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B — D* and B; — D; vector, axial-vector and tensor form factors
for the full ¢*> range from lattice QCD
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We compute the complete set of Standard Model (SM) and tensor B — D*/v and B, — Di{v
semileptonic form factors across the full kinematic range of the decays using second generation MILC
ng =2+ 1+ 1 highly improved staggered quark (HISQ) gluon field configurations and HISQ valence
quarks, with the heavy-HISQ method. Lattice spacings range from 0.09 to 0.044 fm with pion masses from
~300 MeV down to the physical value and heavy quark masses ranging between ~1.5m, and
4.1m. = 0.9m,; currents are normalized nonperturbatively. Using the recent untagged B — D*£v, data
from Belle and By — Diub, from LHCb together with our form factors, we determine a model independent
value of V., = 39.03(56),
tension with the most recent inclusive result at the level of 3.66. We also observe a 16 tension between the
shape of the differential decay rates computed using our form factors and those measured by Belle. We
compute a purely theoretical Standard Model value for the ratio of semitauonic and semimuonic decay
rates, R(D*) = 0.273(15), which we find to be closer to the recent Belle measurement and heavy flavor
averaging group average than theory predictions using fits to experimental differential rate data for
B — D*¢v,. Determining V., from our form factors and the experimental total rate for B — D*£v also
gives a value in agreement with inclusive results. We also compute the longitudinal polarization fraction for
the semitauonic mode, F E* = 0.395(24), which is in tension at the level of 2.2¢ with the recent Belle
measurement. Our calculation combines B — D* and B, — Dj lattice results in a simultaneous chiral
continuum extrapolation, maintaining correlations between both modes. We then give results for both

(67),, x 1073, in agreement with previous exclusive determinations and in

B — D* and B, — Dy, with the B; — D7 results superseding our previous lattice computation. We also

give the chiral perturbation theory needed to analyze the tensor form factors.

DOI: 10.1103/PhysRevD.109.094515

I. INTRODUCTION

Semileptonic and leptonic decays of mesons allow for
many high precision tests of the Standard Model (SM)
description of the weak interaction. For example, in the SM
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which
encodes the couplings of flavor-changing quark currents
with the SM W bosons, is unitary. Determinations of
the CKM matrix elements using the weak decays of
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mesons [1,2] allow us to check if the unitarity constraints
are satisfied. Currently those coming from the first row and
column, which describe the couplings with up and down
quarks, are in tension with unitarity at the level of 3o [3].

The CKM matrix element V., governing the strength of
the quark level b — c¢£v, transition, can be determined
most precisely either from inclusive semileptonic B decays,
where all charmed final states are included, or from
exclusive semileptonic decays to a specific charmed meson.
The inclusive determination of V .;,, which uses the operator
product expansion [4] to express the nonperturbative
physics in terms of matrix elements of local operators with
B mesons, gives |V.,| = 42.16(51) x 1073 [5].

Until very recently the exclusive determination only used
experimental data for B — D and B — D*. This data has
typically been extrapolated to the zero recoil point, where
the D) meson is at rest, before being compared to lattice
determinations [6,7] of the single form factor relevant at

Published by the American Physical Society


https://orcid.org/0000-0003-1535-7902
https://orcid.org/0000-0003-2884-0514
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.094515&domain=pdf&date_stamp=2024-05-29
https://doi.org/10.1103/PhysRevD.109.094515
https://doi.org/10.1103/PhysRevD.109.094515
https://doi.org/10.1103/PhysRevD.109.094515
https://doi.org/10.1103/PhysRevD.109.094515
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

JUDD HARRISON and CHRISTINE T. H. DAVIES

PHYS. REV. D 109, 094515 (2024)

this point. Recently, B, — D£*> experimental data from

LHCb was used together with HPQCD’s early calculation
of the By — D, form factors [8] (as well as the B, — Dj
form factor at zero recoil [9]) to provide a complementary
determination of V. Averaging B() — DE;) results gives a
value of |V ;| = 38.90(53) x 1073 [10], in tension at the
level of 4.40 with the most recent inclusive result.
This determination is most sensitive to B — D* data, which
is much more precise than existing B; — D£*> data, and is
preferred over B — D owing to the kinematic factors
appearing in the differential rate, which allow for more
data to be collected near zero recoil and thus for a more
precise extrapolation to this point. Note that while lattice
form factors for B — D are available away from zero
recoil [11], extrapolation of experimental data to zero recoil
is still used in order to straightforwardly average exper-
imental results [10].

The extrapolation of experimental data to the zero recoil
point has typically been done using either the Caprini,
Lellouch, and Neubert (CLN) parametrization scheme [12],
or the Boyd, Grinstein, and Lebed (BGL) parametrization
scheme [13]. The CLN scheme imposes strong unitarity
constraints based on heavy quark symmetry, and uses heavy
quark effective theory (HQET) to reduce the number of
independent parameters. This results in a highly constrained
fit with only a single parameter able to modify the shape of
the form factors. This approach has been widely criticized as
underestimating residual uncertainties [14—16], and theo-
retical analyses of the 2017 Belle dataset [17] indicated that
CLN was not well suited to describe the data [18,19].
The BGL scheme is more general, imposing unitarity
bounds based on analyticity [13]. Early analyses of the
2017 Belle dataset indicated that the use of BGL, as opposed
to CLN, would go some way to resolving the tension
between inclusive and exclusive decays [15,18,20].
However, analysis of the more recent larger untagged dataset
from Belle [21] instead finds very similar central values and
uncertainties for V., using BGL and CLN schemes, both in
similar tension with the inclusive result at the same level as
previous exclusive results.

Recent advances in lattice QCD have allowed for the
calculation of pseudoscalar to vector form factors for
b-quark decays across the full kinematic range of the
decays, with HPQCD producing the first calculations for
B, — J/y [22] and B; — D} [23], related to B — D* by
the exchange of the light spectator quark with a charm or
strange quark, respectively. These calculations used highly
improved staggered quarks (HISQs) [24] for all quarks, and
were carried out using the ny =2 + 1+ 1 second gener-
ation MILC gauge configurations including up/down,
strange, and charm HISQ quarks in the sea. In order to
extract form factors for mesons including a physically
massive b quark the so-called heavy-HISQ method was
used. This framework involves using a heavy quark, 4, in

place of the b, and varying the mass of 4 from close to the
charm quark mass all the way up to the physical b quark
mass. By using multiple lattices with different lattice
spacings this procedure allows us to map out discretization
effects and the physical dependence on the & quark mass in
the quantities of interest and to extract precise values at the
physical point where the i quark mass is equal to that
of the b. The determination of the full set of B; — D7 form
factors allowed for a model-independent determination
of V., [23], using recent experimental results from
LHCb [25].

The Fermilab lattice and MILC collaborations have
recently also published first results for B — D* form factors
away from zero recoil [26], with lattice data extending across
~1/3 the full kinematic range of the decay, using the
Fermilab action [27] for b and ¢ quarks and using gluon
field configurations with ny =2 + 1 flavors of asqtad sea
quarks. They found, using the recent untagged data from
Belle [21] and synthetic data from BABAR [28],
[Vep| = 38.40(66) 4 (34)x, X 107, in tension at the level
of ~4¢ with the most recent inclusive determinations, and
confirming the persistent tension currently seen in global
averages [10]. The JLQCD collaboration has also presented
preliminary results for the B — D* form factors [29,30].
Note that these lattice results have been used in combination
with unitarity constraints via the “dispersive matrix” method
to extend these form factors across the kinematic range.
Those studies found values of V., closer to the inclusive
result [31].

Semileptonic decays of mesons also allow us to search
directly for violations of the universality of the SM
coupling between leptons and W bosons, as might result
from new physics (NP) beyond the Standard Model. The
most common method by which this is done is to construct
ratios of branching fractions to final states with different
leptons. This results in the cancellation of the CKM matrix
element factors, as well as a substantial cancellation of
correlated uncertainties entering through the form factors.
The ratio relevant for B — D* is

I'(B — D*1i,)

k(D) = T(B - D'ub,)’

(1)

The most precise theoretical determinations of R(D*) in the
SM use fits to experimental data for B — D*up,, together
with the assumption that NP can only appear in the
semitauonic mode, to pin down the three form factors
needed for the light lepton case (¢ = e, u). Until recently,
the remaining pseudoscalar form factor relevant for the case
of the heavy 7 lepton was determined using HQET inputs
[19,20,32]. This approach results in a very precise theory
prediction for R(D*) = 0.254(5) [10] in tension with the
most recent experimental average, RULAV(D*) =
0.295(14) [10], at the level of 2.7¢. This tension increases
to ~3¢ if R(D) is included. However, more recent
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measurements from the BABAR, Belle, and LHCDb collab-
orations are closer to the SM prediction [33-35].

Recently, the Fermilab-MILC collaboration presented
a lattice-only determination of R(D*) as well as a deter-
mination using a joint fit to lattice and experimental
data [26], resulting in values of R(D*) = 0.265(13) and
R(D*) = 0.2483(13), respectively. The difference between
these results, while only at the 1o level, is surprising and
makes clear the desirability of additional precise lattice-
only determinations of R(D*), as well as direct compar-
isons of the shape of the differential rate between theory
and experiment, where some tension was also seen in [26].

The ratio of Eq. (1) was also computed using lattice QCD
for B, » D;¢vand B, — J/y in [22,23], respectively. The
former is of particular interest as the value computed there,
R(D¥) = 0.2490(69), is in agreement with the theory
prediction for R(D*) using experimental data as input.
The form factors for B — D*¢v and B, — D;£v are related
by the change of spectator quark from up/down to strange,
and the corresponding SU(3)g,, symmetry breaking effects
are expected to be small, at the level of 1% [7]. As such, a
simultaneous analysis of B, — D} and B — D* is desirable
in order to investigate the differences between the results
presented in [23] and those in [26].

In addition to R(D*), there are other observables, such as
the 7 lepton polarization asymmetry, the forward-backward
asymmetry and the D* longitudinal polarization fraction.
These are expected to be sensitive to NP [36] and
theoretical predictions for these would be valuable for
future measurements. They also provide further tests of
SU(3)y,, breaking, which is expected to be small [37] as
for R(D*). The Belle collaboration has recently measured
both the lepton polarization asymmetry [38] and the D*
longitudinal polarization fraction [39], both of which may
be computed directly on the lattice without the need for
inputs such as V.

Until now, lattice calculations of form factors for
pseudoscalar to vector decays have focused exclusively
on those form factors needed to describe the decay within
the SM. Specifically, these are the two axial-vector form
factors, one vector form factor, and one pseudoscalar form
factor. However, assuming left-handed neutrinos, there
are two additional dimension-6, parity-conserving four-
fermion operators which can appear in the effective
Hamiltonion whose matrix elements between B and D*
states are nonzero. These are the tensor operators:

(¢o,,b)(Crotvy)

(¢0,,75b)(Zro™vy). (2)

The form factors for pseudoscalar to vector decays for the
quark currents ¢6,,b and ¢o,,y5b have not previously been
computed on the lattice, though the single form factor

for the related 5o,,b was computed for the rare decay

B. — D¢~ (vp) in [40], as well as for B — K [41],
using the heavy-HISQ method together with renormaliza-
tion factors matching the lattice tensor currents to those in
the continuum MS scheme, computed in [42] using an
intermediate RI-SMOM scheme.

In this work, we build on previous heavy-HISQ calcu-
lations of pseudoscalar to vector decays and compute both
the SM and tensor form factors for B — D*. We also
compute the SM and tensor form factors for B, — D3,
which we analyze simultaneously in order to better map out
the dependence of the form factors on the spectator quark
mass and in order to study SU(3)g,, breaking effects
between the two. We then give values for |V,|, R(D*)
and other observables.

The remaining sections are organized as follows:

(1) In Sec. II we detail the theoretical framework
relevant for semileptonic B — D* decays, including
the effective Hamiltonian, definitions of form factors
and helicity amplitudes and expressions for the
differential decay rate.

(i1) Section III contains the details of our lattice calcu-
lation, including our correlator fitting procedure,
current renormalization, and how form factors are
extracted from correlator fit results.

(iii)) In Sec. IV we give the results of our lattice
calculation and describe our chiral-continuum fit
procedure including the heavy quark mass depend-
ence. We give our results for the SM and tensor form
factors and demonstrate the stability of our results to
changes in correlator fits and changes to our chiral-
continuum fit procedure.

(iv) In Sec. V we use our form factors to compute
observables including R(D*). We compare our
results to the recent measurement by Belle and
determine a value of V.

(v) Finally, in Sec. VI we summarize our findings and
suggest directions for future investigations.

(vi) In Appendix A we compute expressions for the full
differential decay rate including all operators rel-
evant for NP. In Appendix B we discuss our
approach to binning correlator data. In Appendix C
we give the numerical results for the form factors on
each ensemble, extracted from fits to correlation
functions. In Appendix D we compute the next-to-
leading order chiral logarithms, needed for the
chiral-continuum extrapolation of the tensor form
factors, using heavy-meson rooted staggered chiral
perturbation theory. In Appendix E we compare the
updated B; — D7 form factor results of this work to
those in [23].

II. THEORETICAL BACKGROUND

The effective Hamiltonian relevant for semileptonic
b — ¢ decays is, assuming left-handed neutrinos,
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FIG. 1. Conventions for the angular variables entering the
differential decay rate.

Her = V2GrV,, [QVEbe?LYﬂVL + galyysbfir've
+ gsChlguy, + gpeysblruy + grco, bl rouy
+ gTséaw,y beG”DI/L —+ HC] , (3)

where 6,, = i/2[y,.7,] and gy are potentially complex
coefficients. In the SM gy =grs =gp = g5 =0 and
gy =—ga = 1.

The differential decay rate to Dz£v, is, taking the D* as
a narrow resonance,

dr
Min*l/ 4
dq*dcos(0p )dcos(0y)dy ; %:
where N(g?) is an overall kinematic factor

3G12V‘Vcb77EW|2 k(fl2 - m%

)2 *
S(@n)’ v B(D* - Dn) (5)

N(g*) =

and the angular variables are defined in Fig. 1.

The right-hand side of Eq. (4) is conventionally
expressed in terms of helicity amplitudes, which are related
to the form factors that parametrize the nonperturbative
matrix elements of the quark currents in Eq. (3). The form
factors, hy, for B — D* are defined in the HQET basis
as [43]

(D*|eb|B) =
(D*|ey’b|B) = \/MBMD*( “0)hp,
(D*|ey*b|B) = in/MpM p-e"*Pe;vpvshy.
(D*[ey*y’b|B) = /MpMp-[hy, (w + 1)e™

— ha, (€" - v)v = hy, (€ - v)v"],

_ /MBMD*gﬂyaﬁ[hT 6*(U+U/)

+ hTze?;( )/} + hT;( )vavﬁ] (6)

(D*|o"b|B) =

where w = ¢/ - v and ¢’ and v are the four velocities of the
D* and B, respectively. Note that the matrix element of
¢o,,7°b is related to that of o, b, since 6,,7° = £ €,,,50"
The tensor current is renormalized in the SM, and so the

tensor form factors depend on the renormalization scale
which for b decays is typically taken as u = mb®®.
In terms of these form factors, the nonzero helicity

amplitudes for the (axial-)vector currents are

Hy = —gihy /MpMp-(1 +w)

F gyhy\/ MgMp- (W = 1) (7)
M oM 1
Hy=—-giMg(1+w) qu b
X [ha (Ww=71) = (W= 1)[hg, + 1hy,]] (8)
MgMp(w? — 1
H, = —gyMpg L (2 )
q
X [ha, (1 +w) = hy, (1 =wr) = hy,(w=r1)], (9)

where r = My /Mpg. Note that the complex conjugates
of the coefficients gy appear in the conjugate mode
BY — D*~¢*v for the general complex gy appearing in
Eq. (3). Expressions for the tensor helicity amplitudes are
given in Appendix A.

The squared matrix element entering the differential rate
may be written as

SO|S Ao >

s | dpe

> ki(Ow.0p ) H;. (10)

The combinations k; and H; are given in Table I for the
charge conjugate mode, B® — D*~#*v, for the case where
only g, and gy are nonzero. We have checked that this
expression matches that given in [21]. Note that it also
agrees with the expression for the #*v final state given
in [44], though there one must also take H, <> H_ for the
conjugate hadronic current.

The construction of the full differential rate including
tensor, axial-tensor, and pseudoscalar currents is described
in Appendix A, together with the combinations k; and H;.
The explicit coefficients for the full and partially integrated
differential rate are also provided as a supplementary
PYTHON script for the general case of complex gy.

III. LATTICE CALCULATION

Our lattice QCD calculation of the B — D* form factors
follows broadly the same heavy-HISQ approach as those
presented in [23,45] for the related B, — D and B, —
J/w form factors, respectively. We use a range of masses
for a heavy quark, h, between the charm and physical
bottom quark mass. The heavy-light pseudoscalar meson,
which we will refer to as H, is at rest on the lattice. We give
momentum to the charm quark using twisted boundary
conditions so that the D* covers the range of physical
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TABLEI The helicity amplitude combinations and coefficients for them that appear in Eq. (10) for B® — D*~¢/+v
when only g4 and gy in Eq. (3) are nonzero.
i H; ki(Ow.Op+.x)
1 1H(q°)] (1 = cos(Oy))* (sin*(Op;))
2 H_(¢*)? (1 + cos(Oy))*(sin*(0p;))
3 |Ho|? 4 sin*(Oy) cos*(Opy)
4 Re(H H{) —25sin(fy ) sin(26p: ) cos(y)(1 — cos(Oy))
5 Re(H_H}) 2sin(Byy) sin(26p. ) cos(y)(1 4 cos(By))
6 Re(H, H") —2sin?(Oy) sin*(Op: ) cos(2y)
7 %} H. (¢*)] sin?(Ay) sinz(GD;)
2 02 2
8 'Z_{‘H_(qzﬂz sin®(Qy ) sin*(0p:)
9 m \H,? 4 cos?(Oy) cos? (Op; )
p
m? 2(0,,
10 q—z”\Ht(qz)P 4cos*(0p:)
2 . .
11 %Re(H+H(’§) —2sin(By ) sin(26p. ) cos(y) cos(Gy)
12 IZ_{ Re(H_H}) —25sin(By ) sin(26)p. ) cos(y) cos(Gy )
13 'Z_ZZ Re(H, H") 2sin*(Oy) sin?(Op; ) cos(2y)
14 YZ_ERG(HtH?)) -8 COSz(gD;)COS(GW)
15 ';1723» Re(H , H?) 4sin(Byy) sin(26p. ) cos(y)
16 4sin(Byy) sin(26p: ) cos(y)

m> "
% Re(H_H;)

momenta for H — D* decay. We use the HISQ action [24]
for all valence quarks and use the second generation
Ny =2+ 1+ 1 MILC ensembles of gauge configurations,
which include equal mass (m, = m,) HISQ light quarks in
the sea, as well as physically tuned strange and charm sea
quarks [46,47]. We include ensembles with a range of
lattice spacings from 0.09 fm down to 0.045 fm and a range
of light quark masses. On the finest ensemble with 0.045 fm
we are able to reach very close to the physical bottom quark
mass for s The details of these ensembles are given in
Table II. Note that compared to [23,45] we include an
additional ensemble, set 5, with wy/a = 3.0170(23) [48],
which we refer to as “physical superfine.” This additional

TABLE II.

ensemble is important, along with “physical fine” lattices,
for resolving the logarithmic dependence of the form
factors on the pion mass [49] arising from the proximity
of the D* to the D* — Dr threshold. The heavy quark
masses used, together with the valence charm and strange
quark masses (for the B, — D7 case), are given in Table III.
We use valence light quarks with masses equal to the sea
light quark masses in Table II.

On the lattice, we compute two-point and three-point
correlation functions of meson interpolating operators and
currents in order to extract matrix elements, amplitudes,
and energies. Note that in our lattice calculation the
correlation functions are constructed from staggered

Details of the gauge field configurations used in our calculation [46,47]. We use the Wilson flow parameter [50], wy, to fix

the lattice spacing given in column 2. The physical value of w, was determined in [51] to be 0.1715(9) fm and the values of w/a, which
are used together with w, to compute a, were taken from [8,52,53]. Set 1 with wy/a = 1.9006(20) is referred to as “fine,” set 2 with
wo/a = 2.896(6) as “superfine,” set 3 with wy/a = 3.892(12) as “ultrafine”, and set 4 with wy/a = 1.9518(7) as “physical fine.” Note
that compared to [23,45] we include an additional ensemble, set 5, with wy/a = 3.0170(23) [48], which we refer to as “physical
superfine,” that includes physical light quarks. n., and n; give the number of configurations and the number of time sources,
respectively. amyy, amg,, and am,, are the masses of the sea up/down, strange, and charm quarks in lattice units. We also include the

approximate mass of the Goldstone pion, computed in [2].

