; πþð2; 1; 0Þ; π0ð0; 0; 0Þi 8 4G
C2 C2 jpð1; 2; 0Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 F1 ⊕ F2

C2 C1 jpð1; 0; 1Þ; πþð0; 2;−1Þ; π0ð0; 0; 0Þi 4 2F1 ⊕ 2F2

C1 C1 jpð1; 2; 3Þ; πþð0; 0; 0Þ; π0ð0; 0; 0Þi 2 2F
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3. pπ +π0

The pπþπ0 system provides an example with more than
two distinguishable operators and nonzero spin. States with
definite isospin (I ∈ f1

2
; 3
2
g) involve linear combinations

with nπþπþ operators and can be treated using the methods
of Sec. IV below.
Table VI shows the irrep decomposition of pπþπ0 orbits

classified by the corresponding little groups and stabilizer
groups. The patterns of little groups and stabilizer groups
occurring are identical to those in Table V. The only differ-
ence in the irreps appearing in the pπþ and pπþπ0 decom-
positions is for the case of all operators at rest, which forpπþ

corresponds to G−
1 but for pπþπ0 corresponds to Gþ

1 .

IV. INTERNAL SYMMETRIES
AND IDENTICAL PARTICLES

In addition to the rotational transformation properties
discussed so far, physical states also carry quantum
numbers such as charge and flavor. Moreover, for states
including identical particles, exchanging such particles
leaves the state unchanged up to a possible sign. More
precisely, as already exploited in Ref. [17], little-group
irreps must be paired appropriately with irreps under other
quantum numbers such that their combined transformations
under particle exchanges are symmetric (antisymmetric)
with respect to all possible exchanges of identical bosons
(fermions), and are otherwise unconstrained. By identify-
ing the definite operator-exchange properties of cubic-
group irreps, the framework described above can thus be
readily extended to be compatible with other quantum
numbers.

A. Labeling by exchange-group irreps

Since the same rotations are applied to all operators in an
N-operator basis, rotation and permutation operations com-
mute, and Schur–Weyl duality guarantees that the rotational
group irreps can be simultaneously labeled by specific irreps
of the symmetric group SN [21]. This naturally divides any
space that is closed under rotations and permutations into
blocks described by the pair ðΓ; λÞ of a rotational-group irrep
Γ and anSN irrep λ. In the following,Young diagramswill be
used to identify particular choices of λ [22]. Note that
multiple blocksmay have the sameΓ or the same λ, i.e., there
is no one-to-one correspondence between the rotational
irreps and permutation irreps.
In some cases, it is not necessary to consider definite

representations under the full space of permutations. For
example, operators may be distinguishable by having
different total isospin or other flavor quantum number.
To make this identification concrete and automatic, it is
assumed that the operators O1;…;ON can be respectively
associated with internal labels ε1;…; εN . In this case, the
exchange group is taken to be the subgroup of permutations

S≡ SN1
× SN2

× � � � ≤ SN ð52Þ

corresponding to exchanges among subsets of identically
labeled particles of size N1; N2; � � � with N1þN2þ…¼N.
In this case, the categorization of rotational irreps can be
given by the rotational representation and the individual
SN1

; SN2
;… irreps as ðΓ; λ1; λ2;…Þ.

B. Extended orbits

Orbits constructed as in Secs. II A and III C may not
necessarily be closed under the exchange group S. To
ensure states can always be constructed with definite
permutation properties, the orbit must be extended to
include all states generated by applying permutations in
S. The labeling s of orbits and the indices m of basis states
will continue to be used for these extended orbits, which

will be denoted as K̂ðsÞ
P :

K̂ðsÞ
P ≡ fg · ½n1; α1; ε1;…; nN; αN; εN �∶g∈GD

P × Sg
¼ f½n1; α1; ε1;…; nN; αN; εN �ðsÞm ∶

m∈ f1; 2;…; jK̂ðsÞ
P jgg; ð53Þ

where αi label the spin and parity of the ith particle and
where εi labels its internal quantum numbers. Orbits then
furnish representations of exchange-group elements σ ∈ S
in the usual way

DðsÞ
m0mðσÞ ¼ hs;m0jDðσÞjs;mi: ð54Þ

Since σ corresponds to identical-operator exchange,

DðsÞ
m0mðσÞ∈ f0; 1g.

C. Projection to exchange-group irreps

Just as Schur’s lemma was applied in Eq. (36) to project
into a basis with specific rotational-group irrep Γ, it can be
applied to project simultaneously into a basis with a
specific permutation-group irrep. The representation theory
of the permutation group has been well studied (see
Ref. [23] for guidance on standard textbooks). Each irrep
of Sn is labeled by a Young diagram consisting of n boxes
in left-justified rows with row lengths in nonincreasing
order. Closely related is the notion of a Young tableau, in
which the n boxes in a given Young diagram are filled
with the numbers f1;…; ng distributed such that each
row and each column is strictly ascending. Let Yn denote
the set of Young tableaux with n boxes. For example,

.

The connection to the internal symmetry group follows
from the fact that products of operators can be taken to
transform as (a row of) an irrep of the exchange group,
labeled by a Young tableauΘ∈Yn. For each Young tableau
Θ, there exists a projection operator in the group algebra
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ΠΘ which projects onto the relevant row [23–25]. In fact,
mirroring the construction in Sec. II C, the group algebra
can be decomposed completely into a basis of idempotents
ΠΘ and Hermitian (T†

ΘΦ ¼ TΦΘ) transition operators [24]
TΘΦ such that, for fixed Θ;Θ0;Φ;Φ0,

ΠΘ ≡ TΘΘ; ð55Þ

TΘΦTΦ0Θ0 ¼ δΦΦ0TΘΘ0 ; ð56Þ
X
Θ∈Yn

ΠΘ ¼ 1: ð57Þ

Eq. (56) is analogous to the product rule for the transition
operators of the cubic group in Eq. (40).
When multiple instances of the same irrep row Θ appear

in the decomposition of a space acted on by the exchange
group, they can often be distinguished by letting TΘΦ act on
a fiducial vector for different Φ. All such products are left
invariant by ΠΘ. In this way, the transition operators acting
on fiducial vectors give a way to construct relevant multi-
particle operators. Concrete examples are discussed below.
For arbitrary Sn, recursive formulas for Hermitian

projection are given in Refs. [23–25] and for Hermitian
transition operators in Ref. [24]. Generic projection and
transition operators are elements of the group algebra,

ΠΘ ¼
X
σ ∈ Sn

cðΘÞσ σ; ð58Þ

TΘΦ ¼
X
σ ∈ Sn

cðΘΦÞ
σ σ; ð59Þ

with cðΘΘÞσ ≡ cðΘÞσ . As indicated, the coefficients cðΘΦÞ
σ

depend explicitly on Θ;Φ∈Yn. A concrete example illus-
trates the important features of the general case. Consider the
permutation group S3, for which Table VII summarizes the
irreps. The projectors ΠΘ, with Θ∈Y3, are [24]

ð60aÞ

ð60bÞ

ð60cÞ

ð60dÞ

Here and below, cycle notation ði; j; k;…; zÞ is used to
indicate permutations mapping the elements cyclically
i → j → k… → z → i. The transition operators between
the two rows of the two-dimensional standard irrep are [24]

ð61aÞ

ð61bÞ

where the normalization factors follow from Eq. (56).
The projection matrix acting on the extended orbit then

follows from linearity, with components:

DðsÞ
m0mðΠΘÞ ¼

X
σ ∈ S

cðΘÞσ DðsÞ
m0mðσÞ: ð62Þ

The symmetric-group projection matrices are applied to the
orbit representation matrices in Eq. (51) to construct
projected orbit representation matrices

D̂ðs;ΘÞðRDÞ≡DðsÞðΠΘÞ · D̃ðsÞðRDÞ ·DðsÞðΠΘÞ
¼ D̃ðsÞðRDÞ ·DðsÞðΠΘÞ: ð63Þ

The equality in the second line follows from the fact that the
permutations commute with rotations and that DðsÞðΠΘÞ is
idempotent. Subsequent application of block diagonaliza-
tion using Schur’s lemma, orthogonalization, and rota-
tional transition operators—needed to construct the
block-diagonalization matrices in the analog of Eq. (1)—
remains unchanged.

D. Examples

1. Identical fermions: nn and nnn

Identical fermions provide a first example with internal
symmetry. Operators constructed from products of identical
fermions such as neutrons, e.g., nn or nnn, must be totally
antisymmetric under simultaneous exchange of the spins
and momenta of any two particles. For nn, the exchange
group is S2. Fermion antisymmetry implies nn operators

TABLE VII. Irreps of the symmetric group S3.

Name Dimension Young diagram Young tableaux

Trivial 1

Sign 1

Standard 2 ,
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transform in the sign irrep ( ) of S2. Irrep decomposition
proceeds as in the distinguishable np case summarized
Table IV, with the additional projection step of Eq. (63)
using the projection operator for the sign irrep of S2,

ð64Þ

Table VIII summarizes the irrep decompositions for nn
operators.
Operators constructed from products of more neutrons

can be decomposed analogously. For nnn, the exchange
group is S3. Fermion antisymmetry requires that nnn
operators transform in the sign irrep of S3, corresponding
to the projection operator in Eq. (60b). Table IX summa-
rizes the irrep decompositions for nnn operators. Note that,
in this case, specification of the little group and stabilizer
group does not suffice to specify the irrep decomposition
uniquely—whether certain permutations correspond to

little-group transformations affects the resulting irrep
decomposition. These results illustrate the general fact that
the irrep decomposition of a multiparticle operator depends

on the little group GP, the stabilizer group HðsÞ
P , and on the

irrep of the exchange group S. It is also noteworthy that in
this case the application of the exchange group projects
away the orbit with n1 ¼ n2 ¼ n3 ¼ 0; fermion antisym-
metry dictates that this orbit vanishes from the irrep
decomposition.

