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We compute the complete set of Standard Model (SM) and tensor B → D�lν̄ and Bs → D�
slν̄

semileptonic form factors across the full kinematic range of the decays using second generation MILC
nf ¼ 2þ 1þ 1 highly improved staggered quark (HISQ) gluon field configurations and HISQ valence
quarks, with the heavy-HISQmethod. Lattice spacings range from 0.09 to 0.044 fm with pion masses from
≈300 MeV down to the physical value and heavy quark masses ranging between ≈1.5mc and
4.1mc ≈ 0.9mb; currents are normalized nonperturbatively. Using the recent untagged B → D�lν̄l data
from Belle and Bs → D�

sμν̄μ from LHCb together with our form factors, we determine a model independent

value of Vcb ¼ 39.03ð56Þexpð67Þlatt × 10−3, in agreement with previous exclusive determinations and in

tension with the most recent inclusive result at the level of 3.6σ. We also observe a ≈1σ tension between the
shape of the differential decay rates computed using our form factors and those measured by Belle. We
compute a purely theoretical Standard Model value for the ratio of semitauonic and semimuonic decay
rates, RðD�Þ ¼ 0.273ð15Þ, which we find to be closer to the recent Belle measurement and heavy flavor
averaging group average than theory predictions using fits to experimental differential rate data for
B → D�lν̄l. Determining Vcb from our form factors and the experimental total rate for B → D�lν also
gives a value in agreement with inclusive results. We also compute the longitudinal polarization fraction for
the semitauonic mode, FD�

L ¼ 0.395ð24Þ, which is in tension at the level of 2.2σ with the recent Belle
measurement. Our calculation combines B → D� and Bs → D�

s lattice results in a simultaneous chiral
continuum extrapolation, maintaining correlations between both modes. We then give results for both
B → D� and Bs → D�

s , with the Bs → D�
s results superseding our previous lattice computation. We also

give the chiral perturbation theory needed to analyze the tensor form factors.

DOI: 10.1103/PhysRevD.109.094515

I. INTRODUCTION

Semileptonic and leptonic decays of mesons allow for
many high precision tests of the Standard Model (SM)
description of the weak interaction. For example, in the SM
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which
encodes the couplings of flavor-changing quark currents
with the SM W bosons, is unitary. Determinations of
the CKM matrix elements using the weak decays of

mesons [1,2] allow us to check if the unitarity constraints
are satisfied. Currently those coming from the first row and
column, which describe the couplings with up and down
quarks, are in tension with unitarity at the level of 3σ [3].
The CKM matrix element Vcb, governing the strength of

the quark level b → clν̄l transition, can be determined
most precisely either from inclusive semileptonic B decays,
where all charmed final states are included, or from
exclusive semileptonic decays to a specific charmed meson.
The inclusive determination of Vcb, which uses the operator
product expansion [4] to express the nonperturbative
physics in terms of matrix elements of local operators with
B mesons, gives jVcbj ¼ 42.16ð51Þ × 10−3 [5].
Until very recently the exclusive determination only used

experimental data for B → D and B → D�. This data has
typically been extrapolated to the zero recoil point, where
the Dð�Þ meson is at rest, before being compared to lattice
determinations [6,7] of the single form factor relevant at
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this point. Recently, Bs → Dð�Þ
s experimental data from

LHCb was used together with HPQCD’s early calculation
of the Bs → Ds form factors [8] (as well as the Bs → D�

s
form factor at zero recoil [9]) to provide a complementary

determination of Vcb. Averaging BðsÞ → Dð�Þ
ðsÞ results gives a

value of jVcbj ¼ 38.90ð53Þ × 10−3 [10], in tension at the
level of 4.4σ with the most recent inclusive result.
This determination is most sensitive to B → D� data, which
is much more precise than existing Bs → Dð�Þ

s data, and is
preferred over B → D owing to the kinematic factors
appearing in the differential rate, which allow for more
data to be collected near zero recoil and thus for a more
precise extrapolation to this point. Note that while lattice
form factors for B → D are available away from zero
recoil [11], extrapolation of experimental data to zero recoil
is still used in order to straightforwardly average exper-
imental results [10].
The extrapolation of experimental data to the zero recoil

point has typically been done using either the Caprini,
Lellouch, and Neubert (CLN) parametrization scheme [12],
or the Boyd, Grinstein, and Lebed (BGL) parametrization
scheme [13]. The CLN scheme imposes strong unitarity
constraints based on heavy quark symmetry, and uses heavy
quark effective theory (HQET) to reduce the number of
independent parameters. This results in a highly constrained
fit with only a single parameter able to modify the shape of
the form factors. This approach has beenwidely criticized as
underestimating residual uncertainties [14–16], and theo-
retical analyses of the 2017 Belle dataset [17] indicated that
CLN was not well suited to describe the data [18,19].
The BGL scheme is more general, imposing unitarity
bounds based on analyticity [13]. Early analyses of the
2017Belle dataset indicated that the use of BGL, as opposed
to CLN, would go some way to resolving the tension
between inclusive and exclusive decays [15,18,20].
However, analysis of themore recent larger untagged dataset
from Belle [21] instead finds very similar central values and
uncertainties for Vcb using BGL and CLN schemes, both in
similar tension with the inclusive result at the same level as
previous exclusive results.
Recent advances in lattice QCD have allowed for the

calculation of pseudoscalar to vector form factors for
b-quark decays across the full kinematic range of the
decays, with HPQCD producing the first calculations for
Bc → J=ψ [22] and Bs → D�

s [23], related to B → D� by
the exchange of the light spectator quark with a charm or
strange quark, respectively. These calculations used highly
improved staggered quarks (HISQs) [24] for all quarks, and
were carried out using the nf ¼ 2þ 1þ 1 second gener-
ation MILC gauge configurations including up/down,
strange, and charm HISQ quarks in the sea. In order to
extract form factors for mesons including a physically
massive b quark the so-called heavy-HISQ method was
used. This framework involves using a heavy quark, h, in

place of the b, and varying the mass of h from close to the
charm quark mass all the way up to the physical b quark
mass. By using multiple lattices with different lattice
spacings this procedure allows us to map out discretization
effects and the physical dependence on the h quark mass in
the quantities of interest and to extract precise values at the
physical point where the h quark mass is equal to that
of the b. The determination of the full set of Bs → D�

s form
factors allowed for a model-independent determination
of Vcb [23], using recent experimental results from
LHCb [25].
The Fermilab lattice and MILC collaborations have

recently also published first results forB → D� form factors
away fromzero recoil [26],with lattice data extending across
≈1=3 the full kinematic range of the decay, using the
Fermilab action [27] for b and c quarks and using gluon
field configurations with nf ¼ 2þ 1 flavors of asqtad sea
quarks. They found, using the recent untagged data from
Belle [21] and synthetic data from BABAR [28],
jVcbj ¼ 38.40ð66Þthð34Þexp × 10−3, in tension at the level
of ≈4σ with the most recent inclusive determinations, and
confirming the persistent tension currently seen in global
averages [10]. The JLQCD collaboration has also presented
preliminary results for the B → D� form factors [29,30].
Note that these lattice results have been used in combination
with unitarity constraints via the “dispersivematrix”method
to extend these form factors across the kinematic range.
Those studies found values of Vcb closer to the inclusive
result [31].
Semileptonic decays of mesons also allow us to search

directly for violations of the universality of the SM
coupling between leptons and W bosons, as might result
from new physics (NP) beyond the Standard Model. The
most common method by which this is done is to construct
ratios of branching fractions to final states with different
leptons. This results in the cancellation of the CKM matrix
element factors, as well as a substantial cancellation of
correlated uncertainties entering through the form factors.
The ratio relevant for B → D� is