Set a (fm) N, X N, amy, amg, am, M, (MeV) Regg X 1y
1 0.0902 32 x 96 0.0074 0.037 0.440 316 1000 x 16
2 0.0592 48 x 144 0.0048 0.024 0.286 329 500 x 4
3 0.0441 64 x 192 0.00316 0.0158 0.188 315 375 x4
4 0.0879 64 x 96 0.0012 0.0363 0.432 129 600 x 8
5 0.0568 96 x 192 0.0008 0.022 0.260 135 100 x 4
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TABLE III.  Details of the strange, charm, and heavy valence
masses.

Set am}la] am am?®
1 0.65, 0.725, 0.8 0.0376 0.449

2 0.427, 0.525, 0.65, 0.8 0.0234 0.274

3 0.5, 0.65, 0.8 0.0219 0.194

4 0.65, 0.725, 0.8 0.036 0.433

5 0.427, 0.525, 0.65, 0.8 0.0165 0.2585

spin-taste operators [24]. In this section, for notational
simplicity, we write the correlation functions in terms of the
equivalent continuum operators built from Dirac fermions.
For a general current operator ¢I "4, the two-point and three-
point correlation functions take the form

Coi(1,0) = (0] c(1)(Iy*¢(0))|0),

Cope(1.0) = (0[(r*1(1)) ' hr*1(0)[0),
Cap(T1,0) = (Olly*e(T)eTh(1)hy*1(0)[0). (1)

We compute correlation functions for both / = u/d and
[ = s, and we will distinguish the mesons with / = s with a
subscript 5. We use random wall sources at time ;. for the
light and charm quark propagators in order to improve
statistics, as well as for the heavy quarks entering the
two-point functions, and we use twisted boundary con-
ditions [54,55] to give momentum to the charm quark. We
use the light quark propagator at time ¢, — 7 to construct
the source for the heavy quark propagator needed for the
three-point correlation functions. Finally, this heavy quark
propagator is tied together with the charm propagator at
time ¢, — T + t to form the three-point correlation func-
tion. The arrangement of quark propagators entering the
three-point functions is shown in Fig. 2. We compute three-
point correlation functions using multiple values of 7" in
order to resolve the T dependence of the correlation
functions. The values of 7" used on each ensemble, together
with the twists used to give momentum to the charm

taoe — T+ 1

FIG. 2. Arrangement of propagators in the three-point function;
we refer to ¢ as the “active” charm quark, 4 as the “extended”
heavy quark, and [/ as the “spectator” light/strange quark. J
represents the insertion of either a vector, axial-vector, or tensor
current, and H; and D; represent the insertion of the correspond-
ing meson interpolating operators.

TABLE IV. Values of twists, 6, together with values of 7 used
in the three-point functions in Eq. (11). Note that we use a
momentum direction p’ = (k, k,0) with ak = Oz /N.,.

Set 0 T/a

1 0.0, 0.3859, 0.7718, 1.1577, 1.5436, 1.9295  14,17,20
2 0.0, 0.8464, 1.6929, 2.5393, 3.3857, 4.2322 22,2528
3 0.0, 1.2596, 2.5192, 3.7788, 5.0384, 6.2981  31,36,41
4 0.0, 0.7672, 1.5343, 2.3015, 3.0687, 3.8358  14,17,20
5 0.0, 1.6929, 3.3857, 5.0786, 6.7715, 8.4643  22,25,28

quarks, are given in Table IV. Note that the twists differ
slightly from those used in [23].

A. Correlator fits

We fit the correlation functions in Eq. (11) to exponen-
tials, including time-oscillating terms as is typical when
using staggered quarks [22-24,41,56]:

= DD ((h)Re o (1) (A e,

i

D;
C2pt(t’ 0)

2Pt(t 0) = Z((Bl )’e M + (- l)t(Bé)ze_tMé) (12)
and
Cap(T,1,0) = Z(AZB’ JH o= (T=1)E}~1M;

ij

+( 1)T tAtBJjone (T—1)EL—1M,

+ (_l)tAiB]JlJ e—(T—t)E;,—tM{;

+ (=D)AL B)J e (T=DE~My), (13)

Here i and j are integers corresponding to on-shell particle
states of increasing energies, A’ and B’ are the amplitudes
(together with relativistic normalization factors) of the DZ‘S)

and H ) operators, respectively, and E; and M; are their
energies and masses. The time-oscillating terms, with
subscript “0” are a consequence of the use of staggered
quarks; since our interpolating operators are only projected
onto definite spatial momentum they may couple to “time
doubled” states. The subscript n indicates nonoscillating
states. Jy), is then related to the matrix element of the
current ¢I'A(7) in Eq. (11) between the nonoscillating states
labeled i and j. The ground state parameters are related to
matrix elements as

B) = —2—, (14)
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where

(Oly*c|Dfy(p'. 1)) = Np: € (p". 4).
(H(5)(p)|hr°cl0)) = Ny, (15)
e’ (p". A) (D, (p'. A)|eTh|H )

0 _
Jnn(u.r) - Z
2 \/ZEDZ)ZMH(\_) (1

where p), is the v component of the D ) spatial momentum,

. (16)
+ PR/MY, )
(s

with v corresponding to the choice of polarization in
Eq. (11), with current cI'A.

B. Extracting form factors

In order to extract the form factors from our correlator
fits, we must use appropriate combinations of DZ‘S) momen-
tum, p’, four-vector component, v, and current Dirac
matrix, I, when computing correlation functions. These
combinations must produce matrix elements corresponding
to linearly independent combinations of form factors. In
order to isolate iy and hy ,, on each ensemble for each
combination of ¢g*> and am,, we use the same combinations
of v and I as described in [22,23]. We give the relation of
these matrix elements to the form factors below. We work
with the H at rest throughout.

1. Vector and axial-vector form factors

As in [22,23] we define ®,, corresponding to the
denominator in the right-hand side of Eq. (16):

®, = \/2Ep 2My (1 + B2/ M. ). (17)

With this definition, together with Eq. (6) and the
completeness relation for the D* polarization vectors
>, €ete” = —g" 4+ 0™, we have for the combinations
listed in Table V

TABLE V. Spin-taste operators used to isolate the SM form
factors, hy 4, ,,. The first column is the operator used for the H ),
the second for the Dz‘s) and the third column is the operator used

at the current.

OH(") ODL) 9,
722(11;) Y075 @ Yors 71 Q1112 73 Q73
jg(r)z(],y»*) 15 ®7s n®l 75 @ 7s
~nn(3.y'y ) 75 ®7s 73 @73 7375 ® 1375
(1779 ¥s ®7s 7 ®7n 1Ys @ 717s

.72?1(1,7';) - ihvk,

~ M ywk

00 _ H h 1
nn(1.75) mh+ C( AI(W+ )

.700 3 :<1+W)hAl,

mn(3.rr)
722(1 Sy = ha, (w+1)(1 + &%)

where we have defined the reduced combination J%°, = =

nn(vl)
Tonwry @/ /M Mp:

—why K, (18)

nn(v,l') k:k/MD* and where pD* =

= (k, k,0). Note that when converting between form
factors and matrix elements, we use the masses obtained
from the local spin-taste operators for the D?S) and H ).
Discretization effects resulting from this choice only enter at
the level of the taste splittings, which for heavy-light mesons
using HISQ quarks are very small [24,47], and will be
consistently included in our chiral-continuum extrapolation
along with other discretization effects.

2. Tensor form factors

We now proceed to detail the procedure adopted here for
isolating the tensor form factors. For the tensor current the
sum over D* polarizations in Eq. (16) gives

JOO

(o) = Py (85 — v™v,) (v +v'),
+ hy, (8 — v vg) (v —v'),
+ hT3 (1} - WU/K)vav;}]- (19)

We choose combinations of Lorentz indices for the tensor
*

current and D(s) operator, yv = 12 and k = 3, uv = 14 and
k=3, pv = 23 and « = 1. These choices give

Joo =hy, (14+w)+hy,(1—-w),

nn(3,6'%)
00 o
Jnn(S oty k(hT] - hTz)y
Jn(r)t(l = th (1 +w+ 762) + hTz(l -—w+ ]}2) - hTSWIEZ.
(20)
TABLE VI.  Spin-taste operators used to isolate the tensor form

factors Ay , .. The first column is the operator used for the H ),
the second for the Dy, and the third column is the operator used

at the current.

O, Op; 0,
722(3.612) Yors @ Yors 73 ®7r;3 Y172 ® 7172
j23(3_614) 75 ®7s 73 ® 7273 Yor1 ® Yor1
jg(r)l(l,az*) Yors @ vovs 71 @7 Y273 @ 1273
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TABLE VII. Z factors from [8,9] for the axial-vector and vector
operators used in this work, together with the discretization
corrections. Z4 and ZV values for am;, = 0.725 on set 1 and
amy, = 0.65 on set 4 were obtained by interpolation from the
other values for those sets. The total renormalization factor is
given by ZA(V) zdisc

Set am,, 74 zv Zdise

1 0.65 1.03740(58) 1.0254(35) 0.99635
0.725 1.04030(58) 1.0309(35) 0.99491
0.8 1.04367(56) 1.0372(32) 0.99306

2 0.427 1.0141(12) 1.0025(31) 0.99931
0.525 1.0172(12) 1.0059(33) 0.99859
0.65 1.0214(12) 1.0116(37) 0.99697
0.8 1.0275(12) 1.0204(46) 0.99367

3 0.5 1.00896(44) 1.0029(38) 0.99889
0.65 1.01363(49) 1.0081(43) 0.99704
0.8 1.01968(55) 1.0150(49) 0.99375

4 0.65 1.03717(47) 1.0229(29) 0.99645
0.725 1.04037(47) 1.0285(29) 0.995
0.8 1.04390(39) 1.0348(29) 0.99315

5 0.427 1.014(10) 1.002(10) 0.99931
0.525 1.017(10) 1.006(11) 0.99859
0.65 1.021(10) 1.012(11) 0.99697
0.8 1.028(10) 1.020(11) 0.99367

3. Spin-taste operators

We implement the meson interpolator and current operators
as staggered spin-taste operators. The combinations of spin-
taste operators we use are given in Tables V and VI. These
have been chosen so that the current operator is the local one
for which the renormalization factors were computed.

C. Current renormalization

The lattice currents used require renormalization factors
to match them to the continuum operators, and for the
tensor current, we match to the MS scheme. The axial-
vector and vector current pieces, Z, and Zy respectively,
are given in Table VII. These were computed in [8,9]
forsets 1, 2, 3, and 4. On set 5, we use the values from set 2,
adding a conservative 1.0% uncertainty motivated by the
observed maximum change between sets 1 and 4 for a
somewhat smaller difference in lattice spacings. The Z4
and Z" values for am;, = 0.725 on set 1 and am,, = 0.65
on set 4 were obtained by interpolation from the other
values for those sets, using the largest uncertainty
of the other factors on that set. The tensor renormalization
factors, Zy, were computed using an intermediate RI-
SMOM scheme in [42]. We use the factors computed at
an intermediate scale of y =2 GeV, and then run to

p =48 GeV ~ml®, with the condensate correction
applied. Since we are only interested in the m;, = m,,
point, we use Z7;(4.8 GeV) on each lattice, rather than

trying to estimate a value of m?* to run Z; for each m,.

TABLE VIII.  Z;(u = 4.8 GeV) factors from [42] for the tensor
operators used in this work.

Set ZT

1 1.0029(43)
2 1.0342(43)
3 1.0476(42)
4 1.0029(43)
5 1.0342(43)

The values of Z; are given in Table VIII. Note that the
tensor renormalization factors were defined in the limit that
the valence masses in lattice units are taken to zero, and as
such are independent of am,.

D. Correlator fit parameters

We perform correlator fits of our lattice data to Egs. (12)
and (13) using the CORRFITTER PYTHON package [57]. Our
fits are done to all correlation functions simultaneously.

The prior values and uncertainties of the fit parameters
that we use here are very similar to those used in [23],
with only small differences in the heuristic forms chosen
for the my, dependarlce of M H,) and M D - For ground-state

D
priors we take E," = /M%U + 2k* x 1(0.3) GeV and

M(I)i(” = (M +m, —0.8) x 1(0.3) GeV. Here we use

Mp: = Mp: + mg, where my is the mass in GeV of the

valence strange quark given in Table III. For M A we use
the value of My_from [8] corresponding to the largest value
of am;, = 0.8. Note that our priors for H and H; masses
have the same central value and uncertainty, and we use
separate priors with equal central values and uncertainties
for the energies and amplitudes of meson operators in
different taste multiplets. Our priors for the lowest oscillat-
ing state energies, as well as amplitudes, are given in
Table IX. For the matrix elements, J ;j(o)n (o) W€ take priors

0(1) for all except those proportional to ak. For these, we
first divide by ak before fitting, since ak is known exactly
from the twists (Table IV). We increase the uncertainty on
the corresponding priors for the oscillating state matrix

TABLE IX. Correlator fit priors. We take AE\”) = Agep X
1.0(0.75) where AESO) = Egi)l —EEO),L’ >0 and here for our
correlator fits we take Agcp = 0.75 GeV. In the Table we have

defined Qp = M +m, —08 and QDZ;) = /M%h + 2k?

following the relativistic dispersion relation.

Prior D, (k) H,
E%/GeV Qp:, X 1.0(0.3) Qy, x1(0.3)
EY/GeV Qp: % 1.2(0.5) Qy,, x 1.2(0.5)
A(B)" 0.1(5.0) 0.1(5.0)
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TABLE X. Details of fit parameters. AT indicates the number
of data points at the extremities of correlation functions not
included in the fit, and ncy, is the number of nonoscillating and
time-oscillating exponentials included in our correlator fits to
Egs. (12) and (13). y?/d.o.f. is estimated by introducing SVD
and prior noise as in [57]. We use the fit parameters in bold for
our subsequent analysis. § is a label for the other fits that we will
use later in Sec. IV C to investigate the sensitivity of our final
results to these parameters.

Dl H) 2
Sel ney ATy, AT,S ATHY SVDcut z2/dof. 6
1 3 2 4 4 0.005 1.02 0
3 3 6 6 0.005 0.99 1
3 2 4 4 0.001 1.04 2
2 3 4 9 9 0.005 1.01 0
3 4 9 9 0.001 1.05 1
3 4 8 8 0.005 1.04 2
3 3 6 12 12 0.001 1.01 0
3 5 11 11 0.001 1.02 1
3 6 12 12 0.0005 1.07 2
4 3 2 4 4 0.01 1.02 0
3 2 5 5 0.01 1.03 1
3 2 4 4 0.005 1.02 2
5 3 5 10 10 0.001 11 0
3 5 10 10 0.005 1.1 1
3 4 8 8 0.001 1.1 2

elements J},, J3,, and Jg, by a factor of 4 relative to J;}, to
account for this rescaling, and take priors of 0(4).

In order to fit our data simultaneously, it is necessary to
implement an singular value decomposition (SVD) cut (see
Appendix D of [58]). The size of the SVD cut used on each
lattice was chosen based on the values used in [23], though
note that by omitting the highly correlated 7. and #7,, correlator
data, as well as by only partially binning over time sources as
discussed in Appendix B, we are able to use smaller SVD
cuts, resulting in more stable fits. We also omit correlator data
points close to the source and sink operators that contain
significant excited state contamination. These data points are
not included when computing correlations, further helping to
improve resolution of the covariance matrix for the correlator
data and reducing the size of the required SVD cut. The
number of data points excluded from close to the source and
sink operators are given in Table X, together with the number
of exponentials included in Egs. (12) and (13). Table X also
includes the value of ¥?/d.o.f. estimated using prior and SVD
noise as in [57], following [22,23]. In Sec. IV C we investigate
the effect of using different combinations the fit parameters in
Table X. We find that our results are very stable to changes in
AT and the choice of SVD cut.

IV. RESULTS

In this section we give the numerical results from the
correlator fits described in Sec. III A. We then describe our

TABLE XI. D* masses for the local spin-taste operator y; ®
and one-link operators y; ® 1 and y; ® y;7, used in our
calculation, see Tables V and VI.

aMD*

Set 7 ®r 71 @1 71 ®nra

1 0.9289(26) 0.9292(31) 0.9277(34)
2 0.6110(25) 0.6110(36) 0.6108(37)
3 0.4556(14) 0.4536(21) 0.4551(18)
4 0.8949(42) 0.8954(53) 0.8953(49)
5 0.5829(49) 0.5823(73) 0.5790(75)
TABLE XII. Dj masses for the local spin-taste operator y; & y;

and one-link operators y; ® 1 and y; ® y;7, used in our
calculation, see Tables V and VI.

aMD;
Set 71 ®7i Q1 71 ®1ir2
1 0.96499(76) 0.9649(11) 0.9644(13)
2 0.6349(12) 0.6348(15) 0.6346(16)
3 0.47183(68) 0.47155(85) 0.47202(75)
4 0.93970(62) 0.93952(91) 0.93964(93)
5 0.6075(12) 0.6084(13) 0.6078(13)

extrapolation of the form factors to the physical-continuum
point. We demonstrate that our physical-continuum form
factors are insensitive to reasonable changes to our fitting
and extrapolation procedure, then we provide a breakdown
of the sources of uncertainty entering the form factors
across the kinematic range of the decay.

A. Correlator fit results

The ground state D* and D? masses resulting from our
correlator fits are given in Tables XI and XII, where we see
some changes compared to [23] on set 3 on the order of
~1.50. Such changes are not surprising, and are a result of
the exclusion of highly correlated 7. data, as well as the
inclusion of additional DF polarizations and D* data,
together with the improved resolution of the covariance
matrix as discussed in Appendix B. We note that our fit
results for the D masses on set 3 are in good agreement with
those given in [9], which included a much smaller set of
correlators and so had better resolution of the data covariance
matrix. The H ) masses are given in Table XIII in lattice
units, where we see good agreement with those in [9,23].

The full set of numerical results for the SM form factors
for B — D* are given in Tables XIX-XXIII and in
Tables XXIX-XXXIII for B; — D; in Appendix C.
There, the tensor form factors for B — D* are also given
in Tables XXIV-XXVIII and in Tables XXXIV-XXXVIII
for By — Dj. Note that &z, is particularly noisy, owing to
the factor of k> appearing in Eq. (20). These data points are
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TABLE XIII.  H ) masses for the local spin-taste operators ys ® ys and ygys ® yoys that we use in our calculation,

see Tables V and VI.

75 ®7s Yors ® 7o7s

Set amy, aMy aMy, aMy aMy,

1 0.65 1.08972(80) 1.12504(26) 1.0894(13) 1.12556(46)
0.725 1.16928(88) 1.20424(28) 1.1689(14) 1.20472(48)
0.8 1.24659(95) 1.28127(29) 1.2462(15) 1.28172(50)

2 0.427 0.7510(13) 0.77418(55) 0.7499(22) 0.77410(70)
0.525 0.8617(15) 0.88450(62) 0.8607(24) 0.88452(76)
0.65 0.9969(18) 1.01962(71) 0.9962(26) 1.01976(84)
0.8 1.1516(21) 1.17452(81) 1.1513(29) 1.17477(93)

3 0.5 0.78656(92) 0.80250(31) 0.7863(13) 0.80249(41)
0.65 0.9482(11) 0.96383(38) 0.9479(15) 0.96372(50)
0.8 1.1021(14) 1.11777(46) 1.1019(17) 1.11761(59)

4 0.65 1.0783(15) 1.12007(22) 1.0768(23) 1.12053(40)
0.725 1.1578(16) 1.19923(23) 1.1564(24) 1.19966(43)
0.8 1.2352(17) 1.27624(25) 1.2338(26) 1.27663(46)

5 0.427 0.7440(22) 0.76937(35) 0.7419(44) 0.76975(49)
0.525 0.8548(27) 0.87950(44) 0.8527(48) 0.87994(58)
0.65 0.9902(32) 1.01437(57) 0.9882(52) 1.01489(69)
0.8 1.1452(37) 1.16898(74) 1.1435(56) 1.16958(82)

shown in Figs. 3 and 4, where we also show the B — D*
form factors extrapolated to the physical-continuum
point.

B. Physical-continuum extrapolation

In order to determine the physical-continuum form
factors we must fit our lattice form factor data to an
appropriate function describing its kinematic and physical
my, dependence, as well as discretization effects and quark
mass mistuning effects. At the physical-continuum point
with m;, = m,, the BGL parametrization is often used to
describe the kinematic dependence of the form factors in
the helicity basis, with the BGL coefficients guaranteed to
be between —1 and 1 by unitarity constraints. However, the
BGL parametrization (see Sec. IV E for details) depends on
the masses of several mesons containing a b quark, as well
as susceptibilities which also depend on the b quark mass
and are computed perturbatively. This makes it impractical
for our purposes to use it here, where we require our fit
function to describe the m; dependence of our form factors.