2. Three pions with isospin

The three-pion system provides an example of the
interplay between the cubic group and nontrivial inter-
nal symmetries. Since each pion transforms as an isotrip-
let with I ¼ 1, the three-pion system has the isospin
decomposition

1 ⊗ 1 ⊗ 1 ¼ 3 ⊕ 2 ⊕ 2 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0: ð65Þ

TABLE VIII. Combinations of irreps arising in decompositions of nn operator orbits. Details are as in Table II.

GP HðsÞ
P S2 irrep Example state Orbit dim Irrep decomposition

Oh Oh jnð0; 0; 0Þ; nð0; 0; 0Þi 1 Aþ
1

Oh C4v jnð0; 0; 1Þ; nð0; 0;−1Þi 12 Aþ
1 ⊕ Eþ ⊕ A−

1 ⊕ E− ⊕ T−
1 ⊕ T−

2

Oh C2v jnð0; 1; 1Þ; nð0;−1;−1Þi 24 Aþ
1 ⊕ Eþ ⊕ Tþ

2 ⊕ A−
1 ⊕ A−

2 ⊕ 2E− ⊕ 2T−
1 ⊕ 2T−

2

Oh C3v jnð1; 1; 1Þ; nð−1;−1;−1Þi 16 Aþ
1 ⊕ Tþ

2 ⊕ A−
1 ⊕ E− ⊕ T−

1 ⊕ 2T−
2

Oh CR
2

jnð2; 1; 0Þ; nð−2;−1; 0Þi 48 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ Tþ
1 ⊕ Tþ

2 ⊕ 2A−
1 ⊕ 2A−

2 ⊕ 4E− ⊕ 4T−
1 ⊕ 4T−

2

Oh CP
2

jnð2; 1; 1Þ; nð−2;−1;−1Þi 48 Aþ
1 ⊕ Eþ ⊕ Tþ

1 ⊕ 2Tþ
2 ⊕ 2A−

1 ⊕ A−
2 ⊕ 3E− ⊕ 4T−

1 ⊕ 5T−
2

Oh C1 jnð3; 2; 1Þ; nð−3;−2;−1Þi 96 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ 3Tþ
1 ⊕ 3Tþ

2 ⊕ 3A−
1 ⊕ 3A−

2 ⊕ 6E− ⊕ 9T−
1 ⊕ 9T−

2

C4v C4v jnð0; 0; 1Þ; nð0; 0; 1Þi 1 A1

C4v C4v jnð0; 0; 1Þ; nð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ E
C4v CR

2
jnð1; 0; 1Þ; nð−1; 0; 1Þi 8 2A1 ⊕ A2 ⊕ 2B1 ⊕ B2 ⊕ E

C4v CR
2

jnð1; 0; 1Þ; nð−1; 0; 0Þi 16 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E
C4v CP

2
jnð1; 1; 1Þ; nð−1;−1; 1Þi 8 2A1 ⊕ A2 ⊕ B1 ⊕ 2B2 ⊕ E

C4v CP
2

jnð1; 1; 1Þ; nð−1;−1; 0Þi 16 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E
C4v C1 jnð2; 1; 1Þ; nð−2;−1; 1Þi 16 3A1 ⊕ 3A2 ⊕ 3B1 ⊕ 3B2 ⊕ 2E
C4v C1 jnð2; 1; 1Þ; nð−2;−1; 0Þi 32 4A1 ⊕ 4A2 ⊕ 4B1 ⊕ 4B2 ⊕ 8E
C3v C3v jnð1; 1; 1Þ; nð1; 1; 1Þi 1 A1

C3v C3v jnð1; 1; 1Þ; nð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ E
C3v CP

2
jnð1; 1; 0Þ; nð0; 0; 1Þi 12 2A1 ⊕ 2A2 ⊕ 4E

C3v C1 jnð1; 0;−1Þ; nð0; 1; 2Þi 24 4A1 ⊕ 4A2 ⊕ 8E
C2v C2v jnð0; 1; 1Þ; nð0; 1; 1Þi 1 A1

C2v C2v jnð0; 1; 1Þ; nð0; 0; 0Þi 4 A1 ⊕ A2 ⊕ B1 ⊕ B2

C2v CR
2

jnð0; 0; 1Þ; nð0; 1; 0Þi 4 2A1 ⊕ A2 ⊕ B1

C2v C2v jnð0; 2; 2Þ; nð0;−1;−1Þi 4 A1 ⊕ A2 ⊕ B1 ⊕ B2

C2v CP
2

jnð2; 1; 1Þ; nð−2; 1; 1Þi 4 2A1 ⊕ A2 ⊕ B2

C2v CP
2

jnð2; 1; 1Þ; nð−2; 0; 0Þi 8 2A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2

C2v C1 jnð−2; 0; 1Þ; nð2; 1; 0Þi 8 3A1 ⊕ 3A2 ⊕ B1 ⊕ B2

C2v C1 jnð1; 2; 1Þ; nð−1;−1; 0Þi 16 4A1 ⊕ 4A2 ⊕ 4B1 ⊕ 4B2

CR
2 CR

2
jnð1; 2; 0Þ; nð1; 2; 0Þi 1 A

CR
2 CR

2
jnð1; 2; 0Þ; nð0; 0; 0Þi 4 2A ⊕ 2B

CR
2

C1 jnð1; 0; 1Þ; nð0; 2;−1Þi 8 4A ⊕ 4B
C1 C1 jnð1; 2; 3Þ; nð1; 2; 3Þi 1 A
C1 C1 jnð1; 2; 3Þ; nð0; 0; 0Þi 4 4A
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The relevant exchange group is S3, for which the irreps and
projectors have been summarized above. As in Sec. II,
Schur’s lemma provides the means to decompose the prod-
uct-state isospin representation into irreps of S3. Since Iz is
conserved by permutations, it suffices to work at fixed Iz.
Permutations of the states with a given Iz furnish the

reducible representation matrices DðIzÞ
m0mðσÞ. For example,

the seven states with Iz ¼ 0 yield 7 × 7 representation

matricesDðIz¼0Þ
m0m ðσÞ. IrrepmatricesDðλÞ forS3 are also readily

obtained. For the trivial irrep they are simply unity, while for
the sign representation they are equal to the permutation
signature. Irrep matrices for the two-dimensional standard
representation of S3 are given in Ref. [17].
Table X shows the result of applying Schur’s lemma, i.e.,

using Eq. (30) in terms of the DðλÞ and DðIzÞ matrices, to
extract the overlap of the reducible Iz representation onto
the irrep λ. As expected, I ¼ 3 corresponds to the trivial
representation of S3 for each Iz ∈ f−3;…; 3g, which is
totally symmetric. The doublets of states with I ¼ 2 for
each Iz fall in the standard representation of S3. The three
copies with I ¼ 1 split into a doublet from the standard
representation and a trivial representation for each Iz.

Finally, the isosinglet transforms in the sign representation
of S3, which is totally antisymmetric. Explicit expressions
for the associated states have been given in Ref. [17].
Combining these results with block diagonalization for

the cubic group amounts to applying Eq. (62), where ΠΘ is
selected to project onto the rows of Table X with the desired
isospin. Applying these projectors in Eq. (63) reproduces
the cubic-group irrep decompositions given in Appendix D
of Ref. [17] for the rest frame.
As discussed in Sec. IV C, the transition operators TΘΦ

can be used to construct multiparticle operators with definite
Sn transformation properties. For the case at hand, consider
three-pion operators with Iz ¼ 0 and I ∈ f0; 1; 2; 3g.
These operators can be built from permutations of the
fiducial ordering of single-pion operators, say, jπþπ−π0i.
Letting permutations act in the natural way, e.g.,
ð1; 2; 3Þjπþπ−π0i ¼ jπ0πþπ−i, gives the seven three-pion
states with Iz ¼ 0 constructed in Ref. [17]:

ð66aÞ

ð66bÞ

TABLE X. Decomposition of the πππ system into irreps of S3 given in Table VII. For each column of fixed Iz, the
number of check marks equals the sum of the dimensions in the irrep decomposition.

Iz

I þ3 þ2 þ1 0 −1 −2 −3 S3 irrep

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ o
2 ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓

o
1 ✓ ✓ ✓
1 ✓ ✓ ✓
0 ✓

TABLE IX. Combinations of irreps arising in decompositions of nnn operator orbits. Details are as in Table II.