RðD�Þ ¼ ΓðB → D�τν̄τÞ
ΓðB → D�μν̄μÞ

: ð1Þ

The most precise theoretical determinations of RðD�Þ in the
SM use fits to experimental data for B → D�μν̄μ, together
with the assumption that NP can only appear in the
semitauonic mode, to pin down the three form factors
needed for the light lepton case ðl ¼ e; μÞ. Until recently,
the remaining pseudoscalar form factor relevant for the case
of the heavy τ lepton was determined using HQET inputs
[19,20,32]. This approach results in a very precise theory
prediction for RðD�Þ ¼ 0.254ð5Þ [10] in tension with the
most recent experimental average, RHFLAVðD�Þ ¼
0.295ð14Þ [10], at the level of 2.7σ. This tension increases
to ≈3σ if RðDÞ is included. However, more recent
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measurements from the BABAR, Belle, and LHCb collab-
orations are closer to the SM prediction [33–35].
Recently, the Fermilab-MILC collaboration presented

a lattice-only determination of RðD�Þ as well as a deter-
mination using a joint fit to lattice and experimental
data [26], resulting in values of RðD�Þ ¼ 0.265ð13Þ and
RðD�Þ ¼ 0.2483ð13Þ, respectively. The difference between
these results, while only at the 1σ level, is surprising and
makes clear the desirability of additional precise lattice-
only determinations of RðD�Þ, as well as direct compar-
isons of the shape of the differential rate between theory
and experiment, where some tension was also seen in [26].
The ratio of Eq. (1) was also computed using lattice QCD

for Bs → D�
slν̄ and Bc → J=ψ in [22,23], respectively. The

former is of particular interest as the value computed there,
RðD�

sÞ ¼ 0.2490ð69Þ, is in agreement with the theory
prediction for RðD�Þ using experimental data as input.
The form factors for B → D�lν̄ and Bs → D�

slν̄ are related
by the change of spectator quark from up/down to strange,
and the corresponding SUð3Þflav symmetry breaking effects
are expected to be small, at the level of ≈1% [7]. As such, a
simultaneous analysis of Bs → D�

s and B → D� is desirable
in order to investigate the differences between the results
presented in [23] and those in [26].
In addition to RðD�Þ, there are other observables, such as

the τ lepton polarization asymmetry, the forward-backward
asymmetry and the D� longitudinal polarization fraction.
These are expected to be sensitive to NP [36] and
theoretical predictions for these would be valuable for
future measurements. They also provide further tests of
SUð3Þflav breaking, which is expected to be small [37] as
for RðD�Þ. The Belle collaboration has recently measured
both the lepton polarization asymmetry [38] and the D�
longitudinal polarization fraction [39], both of which may
be computed directly on the lattice without the need for
inputs such as Vcb.
Until now, lattice calculations of form factors for

pseudoscalar to vector decays have focused exclusively
on those form factors needed to describe the decay within
the SM. Specifically, these are the two axial-vector form
factors, one vector form factor, and one pseudoscalar form
factor. However, assuming left-handed neutrinos, there
are two additional dimension-6, parity-conserving four-
fermion operators which can appear in the effective
Hamiltonion whose matrix elements between B and D�
states are nonzero. These are the tensor operators:

ðc̄σμνbÞðlRσ
μννLÞ

ðc̄σμνγ5bÞðlRσ
μννLÞ: ð2Þ

The form factors for pseudoscalar to vector decays for the
quark currents c̄σμνb and c̄σμνγ5b have not previously been
computed on the lattice, though the single form factor
for the related s̄σμνb was computed for the rare decay

Bc → Dslþl−ðνν̄Þ in [40], as well as for B → K [41],
using the heavy-HISQ method together with renormaliza-
tion factors matching the lattice tensor currents to those in
the continuum MS scheme, computed in [42] using an
intermediate RI-SMOM scheme.
In this work, we build on previous heavy-HISQ calcu-

lations of pseudoscalar to vector decays and compute both
the SM and tensor form factors for B → D�. We also
compute the SM and tensor form factors for Bs → D�

s,
which we analyze simultaneously in order to better map out
the dependence of the form factors on the spectator quark
mass and in order to study SUð3Þflav breaking effects
between the two. We then give values for jVcbj, RðD�Þ
and other observables.
The remaining sections are organized as follows:
(i) In Sec. II we detail the theoretical framework

relevant for semileptonic B → D� decays, including
the effective Hamiltonian, definitions of form factors
and helicity amplitudes and expressions for the
differential decay rate.

(ii) Section III contains the details of our lattice calcu-
lation, including our correlator fitting procedure,
current renormalization, and how form factors are
extracted from correlator fit results.

(iii) In Sec. IV we give the results of our lattice
calculation and describe our chiral-continuum fit
procedure including the heavy quark mass depend-
ence. We give our results for the SM and tensor form
factors and demonstrate the stability of our results to
changes in correlator fits and changes to our chiral-
continuum fit procedure.

(iv) In Sec. V we use our form factors to compute
observables including RðD�Þ. We compare our
results to the recent measurement by Belle and
determine a value of Vcb.

(v) Finally, in Sec. VI we summarize our findings and
suggest directions for future investigations.

(vi) In Appendix A we compute expressions for the full
differential decay rate including all operators rel-
evant for NP. In Appendix B we discuss our
approach to binning correlator data. In Appendix C
we give the numerical results for the form factors on
each ensemble, extracted from fits to correlation
functions. In Appendix D we compute the next-to-
leading order chiral logarithms, needed for the
chiral-continuum extrapolation of the tensor form
factors, using heavy-meson rooted staggered chiral
perturbation theory. In Appendix E we compare the
updated Bs → D�

s form factor results of this work to
those in [23].