Instead we use a more straightforward power series in
(w — 1), (Aqcp/my), and 8, to parametrize the continuum
HQET form factors. Using a power series in (w— 1) to
describe the kinematic dependence of the form factors
allows us to describe the physical m;, dependence away
from the point m;, = m; as modifications to the coeffi-
cients. These appear as multiplicative corrections, in
powers of (Aqcp/my,) motivated by HQET. However,
we must be careful to choose prior widths for our
coefficients that do not overly constrain the shape of
the form factors. In order to set our priors for the

physical-continuum coefficient of each power of (w — 1),
we make use of the physical-continuum BGL expansion
[13] at m;, = m; where the masses and susceptibilities
are well known. We can then compute each physical-
continuum (w — 1) coefficient in terms of the physical-
continuum BGL expansion coefficients, and use priors for
the physical-continuum BGL coefficients directly, choos-
ing prior widths motivated by the unitarity bounds.

To compute the physical-continuum (w — 1) coefficients
of the HQET form factors, we start with the physical-
continuum BGL parametrization of the helicity basis form
factors at the m;, = m,, point, which we then convert to the
HQET basis. The BGL parametrization is given in terms of
z, mapped from ¢? [see Eq. (33)]. We set fy = g2, in this
mapping and then expand z, the Blaschke factors P(z), and
outer functions ¢(z) appearing in the BGL expansion in
powers of (w — 1). This provides a linear map, which we call
MEGLHOET  from the physical-continuum BGL . coeffi-
cients for the helicity basis form factors, to each physical-
continuum (w — 1)" coefficient for the HQET form factors.
Note that since the BGL expansion describes the form
factors in the helicity basis, we must explicitly impose the
kinematical constraints Fi(w = 1) = Mp(1 —r)f(w=1)
and F2(Wmax) = (1 —I—}’)/(M%(l +Wmax)(1 _r)r)Fl (Wmax)
in order to convert to the HQET basis consistently. This
is done by fixing the zeroth order BGL coefficient of F'; and
F, in terms of the remaining coefficients such that the
constraints are satisfied. We follow the conventions for
masses and resonances entering the BGL expansion given
in [14], although we have checked that other choices do not
significantly impact the mapping to (w — 1) coefficients. We
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The points show our lattice QCD results for each SM form factor as given in Tables XIX—XXIII for B — D* (filled points) and

Tables XXIX-XXXIII for B, — Dj (empty points) as a function of the recoil parameter, w. The legend gives the mapping between
symbol color and shape and the set of gluon field configurations used, as given by the lattice spacing, and the heavy quark mass in lattice
units (see Tables II and IIT). The blue curve with error band is the result of our fit in the continuum limit and with the physical b quark
mass for B — D*. Note that we include the data points for both the B; — D} and B — D* form factors, and that for clarity data points at

fixed w for different values of m,, are offset a small amount.

use Gaussian priors for the BGL coefficients of 0 + 5, which
are very conservative compared to the unitarity constraints
which force them to be less than 1.

Since the z expansion converges quickly owing to the
small size of z, we include only up to z* in the z expansion.

When we look at the numerical values appearing in

BGL—HQET
Mnm,YX

1. For instance, the coefficient of (w — 1) for h,, includes a

we see that some are substantially greater than

fBGL fBGL
0 0

term ~ — 50a , wWhere a is the leading (z°) coef-
ficient in the BGL expansion for the form factor f. For
a{)'BGL ~ O(1) this would give a contribution of O(1) to the
form factor close to w™** where we have lattice data. In order
to ensure that we do not bias our fit to small values of the
BGL coefficients, it is therefore important that we go to
sufficiently high order in (w — 1). We find that the (w—1)1°
coefficients for any of the HQET form factors give a
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FIG. 4. The points show our lattice QCD results for each tensor form factor as given in Tables XXIV-XXVIII for B — D* (filled
points) and Tables XXXIV-XXXVIII for B; — D (empty points) as a function of the recoil parameter, w. The legend gives the
mapping between symbol color and shape and the set of gluon field configurations used, as given by the lattice spacing, and the heavy
quark mass in lattice units (see Tables II and III). The blue curve with error band is the result of our fit in the continuum limit and with the
physical b quark mass. Note that we include the data points for both the By, — D and B — D* form factors, and that for clarity data
points at fixed w for different values of m,, are offset a small amount.

maximum contribution of O(0.01) for O(1) BGL coeffi-
cients close to w™®*. This is an order of magnitude smaller
than the uncertainties on our lattice data points in this region,
and so we truncate the power series in (w — 1) at order 10.

The (Aqcp/my), and 8, polynomial terms are then
included as modifications to the continuum (w — 1) coef-
ficients. Note that for the tensor form factors, since there is
currently no equivalent BGL expansion available in the
literature, we instead use Gaussian priors of 0 &= 20 for each
(w — 1) coefficient.

Additionally, our fit function must describe the pion
mass dependence of our form factor data, including
logarithms determined from staggered chiral perturbation
theory [59,60]. The staggered chiral logarithms for the SM
form factors were given in [26]. Following the methods
in [59-61] we find that the staggered chiral logarithms for
the tensor form factors for B — D* are related straight-

forwardly to those for the SM form factors, with
) o) o) o) o)

T A T A T
logsSU'(S) :logsSl}<3), 103551;(3) ZIOgSsJQ)’ and logssgm =
0 to one loop. For completeness, we also compute the
logarithms for B — D and find that logsf;{](S) = logsgz,m.
Full expressions for logsﬁj)m are given in Appendix D. We
also include polynomial terms in (M,/A,)? in our fit form,

contained in 8} in Eq. (22), where we take A, = 1 GeV.
We then fit our B — D* and B; — D} data together by
taking M, - Mg, My — Mg, swapping My <> M in the
taste-axial-vector and taste-vector hairpin terms and suit-
ably modifying the flavor-neutral taste-singlet terms.
We label the form factors and observables corresponding
to B, — D7 with a superscript “s,” Y*. We use the taste
splittings determined in [47] together with the relations
given in [60] for the flavor-neutral pion mass eigen-

states. We assume that the taste splittings behave as
M3, — M3, = nza’s, where ny=1, np =2, ny =3,
and n; = 4, and use the value for £ = A to determine J,.
Note that on set 3 we use the observation that §,  a to fix
the taste splitting, a>8,, to be 0.31 times that on set 2. We
assume that the taste splittings are equal on sets 1 and 4,
and on sets 2 and 5, respectively. We use the relation
8, = 8|, = —6,, which was found to be a good approxi-
mation for HISQ [51,62], to fix the hairpin coefficients.
Our fit function takes the explicit form

FY(S) (W) _ Z azl/(.‘) (W _ 1>n'/\/'r)l/(.‘)

(s) )
(IOgsgu(m - 10g5§U(3)phys)’ (21)

where gp«p, 18 the D* — Dz coupling, which is the same
for B — D* and B; — D} at the order to which we work in
chiral perturbation theory. We take f, = 130 MeV and
neglect the uncertainty in f,, since the uncertainty of the
overall coefficient of the logs is dominated by that of gp:p,.
Note that we subtract the physical point logarithms for
B — D* and B; — Dj in each case; this ensures that at the
physical point our fit function for B — D* reduces to a
polynomial in (w — 1). The physical chiral logs entering our
fit function depend only mildly on w, as illustrated in Fig. 5,
and so we expect the subtraction of the physical logs to only
slightly modify the coefficients of the (w — 1)" terms. We
use the values of M, computed in [2] given in Table I and
Mg computed in [1] for sets 1-4. On set 5 we determine
My =493 MeV from independent correlator fits and

take the physical values to be ME™ =139.6 MeV,
MRS = 4937 MeV, and MY™* = 547.9 MeV.
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FIG 5. The physical value of the logs in Eq. (21),

16[;2‘}2 logsSU( 3)» plotted for gpp, = 0.53, illustrating the w and
chiral dependence of our fit function. It can be seen that the log
term varies slowly with w relative to the (w — 1)" terms in our fit,
and so we expect the subtraction of the physical B — D* logs in
Eq. (21) to only slightly modify the coefficients of the (w — 1)"
terms.

The coefficients, a’, for each form factor take the form

al’ = <+Zb”A T4 i f), (22)

J#0 Jj=0
K MJTK 2 Mghys 2
-5 e

X X

where

allows for up to x~25% difference between the B — D* and
B, — Dj form factors. For Y =hy, ,hy,.ha,,hy the (w—1)"
coefficient, o}, is given by

y _ § : BGL—)HQET XBGL
oy = Mnm YX (24)
m=0,
X=f.F|.Fy.9

with M the linear mapping from the continuum BGL z
expansion parametrization to the expansion in powers of
(w—1) and a BGL the BGL 7 coefficient for form factor
X. Note that because of Luke’s theorem [63] we set the
1 hy), .

and b,"", corresponding to the zero
recoil continuum A/m;, term, equal to zero. The AE,’ ) allow
for the dependence on the heavy quark mass. Here, we use

. ha
coefficients b,

the H, mass as a proxy for the heavy quark mass. Note
that w, and wy/a, which are used to determine the
lattice spacing on each set, are included as priors. We use

AY =1 and

. j J
a2 = (AT (AN (25)
My, My

We take the physical value of the B; mass to be Mp =
5.36688 GeV [3] and we take A = 0.5 GeV.

The remainder of Eq. (21), N'*", takes into account the
small mistuning of the valence and sea quark masses.

(s) (5) (s) (s) (s)
N =1+ A8 + B s 4 CY oyl + DY sy

(26)
with
6%1} — (amval tuned)/ammned
sea __ sea tuned tuned
S = (am )/ amg
5;:13:1 — (am tuned)/(]oamtuned)
5%,? — (amsea _ tuned)/(]oamtuned) (27)

Note that C! =0 so that the valence strange quark
mistuning term is only included for the B, — Dj case.
The tuned values of the quark masses are given by

phys
D*
amtcuned _ amval m s , (28)
Dg
and
hys\ 2
MP
amtuned amval s . (29)
M
’75

M . on each set is given in lattice units in Table XII and we

use the values of M, given in [9] which used the same

values of amVal We determine M, on set 5 from inde-

pendent correlator fits to be 0.19824(8). Since the #;
masses are only used to determine the strange quark
mistuning, and because they are very precise, we neglect
their correlations with our other data. We take priors of 0(1)
for each b, and b,. We also use priors of 0.0(0.1) for BY",
motivated by the results of the analysis of m{** effects on wy

in [53]. We take priors of 0.0(0.5) for Dﬁ for each form
factor, since sea quark mistuning effects enter at one loop.
We take a prior for gp:p, of 0.53(8), following [26].
Discretization effects enter our lattice calculation at the
level of matrix elements. It is therefore important to account
for them at this level, rather than at the level of the form
factors, where cancellations may cause them to be
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underestimated. To do this, we convert the continuum form
factors given by Eq. (21) to the matrix elements J”

J O(D r given in Egs. (18) and (20) and allow for dlscre—
tization effects in this quantity. We then perform the fit
against the matrix elements directly, simultaneously for the
different combinations listed in Tables V and VI, including
discretization effects using the fit form

‘]latt ‘]phys + Z Z Jkl - 1)n

j.n=0 k.10
. (amval>2k <am;flal)21
T VA
3 3
N Z Z Egly,r)(s),jszzﬂ(W —1)"
val\ 2k val\ 2/
() () “”

We take priors of O(1) for each ¢, and ¢,,, multiplying terms
of order O(a?) by 0.5 in line with the tree level a?
improvement of the HISQ action [24]. All of the remaining
priors are taken as O(1).

C. Tests of the stability of the analysis

Here, we demonstrate that our physical-continuum results
are insensitive to variations in both the parameters chosen
when fitting correlator data, as well as the para-
meters entering the chiral-continuum extrapolation. First,
we repeat the analysis described in Sec. IV B using different
combinations of the fits detailed in Table X. In order to
assess the sensitivity of our results, we follow [23] and
compare the values of the form factors, evaluated at ¢g* = 1,
g*> = 5,and ¢> = 10 GeV?. We perform this analysis in the
physically important helicity basis, in which each form

factor corresponds to a definite DE‘S) and W polarization. The

SM form factors in this basis are defined via
hy
g= i
BT
f=Mp /(1 +w)hy,
Fi =M r(1+w)((w=r)hy = (w=1)(rhy, + hy,))

whha,). (31)

Fy=—=((14+w)hy, + (rw—=1)hy, + (r -

We also define definite helicity tensor form factors, related to
the tensor helicity amplitudes given in Eq. (A12),

Fr, = (1 +w)hy + (w—1)hg, — hT3(w2 -1),
Fr, = hr (1- (1 +w) - hT2(1 +r)(w-1),
Fr, =hy (1+7)=hy(1=r). (32)

These are plotted in Fig. 6 for f and gat g> = 1, ¢*> = 5, and
q2 =10 GeVZ, with n = 53 + 352 + 951 + 2754 + 8155
tracking the different fit parameters, where J; is the value
of § given in Table X. In Fig. 6 we see that no combination of
alternative correlator fit parameters listed in Table X results
in a significant variation of f or g across the full kinematic
range of the decay. Similar plots for the remaining form
factors, including those for the tensor form factors, are given
in the Supplemental Material [64], where we see that the
other form factors are also stable to these variations.

We also investigate the effect of reducing the prior widths,
as well as reducing the order summed to for each expansion
parameter in Eq. (21). We evaluate the form factors, again at
g> =1,¢*> =5, and ¢*> = 10 GeV?, for different combina-
tions of these chiral-continuum extrapolation parameters.
We also investigate the effect of reducing the order to which
we sum in j, k, [ in Egs. (21), (22), and (30), as well as the
effect of halving the prior widths of b}, and c,‘,k[ defined in
Eq. (22) and halving the prior widths of bi, &M and Ip*Dy IN
Egs. (21) and (22). The resulting form factors for each
modification of chiral-continuum extrapolation procedure
are plotted in Fig. 7 for the form factors f and g, where we see
that none of these changes to the extrapolation procedure
resultin a significant change to the form factors. Plots for the
remaining B — D* and B; — D7 form factors are given in
the Supplemental Material [64], where we see that none of
our form factors are sensitive to these changes.

D. Error budget

In Fig. 8 we plot the fractional contribution of each
source of uncertainty to the total variance for the form
factors f and g across the full kinematic range of the decay.
These are computed from the partial variance of the form
factor at each w with respect to the priors, and so the size of
each band represents the extent to which the corresponding
terms in the chiral-continuum fit are not constrained by the

data. The band labeled y, corresponds to the priors ELkl, b{,

and ¢gp:p,, A/M,; corresponds to the priors i, am, to
Ok#00 WI#0 5. to the priors entering \'Y, and

“mixed” corresponds to priors for b,, c,,kl where at least two
of j, k. or [ are nonzero. “Statistical” corresponds to the
uncertainty from our data. Unsurprisingly, we see that close
to w =1 where we have data on all ensembles for all
masses we have very good control over the discretization,
chiral and heavy-mass dependence, whereas towards the
maximum value of w, corresponding to ¢> = 0, where we
have less coverage with our data, we see that the uncer-
tainty coming from unconstrained terms in our fit function
is larger. For the SM form factors, we generally find that
control over discretization effects set by am,, as well as
control over the physical heavy mass dependence, are the
dominant sources of uncertainty not constrained by the
data. Plots for F'; and F', as well as the tensor form factors
in the helicity basis defined in Eq. (32), are given in

, amy 10 ¢y
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FIG. 6. Values of the form factors f and g for B — D* evaluated at ¢g> = 1, g> = 5, and ¢> = 10 GeV? for different combinations of
correlator fits using different parameters. The red line and error band corresponds to our chosen combination and the blue line and error
band corresponds to the form factors resulting from different fit combinations. Here, n = §; + 36, 4+ 96, + 278, + 8165 where §; is the
value of & for set i given in Table X. We see that no combination of correlator fits results in a significant variation of f or g.

Figs. 21 and 22 in Appendix C, where we see a similar
situation for F, F,, Fr,, and Fr,. The uncertainty in F'y is
dominated by the unconstrained chiral dependence of the
factor hr,, shown in Fig. 4. We also show plots for the
B, — D} form factor uncertainties in Appendix C, with
similar behavior to those for B — D*.

E. BGL form factor parametrization

For comparison to other lattice and experimental deter-
minations, we fit synthetic data points generated at
w = 1.025, w = 1.225, and w = 1.425 for each B —» D*
form factor in the helicity basis, defined in Eq. (31), using
the BGL parametrization [13]. The BGL parametrization
expresses the form factors as

1 [e+]
F(r) = W; al z(1, to)". (33)

Here we adopt the conventions for Blaschke factors P(z),

outer functions ¢(z), BE*) resonances of [14] which were also
used in [26]. We include up to quadratic order in z, though we
have confirmed that going to cubic order has only a very small

effect on the resulting coefficients. We also enforce the
condition F(w=1)=Mgz(l —r)f(w=1) by fixing
dy = a%(1=r)/v2(1 +/r)%. Note that here we take
uniformly distributed priors between —1 and 1 for each a;;.
Although we do not enforce the condition at wy,,,
FZ(Wmax) = (1 +r)/(M%3(l +Wmax)(1 _r)r)Fl(Wmax)’ we
find that our fit satisfies this condition to within 0.07¢. The
fit parameters a; should satisfy the unitarity bounds given by

o0
> lafP <1,
i
o0
> lalP+laf'P <1,
i

> laiP <. (34)

The results of this fit are given in Table XIV, where we see that
for the form factors g, f, and F'1 we have a reasonably good
agreement with [26], and comparable uncertainties
(cf. Table 11 in that paper). However, for F, we find a tension
at the level of 26. Table XIV includes checks of the unitarity
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FIG. 7. Values of the form factors f and g for B — D* evaluated at q2 =1, q2 =5, and q2 =10 GeV?, corresponding to the blue, red,
and green points respectively, for different combinations of chiral-continuum extrapolation parameters. ¢ — ¢/2 indicates that we
multiply the prior widths of b} and ¢/ defined in Egs. (22) and (30) by 0.5 and ¢ — 20 indicates that we multiply the prior widths of bl
and ¢}’ defined in Egs. (22) and (30) by 2. 6, — 6,/2 indicates that we multiply the prior widths of &, & and gp-p, by 0.5 in
Egs. (21), (22), and (30), and 6, — 20, indicates that we multiply the prior widths of b}, @M and ooz DY 2. O(npy, s g s M)

indicates the order to which we sum in j, k,  respectively in Egs. (21), (22), and (30). For each fit going from top to bottom, the x> values

are 62, 55, 59, 64, 70, 62, 62, and 62, respectively, for 1224 degrees of freedom.

bounds, Eq. (34), which we find to be far from saturation for
the number of coefficients we include.

F. Reconstructing our form factors

We have included in the Supplemental Material [64]
a PYTHON script, LOAD_FIT.PY, that reads our physical-
continuum HQET fit parameters [see Eq. (21)] and their
correlations from the file hpqcd_BDstar.pydat, in order to
build the B — D* and B, — D} form factors in the HQET
basis. Note that the B, — D form factors given here
supersede those given in [23]. The script also performs
checks against the values of the form factors at five equally
spaced values of g2, stored in CHECKS.txt and CHECKS_s.txt.
We also provide a file SYNTHETIC_DATA.PYDAT, which may
be loaded into PYTHON using GVAR.GLOAD, which contains
synthetic data points for the form factors in the HQET
basis computed at five equally spaced values of ¢> = i x

qrzmx’(s)/4, i€[0,1,2,3,4] for the B(;) — D, form factors.

These synthetic data points are also checked against those
computed from our fit parameter text files in LOAD_FIT.PY.
We have run these scripts using PYTHON-3.10.6, using the
packages NUMPY-1.21.5, SCIPY-1.8.0, GVAR-11.10.1 and
MATPLOTLIB-3.5.1.

V. DISCUSSION

A. Comparison to experiment, |V |

We can use our form factors together with the untagged
data for B — D*e" v, and B — D*u~u, from Belle [21] in

order to extract |V,|. We use our physical-continuum form
factor parameters, given in the Supplemental Material [64]
as described in Sec. IV F, as priors to fit the experimental
differential rate data from Belle, which has been binned in
each of the variables w, 6+, 6y, and y defined in Fig. 1.
Note that throughout this section we assume no lepton
flavor universality (LFU) violation between the light £ = u
and £ = e modes.

The covariance matrix for the Belle data does not include
the zero eigenvalues expected from the fact that the bins for
a given variable must sum to the same total. In order to
remedy this issue we normalize the bins for each variable so
that they sum to 1. This ensures that the covariance matrix
contains the expected zero eigenmodes, which we then
remove explicitly using an SVD cut. Following the obser-
vation in [26] that the experimental data used to extract V .,
was dominated by the Belle dataset, we do not include any
synthetic data points generated using fits from BABAR [28].