GP HðsÞ
P S3 irrep Example state Orbit dim Irrep decomposition

Oh C4v jnð0; 0; 1Þ; nð0; 0;−1Þ; nð0; 0; 0Þi 24 Gþ
1 ⊕ Hþ ⊕ 2G−

1 ⊕ G−
2 ⊕ 3H−

Oh C4v jnð0; 0; 1Þ; nð0; 0; 2Þ; nð0; 0;−3Þi 48 3Gþ
1 ⊕ Gþ

2 ⊕ 4Hþ ⊕ 3G−
1 ⊕ G−

2 ⊕ 4H−

Oh C2v jnð0; 1; 1Þ; nð0;−1;−1Þ; nð0; 0; 0Þi 48 Gþ
1 ⊕ Gþ

2 ⊕ 2Hþ ⊕ 3G−
1 ⊕ 3G−

2 ⊕ 6H−

Oh C2v jnð0;−1;−1Þ; nð0;−2;−2Þ; nð0; 3; 3Þi 96 4Gþ
1 ⊕ 4Gþ

2 ⊕ 8Hþ ⊕ 4G−
1 ⊕ 4G−

2 ⊕ 8H−

Oh C3v jnð1; 1; 1Þ; nð−1;−1;−1Þ; nð0; 0; 0Þi 32 Gþ
1 ⊕ Gþ

2 ⊕ Hþ ⊕ 2G−
1 ⊕ 2G−

2 ⊕ 4H−

Oh C3v jnð1; 1; 1Þ; nð2; 2; 2Þ; nð−3;−3;−3Þi 64 3Gþ
1 ⊕ 3Gþ

2 ⊕ 5Hþ ⊕ 3G−
1 ⊕ 3G−

2 ⊕ 5H−

Oh CR
2

jnð2; 1; 0Þ; nð−2;−1; 0Þ; nð0; 0; 0Þi 96 2Gþ
1 ⊕ 2Gþ

2 ⊕ 4Hþ ⊕ 6G−
1 ⊕ 6G−

2 ⊕ 12H−

Oh CR
2

jnð0; 1; 1Þ; nð0;−1; 0Þ; nð0; 0;−1Þi 96 4Gþ
1 ⊕ 4Gþ

2 ⊕ 8Hþ ⊕ 4G−
1 ⊕ 4G−

2 ⊕ 8H−

Oh CR
2

jnð2; 1; 0Þ; nð−2; 0; 0Þ; nð0;−1; 0Þi 192 8Gþ
1 ⊕ 8Gþ

2 ⊕ 16Hþ ⊕ 8G−
1 ⊕ 8G−

2 ⊕ 16H−

Oh CP
2

jnð2; 1; 1Þ; nð−2;−1;−1Þ; nð0; 0; 0Þi 96 2Gþ
1 ⊕ 2Gþ

2 ⊕ 4Hþ ⊕ 6G−
1 ⊕ 6G−

2 ⊕ 12H−

Oh CP
2

jnð1; 1; 1Þ; nð−1;−1; 0Þ; nð0; 0;−1Þi 192 8Gþ
1 ⊕ 8Gþ

2 ⊕ 16Hþ ⊕ 8G−
1 ⊕ 8G−

2 ⊕ 16H−

Oh C1 jnð0;−1; 1Þ; nð2; 1; 0Þ; nð−2; 0;−1Þi 192 8Gþ
1 ⊕ 8Gþ

2 ⊕ 16Hþ ⊕ 8G−
1 ⊕ 8G−

2 ⊕ 16H−

Oh C1 jnð2; 1; 1Þ; nð−2;−1; 0Þ; nð0; 0;−1Þi 384 16Gþ
1 ⊕ 16Gþ

2 ⊕ 32Hþ ⊕ 16G−
1 ⊕ 16G−

2 ⊕ 32H−
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ð66cÞ

ð66dÞ

ð66eÞ

ð66fÞ

ð66gÞ

The totally symmetric cases (Eqs. (66a) and (66b)) contain a
component proportional to jπ0π0π0i, which vanishes in all
other representations; the relative coefficient between the
jπþπ−π0i and jπ0π0π0i terms is related to the isospin
Clebsch–Gordan decomposition. As in Ref. [17], the two-
dimensional standard irrep is spanned by a basis denoted by
jχ1i and jχ2i, with a final subscript outside the ket giving the
total isospin. As expected, Eqs. (66c) and (66d) are invariant
under Eq. (60c) and associated with degenerate copies of the
first row jχ1i of the irrep . Similarly, Eqs. (60e) and (66f)
are invariant under Eq. (60d) and associated with degenerate
copies of the second row jχ2i.
Three pions in boosted frames provide examples where

the full S3 exchange group influences the cubic-group irrep
decomposition. A minimal example is the system with
momenta ½n1; n2; n3� ¼ ½ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ�, for
which the momenta can all be permuted by little group
operations. The little group of the total momentum is C3v,
while the stabilizer is C1. Without projecting under the
exchange group, the resulting irreps can be seen from the
relevant row of Table II to be

A1 ⊕ A2 ⊕ 2E: ð67Þ

Applying the various S3 projectorsΠΘ withΘ∈Y3 restricts
to the following irreps:

ð68Þ

Comparison with Table X determines which combinations
of cubic group and isospin irreps are compatible with
bosonic statistics for this set of momenta. For example,
total I ¼ 0must be combined with the cubic group irrep A2,
while total I ¼ 1 or I ¼ 3must be combined with the cubic

group irrep A1. Both I ¼ 1 and I ¼ 2 may be combined
with the cubic group irrep E, but the correct degenerate
copy of this irrep must be chosen.

3. DDπ

Decay channels with resonances are also categorized by
isospin and provide examples of internal symmetry where
not all particles are identical. For instance, the doubly
charmed tetraquark Tccð3875Þþ has been observed just
below threshold for D⋆þD0 in the decay mode D0D0πþ
with charmness C ¼ þ2 and charge Q ¼ þ1, correspond-
ing to Iz ¼ 0 [26]. The isospin decomposition of the DDπ
system is

1

2
⊗

1

2
⊗ 1 ¼ 2 ⊕ 1 ⊕ 1 ⊕ 0; ð69Þ

where the D-meson isodoublet is ðDþ; D0ÞT . Similar to the
preceding example, for each fixed Iz the direct sum is
decomposed into irreps of S2 (permutations of the two
D-meson operators) using projectors (defined in
Eq. (64) above) and

ð70Þ

The four states with Iz ¼ 0 are constructed from linear
combinations of the states jDþDþπ−i, jDþD0πþi,
jD0Dþπþi, and jD0D0πþi. In terms of fiducial orderings,

jψ00i≡ jD0D0πþi;
jψþþi≡ jDþDþπ−i;
jψþ0i≡ jDþD0πþi; ð71Þ

states of definite isospin with Iz ¼ 0 are given by

ð72Þ

where the left-hand side uses the notation of Ref. [27]. In
the state jðDDÞIDD

πi
I
, I is the total isospin, and IDD is the

isospin of the DD subsystem. As expected, the states with
I ¼ 2 and I ¼ 0 transform in the symmetric representation
of S2. Of the two copies of I ¼ 1, one is symmetric, while
the other is antisymmetric. Results for irrep decompositions
of DDπ operators are summarized in Table XI, where the
orbit dimension refers to the rank of the projected orbit-
representation matrices D̂ðs;ΘÞ. The trivial and sign irreps of
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S2 correspond to odd- and even-parity irreps in the
decomposition of the cubic group, respectively, such
that the overall exchange of two identical D mesons is
symmetric.

4. H-dibaryon

The H-dibaryon provides an example where flavor
and operator-exchange symmetry come together to sat-
isfy bosonic symmetry or fermionic antisymmetry. The
H-dibaryon is a hypothetical two-baryon bound state with
strangeness S ¼ −2 that corresponds to an SUð3Þ-flavor
singlet when the up, down, and strange quark masses are
equal. Interpolating operators with these quantum numbers
can be constructed from two flavor-octet baryon interpolat-
ing operators using the SUð3Þ-flavor irrep decomposition

8 ⊗ 8 ¼ 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 10 ⊕ 27; ð73Þ

where 8A (8S) denotes an SUð3Þ octet irrep where the two-
baryon flavor state is antisymmetric (symmetric) under
exchange. The singlet irrep 1 corresponds to a symmetric
flavor state associated with the operator BaBbδab where Ba

is a baryon octet field with SUð3Þ adjoint index a. Writing
explicitly the baryon spin representation indices α1, α2
and the momentum labels n1;… for each field, fermion
antisymmetry implies Ba

α1ðn1ÞBb
α2ðn2Þ¼−Bb

α2ðn2ÞBa
α1ðn1Þ.

This implies that the momentum-spin states jn1; α1; n2;α2i
associated with δabBa

α1ðn1ÞBb
α2ðn2Þ will be antisymmetric

under the exchange of momentum-spin pairs ðn1; α1Þ ↔
ðn2;α2Þ. These states therefore transform in the sign irrep
of S2, and the permutation projector defined in Eq. (64)
should be applied. These two-baryon operators, which are
linear combinations of ΛΛ, ΣΣ, and NΞ, therefore have
identical irrep decompositions to the case of nn operators
summarized in Table VIII.

Operators with the same quantum numbers can be
constructed from products of two octet baryon operators
and one pseudoscalar octet meson operator. This corre-
sponds to the product of SUð3Þ irreps 8 ⊗ 8 ⊗ 8, which
includes two copies of the 1 irrep relevant for the
H-dibaryon. Tensor operators describing these products
are given by

dabcBaBbMc; fabcBaBbMc; ð74Þ

where a, b, c are SUð3Þ adjoint indices, Ma is a pseudo-
scalar octet meson operator, and dabc (fabc) are totally
symmetric (antisymmetric) structure constants. Although
these operators involve linear combinations of several
different products of meson and baryon flavors, for
example ΛΛπ0, ΛpK−, and ΣþΣ0π−, their cubic irrep
decompositions and block-diagonalization matrices only
depend on the permutation transformation properties of the
flavor tensors dabc and fabc as well as the fermionic nature
of the baryon fields.
Because Ba and Ma fields represent distinct types of

SUð3Þ-octet particles while Ba and Bb are identical
besides their SUð3Þ flavor indices, the relevant exchange
group for this case is S2. Writing explicitly the baryon spin
representation indices α1, α2 and the momentum labels
n1;…; n3 for each field, fermion antisymmetry implies
Ba
α1ðn1ÞBb

α2ðn2ÞMcðn3Þ ¼ −Bb
α2ðn2ÞBa

α1ðn1ÞMcðn3Þ. When
contracted with the totally symmetric tensor dabc, momen-
tum-spin states jn1; α1; n2; α2; n3i associated with these
operators will be antisymmetric under the exchange of
momentum-spin pairs ðn1; α1Þ ↔ ðn2; α2Þ. These states
therefore transform in the sign irrep of S2, and the
permutation projector defined in Eq. (64) should be
applied. Conversely, when contracted with the totally
antisymmetric tensor fabc, momentum-spin states created
by these operators will be symmetric under the exchange of

TABLE XI. Combinations of irreps arising in decompositions of DDπ operator orbits. In the example states, the label D refers
collectively to D0 and Dþ and the pion is either π0 or πþ. Details are as in Table II.