II. THEORETICAL BACKGROUND

The effective Hamiltonian relevant for semileptonic
b → c decays is, assuming left-handed neutrinos,
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Heff ¼
ffiffiffi
2

p
GFVcb

�
gVc̄γμblLγ

μνL þ gAc̄γμγ5blLγ
μνL

þ gSc̄blRνL þ gPc̄γ5blRνL þ gTc̄σμνblRσ
μννL

þ gT5c̄σμνγ5blRσ
μννL þ H:c:

�
; ð3Þ

where σμν ¼ i=2½γμ; γν� and gX are potentially complex
coefficients. In the SM gT ¼ gT5 ¼ gP ¼ gS ¼ 0 and
gV ¼ −gA ¼ 1.
The differential decay rate to Dπlν̄l is, taking the D� as

a narrow resonance,

dΓ
dq2dcosðθD� ÞdcosðθWÞdχ

¼Nðq2Þ
X
λl

����X
λD�

MλD� λl

����2; ð4Þ

where Nðq2Þ is an overall kinematic factor

Nðq2Þ ¼ 3G2
FjVcbηEWj2
8ð4πÞ4

kðq2 −m2
lÞ2

q2M2
B

BðD� → DπÞ ð5Þ

and the angular variables are defined in Fig. 1.
The right-hand side of Eq. (4) is conventionally

expressed in terms of helicity amplitudes, which are related
to the form factors that parametrize the nonperturbative
matrix elements of the quark currents in Eq. (3). The form
factors, hY , for B → D� are defined in the HQET basis
as [43]

hD�jc̄bjB̄i ¼ 0;

hD�jc̄γ5bjB̄i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
ðϵ� · vÞhP;

hD�jc̄γμbjB̄i ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
εμναβϵ�νv0αvβhV;

hD�jc̄γμγ5bjB̄i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
½hA1

ðwþ 1Þϵ�μ
− hA2

ðϵ� · vÞvμ − hA3
ðϵ� · vÞv0μ�;

hD�jc̄σμνbjB̄i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
εμναβ½hT1

ϵ�αðvþ v0Þβ
þ hT2

ϵ�αðv − v0Þβ þ hT3
ðϵ� · vÞvαv0β�; ð6Þ

where w ¼ v0 · v and v0 and v are the four velocities of the
D� and B, respectively. Note that the matrix element of
c̄σμνγ5b is related to that of c̄σμνb, since σμνγ5 ¼ i

2
ϵμναβσ

αβ.
The tensor current is renormalized in the SM, and so the

tensor form factors depend on the renormalization scale
which for b decays is typically taken as μ ¼ mpole

b .
In terms of these form factors, the nonzero helicity

amplitudes for the (axial-)vector currents are

H� ¼ −g�AhA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
ð1þ wÞ

∓ g�VhV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD� ðw2 − 1Þ

q
ð7Þ

H0 ¼ −g�AMBð1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

q2

s

× ½hA1
ðw − rÞ − ðw − 1Þ½hA3

þ rhA2
�� ð8Þ

Ht ¼ −g�AMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD� ðw2 − 1Þ

q2

s

× ½hA1
ð1þ wÞ − hA2

ð1 − wrÞ − hA3
ðw − rÞ�; ð9Þ

where r ¼ MD�=MB. Note that the complex conjugates
of the coefficients gX appear in the conjugate mode
B0 → D�−lþν for the general complex gX appearing in
Eq. (3). Expressions for the tensor helicity amplitudes are
given in Appendix A.
The squared matrix element entering the differential rate

may be written as

X
λl

����X
λD�

MλD� λl

����2 ¼ X
i

kiðθW; θD� ; χÞHi: ð10Þ

The combinations ki and Hi are given in Table I for the
charge conjugate mode, B0 → D�−lþν, for the case where
only gA and gV are nonzero. We have checked that this
expression matches that given in [21]. Note that it also
agrees with the expression for the lþν final state given
in [44], though there one must also take Hþ ↔ H− for the
conjugate hadronic current.
The construction of the full differential rate including

tensor, axial-tensor, and pseudoscalar currents is described
in Appendix A, together with the combinations ki and Hi.
The explicit coefficients for the full and partially integrated
differential rate are also provided as a supplementary
PYTHON script for the general case of complex gX.

III. LATTICE CALCULATION

Our lattice QCD calculation of the B → D� form factors
follows broadly the same heavy-HISQ approach as those
presented in [23,45] for the related Bs → D�

s and Bc →
J=ψ form factors, respectively. We use a range of masses
for a heavy quark, h, between the charm and physical
bottom quark mass. The heavy-light pseudoscalar meson,
which we will refer to asH, is at rest on the lattice. We give
momentum to the charm quark using twisted boundary
conditions so that the D� covers the range of physical

FIG. 1. Conventions for the angular variables entering the
differential decay rate.
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momenta for H → D� decay. We use the HISQ action [24]
for all valence quarks and use the second generation
Nf ¼ 2þ 1þ 1MILC ensembles of gauge configurations,
which include equal mass ðmu ¼ mdÞ HISQ light quarks in
the sea, as well as physically tuned strange and charm sea
quarks [46,47]. We include ensembles with a range of
lattice spacings from 0.09 fm down to 0.045 fm and a range
of light quark masses. On the finest ensemble with 0.045 fm
we are able to reach very close to the physical bottom quark
mass for h. The details of these ensembles are given in
Table II. Note that compared to [23,45] we include an
additional ensemble, set 5, with w0=a ¼ 3.0170ð23Þ [48],
which we refer to as “physical superfine.” This additional

ensemble is important, along with “physical fine” lattices,
for resolving the logarithmic dependence of the form
factors on the pion mass [49] arising from the proximity
of the D� to the D� → Dπ threshold. The heavy quark
masses used, together with the valence charm and strange
quark masses (for the Bs → D�

s case), are given in Table III.
We use valence light quarks with masses equal to the sea
light quark masses in Table II.
On the lattice, we compute two-point and three-point

correlation functions of meson interpolating operators and
currents in order to extract matrix elements, amplitudes,
and energies. Note that in our lattice calculation the
correlation functions are constructed from staggered

TABLE I. The helicity amplitude combinations and coefficients for them that appear in Eq. (10) for B0 → D�−lþν
when only gA and gV in Eq. (3) are nonzero.