Once the fit to Belle data described above has been
performed, a value of |V ;| can be read off by comparing
the total number of events to I'/|V .,7gw|* computed using
the form factors resulting from the joint theory/experiment
fit. We fit all four variables simultaneously, though we have
checked that fitting the Belle data for any single variable on
its own does not change the uncertainty in the resulting
value of |V |, exactly as one would expect from the fact
that the sum of each set of ten bins must be equal. In order
to reconstruct the combined electron-muon 80 x 80 covari-
ance matrix we follow the procedure described in [65] so
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FIG. 8. Plots showing the fractional contribution of each source

of uncertainty to the total variance for the form factors f and ¢
across the full kinematic range. The vertical axis is truncated at
0.25 for clarity, with the remaining variance between 0.25 and 1
attributable to statistics.

that we may fit the £ = p and £ = e cases simultaneously,
assuming no NP in either mode.

Since we have computed fully correlated form factors for
both B — D* and B, — D}, it is possible for us to include
data from LHCb [66] for B; — D7 in our fits. Even though
this data is more limited, it can still inform the shape of the
form factors. We include the LHCb B; — D} data in our
fits in the same manner as the Belle data, integrating our
differential decay rate over the bins used by LHCb and then
including these in our ;{2 minimization. However, since the
available B; — D} experimental data is significantly less
precise than that for B — D*, the inclusion of the LHCb
data does not significantly change the central value or
uncertainty of |V,| determined in this way.

Our lattice-only normalized differential decay rates for
B — D* and B; — D; are shown in Figs. 9 and 10
respectively, together with the experimental data points
for each bin. We see a difference in shape between our
results and the binned data from Belle and LHCb. The fit to
our results along with Belle and LHCb data gives
x*/d.o.f. =0.95 and Q = 0.55. The visible disagreement
in shape we see here is qualitatively similar to what was

TABLE XIV. BGL fit parameters, defined in Eq. (33), for our
B — D* form factors. Here we also include the sums of squared
coefficients, which we see are far from saturating the unitarity
bounds in Eq. (34).

aj 0.0318(25)
al —0.114(96)
a3 0.05(76)

al 0.01222(20)
dl 0.014(16)
) -0.17(45)
al! 0.002047(33)
al’! —0.0082(88)
al! -0.05(27)
al? 0.0447(34)
af? —-0.22(13)
ak? —0.009(797)
o3 al? 0.017(86)
7 laff? + o> 0.03016)
3 a2 P2 0.052(59)

seen in [26], where the authors observed a 2¢ discrepancy
across the full kinematic range of the decay after extrapo-
lating their lattice results (covering 1 < w < 1.175) to Wy«
using the BGL parametrization.

Using our fit to our lattice results along with the
experimental data enables us to determine |V ,|. We find

V| = 39.03(56),, (67)y X 107 (35)

exp

in good agreement with previous exclusive determinations
[10]. Note that in determining V., we take |7gw|>=
(1.00662)* x (14 aggp7), with an additional Coulomb factor
[67,68] for the charged final states in the decay measured by
Belle, B — D*~#*1,, and neglect the uncertainty.

For the purpose of comparison to other lattice QCD
results from [26], we plot | F(w)V ., new|? in Fig. 11, where
we use V., extracted from our joint theory/experiment fit,
Eq. (35), to multiply |F(w)|*> computed using only our
form factors. F(w) is defined according to the equation for
the differential rate with respect to w:

N

dw
Gt
= g My = Moy )My V= 1w +1)7

2 2
4w MB(S) - 2WMB(Y)MD;§) + MD@
(Mp,, — MD;;))Z
X |FO (w)newVep|*. (36)

X (14

w—+1

Figure 11 confirms the disagreement in shape of |F|* seen
in [26] between the SM and Belle data.
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FIG. 9. Our lattice-only normalized differential decay rates for B — D*£, with respect to the angular variables defined in Fig. 1, are
shown as the red bands. We also include binned untagged data for e /u from Belle [21]. Note the clear difference in shape, particularly for
the differential rate with respect to w. Our tauonic differential decay rates are shown in green.
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FIG. 10. Our normalized differential decay rate for B, — D}£v
with respect to w is shown as the blue band. We also include
binned data from LHCb [66]. Here, as for B — D*, we see a
similar difference in shape between SM theory and experiment to
that seen for Belle B — D* data in Fig. 9. The semitauonic mode
is plotted as the green band.

It has been emphasized that a precise determination of
the slope of F at w =1 could significantly reduce the
uncertainty in V;, [18]. While it is preferable to extract V
using lattice and experimental data across the full kinematic
range, it is still interesting to examine the slope at w = 1.
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FIG. 11. | F(W)ngwV.|?, defined via Eq. (36), plotted against

w. Our lattice-only |F(w)|? is multiplied by V,, extracted from
the joint theory/experiment fit.
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We find, for B — D* and B, — D},

dF

— = —-0.97(15),
ol (15)
dF*

= —0.94(11). 37
G| =094 (37)

The value for dF*/dw is in good agreement with the value
of —0.94(15) from our previous study [23], and we find
that the slope in both light and strange spectator cases
agrees well.

V., may also be computed by combining the total decay
rate from our lattice form factors and the Belle total rate
without using the differential rate information. Doing this,
we find V., = 42.9(0.5) ¢y, (2.2) 140 X 107, a larger value
than that in Eq. (35) and in much better agreement with the
inclusive value. This value may be understood from
Fig. 11, where it is apparent that our lattice results
multiplied by |V,,|* from Eq. (35) lie below the binned
experimental data, and so give a greater value of V, when
only the total rate is considered. This approach discards
information about the form factors contained in the shape
of the experimentally measured differential rate, that
otherwise constrains the form factors, and so results in a
greater uncertainty. We may also use the experimental
average branching fraction, B(B™ — D*¢*v,), and Bt
lifetime from the Particle Data Group [69] to calculate the
total decay rate, which we can then combine with our lattice
results to find Vi, = 43.4(0.9) ¢, (2.2) 1 ¥ 1073, consis-
tent with the value above determined using the Belle total
decay rate alone. Note that the total rate for B* — D*0¢ "y,
does not include the additional Coulomb factor,
(1 + agep7), required for B - D*~¢*v, [67,68].

B. T, R( ?s)) and angular observables

We can use our form factors to compute the total decay
rates for the different processes, normalized by the combi-
nation |V ,ngw/|?>. We find

(B = D*et,)/|V pnew|? = 1.13(12) x 107! GeV,
(B - D*up,)/|V pnew|* = 1.13(11) x 107" GeV,
(B — D*t0,)/|V piew|? = 3.10(17) x 10712 GeV,
I'(B; — D el/e)/|vcb77EW|2 = 1.201(
u,) (63) x 107! GeV,
F(B — D)/ |V pmew|* = 3.20(10) x 10712 GeV.
(38)

63) x 107! GeV,

Note that the total decay rates for B, — D} are approx-
imately lo lower than those computed by us previously
in [23]. This is discussed further in Appendix E, where we

TABLE XV. R(DZT)) and RimP(DE‘S)) computed first using our
form factors only, as well as computed using our form factors
together with the joint fits to experimental data described in the
text. Here we see that the inclusion of experimental data moves
the values down by ~2¢, and reduces their uncertainties.

Lattice-only Lattice + experiment

R(D¥) 0.273(15) 0.2482(20)
R(D}) 0.266(9) 0.2459(34)
R™P(D¥) 0.342(6) 0.3372(23)
R™ (D) 0.340(3) 0.3358(21)

compare our updated form factors for B; — Dj to those
in [23].

We use our form factors to compute R(DE‘S)), defined in
Eq. (1). We compute both a lattice-only value, using only our
computed form factors, as well as a lattice 4 experiment
value where we use the form factors resulting from our fits to
lattice and experimental data in Sec. V A. These are given in
Table XV, together with the improved ratios in which the
rates are integrated only between ¢2,,, and m2,

fqmax dqz dr ( ( ) N DZ})TI—/T)

qmax

R™ (D7) = (39)

dqz( (s) = Dzs)'b”;ﬂ)

We see that the inclusion of experimental data shifts R(D*)
downwards significantly and reduces the uncertainty. Our
lattice-only R(D*) is shown in Fig. 12, together with the
lattice + experiment value. In that figure we also plot the
lattice-only and lattice + experiment values of R(D*) com-
puted by the Fermilab-MILC collaboration [26], where the

HFLAV e
Belle 2019
LHCb 2018
SM lattice-only e
—
SM latticed-exp el k4 exp
e k4 Fermilab-MILC
ko4 this work
0.24 0.26 0.28 0.30 0.32
R(D*)

FIG. 12. “Lattice-only” and “lattice + experiment” values of
R(D*). The results of this work are shown in green, while the
recent results from the Fermilab-MILC collaboration [26] are
shown in red. The inclusion of experimental data produces a
similar downward shift in both cases. The two most
recent experimental measurements of R(D*), from Belle [34]
and LHCb [35], are also shown in blue, together with the HFLAV
average value.
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inclusion of experimental data produces a similar downward
shift. The two most recent experimental measurements of
R(D*), from Belle [34] and LHCb [35], are also shown,
together with the heavy flavor averaging group (HFLAV)
average value.

We may also use our form factors to compute observ-
ables related to the angular asymmetry of the decay. Here
we compute the lepton polarization asymmetry, A,,, the

D
longitudinal polarization fraction, F, ", and the forward-
backward asymmetry, Arp. These are defined as

dFAg:-l/Z/dq2 _ dl—%f=+1/2/dq2

2 p—

Aﬁg(q ) dF/dq2 s

D! dFllD@:O/d 2
Fro(g2) = 4q ’

1 2 (= dr

A 2 :—7—/ —_— Oy )doy,.

) = =i e )y dddeos(@y) oS Ow) 0w

(40)

The integrated observables related to these quantities are
defined as in [23] with the numerators and denominators
integrated over ¢> independently. We find for B — D*ti,

(A;) = 0.547(19),
(FP'y = 0.395(24),
(Apg) = 0.100(25), (41)

and for B; — Ditu,

(A3) = 0.5331(91),

%

(F) = 0.420(12),
(Asg) = 0.084(12). (42)

These values are in disagreement with expectations
from the heavy quark expansion (HQE) [37]. They are
also in tension at the level of 2.2 with the recent
measurement of the D* longitudinal polarization fraction
by Belle [39], FP'Belle — 0.60(8) (a1 (4)5ys- Our value of
(A, ) = —P.(D") is in good agreement with the measured
value from Belle [38], although there is a large statistical
uncertainty on the experimental measurement: P (D*) =

—~0.38 £ 51 g 720 -

C. SU(3)f1ay

SU(3)g,, symmetry breaking effects between B — D*
and B, — Dj are expected to be small [37]. R(D*) and
R(D?) are expected to differ by ~1%. Here, using our
lattice-only results, we find

R(D*)/R(D?) = 1.028(50). (43)

This result, together with our result for R(J/y) [45],
implies the simple relation to increasing spectator quark
mass R(D*) > R(D;) > R(J/y). We also compute the
ratios of the angular observables given in Sec. V B. We find

(Ai)/{A;,) = 1.040(29),

(FP) /(F?;‘ ) = 0.942(46),
(Agp)/(Afg) = 1.19(23). (44)

These results are in slight tension with the HQE expectation
of ®1% SU(3)q,, symmetry breaking, though this tension
is not significant for our level of uncertainty. The SM form
factors for B — D* and B; — D? are plotted in the helicity
basis in Figs. 13 and 14, where we see SU(3)g,, symmetry
breaking with difference ranges from ~1% for f and g up to
~10% for F,.

D. Constraining new physics in B - D*¢v,

The effective Hamiltonian Eq. (3) is most commonly
expressed in terms of left- and right-handed fermions as

4GV, _ - _ -
Her = % [ngCLY,lbLbﬂLV”VL + gy, CrYDRC LY VL
+ gs, CrbLE RV + g5, CLYsbRERVL
+ gTL ERO-;wa?RG”UVL + HC} s (45)
where gr, = (91 — 9r5)/2, 9v, = (gv —94)/2,

Gv, = (gv +94)/2, gs, = (95— gp)/2, and
gs, = (gs +gp)/2. Note that there is no gr,, since the
corresponding current, ¢;6,,b rC 0™y, is identically zero.
Here we have given the effective Hamiltonian for only a
single flavor of lepton. Unlike in Sec. V A, we will now not
assume LFU between the £ =y and # = ¢ modes and
instead study each case separately. The couplings for each
lepton flavor will be indicated by a superscript, as in g4.

In [70] the authors give the patterns of couplings
produced by different tree level models of NP. For the
models they considered at most one of either the left- or
right-handed vector coupling differed from its SM value,
together with different nonzero combinations of the left-
and right-handed scalar couplings and left-handed tensor
coupling. Throughout this subsection we compute con-
straints for different combinations of the various couplings
and V. Because gy, may be absorbed into V., it is
sufficient in our case to fix gy, = 1. For gy, # 1 one should
take gy — gx = gx/gv, and V. = V., =V, X gy, in
the constraints given below. In order to compute the
constraints we fit the Belle data using our lattice form
factors in the same manner as described in Sec. VA, for
fixed numerical values of gy. We fit the normalized binned
differential data from Belle, and only include the total rate,
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B — D*
B, — D*
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5.0
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4.0

1.0 1.1 1.2 1.3 14 1.5

0.40 B — D*

0.35

0.30

0.25

0.20

0.15

1.0 1.1 1.2 1.3 1.4 1.5
w

FIG. 13. B — D* and B, — Dj helicity basis form factors f
and g, defined in Eq. (31).

I, as a single additional data point when we compute
constraints including V.

1. Scalar operators

In [70] it was found that B — D* produces only very
weak constraints on the left-handed scalar coupling.
Indeed, using just B — D* it is only possible to constrain
the pseudoscalar combination g5, — gs, = gp, With the
QCD matrix element of the scalar current zero by parity

20

B — D*
B, — Dr

18

16

12

10

2.25

2.00

1.75

~1.50

3

1.25

1.00

0.75

1.0 1.1 1.2 1.3 1.4 1.5
w

FIG. 14. B — D* and B, — D helicity basis form factors F';
and F,, defined in Eq. (31).

as shown in Eq. (6). We find the constraints considering
modifications to gp alone are very weak, as shown in
Fig. 15 for both # = e and ¢ = u. Note that, since B —
D¢y provides complementary constraints for the scalar
operators, fully correlated lattice results for both B — D*
and B - D SM and NP form factors would allow for the
simultaneous constraint of all NP couplings.

2. Tensor operator

Of the models considered in [70] only S; and R, produced
a nonzero tensor coupling. These models also produced a
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99.99%

99.74%

954% =

68.3%

0%

99.99%

99.74%

95.4% =

68.3%

0%

FIG. 15. The top (bottom) plot shows the constraints on gff” )

using our theory-only differential decay rate and the data for
B — D*"e" (u")v, ) from Belle [21] for different combinations
of g;<” ) and V.. The different shaded regions correspond to the
confidence level to which those values are excluded with intervals
of p=0%,683%,95.4%,99.7%,99.99%. The unshaded re-
gions of the plot have p > 99.99%. The vertical and horizontal
blue lines correspond to the SM value.

correlated nonzero left-handed scalar operator, with
gs, = +4gr. Based on the expectation that renormalization
group mixing effects will leave the relations between left-
handed scalar and tensor couplings approximately intact
[70], we include the pseudoscalar as a Gaussian random
variable with central value +4¢; and uncertainty £10%.
For the # = e case the terms proportional to m2/q* and

\/m%/q* may be neglected. Then the only relevant

combinations of helicity amplitudes are those appearing
in Table XVI. These do not mix the tensor or pseudoscalar
helicity amplitudes with the helicity amplitudes for the SM
currents. For the £ = e mode we can then only determine
constraints on the relative phase of gp and gr, . Since we fix
gp = *4gr,, we may look at just the real part of g ,
together with the value of |V,|. The constraints for both
gp = *4gy, cases for £ = e are shown in Fig. 16, where
we see that the constraints in the gp = —4gy, case are
similar to the gp = +4gr, case.

0.05 99.99%
99.74%
= 0.04 4 954%
68.3%
0.03 —— ‘ ‘ 0%
~0.1 00 01
Re(gt,)
0.05 99.99%
99.74%
=5 0.04 95.4% =
68.3%
0.03 = ‘ — Bo%
~0.1 0.0 0.1
Re(gt,)

FIG. 16. Tension between our theory-only differential decay
rate and the data for B — D*"e*v, from Belle [21] for different
combinations of Re(g,) and V.. The top (bottom) plot
corresponds to the gp ~ +(_)49TL case described in the text.
The different shaded regions correspond to the confidence level to
which those values are excluded with intervals of
p = 0%, 68.3%,95.4%,99.7%,99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical blue line corresponds
to the SM value.

The situation for # = p is more complicated. In the SM
the lepton-mass-suppressed terms have factors m§ /q* but
in NP scenarios combinations of the SM and NP helicity

amplitudes appear at order |/m2/q* This contribution can

be significant for £ = y, depending on the size of g’}L, and
so we cannot remove the overall phase and must consider
both the real and imaginary parts of d}L. The resulting
constraint, using only the normalized differential rate,
which is insensitive to V,, is shown in Fig. 17, where
we see that the Belle B — D*~p*v, data is consistent with
gr, = 0 at the level of ~lo.

3. Right-handed vector operator

The constraints on the right-handed vector coupling, g‘f}k,
computed using our lattice results and the Belle data are
shown in Fig. 18 for the £ = e and £ = u cases, where we
also see no strong preference for a nonzero value.
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99.99%
0.1
99.74%
&
= 001 054% =~
E
68.3%
0.1
‘ | ‘ 0%
~0.1 0.0 0.1
Re(gr,)
99.99%
0.1
99.74%
&
= 001 054% =~
E
68.3%
0.1
‘ | ‘ 0%
~0.1 0.0 0.1

Re(gr,)

FIG. 17. Tension between our theory-only differential decay
rate and the data for B® — D*‘;ﬁvﬂ from Belle [21] for different
combinations of Re(gy ) and V.. The top (bottom) plot
corresponds to the gp ~ +(—)4gy, case described in the text.
The different shaded regions correspond to the confidence level to
which those values are excluded with intervals of
p = 0%, 68.3%,95.4%,99.7%,99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical and horizontal blue
line corresponds to the SM value.

E. VW, Adpy

A clear feature of the constraints produced is that the
¢ = p data does not agree well with our SM predictions,
compared to the £ = e case, for any values of the couplings
considered. Having reconstructed the full 80 x 80 Belle
covariance matrix as described in Sec. V A, we may compute
a value of V_, using £ =e and ¢ = u separately and
calculate their difference including correlations. We find

Ve, =39.26(91) x 1073,
V¥, = 38.75(96) x 1073, (46)

and

ve,/VE, = 1.013(17), (47)

99.99%
99.74%

=

> 95.4% =~

E
68.3%

‘ 0%
—0.5 0.0 0.5
Re(gy,,)
99.99%
0.2 1

99.74%

S

= 0.07 95.4% =

E
68.3%

—0.2 1
‘ | — By,
—0.25 0.00 0.25
Re(gy;,)
FIG. 18. The top (bottom) plot shows the constraints on gi,(”)

using our theory-only differential decay rate and the data for
B° — D*~e" (u")v, ) from Belle [21] for different combinations

of ge(” ). The different shaded regions correspond to the con-
Vi

fidence level to which those values are excluded with intervals of
p = 0%, 68.3%,95.4%,99.7%,99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical blue line corresponds
to the SM value.

consistent with V¢, /V%, =1 as we would expect in the
absence of NP. This is a similar level of consistency as was
seen in [70].

In [65] it was found that the 2018 Belle dataset was
inconsistent with the SM prediction for AAgpp =
(A%g) — (A%p), using a combination of HQE, light-cone
sum rules, and lattice QCD results for the zero recoil
B — D* form factor, hy,, and for the SM B — D form
factors across the full g2 range. Here, using our lattice-only
results, we find

(A% ) = 0.266(34),
(A%,) = 0.270(33). (48)

This is in tension at the level of ~2.5¢ with the SM results
for both Z = e and £ = u in [65]. We also find

AApy = —0.0036(10). (49)
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This result is in tension with the SM results in [65] at the
level of %20, although note that it is still much smaller than
and of opposite sign to the corresponding result using fits to
experimental data [65], in tension at the level of 3.56.

VI. CONCLUSION

We have computed the B(,) — DZ}) form factors for the
complete set of vector, axial-vector, and tensor currents
needed to describe both SM physics and potential new
physics appearing in the effective Hamiltonian, Eq. (3).
These form factors include a fully relativistic treatment of
both charm and bottom quarks in lattice QCD and span the
full kinematic range of the decay. Our calculation includes
two sets of gauge configurations with physical up/down
quarks, which we use to constrain the chiral dependence in
our chiral-continuum extrapolation using the full rooted
staggered chiral perturbation theory (see Appendix D).