GP HðsÞ
P S2 Irrep Example state Orbit dim Irrep decomposition

Oh Oh jDð0; 0; 0Þ; Dð0; 0; 0Þ; πð0; 0; 0Þi 1 A−
1

Oh Cv
4 jDð0; 0; 1Þ; Dð0; 0;−1Þ; πð0; 0; 0Þi 3 A−

1 ⊕ E−

Oh Cv
4 jDð0; 0; 1Þ; Dð0; 0;−1Þ; πð0; 0; 0Þi 3 Tþ

1

Oh Cv
2 jDð0; 1; 1Þ; Dð0;−1;−1Þ; πð0; 0; 0Þi 6 A−

1 ⊕ E− ⊕ T−
2

Oh Cv
2 jDð0; 1; 1Þ; Dð0;−1;−1Þ; πð0; 0; 0Þi 6 Tþ

1 ⊕ Tþ
2

Oh Cv
3 jDð1; 1; 1Þ; Dð−1;−1;−1Þ; πð0; 0; 0Þi 4 A−

1 ⊕ T−
2

Oh Cv
3 jDð1; 1; 1Þ; Dð−1;−1;−1Þ; πð0; 0; 0Þi 4 Aþ

2 ⊕ Tþ
1

Oh CR
2

jDð2; 1; 0Þ; Dð−2;−1; 0Þ; πð0; 0; 0Þi 12 A−
1 ⊕ A−

2 ⊕ 2E− ⊕ T−
1 ⊕ T−

2

Oh CR
2

jDð2; 1; 0Þ; Dð−2;−1; 0Þ; πð0; 0; 0Þi 12 2Tþ
1 ⊕ 2Tþ

2

Oh CP
2

jDð2; 1; 1Þ; Dð−2;−1;−1Þ; πð0; 0; 0Þi 12 A−
1 ⊕ E− ⊕ T−

1 ⊕ 2T−
2

Oh CP
2

jDð2; 1; 1Þ; Dð−2;−1;−1Þ; πð0; 0; 0Þi 12 Aþ
2 ⊕ Eþ ⊕ 2Tþ

1 ⊕ Tþ
2

Oh C1 jDð3; 2; 1Þ; Dð−3;−2;−1Þ; πð0; 0; 0Þi 24 A−
1 ⊕ A−

2 ⊕ 2E− ⊕ 3T−
1 ⊕ 3T−

2

Oh C1 jDð3; 2; 1Þ; Dð−3;−2;−1Þ; πð0; 0; 0Þi 24 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ 3Tþ
1 ⊕ 3Tþ

2
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momentum-spin pairs ðn1; α1Þ ↔ ðn2; α2Þ. These states
therefore transform in the trivial irrep of S2, and the
permutation projector defined in Eq. (70) should be
applied.
Similar considerations apply to other SUð3Þ-singlet

operators built from different combinations of three meson-
and baryon-octet operators, MaMbBc, MaMbMc, and
BaBbBc, which provide further examples of the interplay
between identical-particle labels and flavor-transformation
properties. Table XII summarizes the possible combina-
tions with irreps of the particle-exchange group S2 or S3.

5. ππKK

An illustrative example of how the exchange group and
extended orbit dimension depend on the configuration of
the momentum orbit is provided by the ππKK and ππππ
systems with two pairs of particles moving back to back.
This also provides an example where the exchange group is
a direct product of nontrivial subgroups. Table XIII shows
the irrep decomposition for four spin-zero particles moving
pairwise back-to-back with momenta n1 ¼ ð0; 0; 1Þ,
n2 ¼ ð0; 2; 0Þ, −n1, and −n2. Depending on how many
operators correspond to identical bosons, different permu-
tation projectors are used and lead to different cubic-group
irrep decompositions.
The simplest case is πþπ−KþK−, which has no identical

particles. The (extended) orbits for all momentum con-
figurations have the standard irrep decomposition for
distinguishable spin-zero operator products with stabilizer
group CR

2 .
When there are two pairs of identical bosons such as

πþπþKþKþ, the exchange group is S2 × S2. States are

invariant under exchange of both the first two momenta and
the last two momenta and therefore transform in the trivial
irrep of both S2 factors. The appropriate projector is a
product of the S2 trivial irrep projectors given in Eq. (70),

ð75Þ

In this case, the dimensionality of the extended orbit, i.e.,
the rank of the projected orbit-representation matrices
D̂ðs;ΘÞ, and the irrep decomposition depend on the momen-
tum configuration.
With four identical bosons such as πþπþπþπþ, states

transform in the trivial representation of the exchange
group S4. The appropriate permutation projector is there-
fore obtained from the normalized sum of all 4! ¼ 24
elements of S4, that is

ð76Þ

The irrep decompositions for each of these cases are
shown in Table XIII. For a fixed exchange group, the size of
the irrep is related to the size of the orbit. In the second row,
identical particles are moving back-to-back, which reduces
the size of the decomposition compared to the third row,
where exchange group elements only affect operators with
momenta that cannot be related by cubic transformations.

V. ALGORITHM SUMMARY

To collect details spread across several sections, the
steps of the full algorithm are reproduced here, including
for the case of identical particles with nonzero spin.
The algorithm begins by selecting a fiducial state i ¼
½n1; α1; ε1;…; nN; αN; εN � (in terms of the momentum ni,
spin and parity αi, and internal quantum numbers εi of the
ith particle) and specifying its permutation properties as
corresponding to a row Θ of an exchange-group irrep.
Given the fiducial state i and desired exchange-group irrep
row Θ, the algorithm proceeds as follows:
(1) Compute the little group GP, defined in Eq. (10), of

the total momentum.

TABLE XIII. Combinations of irreps arising in the decomposition of momentum orbits with four spin-zero operators, where n1 ¼
ð0; 0; 1Þ and n2 ¼ ð0; 2; 0Þ. Projection from symmetrization over identical operators generically reduces the number of irreps appearing
in the decomposition.

GP HðsÞ
P Exchange Example state Orbit dim Irrep decomposition

Oh CR
2

− jπþðn1Þ; π−ð−n1Þ; Kþðn2Þ; K−ð−n2Þi 24 Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ Tþ
1 ⊕ Tþ

2 ⊕ 2T−
1 ⊕ 2T−

2

Oh CR
2 jπþðn1Þ; πþð−n1Þ; Kþðn2Þ; Kþð−n2Þi 6 Aþ

1 ⊕ Aþ
2 ⊕ 2Eþ

Oh CR
2 jπþðn1Þ; πþðn2Þ; Kþð−n1Þ; Kþð−n2Þi 24 Aþ

1 ⊕ Aþ
2 ⊕ 2Eþ ⊕ Tþ

1 ⊕ Tþ
2 ⊕ 2T−

1 ⊕ 2T−
2

Oh CR
2 jπþðn1Þ; πþð−n1Þ; πþðn2Þ; πþð−n2Þi 6 Aþ

1 ⊕ Aþ
2 ⊕ 2Eþ

TABLE XII. Permutation irreps of S2 or S3 for SUð3Þ-singlet
operators arising from products of three meson octet Ma and
baryon octet Ba operators.

Flavor tensor MaMbMc MaMbBc BaBbMc BaBbBc

dabc

fabc
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(2) Compute irrep matrices of the little group DðΓÞ
μ0μðRÞ

via Eq. (B5).
(3) Compute the extended orbit K̂ðsÞ

P of the fiducial state
under the action of the little group and the exchange
group via Eq. (53).

(4) Compute the momentum-orbit representation ma-
trices DðsÞ

m0mðRÞ, Eq. (18).
(5) Compute the spin-representation matricesD½J�

J0zJz
ðRDÞ

associated with each interpolating operator, defined
generically in Eq. (47) or specifically for spin-half
(Gþ

1 ) operators in Eq. (46).
(6) Construct the combined momentum-spin-orbit rep-

resentation matrices via Eq. (51).
(7) Compute the exchange-group projectorΠΘ, Eq. (58),

as described in Refs. [23–25].
(8) Construct projected orbit-representation matrices

via Eq. (62).
(9) Apply Schur’s lemma in the form of Eq. (34) to the

projected orbit representation matrices in order to
compute the first row for each irrep in the block-
diagonalization matrices. Orthogonalize any degen-
erate copies which appear.

(10) Construct transition operators via Eq. (38) and use
Eq. (41) to fill the remaining rows of each irrep. The
result is the complete set of block-diagonalization
matrices UðΓ;κ;sÞ

mμ .

VI. OUTLOOK

This work presents a general algorithm with which to
construct multiparticle interpolating operators for quantum
field theories with cubic symmetry, including both lattice
and continuum theories. The algorithm, together with the
implementation in Ref. [18], automates the block diago-
nalization to build multiparticle interpolating operators
transforming under irreps of the relevant little group.
Automating this technical component allows the focus of
interpolating-operator construction to shift to the design of
local and extended operators to access multiparticle states
of interest. It also helps facilitate construction of large
operator sets in variational calculations aiming to constrain
finite-volume spectra precisely.
These or similar methods can be expected to play an

increasingly important role in lattice QCD studies of multi-
particle systems. Especially for systems with multiple
baryons, the field has developed rapidly over the past several
years as algorithmic advances (e.g., Refs. [28–34]) have
rendered variational studies a practical reality [14,35–37].

An implementation of the algorithm is publicly available
at [38].
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APPENDIX A: GROUP CONVENTIONS

This appendix describes the conventions for the groups
Oh, OD

h , and their subgroups, giving the concrete forms
used in the numerical implementation of the algorithm
presented in this work, available in Ref. [18]. Connections
to conventions in the literature are also discussed.