i Hi kiðθW; θD� ; χÞ
1 jHþðq2Þj2 ð1 − cosðθWÞÞ2ðsin2ðθD�

s
ÞÞ

2 jH−ðq2Þj2 ð1þ cosðθWÞÞ2ðsin2ðθD�
s
ÞÞ

3 jH0j2 4 sin2ðθWÞ cos2ðθD�
s
Þ

4 ReðHþH�
0Þ −2 sinðθWÞ sinð2θD�

s
Þ cosðχÞð1 − cosðθWÞÞ

5 ReðH−H�
0Þ 2 sinðθWÞ sinð2θD�

s
Þ cosðχÞð1þ cosðθWÞÞ

6 ReðHþH�
−Þ −2 sin2ðθWÞ sin2ðθD�

s
Þ cosð2χÞ

7 m2
l

q2 jHþðq2Þj2 sin2ðθWÞ sin2ðθD�
s
Þ

8 m2
l

q2 jH−ðq2Þj2 sin2ðθWÞ sin2ðθD�
s
Þ

9 m2
l

q2 jH0j2 4 cos2ðθWÞ cos2ðθD�
s
Þ

10 m2
l

q2 jHtðq2Þj2 4 cos2ðθD�
s
Þ

11 m2
l

q2
ReðHþH�

0Þ −2 sinðθWÞ sinð2θD�
s
Þ cosðχÞ cosðθWÞ

12 m2
l

q2 ReðH−H�
0Þ −2 sinðθWÞ sinð2θD�

s
Þ cosðχÞ cosðθWÞ

13 m2
l

q2 ReðHþH�
−Þ 2 sin2ðθWÞ sin2ðθD�

s
Þ cosð2χÞ

14 m2
l

q2 ReðHtH�
0Þ −8 cos2ðθD�

s
Þ cosðθWÞ

15 m2
l

q2 ReðHþH�
t Þ 4 sinðθWÞ sinð2θD�

s
Þ cosðχÞ

16 m2
l

q2 ReðH−H�
t Þ 4 sinðθWÞ sinð2θD�

s
Þ cosðχÞ

TABLE II. Details of the gauge field configurations used in our calculation [46,47]. We use the Wilson flow parameter [50], w0, to fix
the lattice spacing given in column 2. The physical value of w0 was determined in [51] to be 0.1715(9) fm and the values of w0=a, which
are used together with w0 to compute a, were taken from [8,52,53]. Set 1 with w0=a ¼ 1.9006ð20Þ is referred to as “fine,” set 2 with
w0=a ¼ 2.896ð6Þ as “superfine,” set 3 with w0=a ¼ 3.892ð12Þ as “ultrafine”, and set 4 with w0=a ¼ 1.9518ð7Þ as “physical fine.” Note
that compared to [23,45] we include an additional ensemble, set 5, with w0=a ¼ 3.0170ð23Þ [48], which we refer to as “physical
superfine,” that includes physical light quarks. ncfg and nt give the number of configurations and the number of time sources,
respectively. aml0, ams0, and amc0 are the masses of the sea up/down, strange, and charm quarks in lattice units. We also include the
approximate mass of the Goldstone pion, computed in [2].

Set a ðfmÞ Nx × Nt aml0 ams0 amc0 Mπ ðMeVÞ ncfg × nt

1 0.0902 32 × 96 0.0074 0.037 0.440 316 1000 × 16
2 0.0592 48 × 144 0.0048 0.024 0.286 329 500 × 4
3 0.0441 64 × 192 0.00316 0.0158 0.188 315 375 × 4
4 0.0879 64 × 96 0.0012 0.0363 0.432 129 600 × 8
5 0.0568 96 × 192 0.0008 0.022 0.260 135 100 × 4
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spin-taste operators [24]. In this section, for notational
simplicity, we write the correlation functions in terms of the
equivalent continuum operators built from Dirac fermions.
For a general current operator c̄Γh, the two-point and three-
point correlation functions take the form

C
D�

l
2ptðt; 0Þ ¼ h0jl̄γνcðtÞðl̄γνcð0ÞÞ†j0i;

CHl
2ptðt; 0Þ ¼ h0jðh̄γ5lðtÞÞ†h̄γ5lð0Þj0i;

C3ptðT; t; 0Þ ¼ h0jl̄γνcðTÞc̄ΓhðtÞh̄γ5lð0Þj0i: ð11Þ

We compute correlation functions for both l ¼ u=d and
l ¼ s, and we will distinguish the mesons with l ¼ s with a
subscript s. We use random wall sources at time tsrc for the
light and charm quark propagators in order to improve
statistics, as well as for the heavy quarks entering the
two-point functions, and we use twisted boundary con-
ditions [54,55] to give momentum to the charm quark. We
use the light quark propagator at time tsrc − T to construct
the source for the heavy quark propagator needed for the
three-point correlation functions. Finally, this heavy quark
propagator is tied together with the charm propagator at
time tsrc − T þ t to form the three-point correlation func-
tion. The arrangement of quark propagators entering the
three-point functions is shown in Fig. 2. We compute three-
point correlation functions using multiple values of T in
order to resolve the T dependence of the correlation
functions. The values of T used on each ensemble, together
with the twists used to give momentum to the charm

quarks, are given in Table IV. Note that the twists differ
slightly from those used in [23].

A. Correlator fits

We fit the correlation functions in Eq. (11) to exponen-
tials, including time-oscillating terms as is typical when
using staggered quarks [22–24,41,56]:

CD�
s

2ptðt; 0Þ ¼
X
i

�ðAi
nÞ2e−tEi

n þ ð−1ÞtðAi
oÞ2e−tEi

o
�
;

CHs
2ptðt; 0Þ ¼

X
i

�ðBi
nÞ2e−tMi

n þ ð−1ÞtðBi
oÞ2e−tMi

o
� ð12Þ

and

C3ptðT; t; 0Þ ¼
X
i;j

�
Ai
nB

j
nJ

ij
nne−ðT−tÞE

i
n−tM

j
n

þ ð−1ÞT−tAi
oB

j
nJ

ij
one−ðT−tÞE

i
o−tM

j
n

þ ð−1ÞtAi
nB

j
oJ

ij
noe−ðT−tÞE

i
n−tM

j
o

þ ð−1ÞTAi
oB

j
oJ

ij
ooe−ðT−tÞE

i
o−tM

j
o
�
: ð13Þ

Here i and j are integers corresponding to on-shell particle
states of increasing energies, Ai and Bi are the amplitudes
(together with relativistic normalization factors) of the D�

ðsÞ
and HðsÞ operators, respectively, and Ei and Mi are their
energies and masses. The time-oscillating terms, with
subscript “o” are a consequence of the use of staggered
quarks; since our interpolating operators are only projected
onto definite spatial momentum they may couple to “time
doubled” states. The subscript n indicates nonoscillating
states. Jijnn is then related to the matrix element of the
current c̄ΓhðtÞ in Eq. (11) between the nonoscillating states
labeled i and j. The ground state parameters are related to
matrix elements as

A0
n ¼

ND�
ðsÞffiffiffiffiffiffiffiffiffiffiffiffi

2ED�
ðsÞ

q �
1þ p⃗02

ν

M2
D�

ðsÞ

	
1=2

;

B0
n ¼

NHðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHðsÞ

q ; ð14Þ

TABLE III. Details of the strange, charm, and heavy valence
masses.

Set amval
h amval

s amval
c

1 0.65, 0.725, 0.8 0.0376 0.449
2 0.427, 0.525, 0.65, 0.8 0.0234 0.274
3 0.5, 0.65, 0.8 0.0219 0.194
4 0.65, 0.725, 0.8 0.036 0.433
5 0.427, 0.525, 0.65, 0.8 0.0165 0.2585

FIG. 2. Arrangement of propagators in the three-point function;
we refer to c as the “active” charm quark, h as the “extended”
heavy quark, and l as the “spectator” light/strange quark. J
represents the insertion of either a vector, axial-vector, or tensor
current, and Hl and D�

l represent the insertion of the correspond-
ing meson interpolating operators.

TABLE IV. Values of twists, θ, together with values of T used
in the three-point functions in Eq. (11). Note that we use a
momentum direction p⃗0 ¼ ðk; k; 0Þ with ak ¼ θπ=Nx.