We have used our form factors to perform the first
combined fit to both B — D* data, from Belle [21], as well
B, — Dj data, from LHCb [66]. This gives a value of V .;:

Vo] = 39.03(56) .y, (67 x 1073, (50)

exp
This is in good agreement with other exclusive determi-
nations and confirms the tension seen with inclusive
determinations [10]. For our result this tension is at
the level of ~3.66 with the most recent inclusive value
|Vp| = 42.16(51) x 1073 [5]. We have also determined a
less precise value of V., = 42.9(0.5)¢,(2.2)5q X 1073,
computed using only the total decay rate. This value is
in good agreement with the inclusive result. The significant
upward shift can be understood as a result of the observed
tension between our results for the shape of the differential
decay rate and the experimental data from Belle. This
tension is similar to the tension seen by the Fermilab-MILC
collaboration using their lattice QCD form factors, deter-
mined using a different formalism for b and ¢ quarks [26].
A tension in the shape of the differential decay rate to light
leptons is difficult to explain, since new physics is only
expected to appear in the semitauonic mode. We have also
computed the slope of F, defined in Eq. (36), and plotted
| FV pnew|? in Fig. 11, where the difference in shape is
visible.

We have also used our form factors to compute the
phenomenologically important quantities, R(™P) (Da)),

<A§‘:)>, (Ff“)}, and (Af;‘g), given in Table XV and
Eqgs. (41) and (42), respectively. We find our value of
R(D*) = 0.273(15) is in good agreement with the latest
experimental measurements from Belle and LHCb [34,35],
and with the most recent HFLAV average [10]. However,
our value of the semitauonic D* longitudinal polarization
fraction is in tension with the recent Belle measure-
ment [39] at the level of 2.20. We have also determined
a lattice + experiment value of R(D*) = 0.2482(20),

computed using the form factors resulting from the fit to
both our lattice results and the experimental data from
Belle, described in Sec. VA. The downward shift of the
value of R(D*) when including the experimental differ-
ential rate data means that this lower value is in tension at
the level of 3¢ with the HFLAV average for R(D*). So we
see that the “R(D*) anomaly,” like the “V ., puzzle,” arises
from the inclusion of the experimental differential rate data.

The inclusion of By — Dj correlators in our lattice
calculation has allowed us to perform a simultaneous fit
to both modes, using a parametrization allowing for
SU(3)p,,-breaking effects at the very conservative level
of ~25%. Using this fit, we provide updated B; — Dj
form factors that supersede those from our earlier calcu-
lation [23]. We find the additional data and chiral infor-
mation used here, as well as changes to correlator fitting
procedures and extrapolation method, result in B, — D}
form factors which are compatible with our previous results
for the less noisy form factors /4, and hy but in some
tension for the more noisy form factors /4, and hy,. The
updated results here are substantially more precise particu-
larly for h,, and hy close to w=1 where we see an
improvement in precision by a factor of 2. We have used
our updated B; — D} form factors to investigate SU(3),,
symmetry breaking effects appearing in R(™P) (DE‘S>),

<Aﬁf)), (F IL)(:) ), and (A%)). In each observable we find that
the B — D* differs by +0.6(1.4)%, +4.0(2.9)%,
—5.8(4.6)%, and +19.0(23.0)%, respectively, from the
B, — D7 value.

We have used our form factors to generate synthetic data
points which we fit using the popular BGL parametrization,
which we found gave a good fit with the unitarity bounds
far from saturation. Our fitted BGL parameters agree well
with those in [26] for f, g, and F; but for the form factor F,,
corresponding to the pseudoscalar current, are in significant
disagreement. Note that in decay rates F', is suppressed by
the square of the lepton mass and so only contributes to the
semitauonic mode.

Finally we examined the constraints on the NP cou-
plings for the £ = /e modes resulting from combining
our lattice results with the 2018 untagged Belle dataset.
We found that none of the couplings, when varied in the
combinations described in Sec. V D, strongly preferred
values different from the SM ones. We used our results to
compute SM values for (Agg) for both £ = u/e modes.
Our values differ from the SM predictions given in [65]
using a combination of light-cone sum rules, HQE,
and lattice QCD results, at the level of 2.5¢. We also
computed the difference, AApp = (Afg) — (A%y), and
found a value different to that given in [65] by ~2c,
and in tension with fits to the 2018 Belle data at the level
of 3.5¢. This result confirms the need for further inves-
tigation of lepton flavor universality violating effects in
the £ = u/e modes of the decay.
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This work demonstrates the feasibility of computing a
complete set of fully correlated SM and NP form factors for
pseudoscalar to vector semileptonic decays using the
heavy-HISQ approach, across different chiral regimes.
Our calculation has allowed us to perform the first
simultaneous analysis of data for B — D* together with
data for B, — D3, paving the way for the analysis of more
precise experimental data that is expected from LHCb and
Belle II in these channels in the near future.
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APPENDIX A: FULL DIFFERENTIAL DECAY
RATE INCLUDING TENSOR OPERATORS

The matrix element M is given by

Minde — C<D71'|D*(/1D*)><D*<AD*)|Jgad|B>

x (€(4¢)p)J*)0), (A1)
where C™!' = gpp,|P,| is a constant normalization, with
D, the pion spatial momentum in the D* rest frame, such
that integrating over Dz phase space yields the rate for our
choice of overall normalization N(g?) including the D* —
Dr branching fraction in Eq. (4). The sum on « includes
scalar, vector, and tensorlike currents,

hﬁdv(

Z.Igadjlepa — gs(p)JhadS(P)JlePS(P) i gV(A)Jﬂ R
a
+ grersyJp T Jepnasm (A2)

It is conventional to insert off-shell vector boson polari-
zation vectors in order to define helicity amplitudes. These
polarization vectors, €(4), possess the property that

PAGKAGLEM (A3)
A
with 8. = —1 and 6, = 1. We use vector boson polari-
zation vectors in the W rest frame,
1 0
sa=n=| | @a=0=|"
€ =1t) = s € = - s
0 0
0 -1
0
=)= | (A4)
€ = = R
V2 | +i
0
and D* polarization vectors in the D* rest frame
0 0
A=) = ! #(1=0) 0 (A5)
€ = = E— . € = =
V2| Fi 0
0 1
In the B rest frame the polarization vectors are
90 9]
1 1 0
¢l=1)=—= , #(A=0))=—x= ,
Ve Var| 0
—|q] —4o
0
s(imt)—t | 7! (A6)
€ = = E— N
V2| +i
0
and
0 4]
1| -1 1 0
HtA=t)=+— , e*(A=0)=
( ) V2| Fi (4=0) My | 0
(A7)

We take D, n, £, and v momenta
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Ep
u | kcos(y)sin(0p)
Po=1 ¢ sin(y) sin(@p) |’
kcos(y)
k
= —kcos(y) sin(6p) ’ (AS)
ksin(y) sin(6p-)
—kcos(y)
E, K
;. ;.
e k smO(HW) R k 51(1)1(6W) (A9)
—k'cos(Oy) k' cos(Oy)

The leptonic and hadronic helicity amplitudes are defined by

hady ) e
vy (D (Ap)|[Ju " | BY(£ (A )01 P7=2#]0)
hady ) _ N

= Zfﬁgv D* (Ao )3 | BY& ()

X & (2)(¢(2)2)10)

Ap A g Ap A
= D BHLYC
A

(A10)

The expressions for the vector and axial-vector helicity
amplitudes, H* = Hy* + Hi*, Hy=-H%°, and
H, = —Hg”, are given in Eq. (7). Note that for the 4 =
0,  cases, it is conventional to define the helicity amplitude
with an additional factor of —1. For the tensor currents, it is
conventional to also insert a factor of i(—i):

. hadTT —1 7le v
i97(rs)(D* (Ap )" | B)(=i{€ (2 )D| ' Pr-75(0) )

A*M
—53@@ DL (A11)

Note that the tensor current J"7s) includes a continuum

MS renormalization, defined at a scale x4 which we take to
be uy = 4.8 GeV.
The nonzero tensor helicity amplitudes are, using

Eq. (6),

H0+_ —HO + \/MBMD*((1+W hT]
M M *
H:t H0 _ Hi 0+ — g, My B 2D
vq
X (hr (1=r)(1+w)
~hyy(14+ ) (w=1)
MgMp (W — 1
H:t o H:I: NE — 49, My B p (2W )
Vvq
X (hy, (14 r) = hy, (1 =7)). (A12)

For the axial-tensor current, we may use the fact
that o =4Le"c,, to relate (D*|cy 6" b|B) =
$&?(D*|co,,b|B). Inserting this into the definition of
the helicity amplitudes allows us to relate the axial-tensor
helicity amplitudes to the tensor helicity amplitudes:

Hj: +0 _H:I: 0 _ @H?iz
gr
++ grs
HES _Hi =+ _ Hi £0
gr
0.0 040 915 1;0,4+-
Hys' = —Hy5 = —==Hy" (A13)
The pseudoscalar current is straightforwardly
5 - A A
9p(D*(Ap)|J"r |B)(£(A)0|J P |0) = HY' L p.  (A14)

We can use the partially conserved axial current relation,
<D*\q”6y”y5b|l_3) = —(my, + m,)(D*|¢y’b|B), to write

/2
Hp=H»0=_VT_ 925 (A15)
(mp +m.) ga
Together with the parametrization of the amplitude
(Dx|D*(Ap)) = 9p*Da€u(Ap-) P (A16)
this gives
. I
Mt = Cypep, u(’lD*)plll) [HPD Léf P
/1,,* e A 7 Aed
+ 25/1 + Hy )Lv A
+> 8,5 (HP" M L (A7)

W

For the charge conjugate mode, we have
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hadv T

Gy (D (Ap )" [B) (€ (4 )| JIPr-4#T]0)

IVA) yaged g 1
= E om ( >HV(A)L/‘/iA, (A18)
T v

. = hdd, T
i85 s (D7 11 | B)

X (=i(Z(A¢ )p|J Prr7(0) )

NIT(TS) | e i1y 12, 40
- 25/15/1 ( Hlrs) L7’7s, (A19)
v 91(15)

and
0 (D ) 5 B) (22 o190 10) = n L i L,

(A20)

n = =£1 is a phase dependent upon the sign of the current
under combined Hermitian conjugation and charge con-

jugation CJRTC-1 = pJhad Specifically for the currents
defined in Eq. (3), P,V,A,T,T5, this phase is
—1,-1,1,-1, 1, respectively.

Inserting these expressions, either for the normal or
conjugate mode, into Eq. (4) gives the corresponding
differential decay rate in terms of lepton tensors and
helicity amplitudes. The lepton tensor combinations may
be evaluated straightforwardly using standard spinor iden-
tities when summing over polarizations,

ZL” (Li) = Z(f(s)ﬂ(s’)|?7v|0>(<f (s)2(s)[£T2]0)"
= Zif(w)wy(pa)(b'ts(w)rvs'(m))T
= > @ (pre’ ()7 (pe)r T ()

=Tr[(ps + me)ypor°T"7°]. (A21)

For the conjugate mode lepton tensors
S )’
= Z u(s')|r°rTr°¢10)

X ((2(5)'/(5 )|2°Ty0¢10))"
= th"’(pp v 0 (pe) (° (p)7°TTY v (pe))'

= Zu P70 (pe) v (p )T (p,)

=Tr[p7°' 1 (e — me)T]. (A22)

TABLE XVI. The helicity amplitude combinations and coef-
y amp

ficients for them that appear in Eq. (10) at order (m%/q?*)° for

BO — D¢t

Hi k,‘(QW,eD‘7X)

Hy (Y ) 16609 (0y) o’ (0

H(%Jr_ (H;r'+0)* Zei)f Sil’l(29w) Sin(zeD*)

HO (HE)* —2e™ sin(20y) sin(20,- )

HY () ~2e 7 5in(20y) sin(20)

HY () ~2e7¥5in(20y) sin(20)

Hy () Bcos(6ly) cos? ()

H O (HY ) 2~ sin(20y,) sin(20)-)

HE (1) 45in? (6y) sin* (0

Hi O (H —4sin’ () sin*(0)-)

H;.,+0 (H;'_O)* —4e~2 ¢in? (QW) sin? (QD*)

HF*O(Hy™): —4e72 sin?(0y) sin® (6.)

HE(Hp)* 2e~% sin(Qy ) sin(26)-)

—2e~% sin(20y) sin(20)-)
—4sin?(0y,) sin?(0p¢)
4sin?(0y ) sin® (9D )

de™% sin®(Oyy ) sin®(0p+ )

472 sin%(Oy) sin (0 )

—2¢7% sin(@y) sin(20+ )

) )

)

Hy O (HY ) —2e% 5in(20y) sin (20
Hy O (H 0 —4¢e%% sin?(0y,) sin?(0)p-
Hy O (HS 4% sin?(Qy,) sin(Op+)
Hy O (H7 %) 45in(0y,) sin®(0)-)
Hy (H7 ") 4sin®(y) sin?(0)-)
H;™°(Hp)* —2e sin(Oy) sin(20)-)
Hy~'(HY ) —2e% sin(26y) sin(26)))

H; —I(H+ +0)*

—4e%% sin(Qy,) sin?(0p-)

Hy '(HF ) 42 sin®(By,) sin?(6p- )
H;"(H;‘O)* 4 sin®(Qy) sin?(0. )
H77'(H7 ™" 4sin?(y) sin?(0)-)

Hy ™ (Hp)* —2e% sin(Oy ) sin(20)-)
H.(H.)" 4sin* (%) sin?(0)- )

H. (H.)" —e¥ sin* (Oy) sin*(0p- )

H, (H,)" —2¢% sin? (%) sin(@y) sin(26).)
H_(H.)" —e™*% sin’ () sin® (-
H_(H_) 4 cos* (%) sin? (0 )
H_(Hy)* e~ sin(0y ) (cos(0y) + 1) sin(20,:)
Ho(H.)" —2e7% sin? (%) sin(@y) sin(26)- )
Ho(H_)* e sin(Oy ) (cos(Oy) + 1) sin(20)-)
H,(H,)* 4sin®(0y) cos?(0p-)
Hp(HY )" 8 cos(fy ) cos?(0p:)
Hp(H 0y 2¢ sin(0y,) sin(20+)
Hp(H7 )" —2¢e™ sin(fy,) sin(260p-)
Hp(H7 7" —2e~ sin(Qy ) sin(20). )
Hp(H7™)* —2e~ sin(Oy) sin(20p-)
Hp(Hp)" 4cos*(0p)
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The combinations of helicity amplitudes and k; factors
entering the squared matrix element, Eq. (10), for
general complex choices of gy in Eq. (3), are given in
Tables XVI-XVIII for the conjugate mode B — D*~¢Fv.
Note that these include the factor 7, and so should be used
with the helicity amplitudes for B — D**#~p, just taking
gx — gx- We have checked explicitly that our method of
constructing the differential decay rate reproduces the

TABLE XVII.

The helicity amplitude combinations and co-

efficients for them that appear in Eq. (10) at order (m2/ q*)? for

B - D*¢*u.

H;

ki(Ow.O0p+. %)

m/

" (H )"

o

m, 40,

T{HT+ (Ho)"
p)

0,
(1)
m_§H+ +0(

/”’/H+ +0(H0)*

"CHO(H,)
()

2

(%H;C +t(H0)*
m_§H+ +t(Ht>*
o <)

?H;-“(Ho)

T

FHT

"eH O (H,)*
“CHT T (H,)*
YZ_;H?_[(HO)
YHT ! (H,)

m2 04—
)

“LH (H7 )"

(7
\/q—jH_F HP
"’5H HO)*

(
\/7[_[ (H++0
’"fH (H++t)

(

”"fH Hp)*

—2e™ % sin(@y ) sin(20p+ )
2¢” sin(Qy,) sin(20-)
8 cos?(0p)

—8 cos(0y) cos?(0p+)
—8 cos? () sin? ()
—2e% sin(@y ) sin(20p+ )
—2e~ sin(Oy) sin(20)-)
8 cos?(%) sin? (0
2~ sin(By) sin(20,+)
2~ sin(Qyy) sin(20+)
8 sin?(%) sin? (6
—2¢% sin(0y,) sin(20,)
2¢% sin(@y ) sin(26,:)
8 sin2(%) sin® ()
—2¢% sin(fy) sin(26p:)
2e% sin(Oy) sin(26p)
—2e% sin(fy,) sin(20)-)
8 sin?(%) sin? (0.

8 sin2(%) sin® ()
—e” sin(@y) sin(20p+)
2¢~% sin(Oy) sin(20-)
—8 cos? (%) sin? ()

8 cos?(%) sin?(0p)
—e™% sin(fy ) sin(20))

(Table continued)

TABLE XVII. (Continued)

H; ki(Ow. Op+.x)
%;HO(H%+_)* 8 cos?(Ap:)
?—gHo(H;’+O)* —2¢% sin(By ) sin(20))
’Z—ngo(H;’H)* 2e% sin(0y,) sin(20,,.)
’Z—zszo(H}’_o)* —2e7 sin(Oy) sin(20) )
'Z_;HO(H;,—t)* —2e~% sin(Oy) sin(20)-)
%;HO(HP)* 4cos(By) cos?(0p-)
'Z—;H,(H%*‘)* —8 cos(fy ) cos?(0p:)
'Z—EH,(H?*O)* —2e sin(@y,) sin(260p-)
Z_EH[(H;:H‘I)* 2¢™ sin(Oy ) sin(20)+)
Z_gHt(H;,—o)* 2¢~% sin(Qy,) sin(20+)
Z—;H,(H}‘_’)* 2¢~% sin(y,) sin(20+)
’Z_EHI(HP)* —4cos?(0))

" Hp(H, ) —e7¥ sin(By) sin(20,)
rZ_ZZKHP(H—)* —e sin(Qy) sin(20+)
’Z_;HP(HO)* 4cos(By) cos?(0p-)
’ZzszP(Hz)* —4cos?(0p)

TABLE XVIII. The helicity amplitude combinations and co-
efficients for them that appear in Eq. (10) at order m%/g> for

B - D" ¢u.

H; ki(Ow.0p-. %)
Z_EH%+_(H(%+_)* 16 sin?(Ay,) cos?(6-)
'Z—Z”H(;'Jr_(H?’JrO)* —4e sin(Oy ) (cos(by) + 1) sin(26p+ )
’;LZZ(/H(T):‘F—(H;,‘FI‘)* 4e” sin(By ) (cos(Oy) + 1) sin(20p-)
Z*;H(%Jr_(l‘]?_o)* —8e~ sin® (%) sin(fy) sin(26)- )
’Z—EH%+_(H} —hyx —8e~ sin (TW) in(Qy ) sin(260,:)
';l_zi £H0(gOF)* —4e~ sin(Oy ) (cos(Oy) + 1) sin(20p)
':—Z”H;’+0(H?+O)* 16 cos* (%) sin®(0)-)
%H;#O(H;nﬂ)* —16 cos* (%) sin?(6)-)
%H?*O(H}’_O)* 4e=2 sin? (Qyy ) sin(0)-)
’Z—E’H?#O(H}ﬂ)* 4e72% sin? (Qy ) sin?(0-)
m_}H;m(H(%ﬁ—)* 4e=% sin(Oy ) (cos(Oy) + 1) sin(20)-)
p

’;L;H;H(H?Jro)* —16 cos* (%W) sin?(0-)
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TABLE XVIII. (Continued)

H, ki(Ow.0p . x)

’”f Hi (HE ) 16 cos* (%) sin® () )
’Z_EH;.M(H; 0y —4e=2% sin% () sin (0, )
g HE (Hp™)* —4e72% sin?(Oy) sin® (O )
’ZL;H;—O(H‘}*—)* —8e™ sin? (67‘”) sin(@y ) sin(20p+)
%H}"O(H;*O)* 42 sin*(Oyy) sin?(0p-)
'Z—;;H; O(H —4¢%7% sin?(Qy,) sin®(0p-)
r:_}H;.—o(H;,—o)* 16 sin (TW) sin?(0p+)
'Z—;H} O(HT) 16 sin*(%) sin? (0 )
%H}’_[(H(}*—)* —8e sin? (% =¢) sin(@y ) sin(26)-)
"q;;H;,—z(H;,M)* 4e%7 sin%(Oyy) sin () )
m—;H;‘_’(H; yx —4¢€%% sin?(Qy,) sin®(0p-)
Z—;‘H}‘_’(H}‘_o)* 16 sin (TW) sin?(6p-)
%H;—Z(H;—f)* 16 sin* (%) sin?(0)-)
%;H+(H+)* sin(Qy ) sin?(0-)
%H+(H_)* e sin? (@) sin?(0p-)
’Z—;H+(Ho)* —1e%sin(20y) sin(20)-)
m—§H+(Ht)* e sin(fy ) sin(20,)

e~ 2 sin? (Qy ) sin?(0)+)

%;H_ (H_)* sin(6y ) sin®(Ap-)
’Z—z;H_ (Hy)* —1e7sin(20y) sin(20)- )
’Z_;H‘ (H,)" e~ sin(Oy) sin(20)-)
’ZT?HO(HQ* —Le % sin(20y) sin(20))
%;HO(H_)* — 1 e sin(20y) sin(26),-)
’Z—EHO(HOY 4cos?(Ay) cos?(0p-)
:Z_?HO(H[)* —4 cos(By) cos?(0)-)

" H(H. ) e~ sin(0y) sin(20,.)
()" o sin(0y) sin(26)
’Z—;H;(Ho)* —4 cos(Ay) cos?(0p-)

" H,(H,) 4cos*(0)

results of [36]. Note, however, that in [36] H, and H are
defined without the additional (—1), and also that our
angular conventions for the lepton angle are related by
Ow — n—6y. The full differential decay rate is also
available in a slightly more compact notation in [71], though
the notation here makes clear which helicity amplitudes are
suppressed by the lepton mass.