1. The cubic group Oh

For the cubic group Oh, any element R∈Oh may be
written as a product of a reflection r and a permutation p [8],

R ¼ rp; ðA1Þ

with r and p given by

r∈ fe; rz; ry; ryrz; rx; rxrz; rxry; rxryrzg
p∈ fe; pxy; pyz; pxz; pxyz; pxzyg; ðA2Þ

where e is the identity matrix, rk acts on 3-vectors by
multiplying the kth component by −1, pij acts on 3-vectors
by permuting their ith and jth components, and the cyclic
permutations are defined by pxyz¼pxypyz and pxzy ¼
pyzpxy. For example,

pxy ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA and rx ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA: ðA3Þ

An ordering for the 48 elements ofOh can be established by
labeling permutations and reflections as ra and pb with
a∈ f1;…; 8g and b∈ f1;…; 6g ordered as shown in
Eq. (A2) and Rc ¼ rapb labeled by c ¼ 6ða − 1Þ þ b with
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c∈ f1;…; 48g. For completeness, the elements are enumer-
ated as:

R1 ¼ e; R2 ¼ pxy;

R3 ¼ pyz; R4 ¼ pxz;

R5 ¼ pxyz; R6 ¼ pxzy;

R7 ¼ rz; R8 ¼ rzpxy;

R9 ¼ rzpyz; R10 ¼ rzpxz;

R11 ¼ rzpxyz; R12 ¼ rzpxzy;

R13 ¼ ry; R14 ¼ rypxy;

R15 ¼ rypyz; R16 ¼ rypxz;

R17 ¼ rypxyz; R18 ¼ rypxzy;

R19 ¼ ryrz; R20 ¼ ryrzpxy;

R21 ¼ ryrzpyz; R22 ¼ ryrzpxz;

R23 ¼ ryrzpxyz; R24 ¼ ryrzpxzy;

R25 ¼ rx; R26 ¼ rxpxy;

R27 ¼ rxpyz; R28 ¼ rxpxz;

R29 ¼ rxpxyz; R30 ¼ rxpxzy;

R31 ¼ rxrz; R32 ¼ rxrzpxy;

R33 ¼ rxrzpyz; R34 ¼ rxrzpxz;

R35 ¼ rxrzpxyz; R36 ¼ rxrzpxzy;

R37 ¼ rxry; R38 ¼ rxrypxy;

R39 ¼ rxrypyz; R40 ¼ rxrypxz;

R41 ¼ rxrypxyz; R42 ¼ rxrypxzy;

R43 ¼ rxryrz; R44 ¼ rxryrzpxy;

R45 ¼ rxryrzpyz; R46 ¼ rxryrzpxz;

R47 ¼ rxryrzpxyz; R48 ¼ rxryrzpxzy: ðA4Þ

The basis functions for the irreps ofOh used in this work
are specified in Table I. Irreps are classified by their
dimension and eigenvalue (�1) under the parity operation
R43∶ r ↦ −r. The basis functions for the irreps Aþ

1 , T
−
1 ,

Tþ
2 , E

þ, A−
2 are chosen to match those used in Ref. [11] and

correspond to linear combinations of spherical harmonics
with lz equal to 0, 1, 2, 2, and 3, respectively. The basis
vectors for the remaining irreps A−

1 , T
þ
1 , T

−
2 , E

−, and Aþ
2 are

taken to be linear combinations of the corresponding basis
vectors in Ref. [9]. The linear combinations are chosen so
that the same Clebsch-Gordan coefficients presented in
Ref. [11] can be used for positive and negative parity irreps
in all cases. Note however that the rows of the T�

1 irreps are
ordered differently here than in Ref. [11] and Clebsch-
Gordan coefficient results must be transposed accordingly
(cf. conventions in Appendix A 3 below). A different set of

basis vectors was used for Oh irreps in Ref. [15], and the
explicit representation matrices obtained in the present
work therefore differ from those in Ref. [15] by a change
of basis.
The subgroups of Oh are summarized in Table XIV. The

present work follows the naming scheme of Ref. [9] which
labels one-dimensional irreps as variants of A or B and two-
dimensional irreps as variants of E. It bears emphasizing
that irreps of different groups may have identical names,
but should be distinguished. The Clebsch-Gordan coeffi-
cients for little-group irreps below can be deduced from the
corresponding Clebsch-Gordan results in Ref. [11] for the
Oh basis vectors identified with the little-group basis
vectors, or they can be calculated directly from the little-
group irrep matrices as described for example in Ref. [20].
As shown in Table I, basis functions for all irreps follow
from the irreps of Oh.
It is useful to make several notes regarding the con-

ventions in Table I.
(i) For C4v, the irrep names and the coefficients appear-

ing in theE irrep definition are chosen so that identical
representation matrices for little group transforma-
tions are obtained as those presented in Ref. [15].

(ii) For C4v, the basis functions for irreps of Oh in
Table I are eigenstates of Lz, which singles out the
êz–axis. Other choices for the reference momentum,
e.g., P0 ¼ 2π

L ðn; 0; 0Þ, remain valid but less conven-
ient, since the associated basis functions for C4v
must then be permuted.

(iii) For C3v, the A1 and A2 representation matrices built
from these basis vectors using Eq. (19) match those
explicitly presented in Ref. [15]. The E representa-
tion matrices corresponding to this definition differ
from those of Ref. [15] by interchange of the rows/

columns [equivalent to BðC3v;EÞ
1 ðrÞ ↔ BðC3v;EÞ

2 ðrÞ] for
consistency with the convention of increasing lz
with μ applied here to irreps of Oh. The conventions
adopted here permit the Clebsch-Gordan coefficients
for the A1, A2, and E irreps of Ref. [11] to be applied
to the corresponding irreps of C3v.

(iv) For C2v, the irrep names are chosen so that the
representation matrices match those explicitly pre-
sented in Ref. [15]. Clebsch-Gordan coefficients
for this and other little groups with only one-
dimensional irreps are equal to the Clebsch-Gordan
coefficients in Ref. [11] for the irreps corresponding
to the same basis vectors.

2. The double-cover group OD
h

In the present work, the group OD
h is defined using the

Dirac spinor representation consisting of the direct sum of a
positive-parity and a negative-parity spin-1=2 state, which
provides a faithful representation of the full group of spatial
transformations.
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The group elements ofOh can be mapped to (half of) the
group elements ofOD

h by replacing rotation operators in the
defining representations of SOð3Þ with the corresponding
rotation operators in the Dirac spinor representation. To do
so, first note that the explicit matrix representation of Oh in
terms of permutations and reflections in Eqs. (A2) and (A3)
can be (nonuniquely) related to a matrix representation
in terms of rotations and the parity operator P ¼
diagð−1;−1;−1Þ by

rk ¼ P · RðπêkÞ;

pij ¼ P · RðπêiÞ · R
�
π

2
êi × êj

�
: ðA5Þ

Above, the êi are unit vectors in the ith direction and
Rðω⃗Þ≡ RðPk ωkêkÞ describes a rotation by angle jω⃗j
about the ω̂ axis,

Rðω⃗Þ ¼ exp

�
−
X
k

ωktk

�
ðA6Þ

in terms of the soð3Þ generators ½tk�ij ¼ εijk.
The Dirac spinor representation of the corresponding

element of the double cover is given by

RDðω⃗Þ ¼ exp

�
−
1

8

X
i;j;k

ωkεijk½γi; γj�
�
; ðA7Þ

where the γi are the spatial gamma matrices satisfying
fγi; γjg ¼ 2δij and γ

†
i ¼ γi (this choice coincides with both

the Euclidean and mostly-positive Minkowski gamma
matrices). The superscript D is used to denote double-
cover group elements here and below. The definition in
Eq. (A7) implies the transformation property

RDγjðRDÞ† ¼
X
i

γiRij: ðA8Þ

The Dirac spinor representation of the parity element PD is
given by the temporal gamma matrix up to an overall phase.
The Euclidean γ4 and Minkowski γ0 are equivalent up to a
phase choice. The present work takes PD ¼ γ4, which
satisfies fγi; γ4g ¼ 0, γ†4 ¼ γ4, and γ24 ¼ 1.
The double-cover permutations and reflections are then

defined in the Dirac spinor representation by

rDk ¼ PD · RDðπêkÞ ¼ γ5γk;

pD
ij ¼ PD · RDðπêiÞ · RD

�
π

2
êi × êj

�

¼ 1ffiffiffi
2

p γ5ðγi − γjÞ; ðA9Þ

where γ5 ¼ γ1γ2γ3γ4 is the fifth Euclidean gamma matrix.
The set of products of rDk and pD

ij analogous to Eq. (A4)
provides an explicit matrix representation of the first 48
elements ofOD

h . Note that this set is not closed under group
multiplication; Oh is not a subgroup of OD

h . The remaining
48 elements can be obtained by multiplying these elements
by a 2π rotation,

RD
2π ¼ diagð−1;−1;−1;−1Þ; ðA10Þ

TABLE XIV. Explicit forms for groups appearing in this work for Oh, OD
h , and their subgroups. Basis functions for irreps of Oh (and

its subgroups) are given in Table I. Basis functions for the fermionic irreps of OD
h (and its subgroups) are given in Table III. Group

parametrizations for the subgroups of OD
h follow from those of Oh by the replacements ri → rDi , pij → pD

ij and the inclusion of
inversions.