Set θ T=a

1 0.0, 0.3859, 0.7718, 1.1577, 1.5436, 1.9295 14,17,20
2 0.0, 0.8464, 1.6929, 2.5393, 3.3857, 4.2322 22,25,28
3 0.0, 1.2596, 2.5192, 3.7788, 5.0384, 6.2981 31,36,41
4 0.0, 0.7672, 1.5343, 2.3015, 3.0687, 3.8358 14,17,20
5 0.0, 1.6929, 3.3857, 5.0786, 6.7715, 8.4643 22,25,28
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where

h0jl̄γνcjD�
ðsÞðp0; λÞi ¼ ND�

ðsÞ
ϵνðp0; λÞ;

hHðsÞðpÞjh̄γ5cj0Þi ¼ NHðsÞ : ð15Þ

J00nnðν;ΓÞ ¼
X
λ

ϵνðp0; λÞhD�
ðsÞðp0; λÞjc̄ΓhjHðsÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ED�
ðsÞ
2MHðsÞ



1þ p⃗02

ν =M2
D�

ðsÞ

�r ; ð16Þ

where p⃗0
ν is the ν component of theD�

ðsÞ spatial momentum,

with ν corresponding to the choice of polarization in
Eq. (11), with current c̄Γh.

B. Extracting form factors

In order to extract the form factors from our correlator
fits, we must use appropriate combinations ofD�

ðsÞ momen-
tum, p0, four-vector component, ν, and current Dirac
matrix, Γ, when computing correlation functions. These
combinations must produce matrix elements corresponding
to linearly independent combinations of form factors. In
order to isolate hV and hA1;2;3

on each ensemble for each
combination of q2 and amh we use the same combinations
of ν and Γ as described in [22,23]. We give the relation of
these matrix elements to the form factors below. We work
with the H at rest throughout.

1. Vector and axial-vector form factors

As in [22,23] we define Φν, corresponding to the
denominator in the right-hand side of Eq. (16):

Φν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ED�2MHð1þ p⃗02

ν =M2
D� Þ

q
: ð17Þ

With this definition, together with Eq. (6) and the
completeness relation for the D� polarization vectorsP

λ ϵ
μϵν� ¼ −gμν þ v0μv0ν, we have for the combinations

listed in Table V

J̃00nnð1;γ3Þ ¼ ihVk̃;

J̃00
nnð1;γ5Þ ¼

MHwk̃
mh þmc

�
hA1

ðwþ 1Þ

− hA2
ð1 − rwÞ − hA3

ðw − rÞ�;
J̃00
nnð3;γ3γ5Þ ¼ ð1þ wÞhA1

;

J̃00
nnð1;γ1γ5Þ ¼ hA1

ðwþ 1Þð1þ k̃2Þ − whA3
k̃2; ð18Þ

where we have defined the reduced combination J̃00nnðν;ΓÞ ¼
J00nnðν;ΓÞΦν=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHðsÞMD�

ðsÞ

q
, k̃ ¼ k=MD� and where p⃗D� ¼

p⃗0 ¼ ðk; k; 0Þ. Note that when converting between form
factors and matrix elements, we use the masses obtained
from the local spin-taste operators for the D�

ðsÞ and HðsÞ.
Discretization effects resulting from this choice only enter at
the level of the taste splittings, which for heavy-lightmesons
using HISQ quarks are very small [24,47], and will be
consistently included in our chiral-continuum extrapolation
along with other discretization effects.

2. Tensor form factors

We now proceed to detail the procedure adopted here for
isolating the tensor form factors. For the tensor current the
sum over D� polarizations in Eq. (16) gives

J̃00nnðκ;σμνÞ ¼ εμναβ½hT1
ðδκα − v0κv0αÞðvþ v0Þβ

þ hT2
ðδκα − v0κv0αÞðv − v0Þβ

þ hT3
ðvκ − wv0κÞvαv0β�: ð19Þ

We choose combinations of Lorentz indices for the tensor
current and D�

ðsÞ operator, μν ¼ 12 and κ ¼ 3, μν ¼ 14 and
κ ¼ 3, μν ¼ 23 and κ ¼ 1. These choices give

J̃00nnð3;σ12Þ ¼ hT1
ð1þ wÞ þ hT2

ð1 − wÞ;
J̃00nnð3;σ14Þ ¼ k̃ðhT1

− hT2
Þ;

J̃00nnð1;σ23Þ ¼ hT1
ð1þ wþ k̃2Þ þ hT2

ð1 − wþ k̃2Þ − hT3
wk̃2:

ð20Þ

TABLE VI. Spin-taste operators used to isolate the tensor form
factors hT1;2;3

. The first column is the operator used for the HðsÞ,
the second for the D�

ðsÞ and the third column is the operator used

at the current.

OHs
OD�

s
OJ

J̃00nnð3;σ12Þ γ0γ5 ⊗ γ0γ5 γ3 ⊗ γ3 γ1γ2 ⊗ γ1γ2

J̃00nnð3;σ14Þ γ5 ⊗ γ5 γ3 ⊗ γ2γ3 γ0γ1 ⊗ γ0γ1

J̃00nnð1;σ23Þ γ0γ5 ⊗ γ0γ5 γ1 ⊗ γ1 γ2γ3 ⊗ γ2γ3

TABLE V. Spin-taste operators used to isolate the SM form
factors, hV;A1;2;3

. The first column is the operator used for theHðsÞ,
the second for the D�

ðsÞ and the third column is the operator used

at the current.

OHðsÞ OD�
ðsÞ

OJ

J̃00nnð1;γ3Þ γ0γ5 ⊗ γ0γ5 γ1 ⊗ γ1γ2 γ3 ⊗ γ3

J̃00
nnð1;γ5Þ γ5 ⊗ γ5 γ1 ⊗ 1 γ5 ⊗ γ5

J̃00
nnð3;γ3γ5Þ γ5 ⊗ γ5 γ3 ⊗ γ3 γ3γ5 ⊗ γ3γ5

J̃00
nnð1;γ1γ5Þ γ5 ⊗ γ5 γ1 ⊗ γ1 γ1γ5 ⊗ γ1γ5
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3. Spin-taste operators

We implement themeson interpolator and current operators
as staggered spin-taste operators. The combinations of spin-
taste operators we use are given in Tables V and VI. These
have been chosen so that the current operator is the local one
for which the renormalization factors were computed.

C. Current renormalization

The lattice currents used require renormalization factors
to match them to the continuum operators, and for the
tensor current, we match to the MS scheme. The axial-
vector and vector current pieces, ZA and ZV respectively,
are given in Table VII. These were computed in [8,9]
for sets 1, 2, 3, and 4. On set 5, we use the values from set 2,
adding a conservative 1.0% uncertainty motivated by the
observed maximum change between sets 1 and 4 for a
somewhat smaller difference in lattice spacings. The ZA

and ZV values for amh ¼ 0.725 on set 1 and amh ¼ 0.65
on set 4 were obtained by interpolation from the other
values for those sets, using the largest uncertainty
of the other factors on that set. The tensor renormalization
factors, ZT , were computed using an intermediate RI-
SMOM scheme in [42]. We use the factors computed at
an intermediate scale of μ ¼ 2 GeV, and then run to
μ ¼ 4.8 GeV ∼mpole

b , with the condensate correction
applied. Since we are only interested in the mh ¼ mb
point, we use ZTð4.8 GeVÞ on each lattice, rather than
trying to estimate a value of mpole

h to run ZT for each mh.