Because

(€r°o,ub)(Erotvy) = —(C0,,b)(Fro™vy).  (A23)
the grs term is redundant, and it is typical to identify
(97 — 9r5) = 2g7,. As such, we may replace gr — 2gr,
and grs — 0 in Egs. (A12) and (A13), respectively, and

omit the helicity combinations including H7s.

APPENDIX B: n, BINNING STRATEGY

On each gauge configuration we compute multiple
instances of each correlation function, with n, sources
placed at different values of 7., spaced equally across the
time extent of a given configuration. The values of n, used
on each configuration are given in Table II. In previous
calculations [23,45] the correlation functions with different
t. On a given configuration were binned. Both calculations
included states whose correlation functions exhibited
significant correlation between the n, source times, such
as the ;. However, correlation functions that are suffi-
ciently far apart in time are expected to be only weakly
correlated and it is preferable not to bin the multiple », in
order to improve the resolution of the covariance matrix of
our data points, particularly on sets 3 and 5 where n, is
relatively small. On set 1, we have computed the correla-
tions between data generated from different values of 7.
We find that excluding #,, and 7., the maximum correlation
between any two data points using different ¢, using four
equally spaced values of 7., is ~0.2. On set 4, the
maximum correlation between data from four different,
equally spaced 7, is also ~0.2. With these findings in
mind, we choose to use the B, and D} masses, instead of
those of the 5, and 7. as was done in [23,45], to parametrize
the physical heavy and charm quark masses. We do not then
bin our data on set 2, 3 or 5, and on sets 1 and 4 we only bin
every four and two adjacent source times, respectively. We
have investigated the effect this has on the uncertainty of
the raw correlator data points, expecting that for fully
uncorrelated data the standard deviation will not change.
Histogram plots of 6ynpinned/Cbinned are shown in Figs. 19
and 20, for all correlator data points entering the correlator
fits used in this work, where we see that on each set binning
results in very similar uncertainties consistent with the
different time sources being uncorrelated. This allows us to
use a smaller SVD cut when fitting our correlation
functions and results in numerically more stable fits.

We have also checked the maximum and minimum
values of this ratio obtained for any combination of my,
and Dsz) momentum for the three-point functions as a

function of # for each ensemble. We find that for the three-
point functions the maximum reduction in standard
deviation is 5%, with the majority of data points changing
by less than ~2%. For the two-point functions, the
maximum reduction in standard deviation is ~10%, with
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Set1l
2000
1750 A
1500 A
1250 1
1000 A
750
500 A
250 1
0+ T T
0.80 0.85 0.90 0.95
Ounbinned/Obinned
Set 2
2000

1750 4

1500

1250 1

1000

750 A

500 A

250 A

04
0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100
Ounbinned/Obinned

Set 3

2000

1750 1

1500 1

1250 1

1000 A

750 A

500 A

250 A

0.90 0.95 1.00 1.05 1.10
Ounbinned/Obinned

FIG. 19. Histogram plots showing the ratio of standard devia-
tions, Gunbinned/Cbinned> ON €ach set for correlator data that has
been only partially binned, or fully binned, as described in the
text. The vertical black line corresponds to the mean. We only
include data points in the range 7, < 1 < fax-

the vast majority of points changing by less than ~5%. We
also see that these small changes are not strongly dependent
on ¢t. Since the statistical uncertainty of the three-point
correlators is the dominant uncertainty entering the

Set 4
2000
1750 1
1500 A
1250 A
1000 A
750
500
250
0 R
0.85 0.90 0.95 1.00 1.05 1.10
Ounbinned/Obinned
Set5
2000

1750 1

1500

1250 4

1000 A

750 4

500 A

250 1

0.8 0.9 1.0 11 1.2 13
Ounbinned/Obinned

FIG. 20. Histogram plots showing the ratio of standard devia-
tions, Gyunpinned/ Obinned> ON €ach set for correlator data that has
been only partially binned, or fully binned, as described in the
text. The vertical black line corresponds to the mean. We only
include data points in the range ., < 1 < frax-

determination of the matrix elements, the observation that
the three-point uncertainties remain essentially unchanged
indicates that the partial binning procedure does not
introduce any significant systematic under or overestima-
tion of uncertainties in our final results.

APPENDIX C: LATTICE DATA

1. Lattice form factor results

Here we give our lattice results for the form factors
extracted from correlator fits. The SM form factors for
B — D* are given in Tables XIX-XXIII and in
Tables XXIX-XXXIII for B, — D}. The tensor form factors
for B — D* are also given in Tables XXIV-XXVIII and in
Tables XXXIV-XXXVIII for B; — D}. These numbers
include the renormalization factors given in Tables VII
and VIIL
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TABLE XIX. Lattice form factor results for set 1. ak here is the
value of the x and y components of the lattice momentum for the
D*. ak is calculated from the corresponding twist in Table IV.

TABLE XXI. Lattice form factor results for set 3. ak here is the
value of the x and y components of the lattice momentum for the
D*. ak is calculated from the corresponding twist in Table IV.

amy, ak hAl hAZ hA3 I’lV amy ak hAl hAz hA3 hv
0.65 0.0 0.933(15) e e o 0.5 0.0 0.916(22) e o e
0.0378853 0.932(14) 5(22)  —4(21)  1.19(38) 0.061831 0.902(25) 0.05(3.91) 093.7) 121(14)
0.0757705 0.926(15) 2.0(6.1) —0.7(5.6) 1.24(28) 0.123662 0.850(39) —0.2(1.7) 1.1(1.4) 1.11(12)
0.113656  0.916(18) 1.2(3.4) 0.05(2.78) 1.24(23) 0.185493 0.774(58) 0.3(1.4) 0.89(93) 0.97(14)
0.151541  0.907(18) 0.8(2.3) 0.4(1.6) 1.24(20) 0.247324 0.689(91) 1.1(1.7) 0.67(85) 0.84(18)
0.189426  0.893(20) 0.7(2.0) 0.6(1.1)  1.22(19) 0.309155 0.60(10) 0.3(1.9) 0.70(68)  0.77(15)
0.725 0.0 0.939(16) - -- 0.65 0.0 0.932(24)
0.0378853 0.938(15) 5(22) -3(22) 1.19(38) 0.061831 0.917(28) —0.3(4.2) 1.2(4.1)  1.26(14)
0.0757705 0.932(16) 1.7(6.2) —0.6(5.8) 1.24(28) 0.123662 0.863(43) —0.4(1.8) 1.3(1.6) 1.15(12)
0.113656  0.922(18) 1.0(3.3) 0.08(2.89) 1.25(24) 0.185493 0.789(63) —0.002(1.375) 1.0(1.0) 1.00(14)
0.151541  0.913(18) 0.7(2.1) 0.4(1.7) 1.24(21) 0247324 0.711098)  0.4(1.5)  0.8593) 0.86(19)
0.189426  0.898(21) 0.5(1.7) 0.6(1.2) 1.23(19) 0.309155 0.62(11) —0.3(1.4) 0.88(73) 0.77(16)
0.8 00 0.946(16)  --- 0.8 0.0 0.950(26)
0.0378853 0.945(15) 4(23) —3(23)  1.20(39) 0.061831 0.934(31) —0.3(4.6) 1.2(4.5) 1.30(15)
0.0757705 0.939(16) 1.6(6.3) —0.5(6.0) 1.25(28) 0.123662 0.880(47) —0.5(2.0) 1.4(1.8) 1.19(13)
0.113656  0.929(19) 0.9(3.3) 0.1(3.0) 1.26(24) 0.185493 0.809(70)  —0.2(1.5) 1.2(1.2)  1.03(15)
0.151541  0.920(19) 0.6(2.1) 0.4(1.7) 1.25(21) 0.247324 0.74(11) 0.02(1.52) 1.0(1.0)  0.87(20)
0.189426  0.905(21) 0.4(1.6) 0.6(1.2) 1.24(20) 0.309155 0.64(12) -0.6(1.3)  1.04(80) 0.77(18)

TABLE XX. Lattice form factor results for set 2. ak here is the
value of the x and y components of the lattice momentum for the
D*. ak is calculated from the corresponding twist in Table IV.

amy ak ]’lA1 hAz hA3 hV
0427 0.0 0916(37)  --- - -
0.055399 0.916(42)  —9(15) 10(14)  1.11(31)
0.110798 0.900(44) -3.0(4.9) 3.7(3.8) 1.13(24)
0.166197 0.872(53) —1.9(3.7) 2.4(2.0) 1.10(22)
0.221596 0.832(66) —1.6(4.4) 1.9(1.4) 1.04(22)
0.276995 0.780(84)  —2(10)  1.6(1.1) 0.98(25)
0525 0.0 0.921(40)  --- . .
0.055399 0.921(44) -10(16) 11(15) 1.11(32)
0.110798 0.904(47) —3.2(4.7) 3.9(4.0) 1.13(24)
0.166197 0.876(57) —1.9(3.0) 2.52.1) 1.10(22)
0.221596 0.836(71) —1.4(2.7) 1.9(1.5) 1.05(23)
0.276995 0.785(90) —1.2(3.1) 1.6(1.2) 0.99(26)
0.65 0.0 0.93043) - . .
0.055399 0.930(48) —11(17) 12(16)  1.12(32)
0.110798 0.913(51) —3.4(4.8) 4.1(4.3) 1.14(25)
0.166197 0.884(61) —1.9(2.9) 2.6(2.3) 1.11(23)
0.221596 0.845(77) —1.4(2.4) 2.0(1.6) 1.06(24)
0.276995 0.79497) —1.2(2.4) 1.7(1.3) 1.00(27)
0.8 0.0 0.943(46) e e e
0.055399 0.943(51) —11(18) 12(17) 1.13(33)
0.110798 0.927(55) —3.5(5.0) 4.2(4.7) 1.15(26)
0.166197 0.898(67) —2.0(3.0) 2.7(2.5) 1.13(24)
0221596 0.859(83) —1.5(2.4) 2.1(1.8) 1.08(24)
0276995 0.81(10) —1.2(22) L7(L5) 1.02(28)

TABLE XXII. Lattice form factor results for set 4. ak here is the
value of the x and y components of the lattice momentum for the
D*. ak is calculated from the corresponding twist in Table IV.

amy ak hAl hAz hA3 hV
0.65 0.0 0.935(29) e e e
0.0376581 0.937(27) —5(40) 7(40)  1.20(50)
0.0753162  0.934(27) —2(11) 3(10)  1.23(35)
0.112974  0.927(28) —0.9(5.6) 2.1(4.7) 1.23(29)
0.150632  0.919(31) —0.7(4.0) 1.8(2.9) 1.21(26)
0.188291  0.907(34) —0.7(3.3) 1.7(2.1) 1.19(24)
0.725 0.0 0.941(30) e e e
0.0376581 0.943(28) —5(42) 7(42)  1.21(51)
0.0753162 0.939(28) —2(11) 3(11)  1.24(35)
0.112974  0.933(30) —1.1(5.6) 2.2(5.0) 1.24(29)
0.150632  0.924(32) —-0.9(3.7) 1.9(3.0) 1.23(26)
0.188291  0.913(35) —0.8(3.0) 1.8(2.2) 1.21(25)
08 00 0.94831)  --- . -
0.0376581 0.950(29) —6(44) 7(43)  1.23(52)
0.0753162  0.947(30) —2(12) 3(11)  1.25(36)
0.112974  0.940(31) —-1.2(5.7) 2.2(5.2) 1.25(30)
0.150632  0.931(33) -1.0(3.7) 1.9(3.2) 1.24(27)
0.188291  0.92037) —0.9(2.9) 1.8(2.3) 1.22(25)

2. Error band plots

Here we show plots for the fractional contribution of
each source of uncertainty to the total variance for the B —
D* form factors F; and F,, as well as the tensor form
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TABLE XXIII. Lattice form factor results for set 5. ak here is
the value of the x and y components of the lattice momentum for
the D*. ak is calculated from the corresponding twist in Table I'V.

amy, ak hAl hAz ]’lA3 I’lV
0427 0.0 0.886(77)  --- - -
0055399 0.882(73) 7(24)  —4(23)  0.88(51)
0.110798 0.854(79) 2.7(1.7) —0.5(6.1) 1.03(38)
0.166197 0.804(95) 2.1(5.5) 0.2(3.2) 1.02(35)
0.221596  0.74(12)  2.2(6.0) 0.4(2.2) 0.95(37)
0.276995 0.67(14) 4(10) 0.4(1.7)  0.83(38)
0525 0.0 0.888(81) .- . .
0.055399 0.884(77)  6(25) —4(24)  0.88(51)
0.110798 0.857(83) 2.1(7.3) —0.5(6.4) 1.02(38)
0.166197 0.807(99) 1.4(4.7) 0.2(3.4) 1.02(36)
0221596 0.74(12) 12(4.1) 04(23) 0.9537)
0.276995 0.67(14) 1.44.2) 0.3(1.8) 0.83(39)
0.65 0.0 0.89286)  --- . .
0.055399 0.889(81) 6(26)  —5(25)  0.88(52)
0.110798 0.862(87) 1.9(7.4) —0.5(6.7) 1.03(38)
0.166197 0.81(10) 1.1(4.4) 0.2(3.6) 1.02(36)
0.221596  0.75(13)  0.93.6) 0.4(2.5) 0.95(38)
0.276995 0.67(15)  1.0(3.3) 0.3(1.9)  0.83(40)
0.8 0.0 0.899(90) e e e
0.055399 0.897(85)  6(27) =5(26)  0.88(52)
0.110798 0.870(91) 1.8(7.6) —0.6(7.0) 1.03(39)
0.166197 0.82(11) 1.0@44) 023.7) 1.0337)
0.221596 0.75(13)  0.8(3.4) 0.3(2.6) 0.96(39)
0276995 0.67(15) 0.9(3.0) 0.3(20) 0.84(41)

TABLE XXIV. Lattice tensor form factor results for set 1. ak
here is the value of the x and y components of the lattice
momentum for the D*. ak is calculated from the corresponding
twist in Table IV.

TABLE XXV. Lattice tensor form factor results for set 2. ak
here is the value of the x and y components of the lattice
momentum for the D*. ak is calculated from the corresponding
twist in Table IV.

amy ak hT] I’sz I’ZT3
0.427 0.0
0.055399 0.878(59) —-0.05(26) 6(20)
0.110798 0.860(63) —-0.07(20) 1.7(5.3)
0.166197 0.831(76) —-0.07(19) 0.9(2.8)
0.221596 0.791(94) —0.06(20) 0.7(1.9)
0.276995 0.74(12) —-0.07(22) 0.6(1.5)
0.525 0.0
0.055399 0.887(59) —0.06(27) 7(20)
0.110798 0.869(64) —0.08(21) 2.1(5.3)
0.166197 0.840(76) —0.08(20) 1.1(2.8)
0.221596 0.799(95) —-0.07(21) 0.8(1.9)
0.276995 0.75(12) —0.08(23) 0.7(1.6)
0.65 0.0
0.055399 0.899(61) —0.08(29) 8(121)
0.110798 0.881(65) —-0.10(22) 2.4(5.4)
0.166197 0.851(78) —0.10(21) 1.3(2.9)
0.221596 0.810(98) —0.09(23) 0.9(2.0)
0.276995 0.76(12) —0.08(24) 0.8(1.6)
0.8 0.0 . .. .
0.055399 0.915(63) —0.10(30) 9(21)
0.110798 0.898(68) —0.12(23) 2.7(5.6)
0.166197 0.867(81) —-0.11(23) 1.4(3.0)
0.221596 0.83(10) —0.10(24) 1.02.1)
0.276995 0.77(13) —0.09(26) 0.8(1.7)
TABLE XXVI. Lattice tensor form factor results for set 3. ak

here is the value of the x and y components of the lattice
momentum for the D*. ak is calculated from the corresponding
twist in Table IV.

amy, ak hr, hr, hr, amy, ak hr, hr, hr,
0.65 0.0 0.5 0.0
0.0378853 0.873(24) —0.07(27) 0.06(38.61) 0.061831 0.877(32) —0.04(14) —1. 8(4 6)
0.0757705 0.867(25) —0.08(20) —-1(10) 0.123662  0.820(50)  —0.03(13) —-0.6(1.8)
0.113656 0.858(28) —0.08(17) -0.9(5.1) 0.185493  0.748(73)  0.001(168) —0.4(1.1)
0.151541 0.845(28) —-0.07(15) —0.8(2.8) 0.247324  0.66(12) 0.02(24) —-0.5(1.1)
0.189426 0.831(31) —0.06(14) —-0.7(2.0) 0.309155 0.65(16) 0.45(48) 0.23(86)
0.725 0.0 e e e 0.65 0.0 e e
0.0378853 0.878(24) —0.08(28) —-0.2(38.9) 0.061831  0.898(33) —0.04(15) —1. 2(4 7)
0.0757705 0.873(26) —0.09(20) —1(10) 0.123662  0.843(52) —0.04(14) —-0.2(1.8)
0.113656 0.863(29) —0.09(17) -1.0(5.1) 0.185493  0.772(76)  0.007(177) —-0.1(1.2)
0.151541 0.850(28) —0.08(15) —-0.9(2.8) 0.247324  0.69(13) 0.05(25) —0.2(1.1)
0.189426 0.836(31) —0.07(14) —-0.7(2.0) 0.309155  0.68(16) 0.47(51) 0.41(89)
0.8 0.0 0.8 0.0
0.0378853 0.885(24) —0.08(28) -0.5(39.2) 0.061831  0.920(35) —0.05(16) -0.9(5.1)
0.0757705 0.880(26) —0.10(21) —1(10) 0.123662  0.866(56)  —0.04(15)  0.0004(1.9847)
0.113656 0.870(29) —0.10(18) -1.0(5.1) 0.185493  0.798(82) 0.01(19) 0.08(1.25)
0.151541 0.857(29) —-0.09(16) —-0.9(2.8) 0.247324  0.73(13) 0.07(27) 0.06(1.14)
0.189426 0.843(32) —0.08(15) —-0.7(2.0) 0.309155 0.71(17) 0.50(54) 0.61(94)
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TABLE XXVII. Lattice tensor form factor results for set 4. ak
here is the value of the x and y components of the lattice
momentum for the D*. ak is calculated from the corresponding
twist in Table IV.

amy ak hT] I’sz hT3
0.65 0.0
0.0376581 0.875(44) —0.19(40) 4(67)
0.0753162 0.872(44) —0.18(29) 1(17)
0.1129 74 0.867(47) —0.17(24) 0.8(7.9)
0.150632 0.859(51) —0.16(22) 0.5(4.8)
0.188291 0.849(56) —0.15(21) 0.43.4)
0.725 0.0
0.0376581 0.881(44) —0.19(41) 3(68)
0.0753162 0.878(45) —0.18(30) 1(17)
0.112974 0.873(48) —0.17(25) 0.6(8.1)
0.150632 0.865(52) —0.16(23) 0.5(4.9)
0.188291 0.855(57) —0.15(22) 0.4(3.4)
0.8 0.0 e . .
0.0376581 0.888(45) —0.19(42) 2(70)
0.0753162 0.885(46) —0.18(30) 0.8(17.7)
0.112974 0.880(49) —-0.17(26) 0.5(8.2)
0.150632 0.872(53) —0.17(23) 0.4(5.0)
0.188291 0.861(58) —-0.16(22) 0.4(3.5)
TABLE XXVIII. Lattice tensor form factor results for set 5. ak

here is the value of the x and y components of the lattice
momentum for the D*. ak is calculated from the corresponding
twist in Table IV.