Momentum GP Order Irreps Group parametrization rp Group elements

2π
L ð0; 0; 0Þ Oh 48 fA�

1 ; A
�
2 ; E

�; T�
1 ; T

�
2 g Eq. (A2) Eq. (A4)

2π
L ð0; 0; nÞ C4v 8 fA1; A2; B1; B2; Eg fe; rx; ry; rxryg × fe; pxyg f1; 2; 13; 14; 25; 26; 37; 38g
2π
L ðn; n; nÞ C3v 6 fA1; A2; Eg feg × fe; pxy; pyz; pzx; pxyz; pxzyg f1; 2; 3; 4; 5; 6g
2π
L ð0; n; nÞ C2v 4 fA1; A2; B1; B2g fe; rxg × fe; pyzg f1; 3; 25; 27g
2π
L ðn;m; 0Þ CR

2
2 fA; Bg fe; rzg × feg f1; 7g

2π
L ðn; n;mÞ CP

2
2 fA; Bg feg × fe; pxyg f1; 2g

2π
L ðn;m; pÞ C1 1 fAg feg × feg f1g
2π
L ð0; 0; 0Þ OD

h 96 fG�
1 ; G

�
2 ; H

�g feD; RD
2πg × ðdoubled Eq: ðA2ÞÞ f1; 2;…; 96g

2π
L ð0; 0; nÞ Dic4 16 fG1; G2g feD; RD

2πg × ðdoubledC4vÞ (doubled C4v)
2π
L ðn; n; nÞ Dic3 12 fG;F1; F2g feD; RD

2πg × ðdoubledC3vÞ (doubled C3v)
2π
L ð0; n; nÞ Dic2 8 fGg feD; RD

2πg × ðdoubledC2vÞ (doubled C2v)
2π
L ðn;m; 0Þ CR

4
4 fF1; F2g feD; RD

2πg × ðdoubledCR
2 Þ (doubled CR

2 )
2π
L ðn; n;mÞ CP

4
4 fF1; F2g feD; RD

2πg × ðdoubledCP
2 Þ (doubled CP

2 )
2π
L ðn;m; pÞ CD

1
2 fFg feD; RD

2πg × ðdoubledC1Þ (doubled C1)
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where the form above holds for a 2π rotation about
any axis.
The numerical implementation in Ref. [18] uses the

Dirac-Pauli basis, in which the γ-matrices are represented
in 2 × 2 block form as

γk ¼
�

0 −iσk
iσk 0

�
; γ4 ¼

�
I 0

0 −I
�
;

γ5 ¼
�

0 −I
−I 0

�
; ðA11Þ

where the σk are the usual Pauli matrices and I is the 2 × 2
identity matrix; for more details and relations to other
common bases see Ref. [11].9

To distinguish the notion of abstract group elements
RD ∈OD

h from the specific spinor representation in this
basis, the action of the group on these spinors is denoted by
SðRDÞ, following the convention of Ref. [15]. Because this
is the defining representation, the matrix representations are
simply given by SðRDÞ ¼ RD using the definitions in
Eq. (A9) and the Dirac-Pauli basis above.
Basis vectors for irreps of OD

h and its subgroups are
summarized in Table III. The naming convention in the
present work follows Ref. [15] in denoting 1, 2, and 4
dimensional fermionic irreps by F, G, and H, respectively.
For alternative strategies involving subduction ofOD

h irreps
into little-group irreps, see Refs. [15,45].
The only nontrivial basis vectors are associated with

1-dimensional irreps F1 and F2 of Dic3, which serves as the
little group for the momentum P ¼ 2π

L ðn; n; nÞ for any
n∈Znf0g. Basis vectors for F1 and F2 may be obtained
by projecting to the linear combinations of fj3

2
; 3
2
;þi;

j3
2
; 1
2
;þi; j3

2
;− 1

2
;þi; j3

2
;− 3

2
;þig transforming in these

irreps using Schur’s lemma (see Eq. (30) and the characters
of F1 and F2 given in Ref. [15]. It is also possible to
identify these irreps from first principles by determining the
two-dimensional orthogonal complement of the G irrep
contained in the J ¼ 3=2 representation using Gram-
Schmidt orthonormalization, then solving for linear com-
binations that diagonalize the representation matrices for
this orthogonal compliment. The basis vectors used in this
work are:

BðDic3;F1Þ
1 ¼1

2

����32 ;
3

2
;þ

	
−
ð1− iÞð ffiffiffi

2
p

−2iÞ
4

ffiffiffi
3

p
����32;

1

2
;þ

	

þ
ffiffiffi
2

p þ i

2
ffiffiffi
3

p
����32 ;−

1

2
;þ

	
−
1þ i

2
ffiffiffi
2

p
����32;−

3

2
;þ

	
; ðA12Þ

BðDic3;F2Þ
1 ¼ 1

2

����32 ;
3

2
;þ

	
þð1þ iÞð2− i

ffiffiffi
2

p Þ
4

ffiffiffi
3

p
����32 ;

1

2
;þ

	

−
ffiffiffi
2

p
− i

2
ffiffiffi
3

p
����32 ;−

1

2
;þ

	
þ1þ i

2
ffiffiffi
2

p
����32 ;−

3

2
;þ

	
: ðA13Þ

3. Phase conventions

The block-diagonalization matrices in Eq. (1) are only
defined up to an overall phase. This appendix records the
phase conventions used in Ref. [18].
For each irrep except T�

2 of the cubic group, the overall
phase within each irrep is selected such that the first

nonzero entry of UðΓi;κ;sÞ
m;μ¼1 is real and positive. For T�

2 of
the cubic group, the overall phase is selected such that

UðΓi;κ;sÞ
m;μ¼2 is purely imaginary with negative imaginary part.

This choice matches the basis-vector conventions of
Ref. [11], where the combination of spherical harmonics
Y2
2 − Y−2

2 is used as the μ ¼ 2 basis vector for T2. This
choice ensures that the Clebsch-Gordan coefficients pre-
sented in Ref. [11] are applicable to operators constructed
using the methods of the present work (noting the different
ordering of the rows of the T�

1 irreps discussed above).

APPENDIX B: POLARIZATION TENSORS

This appendix recasts the computation of irrep matrices

DðΓÞ
μ0μðRÞ (see Eq. (19)) algebraically using polarization

tensors. For a given irrep Γ, the basis functions are
homogeneous polynomials of fixed degree d, i.e.,

BðΓÞ
μ ðλrÞ ¼ λdBðΓÞ

μ ðrÞ for λ∈R. Homogenous polynomials

BðΓÞ
μ ðrÞ can be expressed in terms of so-called polarizations

PBðΓÞ
μ , symmetric rank-d tensors defined via [46]

½PBðΓÞ
μ �ðrð1Þ;…; rðdÞÞ
≡ ðPBðΓÞ

μ Þa1a2…ad
ra1ð1Þr

a2
ð2Þ…radðdÞ

≡ 1

d!
∂

∂λ1
� � � ∂

∂λd
BðΓÞ
μ ðλ1rð1Þ þ � � � þ λdrðdÞÞ

���
λi¼0

; ðB1Þ

where frðiÞ ∈R3; 1 ≤ i ≤ dg are arbitrary auxiliary vec-
tors.10 In the second line, summation is implied over the
repeated indices ai ∈ f1; 2; 3g. The polarization is sym-
metric and tensorial due to the symmetry and linearity of
the derivatives. Evaluated diagonally (i.e., contracted with

9Note that the change-of-basis matrix relating the Dirac-Pauli
and DeGrand-Rossi bases denoted UðDRÞ in Ref. [11] should be
UðDRÞ ¼ ð−iγ2 þ iγ1γ3Þ=

ffiffiffi
2

p
in terms of Dirac-Pauli matrices.

10The identification between basis functions and symmetric
tensors amounts to a map between the polynomial ring
Kðfx; y; zgÞ and the symmetric tensor space SðR3�Þ. Such a
relationship is quite general. In fact, for any vector space V with
basis B and dual space V�, the two spaces are canonically
isomorphic: KðBÞ ≃ SðV�Þ [46].
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the same vector r along all d indices), the polarization
returns the original homogeneous polynomial:

½PBðΓÞ
μ �ðr;…; rÞ ¼ BðΓÞ

μ ðrÞ: ðB2Þ

This relationship can provide a useful consistency check in
explicit calculations. In this work, polarizations are nor-
malized with respect to the tensor inner product

⟪X; Y⟫≡ ðX�Þa1a2…adðYÞa1a2…ad : ðB3Þ

Polarizations normalized with respect to this inner product

are denoted by B̄ðΓÞ
μ .

The transformation of B̄ðΓÞ
μ under rotations follows

immediately from the definition in Eq. (B1),

B̄ðΓÞ
μ ðR−1r;…; R−1rÞ
¼ ðB̄ðΓÞ

μ Þa1…adRb1
a1 � � �Rbd

adrb1 � � � rbd
≡ ðR ∘ B̄ðΓÞ

μ Þb1…bd
rb1 � � � rbd ; ðB4Þ

where the second line uses R−1 ¼ RT and the final line

defines R ∘ B̄ðΓÞ
μ . Given this transformation property, the

inner product in Eq. (19) reduces to

DðΓÞ
μ0μðRÞ ¼ ⟪B̄ðΓÞ

μ0 ; R ∘ B̄ðΓÞ
μ ⟫: ðB5Þ

The tensorial method for computing the matrix elements
via Eq. (B5) generalizes easily to particles with spin (see
Section III), since spin vectors can be viewed as basis
vectors for the double-cover of the relevant little group with
transformation properties analogous to Eq. (21).
An explicit example of polarization tensors in this context

follows. Table I gives the basis function for lz¼1 row of the

irrep Tþ
2 of Oh: B

ðTþ
2
Þ

1 ðrÞ ¼ ð−zxþ iyzÞ= ffiffiffi
2

p
. This function

is a homogeneous degree-2 polynomial, so the polarization
will be a rank-2 tensor. Using the coordinates rðiÞ ¼
ðxðiÞ; yðiÞ; zðiÞÞ for auxiliary vectors, the polarization is

½PB̄ðTþ
2
Þ

1 �ðrð1Þ;rð2ÞÞ

¼ 1

2
ffiffiffi
2

p ½−zð1Þxð2Þ−xð1Þzð2Þ þ iyð1Þzð2Þ þ izð1Þyð2Þ�: ðB6Þ

The nonzero components of the normalized basis
tensor are

ðB̄ðTþ
2
Þ

1 Þ13 ¼ ðB̄ðTþ
2
Þ

1 Þ31 ¼ −
1

2
;

ðB̄ðTþ
2
Þ

1 Þ23 ¼ ðB̄ðTþ
2
Þ

1 Þ32 ¼
i
2
: ðB7Þ

As an example of the algebraic setup, consider the
transformation about the y-axis sending x → z and z → −x:

R ¼

0
B@

0 0 1

0 1 0

−1 0 0

1
CA: ðB8Þ

The matrix element of this rotation between B̄
ðTþ

2
Þ

1 and itself
is given by

D
ðTþ

2
Þ

11 ðRÞ ¼ ⟪B̄
ðTþ

2 Þ
1 ; R ∘ B̄ðTþ

2 Þ
1 ⟫ ðB9Þ

¼ tr

2
64
0
B@

0 0 −1=2
0 0 −i=2

−1=2 −i=2 0

1
CA
0
B@

0 i=2 1=2

i=2 0 0

1=2 0 0

1
CA
3
75

ðB10Þ

¼ −1=2: ðB11Þ

The equivalent calculation in the integral setup is

D
ðTþ

2
Þ

11 ðRÞ ¼ 8

π2

Z
dΩ

�
−zxþ iyzffiffiffi

2
p

���xzþ iyxffiffiffi
2

p
�

ðB12Þ

¼−4
π2

Z
dΩeiφsin2θcosθcosφðcosθþisinθsinφÞ

¼−1=2: ðB13Þ

Although the integral in the second line is elementary,
evaluating many such integrals is cumbersome when
compared to tensor algebra.