The values of ZT are given in Table VIII. Note that the
tensor renormalization factors were defined in the limit that
the valence masses in lattice units are taken to zero, and as
such are independent of amh.

D. Correlator fit parameters

We perform correlator fits of our lattice data to Eqs. (12)
and (13) using the CORRFITTER PYTHON package [57]. Our
fits are done to all correlation functions simultaneously.
The prior values and uncertainties of the fit parameters

that we use here are very similar to those used in [23],
with only small differences in the heuristic forms chosen
for themh dependance ofMHðsÞ andMD�

ðsÞ
. For ground-state

priors we take E
D�

ðsÞ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D�
ðsÞ
þ 2k2

q
× 1ð0.3Þ GeV and

M
HðsÞ
0 ¼ ðMHs

max þmh − 0.8Þ × 1ð0.3Þ GeV. Here we use
MD�

s
¼ MD� þms, where ms is the mass in GeV of the

valence strange quark given in Table III. For MHs
max we use

the value ofMHs
from [8] corresponding to the largest value

of amh ¼ 0.8. Note that our priors for H and Hs masses
have the same central value and uncertainty, and we use
separate priors with equal central values and uncertainties
for the energies and amplitudes of meson operators in
different taste multiplets. Our priors for the lowest oscillat-
ing state energies, as well as amplitudes, are given in
Table IX. For the matrix elements, JijnðoÞnðoÞ, we take priors
0(1) for all except those proportional to ak. For these, we
first divide by ak before fitting, since ak is known exactly
from the twists (Table IV). We increase the uncertainty on
the corresponding priors for the oscillating state matrix

TABLE VII. Z factors from [8,9] for the axial-vector and vector
operators used in this work, together with the discretization
corrections. ZA and ZV values for amh ¼ 0.725 on set 1 and
amh ¼ 0.65 on set 4 were obtained by interpolation from the
other values for those sets. The total renormalization factor is
given by ZAðVÞZdisc.

Set amh ZA ZV Zdisc

1 0.65 1.03740(58) 1.0254(35) 0.99635
0.725 1.04030(58) 1.0309(35) 0.99491
0.8 1.04367(56) 1.0372(32) 0.99306

2 0.427 1.0141(12) 1.0025(31) 0.99931
0.525 1.0172(12) 1.0059(33) 0.99859
0.65 1.0214(12) 1.0116(37) 0.99697
0.8 1.0275(12) 1.0204(46) 0.99367

3 0.5 1.00896(44) 1.0029(38) 0.99889
0.65 1.01363(49) 1.0081(43) 0.99704
0.8 1.01968(55) 1.0150(49) 0.99375

4 0.65 1.03717(47) 1.0229(29) 0.99645
0.725 1.04037(47) 1.0285(29) 0.995
0.8 1.04390(39) 1.0348(29) 0.99315

5 0.427 1.014(10) 1.002(10) 0.99931
0.525 1.017(10) 1.006(11) 0.99859
0.65 1.021(10) 1.012(11) 0.99697
0.8 1.028(10) 1.020(11) 0.99367

TABLE VIII. ZTðμ ¼ 4.8 GeVÞ factors from [42] for the tensor
operators used in this work.

Set ZT

1 1.0029(43)
2 1.0342(43)
3 1.0476(42)
4 1.0029(43)
5 1.0342(43)

TABLE IX. Correlator fit priors. We take ΔEðoÞ
i ¼ ΛQCD ×

1.0ð0.75Þ where ΔEðoÞ
i ¼ EðoÞ

iþ1 − EðoÞ
i ; i ≥ 0 and here for our

correlator fits we take ΛQCD ¼ 0.75 GeV. In the Table we have

defined ΩHðsÞ ¼ MHs
max þmh − 0.8 and ΩD�

ðsÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D�
ðsÞ
þ 2k2

q
following the relativistic dispersion relation.

Prior D�
ðsÞðkÞ Hs

E0
n=GeV ΩD�

ðsÞ
× 1.0ð0.3Þ ΩHðsÞ × 1ð0.3Þ

E0
o=GeV ΩD�

ðsÞ
× 1.2ð0.5Þ ΩHðsÞ × 1.2ð0.5Þ

AðBÞnðoÞi
0.1(5.0) 0.1(5.0)
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elements Jijno, J
ij
oo, and J

ij
oo by a factor of 4 relative to J

ij
nn to

account for this rescaling, and take priors of 0(4).
In order to fit our data simultaneously, it is necessary to

implement an singular value decomposition (SVD) cut (see
Appendix D of [58]). The size of the SVD cut used on each
lattice was chosen based on the values used in [23], though
note that by omitting the highly correlated ηc and ηh correlator
data, as well as by only partially binning over time sources as
discussed in Appendix B, we are able to use smaller SVD
cuts, resulting inmore stable fits.We also omit correlator data
points close to the source and sink operators that contain
significant excited state contamination. These data points are
not included when computing correlations, further helping to
improve resolution of the covariance matrix for the correlator
data and reducing the size of the required SVD cut. The
number of data points excluded from close to the source and
sink operators are given in Table X, together with the number
of exponentials included in Eqs. (12) and (13). Table X also
includes thevalue of χ2=d:o:f: estimated using prior andSVD
noise as in [57], following [22,23]. InSec. IV Cwe investigate
the effect of using different combinations the fit parameters in
Table X.We find that our results are very stable to changes in
ΔT and the choice of SVD cut.

IV. RESULTS

In this section we give the numerical results from the
correlator fits described in Sec. III A. We then describe our

extrapolation of the form factors to the physical-continuum
point. We demonstrate that our physical-continuum form
factors are insensitive to reasonable changes to our fitting
and extrapolation procedure, then we provide a breakdown
of the sources of uncertainty entering the form factors
across the kinematic range of the decay.

A. Correlator fit results

The ground state D� and D�
s masses resulting from our

correlator fits are given in Tables XI and XII, where we see
some changes compared to [23] on set 3 on the order of
≈1.5σ. Such changes are not surprising, and are a result of
the exclusion of highly correlated ηc data, as well as the
inclusion of additional D�

s polarizations and D� data,
together with the improved resolution of the covariance
matrix as discussed in Appendix B. We note that our fit
results for theD�

s masses on set 3 are in good agreement with
those given in [9], which included a much smaller set of
correlators and so had better resolution of the data covariance
matrix. The HðsÞ masses are given in Table XIII in lattice
units, where we see good agreement with those in [9,23].
The full set of numerical results for the SM form factors

for B → D� are given in Tables XIX–XXIII and in
Tables XXIX–XXXIII for Bs → D�

s in Appendix C.
There, the tensor form factors for B → D� are also given
in Tables XXIV–XXVIII and in Tables XXXIV–XXXVIII
for Bs → D�

s. Note that hT3
is particularly noisy, owing to

the factor of k2 appearing in Eq. (20). These data points are

TABLE X. Details of fit parameters. ΔT indicates the number
of data points at the extremities of correlation functions not
included in the fit, and nexp is the number of nonoscillating and
time-oscillating exponentials included in our correlator fits to
Eqs. (12) and (13). χ2=d:o:f: is estimated by introducing SVD
and prior noise as in [57]. We use the fit parameters in bold for
our subsequent analysis. δ is a label for the other fits that we will
use later in Sec. IV C to investigate the sensitivity of our final
results to these parameters.