amy ak th h72 I’l7‘3

0055399  0.84092)  —-0.07(42)  —3(28)

0.110798 0.81(10) —0.12(33) —-0.8(7.6)
0.166197 0.75(12) —0.15(32) -0.3(4.1)
0221596  0.69(16)  —0.18(35)  —0.2(2.9)
0276995  0.61(19)  —0.22(39)  -0.3(2.2)
0.055399  0.84501)  —0.06(43)  —3(28)

0.110798  0.81(10)  —0.12(34)  —0.8(7.6)
0.166197  0.76(12)  —0.15(34)  —0.3(4.1)
0221596  0.69(16)  —-0.18(37)  —0.2(2.9)
0.276995 0.61(19) —0.22(41) —-0.3(2.2)
0055399  0.851(92)  —-0.03(45)  —4(28)

0.110798 0.82(10) —0.11(35) —-0.9(7.6)
0.166197 0.76(12) —0.15(35) -0.4(4.1)
0221596  0.69(16)  —0.18(39)  —0.2(2.9)
0276995  0.61(19)  -022(43)  -0.3(2.2)
0.055399  0.861(92)  —0.01(47)  —4(28)

0.110798  0.83(10)  —0.10(37)  —1.0(7.6)
0.166197  0.77(12)  —0.15(37)  —0.4(4.1)
0221596  0.70(16)  —0.18(41)  —0.2(2.9)
0.276995 0.62(20) —0.22(46) —-0.3(2.3)

TABLE XXIX. Lattice form factor results for set 1. ak here is
the value of the x and y components of the lattice momentum for
the D}. ak is calculated from the corresponding twist in Table I'V.

am,, ak hy, hi, hy, hy,
0.65 0.0 0.9293(50) e a e
0.0378853 0.9281(48) 0.5(7.1) 0.8(6.9) 1.27(16)
0.0757705 0.9231(53) 0.3(2.1) 0.9(1.9) 1.27(11)
0.113656 0.9152(58) 0.2(1.1)  0.99(93) 1.258(87)
0.151541 0.9040(64) 0.25(82)  1.02(58) 1.241(74)
0.189426  0.8900(72) 0.30(69)  1.02(41) 1.219(67)
0.725 0.0 0.9342(51) e e e
0.0378853 0.9330(50) 0.3(7.2) 0.8(7.1) 1.27(17)
0.0757705 0.9280(55) 0.2(2.1) 0.92.0) 1.27(11)
0.113656  0.9200(59) 0.1(1.1)  0.97(96) 1.264(89)
0.151541 0.9088(66) 0.08(74)  1.00(60) 1.248(76)
0.189426 0.8947(74) 0.08(59)  1.01(42) 1.226(69)
08 0.0 0.9404(52) aE a e
0.0378853 0.9392(51) 0.2(7.4) 0.9(7.3) 1.28(17)
0.0757705 0.9341(56) 0.1(2.1) 0.9(2.0) 1.28(11)
0.113656 0.9261(61) 0.02(1.09) 0.97(99) 1.274(91)
0.151541 0.9148(68) —0.005(722) 1.00(61) 1.257(78)
0.189426  0.9006(76) —0.01(56)  1.01(44) 1.235(70)

TABLE XXX. Lattice form factor results for set 2. ak here is
the value of the x and y components of the lattice momentum for
the Dj. ak is calculated from the corresponding twist in Table I'V.

amy, ak hy, hy, Iy, hy,
0.427 0.0 0.908(15) e e e
0.055399 0.902(16) —3.3(6.0) 4.2(5.6) 1.23(16)
0.110798 0.879(17) —1.1(2.0) 2.0(1.5) 1.21(12)
0.166197 0.844(21) —0.7(1.5) 1.50(81) 1.15(11)
0.221596 0.801(26) —0.6(1.9) 1.30(57) 1.08(12)
0.276995 0.753(34) —0.2(4.2) 1.15(48) 1.00(13)
0.525 0.0 0.913(15)
0.055399 0.907(17) -3.5(6.1) 4.3(5.8) 1.23(16)
0.110798 0.884(18) —1.2(1.9) 2.0(1.6) 1.21(12)
0.166197 0.849(22) —0.8(1.2) 1.50(86) 1.15(11)
0.221596 0.804(27) —0.6(1.1) 1.29(61) 1.08(12)
0.276995 0.756(36) —0.5(1.3) 1.15(51) 1.00(13)
0.65 0.0 0.922(16) e e e
0.055399 0.916(18) —3.6(6.3) 4.3(6.1) 1.24(16)
0.110798 0.893(19) —1.2(1.9) 2.0(1.7) 1.21(12)
0.166197 0.856(23) —0.8(1.1) 1.50(91) 1.16(11)
0.221596 0.812(29) —0.65(96) 1.30(65) 1.09(12)
0.276995 0.764(38) —0.53(99) 1.17(55) 1.01(13)
0.8 0.0 0.936(17) e ax e
0.055399 0.930(19) —3.6(6.6) 4.3(6.5) 1.26(16)
0.110798 0.906(21) —1.3(2.0) 2.0(1.8) 1.23(13)
0.166197 0.869(25) —0.9(1.2) 1.51(97) 1.18(12)
0.221596 0.824(31) —0.69(93) 1.32(70) 1.11(12)
0.276995 0.776(41) —0.57(92) 1.19(60) 1.02(14)
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TABLE XXXI. Lattice form factor results for set 3. ak here is
the value of the x and y components of the lattice momentum for
the Dj}. ak is calculated from the corresponding twist in Table I'V.

TABLE XXXIII. Lattice form factor results for set 5. ak here is
the value of the x and y components of the lattice momentum for
the D}. ak is calculated from the corresponding twist in Table I'V.

am,, ak hy, hy, h, hy, am,, ak hy, hy, hy, h3,

0.5 0.0 0.9169(92) e e 0.427 0.0 0.898(22) e e e
0.061831 0.8984(90) —0.4(1.4) 1.2(1.3) 1.247(58) 0.055399 0.894(21)  1.4(6.3) —0.3(6.0) 1.24(15)
0.123662 0.845(12) —0.45(53) 1.18(44) 1.142(38) 0.110798 0.87421)  0.1(1.9)  0.9(1.5) 1.22(11)
0.185493 0.772(17) —0.48(42) 1.15(28) 1.021(41) 0.166197 0.838(24) 0.002(1.409) 1.01(80) 1.16(11)
0.247324 0.688(30) —0.33(58) 1.02(28) 0.901(92) 0.221596 0.790(31) 0.05(1.65) 0.97(61) 1.09(11)
0.309155 0.597(54) —0.25(97) 0.87(33) 0.86(12) 0.276995 0.734(42)  0.2(3.0) 0.90(53) 1.01(13)

0.65 0.0 0.931(10) e e e 0.525 0.0 0.903(23) e e e
0.061831 0.9117(99) —0.4(1.5) 1.2(1.4) 1.272(64) 0.055399 0.900(22) 1.5(6.5) —0.5(6.3) 1.24(15)
0.123662 0.857(13) —0.48(56) 1.19(49) 1.162(43) 0.110798 0.880(22) 0.06(1.86)  0.8(1.6) 1.22(11)
0.185493 0.785(19) —0.54(42) 1.18(31) 1.035(46) 0.166197 0.843(25) —0.1(1.2) 0.97(86) 1.17(11)
0.247324 0.705(33) —0.46(52) 1.08(32) 0.902(99) 0.221596 0.794(33) —0.1(1.1)  0.94(65) 1.10(12)
0.309155 0.620(58) —0.50(76) 0.98(38) 0.84(13) 0.276995 0.737(44) —0.06(1.37) 0.87(58) 1.02(13)

0.8 0.0 0.948(11) e e e 0.65 0.0 0.912(24) e e e
0.061831 0.928(11) —0.4(1.6) 1.2(1.6) 1.300(69) 0.055399 0.909(23) 1.8(6.9) —0.9(6.7) 1.25(16)
0.123662 0.872(14) —0.52(60) 1.21(54) 1.186(48) 0.110798 0.889(23) 0.08(1.92)  0.8(1.7) 1.23(12)
0.185493 0.801(20) —0.60(44) 1.23(35) 1.054(51) 0.166197 0.851(27) —0.1(1.2)  0.93(94) 1.18(11)
0.247324 0.726(36) —0.58(52) 1.17(36) 0.91(11) 0.221596 0.801(35) —0.1(1.0) 0.91(71) 1.11(12)
0.309155 0.651(64) —0.70(74) 1.12(43) 0.82(14) 0.276995 0.743(48) —0.1(1.1)  0.84(63) 1.03(14)

0.8 0.0 0.926(26) e e e
0.055399 0.922(25) 2.1(7.4) —1.3(7.3) 1.27(16)
0.110798 0.901(25)  0.1(2.0) 0.7(1.9) 1.25(12)
factors in the helicity basis defined in Eq. (32) (plots for g 0.166197 0.862(29) -0.1(1.2)  0.9(1.0) 1.19(12)
and f for B — D* are given in Fig. 8 in the main text). Plots 0.221596 0.811(38) —0.1(1.0)  0.88(78) 1.12(13)
) ) 0.276995 0.752(52) —0.1(1.0)  0.81(69) 1.04(14)

for the full set of B, — D} form factors are given in
Figs. 23-25.

TABLE XXXII. Lattice form factor results for set 4. ak here is
the value of the x and y components of the lattice momentum for
the D7. ak is calculated from the corresponding twist in Table I'V.

TABLE XXXIV. Lattice tensor form factor results for set 1. ak
here is the value of the x and y components of the lattice
momentum for the Dj. ak is calculated from the corresponding
twist in Table IV.

am, ak h}, I, hf43 hy,
0.65 0.0 0.9271(42)

0.0376581 0.9269(41) —1.8(5.7) 2.9(5.6) 1.31(14)
0.0753162 0.9222(46) —0.7(1.8) 1.8(1.6) 1.284(95)

0.112974 0.9148(51) —0.39(96) 1.51(80) 1.262(77)
0.150632  0.9043(56) —0.23(68) 1.38(50) 1.237(68)
0.188291 0.8911(62) —0.12(57) 1.31(35) 1.207(64)
0.725 0.0 0.9323(43) .-
0.0376581 0.9321(42) —1.9(5.9) 2.9(5.8) 1.31(14)
0.0753162 0.9274(48) —0.8(1.8) 1.9(1.7) 1.290(97)

0.112974  0.9199(52) —0.51(94) 1.51(83) 1.268(79)
0.150632  0.9093(58) —0.36(64) 1.38(52) 1.242(70)
0.188291 0.8960(64) —0.28(50) 1.31(37) 1.212(65)
0.8 00 0.9387(44) e e e
0.0376581 0.9384(43) —2.0(6.0) 3.0(6.0) 1.32(15)
0.0753162 0.9337(49) —0.9(1.8) 1.9(1.7) 1.30(10)

0.112974  0.9261(54) —0.58(94) 1.52(86) 1.276(81)
0.150632  0.9155(60) —0.44(63) 1.39(54) 1.250(72)
0.188291  0.9021(66) —0.36(49) 1.31(38) 1.220(67)

amy, ak hy, hry, h,
0.65 0.0
0.0378853  0.8654(76)  —0.08(13)  0.06(10.90)
0.0757705  0.8597(75) —0.083(82)  —-0.4(2.7)
0.113656 0.8506(79) —-0.079(64)  —0.3(1.3)
0.151541 0.8383(84) —0.075(56)  —0.29(76)
0.189426 0.8231(93) —-0.070(53)  —0.25(53)
0.725 0.0
0.0378853  0.8712(77)  —0.09(13)  0.08(10.96)
0.0757705  0.8654(76) —0.095(84)  —0.4(2.7)
0.113656 0.8563(80) —0.091(65)  —0.4(1.3)
0.151541 0.8440(85)  —0.086(57)  —0.30(77)
0.189426 0.8286(94) —0.081(54) —0.26(54)
0.8 0.0 .. . .
0.0378853  0.8778(78)  —0.10(14) 0.1(11.1)
0.0757705  0.8720(77) —0.106(86)  —0.4(2.7)
0.113656 0.8629(81) —0.101(67)  —0.4(1.3)
0.151541 0.8504(87) —0.097(58)  —0.32(78)
0.189426 0.8349(95) —-0.091(55) —0.27(55)
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TABLE XXXV. Lattice tensor form factor results for set 2. ak
here is the value of the x and y components of the lattice
momentum for the Dj. ak is calculated from the corresponding
twist in Table IV.

TABLE XXXVII.  Lattice tensor form factor results for set 4. ak
here is the value of the x and y components of the lattice
momentum for the Dj. ak is calculated from the corresponding
twist in Table IV.

amy, ak hy, hy, h., amy, ak hy, h, h.,
0.427 0.0 0.65 0.0
0.055399 0.870(22) —-0.09(14) 2.3(7.7) 0.0376581  0.8644(69) —0.10(12) 2.909.2)
0.110798 0.845(25) —0.09(11) 0.5(2.2) 0.0753162  0.8586(68)  —0.102(72) 0.7(2.2)
0.166197 0.807(30) —0.07(11) 0.2(1.2) 0.112974 0.8498(70)  —0.099(55) 0.3(1.1)
0.221596 0.763(37) —-0.05(12) 0.20(80) 0.150632 0.8377(74)  —0.096(48)  0.10(63)
0.276995 0.714(48) —0.05(14) 0.19(65) 0.188291 0.8226(79)  —0.093(45)  0.02(44)
0.525 0.0 0.725 0.0
0.055399 0.878(22) —0.11(14) 2.5(7.7) 0.0376581  0.8703(70) —0.11(12) 2.909.3)
0.110798 0.852(25) —0.11(12) 0.5(2.2) 0.0753162  0.8644(69)  —0.112(73) 0.8(2.3)
0.166197 0.814(30) —0.09(12) 0.3(1.2) 0.112974 0.8556(71)  —0.109(57) 0.3(1.1)
0.221596 0.769(38) —-0.07(13) 0.21(82) 0.150632 0.8434(75)  —0.107(50)  0.10(64)
0.276995 0.720(49) —0.06(14) 0.20(67) 0.188291 0.8282(80)  —0.104(46)  0.03(44)
0.65 0.0 0.8 0.0
0.055399 0.889(22) —-0.13(15) 2.5(7.7) 0.0376581  0.8770(71) —-0.12(12) 2.909.5)
0.110798 0.863(25) —0.13(12) 0.6(2.2) 0.0753162  0.8711(70)  —0.122(75) 0.8(2.3)
0.166197 0.824(31) —0.11(12) 0.3(1.2) 0.112974 0.8622(73)  —0.119(58) 0.3(1.1)
0.221596 0.778(39) —0.09(14) 0.22(84) 0.150632 0.8499(76)  —0.116(51)  0.11(65)
0.276995 0.729(51) —0.08(15) 0.21(69) 0.188291 0.8346(82)  —0.113(48)  0.03(45)
0.8 0.0 .. e .
0.055399 0.904(23) —0.16(16) 2.6(7.9)
0.110798 0.877(26) —0.15(13) 0.6(2.3)
0.166197 0.838(32) —0.13(13) 0.3(1.2)
0.221596 0.791(41) —-0.11(14) 0.23(88) TABLE XXXVIII. Lattice tensor form factor results for set 5.
0.276995 0.742(54) —0.10(16) 0.22(73) ak here is the value of the x and y components of the lattice
momentum for the Dj. ak is calculated from the corresponding
twist in Table IV.
am, ak hy, hy, hr.,
TABLE XXXVI. Lattice tensor form factor results for set 3. ak 0.427 0.0 e e ..
here is the value of the x and y components of the lattice 0.055399 0.858(24) —0.08(16) ~1.7(7.6)
momentum for the Dj. ak is calculated from the corresponding 0.110798 0.835(25) —0.09(13) -0.3(2.0)
twist in Table IV. 0.166197  0.794(30)  —0.09(12)  —0.2(1.0)
i ] , 0.221596 0.743(39) —0.08(13) —0.13(76)
amy, ak ht, ht, ht, 0276995  0.686(53)  —0.08(15)  —0.10(64)
0.5 0.0 0.525 0.0
0.061831  0.883(12)  —0.135(70)  —0.04(1.74) 0.055399 0.866(25) —0.09(17) -1.9(7.7)
0.123662  0.823(16)  —0.120(56) —0.10(59) 0.110798 0.843(26) —0.10(13) —-0.3(2.1)
0.185493  0.747(23)  —0.072(79) 0.02(36) 0.166197 0.802(31) —-0.10(12) -0.2(1.1)
0.247324  0.670(41) 0.04(15) 0.11(36) 0.221596 0.751(40) —0.09(13) —0.12(79)
0.309155  0.628(92) 0.42(39) 0.36(51) 0.276995 0.693(55) —0.09(15) —0.10(67)
0.65 0.0 0.65 0.0
0.061831  0.902(13)  —0.159(75)  —0.04(1.90) 0.055399 0.878(26) —0.11(17) -2.1(8.0)
0.123662  0.841(17)  —0.140(60) —0.06(65) 0.110798 0.854(27) —0.12(14) —0.4(2.1)
0.185493  0.764(25)  —0.091(84) 0.06(41) 0.166197 0.813(32) —0.12(13) -0.2(1.1)
0.247324  0.688(45) 0.02(16) 0.16(40) 0.221596 0.761(42) —0.11(14) —0.12(83)
0.309155  0.645(97) 0.39(40) 0.42(55) 0.276995 0.702(57) —-0.10(16) —0.09(70)
0.8 0.0 0.8 0.0 ..
0.061831  0.921(14)  —-0.176(81)  —0.03(2.05) 0.055399 0.893(27) —0.14(18) —2.4(8.3)
0.123662  0.859(19)  —0.154(65)  —0.009(705) 0.110798 0.869(28) —0.14(15) -0.4(2.2)
0.185493  0.782(27)  —0.102(89) 0.11(45) 0.166197 0.827(34) —-0.13(14) -0.2(1.2)
0.247324  0.710(49)  0.008(167) 0.24(45) 0.221596 0.774(45) —0.12(15) —0.11(89)
0.309155  0.67(10) 0.38(42) 0.53(59) 0.276995 0.714(61) —0.11(17) —0.09(76)
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FIG. 21. Plots showing the fractional contribution of each

source of uncertainty to the total variance for the B — D* form
factors F| and F, across the full kinematic range. The vertical
axis is truncated at 0.25 for clarity, with the remaining variance
between 0.25 and 1 attributable to statistics.

APPENDIX D: STAGGERED CHIRAL
PERTURBATION THEORY

To compute the chiral logarithms for the B — D)
tensor form factors we use heavy-meson chiral perturbation
theory, modified to account for the multiple tastes present
when using staggered quarks [72]. The heavy meson fields
are given by

l+6.
Ha = T [}/ﬂBuﬂ + l},SBu}

_ 1+4

H, = yoHyo = [y"Bii + iy°Bl] ——. (D1

0.25
0.201 ame
amyp,
< 0.151 mixed
LL‘ 5771
S 0.10 Xn
statistical —
7
0.051 / AN
/ . AN
/ P —
A —~—
0.00 T - - . _
1.0 1.1 1.2 1.3 1.4 1.5
w
0.25
A/Mp,
020 b ams
amp
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& Sm
) 10 X
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0.051 S
0.00 L—= ' ' ' ' =
1.0 1.1 1.2 1.3 1.4 1.5
w
0.25
A/My,
020 b am
amy,
< 0.151 mixed
& Sm
.10/ X
statistical
0.051
0.00+—

FIG. 22. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the B — D* tensor
form factors in the helicity basis defined in Eq. (32), across the
full kinematic range. The vertical axis is truncated at 0.25 for
clarity, with the remaining variance between 0.25 and 1 attrib-
utable to statistics. Note the large contribution of the uncon-
strained chiral dependence entering F'7, that originates from /..

094515-36



B — D* AND B; — D; VECTOR, AXIAL-VECTOR AND...

PHYS. REV. D 109, 094515 (2024)
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FIG. 23. Plots showing the fractional contribution of each

source of uncertainty to the total variance for the B, — D} form
factors f* and ¢° across the full kinematic range. The vertical axis
is truncated at 0.35 for clarity, with the remaining variance
between 0.35 and 1 attributable to statistics.

where a labels taste and flavor. The pion fields are

¥ =exp (i®/f), (D2)

where

q)ab = q)ia,jﬁ = ”ij.ETEﬁ» (D3)

with E labeling the taste of the pion and the SU(4) taste
generators 7= = {&s, i&,5,18,,.&,. & }. &, are the Euclidean
gamma matrices, with & =1, ¢, = % [,.&,], and
éyﬁ = 5#55'

The leading order Minkowski staggered chiral
Lagrangian for three flavors of light quarks is given by [72],
including heavy quarks,

0.35
AN/M,
0.301 /M,
ams
0.251 amy,
art 0.90 mixed
= O
TRE0.151 X
statistical
0.101
//
0.051 /
N — oo |
0.00—+ - : . _ :
1.0 1.1 1.2 1.3 1.4 1.5
w
0.35
AN/M,
0.301 /M,
ame
0.251 amy,
aer 0,90 mixed
LL< i ' 677),
EFE0.154 X
statistical
0.101
0.051 /
0.00+—— - — - _ -

1.0 1.1 1.2 1.3 1.4 1.5

w

FIG. 24. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the B, — D} form
factors F} and F¥ across the full kinematic range. The vertical
axis is truncated at 0.35 for clarity, with the remaining variance
between 0.35 and 1 attributable to statistics.