APPENDIX C: EXPLICIT BLOCK-
DIAGONALIZATION MATRICES

This appendix presents examples of block-diagonalization
matrices in the rest frame in a few illustrative cases. The
results in Tables XV–XVII employ the phase conventions
in Appendix A 3.
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TABLE XVI. Table of UðΓ;κ;sÞ
mμ for the orbit of ½n1;n2� ¼ ½ð0; 1; 1Þ; ð0;−1;−1Þ�. Columns of the tables are listed in order of increasing

m∈ f1;…; 12g. Only the momentum of the first operator is shown in the column header.

Γ, κ μ (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 0, −1) (0, 1, −1) (1, −1, 0) (0, −1, 1) (0, −1;−1) (−1, 1, 0) (−1, 0, 1) ð−1; 0;−1Þ ð−1;−1; 0Þ
Aþ
1 ; 1 1 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p

Eþ; 1 1 1ffiffi
6

p − 1

2
ffiffi
6

p − 1

2
ffiffi
6

p − 1

2
ffiffi
6

p − 1

2
ffiffi
6

p 1ffiffi
6

p − 1

2
ffiffi
6

p − 1

2
ffiffi
6

p 1ffiffi
6

p − 1

2
ffiffi
6

p − 1

2
ffiffi
6

p 1ffiffi
6

p

2 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0 − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0

Tþ
2 ; 1 1 0 − 1

2
ffiffi
2

p i
2
ffiffi
2

p 1

2
ffiffi
2

p − i
2
ffiffi
2

p 0 − i
2
ffiffi
2

p i
2
ffiffi
2

p 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0

2 − i
2

0 0 0 0 i
2

0 0 i
2

0 0 − i
2

3 0 1

2
ffiffi
2

p i
2
ffiffi
2

p − 1

2
ffiffi
2

p − i
2
ffiffi
2

p 0 − i
2
ffiffi
2

p i
2
ffiffi
2

p 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0

T−
1 ; 1 1 0 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0

2 − 1
4
þ i

4
− 1

4
i
4 − 1

4
i
4 − 1

4
− i

4
− i

4
− i

4
1
4
þ i

4
1
4

1
4

1
4
− i

4

3 1
4
þ i

4
1
4

i
4

1
4

i
4

1
4
− i

4
− i

4
− i

4
− 1

4
þ i

4
− 1

4
− 1

4
− 1

4
− i

4

T−
2 ; 1 1 1

4
þ i

4
− i

4
− 1

4
− i

4
− 1

4
− 1

4
þ i

4
1
4

1
4

1
4
− i

4
i
4

i
4

− 1
4
− i

4

2 0 − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p 0 i
2
ffiffi
2

p − i
2
ffiffi
2

p 0 − i
2
ffiffi
2

p i
2
ffiffi
2

p 0

3 − 1
4
þ i

4
− i

4
1
4

− i
4

1
4

1
4
þ i

4
− 1

4
− 1

4
− 1

4
− i

4
i
4

i
4

1
4
− i

4

TABLE XVII. Table of UðΓ;κ;sÞ
mμ for the orbit of ½n1;n2� ¼ ½ð1; 1; 1Þ; ð−1;−1;−1Þ�. Columns of the tables are listed in order of

increasing m∈ f1;…; 8g. Only the momentum of the first operator is shown in the column header.

Γ, κ μ (1, 1, 1) ð1; 1;−1Þ ð1;−1; 1Þ ð1;−1;−1Þ ð−1; 1; 1Þ ð−1; 1;−1Þ ð−1;−1; 1Þ ð−1;−1;−1Þ
Aþ
1 ; 1 1 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p

Tþ
2 ; 1 1 − 1

4
þ i

4
1
4
− i

4
− 1

4
− i

4
1
4
þ i

4
1
4
þ i

4
− 1

4
− i

4
1
4
− i

4
− 1

4
þ i

4

2 − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p

3 1
4
þ i

4
− 1

4
− i

4
1
4
− i

4
− 1

4
þ i

4
− 1

4
þ i

4
1
4
− i

4
− 1

4
− i

4
1
4
þ i

4

A−
2 ; 1 1 1

2
ffiffi
2

p − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p

T−
1 ; 1 1 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p

2 − 1
4
þ i

4
− 1

4
þ i

4
− 1

4
− i

4
− 1

4
− i

4
1
4
þ i

4
1
4
þ i

4
1
4
− i

4
1
4
− i

4

3 1
4
þ i

4
1
4
þ i

4
1
4
− i

4
1
4
− i

4
− 1

4
þ i

4
− 1

4
þ i

4
− 1

4
− i

4
− 1

4
− i

4

TABLE XV. Table of UðΓ;κ;sÞ
mμ for the orbit of ½n1; n2� ¼ ½ð0; 0; 1Þ; ð0; 0;−1Þ�. Columns of the tables are listed in

order of increasing m∈ f1;…; 6g. Only the momentum of the first operator is shown in the column header.

Γ, κ μ (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 0, −1) (0, −1, 0) (−1, 0, 0)

Aþ
1 ; 1 1 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p

Eþ; 1 1 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p

2 0 − 1
2

1
2

0 − 1
2

1
2

T−
1 ; 1 1 1ffiffi

2
p 0 0 − 1ffiffi

2
p 0 0

2 0 i
2 − 1

2
0 − i

2
1
2

3 0 i
2

1
2

0 − i
2

− 1
2

DETMOLD, JAY, KANWAR, SHANAHAN, and WAGMAN PHYS. REV. D 109, 094516 (2024)

094516-26



[1] W. Detmold, R. G. Edwards, J. J. Dudek, M. Engelhardt,
H.-W. Lin, S. Meinel, K. Orginos, and P. Shanahan
(USQCD Collaboration), Hadrons and nuclei, Eur. Phys.
J. A 55, 193 (2019).

[2] A. Bazavov, F. Karsch, S. Mukherjee, and P. Petreczky
(USQCD Collaboration), Hot-dense Lattice QCD: USQCD
whitepaper 2018, Eur. Phys. J. A 55, 194 (2019).

[3] A. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta,
H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and S.
Syritsyn (USQCD Collaboration), Lattice QCD and neu-
trino-nucleus scattering, Eur. Phys. J. A 55, 196 (2019).

[4] C. Lehner et al. (USQCD Collaboration), Opportunities for
lattice QCD in quark and lepton flavor physics, Eur. Phys.
J. A 55, 195 (2019).

[5] V. Cirigliano, Z. Davoudi, T. Bhattacharya, T. Izubuchi,
P. E. Shanahan, S. Syritsyn, and M. L. Wagman (USQCD
Collaboration), The role of lattice QCD in searches for
violations of fundamental symmetries and signals for new
physics, Eur. Phys. J. A 55, 197 (2019).

[6] R. C. Brower, A. Hasenfratz, E. T. Neil, S. Catterall, G.
Fleming, J. Giedt, E. Rinaldi, D. Schaich, E. Weinberg, and
O. Witzel (USQCD Collaboration), Lattice gauge theory for
physics beyond the standard model, Eur. Phys. J. A 55, 198
(2019).

[7] J. E. Mandula, G. Zweig, and J. Govaerts, Covariant lattice
glueball fields, Nucl. Phys. B228, 109 (1983).

[8] J. E. Mandula, G. Zweig, and J. Govaerts, Representations
of the rotation reflection symmetry group of the four-
dimensional cubic lattice, Nucl. Phys. B228, 91 (1983).

[9] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
Theory: Application to the Physics of Condensed Matter
(Springer, New York, 2008), 10.1007/978-3-540-32899-5.

[10] S. Basak, R. G. Edwards, G. T. Fleming, U. M. Heller, C.
Morningstar, D. Richards, I. Sato, and S. Wallace, Group-
theoretical construction of extended baryon operators in
lattice QCD, Phys. Rev. D 72, 094506 (2005).

[11] S. Basak, R. Edwards, G. T. Fleming, U. M. Heller, C.
Morningstar, D. Richards, I. Sato, and S. J. Wallace (LHPC
Collaboration), Clebsch-Gordan construction of lattice in-
terpolating fields for excited baryons, Phys. Rev. D 72,
074501 (2005).

[12] C. E. Thomas, R. G. Edwards, and J. J. Dudek, Helicity
operators for mesons in flight on the lattice, Phys. Rev. D
85, 014507 (2012).

[13] T. Luu and M. J. Savage, Extracting scattering phase-shifts
in higher partial-waves from lattice QCD calculations, Phys.
Rev. D 83, 114508 (2011).