Set nexp ΔT3pt ΔT
D�

ðsÞ
2pt ΔTHðsÞ

2pt SVD cut χ2=d:o:f: δ

1 3 2 4 4 0.005 1.02 0
3 3 6 6 0.005 0.99 1
3 2 4 4 0.001 1.04 2

2 3 4 9 9 0.005 1.01 0
3 4 9 9 0.001 1.05 1
3 4 8 8 0.005 1.04 2

3 3 6 12 12 0.001 1.01 0
3 5 11 11 0.001 1.02 1
3 6 12 12 0.0005 1.07 2

4 3 2 4 4 0.01 1.02 0
3 2 5 5 0.01 1.03 1
3 2 4 4 0.005 1.02 2

5 3 5 10 10 0.001 1.1 0
3 5 10 10 0.005 1.1 1
3 4 8 8 0.001 1.1 2

TABLE XI. D� masses for the local spin-taste operator γ1 ⊗ γ1
and one-link operators γ1 ⊗ 1 and γ1 ⊗ γ1γ2 used in our
calculation, see Tables V and VI.

aMD�

Set γ1 ⊗ γ1 γ1 ⊗ 1 γ1 ⊗ γ1γ2

1 0.9289(26) 0.9292(31) 0.9277(34)
2 0.6110(25) 0.6110(36) 0.6108(37)
3 0.4556(14) 0.4536(21) 0.4551(18)
4 0.8949(42) 0.8954(53) 0.8953(49)
5 0.5829(49) 0.5823(73) 0.5790(75)

TABLE XII. D�
s masses for the local spin-taste operator γ1 ⊗ γ1

and one-link operators γ1 ⊗ 1 and γ1 ⊗ γ1γ2 used in our
calculation, see Tables V and VI.

aMD�
s

Set γ1 ⊗ γ1 γ1 ⊗ 1 γ1 ⊗ γ1γ2

1 0.96499(76) 0.9649(11) 0.9644(13)
2 0.6349(12) 0.6348(15) 0.6346(16)
3 0.47183(68) 0.47155(85) 0.47202(75)
4 0.93970(62) 0.93952(91) 0.93964(93)
5 0.6075(12) 0.6084(13) 0.6078(13)
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shown in Figs. 3 and 4, where we also show the B → D�
form factors extrapolated to the physical-continuum
point.

B. Physical-continuum extrapolation

In order to determine the physical-continuum form
factors we must fit our lattice form factor data to an
appropriate function describing its kinematic and physical
mh dependence, as well as discretization effects and quark
mass mistuning effects. At the physical-continuum point
with mh ¼ mb, the BGL parametrization is often used to
describe the kinematic dependence of the form factors in
the helicity basis, with the BGL coefficients guaranteed to
be between −1 and 1 by unitarity constraints. However, the
BGL parametrization (see Sec. IV E for details) depends on
the masses of several mesons containing a b quark, as well
as susceptibilities which also depend on the b quark mass
and are computed perturbatively. This makes it impractical
for our purposes to use it here, where we require our fit
function to describe themh dependence of our form factors.
Instead we use a more straightforward power series in

(w − 1), ðΛQCD=mhÞ, and δmq
to parametrize the continuum

HQET form factors. Using a power series in (w − 1) to
describe the kinematic dependence of the form factors
allows us to describe the physical mh dependence away
from the point mh ¼ mb as modifications to the coeffi-
cients. These appear as multiplicative corrections, in
powers of ðΛQCD=mhÞ motivated by HQET. However,
we must be careful to choose prior widths for our
coefficients that do not overly constrain the shape of
the form factors. In order to set our priors for the

physical-continuum coefficient of each power of (w − 1),
we make use of the physical-continuum BGL expansion
[13] at mh ¼ mb where the masses and susceptibilities
are well known. We can then compute each physical-
continuum (w − 1) coefficient in terms of the physical-
continuum BGL expansion coefficients, and use priors for
the physical-continuum BGL coefficients directly, choos-
ing prior widths motivated by the unitarity bounds.
To compute the physical-continuum (w − 1) coefficients

of the HQET form factors, we start with the physical-
continuum BGL parametrization of the helicity basis form
factors at the mh ¼ mb point, which we then convert to the
HQET basis. The BGL parametrization is given in terms of
z, mapped from q2 [see Eq. (33)]. We set t0 ¼ q2max in this
mapping and then expand z, the Blaschke factors PðzÞ, and
outer functions ϕðzÞ appearing in the BGL expansion in
powers of (w − 1). This provides a linearmap, whichwe call
MBGL→HQET

nm;YX , from the physical-continuum BGL coeffi-
cients for the helicity basis form factors, to each physical-
continuum ðw − 1Þn coefficient for the HQET form factors.
Note that since the BGL expansion describes the form
factors in the helicity basis, we must explicitly impose the
kinematical constraints F1ðw ¼ 1Þ ¼ MBð1 − rÞfðw ¼ 1Þ
and F2ðwmaxÞ¼ð1þrÞ=ðM2

Bð1þwmaxÞð1−rÞrÞF1ðwmaxÞ
in order to convert to the HQET basis consistently. This
is done by fixing the zeroth order BGL coefficient ofF1 and
F2 in terms of the remaining coefficients such that the
constraints are satisfied. We follow the conventions for
masses and resonances entering the BGL expansion given
in [14], although we have checked that other choices do not
significantly impact themapping to (w − 1) coefficients.We

TABLE XIII. HðsÞ masses for the local spin-taste operators γ5 ⊗ γ5 and γ0γ5 ⊗ γ0γ5 that we use in our calculation,
see Tables V and VI.

γ5 ⊗ γ5 γ0γ5 ⊗ γ0γ5

Set amh aMH aMHs
aMH aMHs

1 0.65 1.08972(80) 1.12504(26) 1.0894(13) 1.12556(46)
0.725 1.16928(88) 1.20424(28) 1.1689(14) 1.20472(48)
0.8 1.24659(95) 1.28127(29) 1.2462(15) 1.28172(50)

2 0.427 0.7510(13) 0.77418(55) 0.7499(22) 0.77410(70)
0.525 0.8617(15) 0.88450(62) 0.8607(24) 0.88452(76)
0.65 0.9969(18) 1.01962(71) 0.9962(26) 1.01976(84)
0.8 1.1516(21) 1.17452(81) 1.1513(29) 1.17477(93)

3 0.5 0.78656(92) 0.80250(31) 0.7863(13) 0.80249(41)
0.65 0.9482(11) 0.96383(38) 0.9479(15) 0.96372(50)
0.8 1.1021(14) 1.11777(46) 1.1019(17) 1.11761(59)