2
1 .
Ly = %STr[()”Z@”ZW + HPSTHME + M
2
_%(UI +D1 +SI)2 —a2V

— itr[H,v*0,H | + w[H H,|v" V5
i} b
+ gatr[H Hyy )AL + 2 ulH 0" H,0,,).  (D4)
m
0]

where U;, D;, and §; are the diagonal elements of ®. We
use these rather than the physical basis in order to simplify
the quark flow analysis. We will take m, — oo at the end.
We use “tr” to indicate a trace over dirac indices, and “STr”
to indicate a trace over SU(4n) indices. The final term
generates a mass splitting for the D* and D,
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FIG. 25. Plots showing the fractional contribution of each

source of uncertainty to the total variance for the B; — D
tensor form factors in the helicity basis defined in Eq. (32), across
the full kinematic range. The vertical axis is truncated at 0.35 for
clarity, with the remaining variance between 0.35 and 1 attrib-
utable to statistics. Note the large contribution of the uncon-
strained chiral dependence entering Fr, that originates from fr,.

A = (mp- —mp) = —4,/8m,. V contains operators that
generate the taste splittings, as well as operators that mix
the taste-(axial-)vector, flavor-neutral mesons. In Eq. (D4),
A, and V, are constructed from the pion fields and couple
to the heavy-meson fields. They are given by

Vv

i ¥
V=3 (670,06 + 00,5"],

i .
A, = 5 670,06 — 60,0],

(Ds)
where ¢ =+/X. At first order in the pion fields,
these are

Vi =0+ O(z2).

Ai(l,j/)’ _

u _ﬁ ﬂ”t}—T

ap*

Expanding Eq. (D4) to first order in the pion fields
we find

1 1
El — 2 ” ” ~aﬂ7[ = +2Ml]"‘ lj,E”ji,E
2 _
- % (U, + D, + S,) — @V — it[H "0, H )
- gﬂtr[H]ﬂHzay 14 ] 2f /4 ETS
Ay
P A0 H o), (D6)
mo
where Mlzj = = p(m; + m;) + a*Ag and a*V' contains the

remaining hairpin vertices mixing flavor-neutral taste
vector and axial-vector pions. The pion propagator for
flavor non-neutral pions is then

i0;70;0z=

wjy
{mijzmpr=} :—. (D7)
l] Ji con 2
- Mj; s +ie
For wvector, axial-vector, and singlet taste, flavor-
neutral pions there is an additional disconnected

hairpin contribution. In Minkowski space this is given
by [72]

{ﬂi.) =Ty, ~"}disc - 6115/1’5~ ~’D; il

(D8)

where
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(p? = m}z)(p? — mhz)(p? — m3z)

DE ., = ia®5

(D9)

(p* = miz)(p? = miyz)(p? = mag) (p? — mig)(p® — myyz)
such that
10,4010z -
{mijenz} =—5—4——+06,6,16==D5 ;. (D10)
J J p2 _ Mlng + ie Y 1,0l

For m, = m, relevant to 2 + 1 + 1 simulations for B — D* where the spectator quark is either a u or a d, the flavor-neutral

disconnected propagator is

D%, = ia*s, (p? — m%)
iii'i ’:(p2_m )( 2_m2 )( 2_m
w2/ ne)\P 7E
2 2 . i
s e ! = — Mo 1
=i ﬂ;: 2S 2 V2 s— + ia*5L — 5 23_ 2 2
(m;[OE - mi’[E)(m;z(): - mn/E) p-— m;zOE (mﬂE - mﬂo=)(mr15 —m /E) p? - m”E
o M
a (mi,E - m,zzoz)(mi,E miE) 72— mz/E
1 | |
= ia*8L | Az 2 _ 2 +l€+ = Co — | o
0 )4 mnE + 1€ p m”/E +ie

for i,i’ = u, d. For B; - D* we are interested in the case
i,i’ =s. In this case, using the fact that M, =
My_ = Mp_, we just swap M, < Mg_ in Eq. (DI11).
We write the pion propagator as

(=) i
{”ijE”j’i’,E’} = 555’2131'1';7]’ m, (DIZ)

ij,2.n

where

(D13)

ijEn 2

and

5ii’5jj/
a25’5AE5,~j5j/i/

6125/5355[]'5],'/

2
a 5_%C55ij5j/i/

Z.n
P~~/ gy =

= (D14)

Here §&,,8, are the parameters determined from V',
a*8y = 4m3/3, and 55 = & = 0.

The heavy meson propagators for the B, B*, D, and D*
are given by

. . 8,6
B,B}} = {Bi B} =——L% _
{ a b} { 1o ]ﬂ} 2(Uk+l€>

_ iéijﬁaﬂ (g/w — Uy ’IJD)
2(v-k—Ab +ie)
i8;;0,
D,D}={D, D} =——9"%
{ a b} { ia ]/j} 2(Uk+l€)

iéijéaﬁ (g/w - U/tvl/)
2(v-k—A°+ie)

{B;,B; } =1{B},,B,} =

* wt _ * *F —
{Da,/ADb,M} - {D Dj[)’,u} -

iapu

(D15)

Throughout the remainder of this section we will assume
A’ =0 and write A°= A. We can expand the HHzn
interaction from Eq. (D4):

getlH Hyy AL = e BB

ia.u jp.A UKTFaay”ji,E

Gr ( px Topx )
+ = (Biy Bjg—BlBiy ) T5,0'm)=.

(D16)

Finally, we must add terms corresponding to the electro-
weak b — ¢ current whose matrix elements we are inter-
ested in computing. These will take the form

—e(w)[HSTHYY), (D17)

where w = v’ - v and e(w) is the Isgur-Wise function. We
define
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—e(w)u[ASTHY) = Dy J™*B, - DT B,

+ D KT BE | + DSPYB,,
(D18)

where 7, P, and K depend on v, v/, and I'. Note that P
does not contribute at one-loop to the current corrections,
since there is no BBz coupling. P will only enter for
B — D at tree level and multiplied by the wave function
and current renormalization. 7, P, and K maybe be
computed straightforwardly for the currents of interest
from standard y-matrix trace methods.

1. Current renormalization
We will follow the conventions in Manohar and Wise

[73] and write the renormalized operator of which we wish
to compute the matrix elements as

VZBzb"
OrR= 22 o

7 (D19)

Here Or is the local composite operator built from
renormalized fields VZ9H% = H{. We write this as

1
OliJ‘FH” = —€(W) (1 + 5 (526 + 521)*) — 520)

x tr[HSVTHS). (D20)
Here we have defined o, o = Zo — 1 and, for the charm and
bottom fields, 6, = Z7 — 1.

The wave function renormalization of the B
may be computed from the self-energy [72]
(1/2)0,.,Z% (v - p)lyp—o = 675, Where —iZ(p-v) is the
1PI diagram with two external lines and with the overall
identity in taste and flavor space removed. For the D,
(1/2)0,,Z7 (v - p)l,.)—a = 6,0+ Evaluating the Feynman
diagram for the B self-energy we have

1
B — _j E - -
l|: :| / 4. uullkz m»«n+l£

ku(g;w B Uu”ﬂ)kﬂ
2(w- (k+ p)+ie)’

(D21)

We look just at the contribution of a single mass of pion, as
the sum can be reinserted straightforwardly:

T 2/ d*k 1 k(g — v,v,)k* '
" f 2r)* k> —m? + ie2(v- (k+ p) + ie)

(D22)

Following the notation of [59], we denote

Zs(w,m,A)

/ / d*k ak?
do 3>
(27)* [k* — (&® + 2aA + m?) + ie]?

(D23)

and find 5™

" =3i(g./f)*Z3(w.m,0). A similar calculation
yields 0"

oo =5 (9 ) [Z3(w,m. —A) + 2Z5(w, m, 0)].
The combination appearing in the current renormalization
is then given by

1 m m 1 9z :
5(525 +5ZD*) = li |:7:|

1
X (523(w, m,—A) +§I3(w, m,0)>.

(D24)

2. One-loop matrix element contribution

The one-loop contribution to the matrix elements of
—e(w)tr[HT H| are given by the amputated on-shell two-
point correlation functions in momentum space, contracted
with the appropriate D* polarization vector, e, ('), for
which e, (v/)v'* = 0. For B — D* the current correction is
given by

9z 2/ d4k PEn i *
— — ’ ~~—€/
f (27[)4 =.in e k2 - m E.n + ie

by ik, = (k- 0))
(1} k + ie) 2(v-k+ ie)
ik” ik, = (k- v)v,)
=L 2ol (D2
20 - k+ A+ ie) 2(v -k + ig) (D25)

Here we have left implicit that we will divide sea quark
loops by a factor of 4 to reduce the number of tastes from 4
to 1. Noting that the sum over tastes and hairpin terms may
be straightforwardly reinserted, we evaluate the contribu-
tion of a single mass,

4 2/ &'k i )
Jz e
f )4 k> —m? + ie *

i€k, v k¥ KT i(k, = (k-v)v,)
2(v" -k + ie) 2(v- k+ie)
ik* ik, — (k- v)v,)
N P 4
+2(v’~k—|—A—|—i£)j 2-k+ie) | (D26)

For the currents considered here, these may all be expressed
in terms of the integral
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/ d*k 1 1 Kok
Qm)*2(v -k—A+ie)2(v-k+ie)k* —m? +ie

:%II(w,m,A)g‘s”—}—%Iz(w,m,A)v"sv”—i—m, (D27)
where only the 7, contains a UV divergence and the ...
indicate terms which give zero when summing over Lorentz
indices. These definitions for the integrals match
those given by Chow et al. [59]. They include a factor
of i/16x% that has been removed from the definitions
used in Appendix A of [26] that has [ =ZFNAL =
i167> x I¢"°%_ We will adopt the conventions in
Appendix A of [26]. With these conventions we have

1[g,1?
oM SM ) == 3
o+ =3
1 5
X 513(w,m,—A/m)+§I3(w,m,0) .

(D28)

1
2

This yields a total one-loop current correction for
B — D*, for a single pion mass,

1 1
o, ew) =0+ 53) -3 |

2 |4nf 2

+ (w? = 1)1, (w, m,O))

1 g
41672 f2

Fh (w,m,—A/m),

-1 9x 2 « ’
5 [471]4 e[ (w,m,0)el, v (K — Kh 1Py o)

1w, =0 m)( T = T 0,0)
+ Ly (w,m, 0)ek, v v" (KF7P 0!, — wKT 770 )

+ L(w, m, —A/m)v* (T"Pv, — wT " v,)]. (D29)

For B — D this procedure gives the one-loop current
correction for a single pion mass

1[ g |?
2 [47zf] (1, (w, m, )K" (g,,,/2 + wo,v))

+ Ly (w, m, A)K"7 (v, = wv,) (v, —we})].  (D30)

We evaluate K, J, and P for I' =y, and ¢
corresponding to the vector, axial-vector, and tensor cur-
rents, respectively. Defining &' as the deviation from the
tree level value resulting from loops including a pion m, we
find, dropping 6, and including only the finite parts of the
integrals regularized using dimensional regularization,

]2((1 +w)l (w,m,0) + I;(w,m,—A/m) + (W = 1)1,(w,m,0))

179, 12/ 1 5
— |: ”:| (——IS(W,m,—A/m)—513(W,m,0)+(1+W)11(W7m’0)+11(W7m7_A/m)

(D31)

1] 9. |?
52"A2/£(w) = - { } (I, (w,m,=A/m) = I,(w,m,0) + (w+ 1), (w,m,=A/m) = (1 + w)I,(w, m,0))

2 4rf
1 g
T 416722

mo o Sm  __ Sm
5hA3 - 5hA1 6hA2

Fla (w, m, —A/m)

mo_ Sm
o, = 6hA1

and for the tensor current

(D32)
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1 1{ g, 12 )
52;]/8(‘4})_5(5?0"‘5;[;)__{ } (A +w) (w,m,0)+ 1, (w,m,—A/m)+ (w? =1)I,(w,m,0))

2 |4xf
_ ! [4‘(71;}} <—1I3(w m, A/m)——I3(W m,0)+ (1—|—w)11(w,m,0)—|—11(w,m,—A/m)+(w2—1)12(w,m,0)>
2522 /e(w)
hT /8( )
62"T3/e<w>=—§ e | (0= /)=, 0,00) = 4 D n0)+ (1-40) =0 )
= 5Z’Az /e(w). (D33)

Here we have defined the quantities F™ (w, m,—A/m) to match those given in [26]:

1 5
Fl'i(w,m, x) = =2 [Il(w,m,x) —513(W,m,x) + (w+ )1 (w,m,0) + (w? = 1)I,(w, m,0) —513(w,m,0)} ,

Fhia (w,m, x) = —2[11(w,m,x) + (w+ 1), (w,m,x) = I;(w,m,0) — (w+ 1)12(W,m,0)],
Fh's (w,m, x) = F' (w, m, x) — F"2 (w, m, x). (D34)

We also have the tree level values hy*® = hy® = hy* = hs® = e(w) and hiS® = hS® = hyS® = 0. With these definitions we

have

<htree + Zpiunn hx llllll > (DSS)

E,in

Since the sum over tastes acts in the same way for different form factors, we find

hT] - hA]
hTZ - O
hT3 - hAZ' (D36)

We also find for B — D that f = f, and confirm the one-loop relation h,, = hy and f_ = 0.

3. Chiral logarithms
Denoting F" (w,m;, —A/m;) = F} as in [26], the sum in Eq. (D35) over n and i gives

=.n
Z 2 PulizFlis
X 167[2f2 uu,ii 4 ut E.n

2 2
g 1 - _ - _ - m - - -
_ 9 (ZZ(zF,{E + F,Y<E)> + 2 Va25'5 [AEF,{% +BoFY + CEF;,E] +3 [A,Fg? +B,FY + C,F,ﬂ . (D37)

where A, B, and C are defined as in Eq. (D11). Following [61] to move from 4 +4 + 4 to 1 4+ 1 4 1 flavor tastes of light
quark, we find after taking my — oo,
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2 \[1 ey 1 1
= (157 ) [1g 2 QFL + F) — 5 FL + 2 F)
Ohy (167:2]‘2 16 E( = i) el

2 2

S \mi - m;zzg)(mzzrg - mi’:) "
+ m%s B m%— Y
(m2_ — mig Y(mi —m?) "=

+ s M FY (D38)
(m2 = miL)(an —-my) "))

where we have used the relations given in [60] for the
flavor-neutral pion mass eigenstates. Note that our results
here differ from those given in [26] by an overall factor of 3.
We have checked that our results match those in [59] for
hy,, ha,, and hy,, and we have also checked that our zero
recoil results match those in [60]. The chiral logarithms,
10gs§U<3), in Eq. (21), for B — D* thus take the form

logs?, 162 (2FY + FY_ )—%Fy—l-éF,’;l
s 5( S S
E=V.A =\ (my, — m )(m 0~ mz/E) "
R
(g —m2 ) (my_ —my, )"
n s, 7 ) (D39)
(m,2,0 - mf//_)(mfl,: - m% ) 5

and for B; — Dj a similar calculation gives the logs

: 1 N
logsly ) = EZ@FYE +FY) - F§ +3F),

+ Z 25 < g - mig FY

a’Sz z g

E=vA (m3, — my,)(m3_ m2,E ) S
+ m’273 - mlzt— By
<m53 m%—)(’n%E - m?, ) 2

(D40)

The chiral logarithms are most sensitive to variation of the
pion and 7y 4 masses, and the effect of the taste splittings
and hairpin contributions is most pronounced near the
“cusp” m, ~ A, which roughly coincides with the physical
pion mass. The sum over tastes appearing in Eq. (D39) acts
to wash out the cusp, averaging over the masses of the

different tastes [60]. This effect is somewhat mitigated for
HISQ quarks by the fact that the taste splittings are all
approximately proportional [47], with M, 2 — M ~ned®s,
where ny, = 1, ny =2, ny =3, andn,—4.

We can analyze the effect of taste splittings by expanding
the pion log terms to first order in a2, and dropping terms
proportional to a*F ». that produce only normal discretiza-
tion effects. This gives

_Y

OFY
a*(26,+ 8y + 8,) = % X

logsg;; ) ~ (D41)

Together with the approximate relation, &), + &, ~ —2§,,
for HISQ [51,62], this leading order correction is
suppressed so there is no nonanalytic behavior in a.
This matches what was seen in [62], where a similar
approximate cancellation of leading order taste splitting
and hairpin terms was seen. Note, however, that in our
fits we use the full expressions given in Egs. (D39)
and (D40).

APPENDIX E: COMPARISON TO PREVIOUS
HPQCD B, — D FORM FACTORS

In Figs. 26 and 27 we plot our previous results for B, —
D7 from [23] together with the updated form factors given
in this work. We see good agreement for the form factors
hy, and hy and some differences for the form factors 7y,
and hy,. The improved calculation presented here has the
addition of a physical ensemble with a = 0.06 fm, set 5,
and includes the additional B — D* correlator data that
informs the B; — D form factors through our chiral
extrapolation. Additionally, in this work we adopt the time
source binning strategy described in Appendix B, provid-
ing improved resolution of the correlator covariance matri-
ces. Reference [23] also used a BGL-like parametrization to
describe the kinematic dependence of the form factors,
compared to the simpler expression in powers of (w — 1)
used here. Plots showing form factor results for B — D*
resulting from both separate and simultaneous fit results are
included in the Supplemental Material, where we see that
fitting B — D™ separately produces very similar form factor
results for B — D* to the simultaneous fit described in
Sec. IV B. We have also confirmed that fitting the B; — Dj
in isolation produces very similar form factor results to the
simultaneous fit.

Further investigation of the differences for B, — D}
between this work and [23] found that the choice of AT,
in that work, for correlator fits on set 3, was too small, and
that this resulted in excited state contamination which
shifted the extracted matrix elements on set 3 upwards by
~lo. However, this had little impact on the final form
factors. Instead the differences seen in hy, and hy, arise
from the differences in the fit forms used for the
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FIG. 26. B, — Di HQET basis form factors h,, and hy. We
show the results of this work as a blue band, compared to the
results of [23] given as a gray hatched band. We also include a red
band, labeled [23]*, showing the result that would have been
obtained in [23] if AT, = 12 had been used on set 3 of that
work. Finally, in yellow, we include the result of fitting the form
factor data of [23], with larger AT,y on set 3, using the fit
function Eq. (21). Here, we see that both datasets produce
consistent results for each chiral-continuum fit function.

chiral-continuum extrapolation. We see that applying the
chiral-continuum extrapolation used in [23] to the B, — D
dataset used in this work, excluding set 5, results in similar
form factors to those given in this work, except for /4, and

0.5

0.0

—-1.0

1.0 1.1 1.2 1.3 1.4

1.50
1.25

<100

0.25

0.00
1.0 1.1 1.2 1.3 1.4

w

FIG. 27. By — D§ HQET basis form factors &4, and h,,. We
show the results of this work as a blue band, compared to the
results of [23] given as a gray band. We also include a red band,
labeled [23]*, showing the result that would have been obtained
in [23]if AT, = 12 had been used on set 3 of that work. Finally,
in yellow, we include the result of fitting the form factor data of
[23], with larger AT, on set 3, using the fit function Eq. (21).
Here, we see that both datasets produce consistent results for each
chiral continuum fit function and the differences arise from the
differences in the fit functions.

hy,, where ~1-2¢ differences are seen. The same picture
emerges if we apply the chiral-continuum fit used here to
the dataset used in [23]. We include in Figs. 26 and 27 the
results that would have been obtained in [23] if AT, = 12
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had been used on set 3 of that work, as well as the result of
fitting that corrected data using the chiral continuum fit
function given in Eq. (21). We see that the results for /4,
and hy are largely insensitive to the fitting scheme, but the
noisier form factors /4, and hy,, are sensitive to the choice
of fit function at the level of a few o relative to the statistical
and systematic uncertainties.

We conclude that the ~1-2¢ differences between this
work and [23] seen for &4, and hy, are a result of the much
more conservative description of kinematic dependence of
the form factors used in this work (Sec. IV B) and the use of
a z expansion in [23] whose form led to some bias in the
shape of the continuum form factors and an underestima-
tion of some uncertainties.
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