[14] S. Amarasinghe, R. Baghdadi, Z. Davoudi, W. Detmold, M.
Illa, A. Parreno, A. V. Pochinsky, P. E. Shanahan, and M. L.
Wagman, Variational study of two-nucleon systems with
lattice QCD, Phys. Rev. D 107, 094508 (2023).

[15] C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. C. Jhang,
K. J. Juge, D. Lenkner, and C. H. Wong, Extended hadron
and two-hadron operators of definite momentum for spec-
trum calculations in lattice QCD, Phys. Rev. D 88, 014511
(2013).

[16] S. Prelovsek, U. Skerbis, and C. B. Lang, Lattice operators
for scattering of particles with spin, J. High Energy Phys. 01
(2017) 129.

[17] M. T. Hansen, F. Romero-López, and S. R. Sharpe, General-
izing the relativistic quantization condition to include all
three-pion isospin channels, J. High Energy Phys. 07 (2020)
047; 02 (2021) 14.

[18] W. Detmold, W. I. Jay, G. Kanwar, P. E. Shanahan, and M.
Wagman, github.com/LatticeQCDTools/mhi.

[19] M. Artin, Algebra (Pearson Education, Boston, MA, 2011).
[20] K. Rykhlinskaya and S. Fritzsche, Generation of Clebsch–

Gordan coefficients for the point and double groups,
Comput. Phys. Commun. 174, 903 (2006).

[21] W. Fulton and J. Harris, Representation Theory, Graduate
Texts in Mathematics (Springer, New York, 2004), 10.1007/
978-1-4612-0979-9.

[22] H. Georgi, Lie Algebras in Particle Physics: From Isospin
To Unified Theories (Taylor & Francis, Boca Raton,
2000), 10.1201/9780429499210.

[23] S. Keppeler and M. Sjödahl, Hermitian Young Operators,
J. Math. Phys. (N.Y.) 55, 021702 (2014).

[24] J. Alcock-Zeilinger and H. Weigert, Transition operators,
J. Math. Phys. (N.Y.) 58, 051703 (2017).

[25] J. Alcock-Zeilinger and H. Weigert, Compact Hermitian
Young projection operators, J. Math. Phys. (N.Y.) 58,
051702 (2017).

[26] R. Aaij et al. (LHCb Collaboration), Observation of an
exotic narrow doubly charmed tetraquark, Nat. Phys. 18,
751 (2022).

[27] M. T. Hansen, F. Romero-López, and S. R. Sharpe, Incor-
porating DDπ effects and left-hand cuts in lattice QCD
studies of the Tccð3875Þþ, arXiv:2401.06609.

[28] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek,
R. G. Edwards, B. Joó, H.-W. Lin, D. G. Richards, and K. J.
Juge (Hadron Spectrum Collaboration), A Novel quark-field
creation operator construction for hadronic physics in lattice
QCD, Phys. Rev. D 80, 054506 (2009).

[29] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner,
M. Peardon, and C. H. Wong, Improved stochastic estima-
tion of quark propagation with Laplacian Heaviside smear-
ing in lattice QCD, Phys. Rev. D 83, 114505 (2011).

[30] W. Detmold, D. J. Murphy, A. V. Pochinsky, M. J. Savage,
P. E. Shanahan, and M. L. Wagman, Sparsening algorithm
for multihadron lattice QCD correlation functions, Phys.
Rev. D 104, 034502 (2021).

[31] Y. Li, S.-C. Xia, X. Feng, L.-C. Jin, and C. Liu, Field
sparsening for the construction of the correlation functions
in lattice QCD, Phys. Rev. D 103, 014514 (2021).

[32] J. Chen, R. G. Edwards, and W. Mao, Graph contractions
for calculating correlation functions in lattice QCD, in
Proceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC ’23 (Association for Computing
Machinery, New York, NY, USA, 2023), 10.1145/
3592979.3593409.

[33] N. Humphrey, W. Detmold, R. D. Young, and J.M. Zanotti,
Novelalgorithms forcomputingcorrelation functionsofnuclei,
Proc. Sci., LATTICE2021 (2022) 431 [arXiv:2201.04269].

[34] Q. Wang, B. Ren, J. Chen, and R. G. Edwards, Micco: An
enhanced multi-GPU scheduling framework for many-body
correlation functions, in 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (IEEE,
New York, 2022), pp. 135–145.

MULTIPARTICLE INTERPOLATING OPERATORS IN QUANTUM … PHYS. REV. D 109, 094516 (2024)

094516-27

https://doi.org/10.1140/epja/i2019-12902-4
https://doi.org/10.1140/epja/i2019-12902-4
https://doi.org/10.1140/epja/i2019-12922-0
https://doi.org/10.1140/epja/i2019-12916-x
https://doi.org/10.1140/epja/i2019-12891-2
https://doi.org/10.1140/epja/i2019-12891-2
https://doi.org/10.1140/epja/i2019-12889-8
https://doi.org/10.1140/epja/i2019-12901-5
https://doi.org/10.1140/epja/i2019-12901-5
https://doi.org/10.1016/0550-3213(83)90400-5
https://doi.org/10.1016/0550-3213(83)90399-1
https://doi.org/10.1007/978-3-540-32899-5
https://doi.org/10.1103/PhysRevD.72.094506
https://doi.org/10.1103/PhysRevD.72.074501
https://doi.org/10.1103/PhysRevD.72.074501
https://doi.org/10.1103/PhysRevD.85.014507
https://doi.org/10.1103/PhysRevD.85.014507
https://doi.org/10.1103/PhysRevD.83.114508
https://doi.org/10.1103/PhysRevD.83.114508
https://doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1103/PhysRevD.88.014511
https://doi.org/10.1103/PhysRevD.88.014511
https://doi.org/10.1007/JHEP01(2017)129
https://doi.org/10.1007/JHEP01(2017)129
https://doi.org/10.1007/JHEP07(2020)047
https://doi.org/10.1007/JHEP07(2020)047
https://doi.org/10.1007/JHEP02(2021)014
http://github.com/LatticeQCDTools/mhi
http://github.com/LatticeQCDTools/mhi
https://doi.org/10.1016/j.cpc.2006.01.001
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1201/9780429499210
https://doi.org/10.1063/1.4865177
https://doi.org/10.1063/1.4983479
https://doi.org/10.1063/1.4983478
https://doi.org/10.1063/1.4983478
https://doi.org/10.1038/s41567-022-01614-y
https://doi.org/10.1038/s41567-022-01614-y
https://arXiv.org/abs/2401.06609
https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1103/PhysRevD.83.114505
https://doi.org/10.1103/PhysRevD.104.034502
https://doi.org/10.1103/PhysRevD.104.034502
https://doi.org/10.1103/PhysRevD.103.014514
https://doi.org/10.1145/3592979.3593409
https://doi.org/10.1145/3592979.3593409
https://doi.org/10.22323/1.396.0431
https://arXiv.org/abs/2201.04269


[35] A. Francis, J. R. Green, P. M. Junnarkar, C. Miao, T. D. Rae,
and H. Wittig, Lattice QCD study of the H dibaryon using
hexaquark and two-baryon interpolators, Phys. Rev. D 99,
074505 (2019).

[36] B. Hörz et al., Two-nucleon S-wave interactions at
the SUð3Þ flavor-symmetric point with mud ≃mphys

s :
A first lattice QCD calculation with the stochastic
Laplacian Heaviside method, Phys. Rev. C 103,
014003 (2021).

[37] J. R. Green, A. D. Hanlon, P. M. Junnarkar, and H.
Wittig, Weakly bound H dibaryon from SU(3)-
flavor-symmetric QCD, Phys. Rev. Lett. 127, 242003
(2021).

[38] W. Detmold, W. I. Jay, G. Kanwar, P. E. Shanahan, and
M. L. Wagman, mhi, Zenodo, 10.5281/zenodo.11267518
(2024).

[39] http://iaifi.org/.

[40] S. van der Walt, S. C. Colbert, and G. Varoquaux, The
NUMPY Array: A structure for efficient numerical compu-
tation, Comput. Sci. Eng. 13, 22 (2011).

[41] C. R. Harris et al., Array programming with NUMPY, Nature
(London) 585, 357 (2020).

[42] P. Virtanen et al., SCIPY1.0–Fundamental Algorithms for
Scientific Computing in Python,Nat.Methods 17, 261 (2020).

[43] A. Meurer et al., SYMPY: Symbolic computing in Python,
PeerJ Comput. Sci. 3, e103 (2017).

[44] W. R. Inc.,Mathematica, Version 14.0, champaign, IL, 2024,
https://www.wolfram.com/mathematica.

[45] D. C. Moore and G. T. Fleming, Angular momentum on the
lattice: The case of non-zero linear momentum, Phys. Rev.
D 73, 014504 (2006); 74, 079905(E) (2006).

[46] C. Procesi, Lie Groups: An Approach Through Invariants
and Representations (Springer, New York, 2007), 10.1007/
978-0-387-28929-8.

DETMOLD, JAY, KANWAR, SHANAHAN, and WAGMAN PHYS. REV. D 109, 094516 (2024)

094516-28

https://doi.org/10.1103/PhysRevD.99.074505
https://doi.org/10.1103/PhysRevD.99.074505
https://doi.org/10.1103/PhysRevC.103.014003
https://doi.org/10.1103/PhysRevC.103.014003
https://doi.org/10.1103/PhysRevLett.127.242003
https://doi.org/10.1103/PhysRevLett.127.242003
https://doi.org/10.5281/zenodo.11267518
https://doi.org/10.5281/zenodo.11267518
http://iaifi.org/
http://iaifi.org/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7717/peerj-cs.103
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1103/PhysRevD.73.014504
https://doi.org/10.1103/PhysRevD.73.014504
https://doi.org/10.1103/PhysRevD.74.079905
https://doi.org/10.1007/978-0-387-28929-8
https://doi.org/10.1007/978-0-387-28929-8