4 0.65 1.0783(15) 1.12007(22) 1.0768(23) 1.12053(40)
0.725 1.1578(16) 1.19923(23) 1.1564(24) 1.19966(43)
0.8 1.2352(17) 1.27624(25) 1.2338(26) 1.27663(46)

5 0.427 0.7440(22) 0.76937(35) 0.7419(44) 0.76975(49)
0.525 0.8548(27) 0.87950(44) 0.8527(48) 0.87994(58)
0.65 0.9902(32) 1.01437(57) 0.9882(52) 1.01489(69)
0.8 1.1452(37) 1.16898(74) 1.1435(56) 1.16958(82)
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useGaussian priors for the BGL coefficients of 0� 5, which
are very conservative compared to the unitarity constraints
which force them to be less than 1.
Since the z expansion converges quickly owing to the

small size of z, we include only up to z4 in the z expansion.
When we look at the numerical values appearing in

MBGL→HQET
nm;YX we see that some are substantially greater than

1. For instance, the coefficient of ðw − 1Þ5 for hA1
includes a

term ≈ − 50afBGL0 , where afBGL0 is the leading (z0) coef-
ficient in the BGL expansion for the form factor f. For

afBGL0 ∼Oð1Þ this would give a contribution ofOð1Þ to the
form factor close towmax wherewe have lattice data. In order
to ensure that we do not bias our fit to small values of the
BGL coefficients, it is therefore important that we go to
sufficiently high order in (w − 1). We find that the ðw−1Þ10
coefficients for any of the HQET form factors give a

FIG. 3. The points show our lattice QCD results for each SM form factor as given in Tables XIX–XXIII for B → D� (filled points) and
Tables XXIX–XXXIII for Bs → D�

s (empty points) as a function of the recoil parameter, w. The legend gives the mapping between
symbol color and shape and the set of gluon field configurations used, as given by the lattice spacing, and the heavy quark mass in lattice
units (see Tables II and III). The blue curve with error band is the result of our fit in the continuum limit and with the physical b quark
mass for B → D�. Note that we include the data points for both the Bs → D�

s and B → D� form factors, and that for clarity data points at
fixed w for different values of mh are offset a small amount.
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maximum contribution of Oð0.01Þ for Oð1Þ BGL coeffi-
cients close to wmax. This is an order of magnitude smaller
than the uncertainties on our lattice data points in this region,
and so we truncate the power series in (w − 1) at order 10.
The ðΛQCD=mhÞ, and δmq

polynomial terms are then
included as modifications to the continuum (w − 1) coef-
ficients. Note that for the tensor form factors, since there is
currently no equivalent BGL expansion available in the
literature, we instead use Gaussian priors of 0� 20 for each
(w − 1) coefficient.
Additionally, our fit function must describe the pion

mass dependence of our form factor data, including
logarithms determined from staggered chiral perturbation
theory [59,60]. The staggered chiral logarithms for the SM
form factors were given in [26]. Following the methods
in [59–61] we find that the staggered chiral logarithms for
the tensor form factors for B → D� are related straight-
forwardly to those for the SM form factors, with

logs
hðsÞT1
SUð3Þ ¼ logs

hðsÞA1
SUð3Þ, logs

hðsÞT3
SUð3Þ ¼ logs

hðsÞA2
SUð3Þ, and logs

hðsÞT2
SUð3Þ ¼

0 to one loop. For completeness, we also compute the

logarithms for B → D and find that logsfTSUð3Þ ¼ logsfþSUð3Þ.

Full expressions for logsY
ðsÞ

SUð3Þ are given in Appendix D. We

also include polynomial terms in ðMπ=ΛχÞ2 in our fit form,

contained in δðsÞχ in Eq. (22), where we take Λχ ¼ 1 GeV.
We then fit our B → D� and Bs → D�

s data together by
taking Mπ → MK , MK → MS, swapping MU ↔ MS in the
taste-axial-vector and taste-vector hairpin terms and suit-
ably modifying the flavor-neutral taste-singlet terms.
We label the form factors and observables corresponding
to Bs → D�

s with a superscript “s,” Ys. We use the taste
splittings determined in [47] together with the relations
given in [60] for the flavor-neutral pion mass eigen-

states. We assume that the taste splittings behave as
M2

πξ −M2
π5 ¼ nξa2δt, where nA ¼ 1, nT ¼ 2, nV ¼ 3,

and nI ¼ 4, and use the value for ξ ¼ A to determine δt.
Note that on set 3 we use the observation that δt ∝ a2 to fix
the taste splitting, a2δt, to be 0.31 times that on set 2. We
assume that the taste splittings are equal on sets 1 and 4,
and on sets 2 and 5, respectively. We use the relation
δ0A ¼ δ0V ¼ −δt, which was found to be a good approxi-
mation for HISQ [51,62], to fix the hairpin coefficients.
Our fit function takes the explicit form

FYðsÞ ðwÞ ¼
X10
n¼0

aY
ðsÞ

n ðw − 1ÞnN YðsÞ
n

þ g2D�Dπ

16π2f2π

�
logsY

ðsÞ
SUð3Þ − logsY

ðsÞ
SUð3Þphys

�
; ð21Þ

where gD�Dπ is the D� → Dπ coupling, which is the same
for B → D� and Bs → D�

s at the order to which we work in
chiral perturbation theory. We take fπ ¼ 130 MeV and
neglect the uncertainty in fπ , since the uncertainty of the
overall coefficient of the logs is dominated by that of gD�Dπ .
Note that we subtract the physical point logarithms for
B → D� and Bs → D�

s in each case; this ensures that at the
physical point our fit function for B → D� reduces to a
polynomial in (w − 1). The physical chiral logs entering our
fit function depend only mildly onw, as illustrated in Fig. 5,
and so we expect the subtraction of the physical logs to only
slightly modify the coefficients of the ðw − 1Þn terms. We
use the values of Mπ computed in [2] given in Table II and
MK computed in [1] for sets 1–4. On set 5 we determine
MK ¼ 493 MeV from independent correlator fits and
take the physical values to be Mphys

π ¼ 139.6 MeV,
Mphys

K ¼ 493.7 MeV, and Mphys
η ¼ 547.9 MeV.

FIG. 4. The points show our lattice QCD results for each tensor form factor as given in Tables XXIV–XXVIII for B → D� (filled
points) and Tables XXXIV–XXXVIII for Bs → D�

s (empty points) as a function of the recoil parameter, w. The legend gives the
mapping between symbol color and shape and the set of gluon field configurations used, as given by the lattice spacing, and the heavy
quark mass in lattice units (see Tables II and III). The blue curvewith error band is the result of our fit in the continuum limit and with the
physical b quark mass. Note that we include the data points for both the Bs → D�

s and B → D� form factors, and that for clarity data
points at fixed w for different values of mh are offset a small amount.
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The coefficients, aYn , for each form factor take the form

aY
ðsÞ

n ¼ αYn

�
1þ

X3
j≠0

bY;jn ΔðjÞ
h þ δðsÞχ

X3
j¼0

b̃Y
ðsÞ;j

n ΔðjÞ
h

	
; ð22Þ

where

δðsÞχ ¼
�
MπðKÞ
Λχ

	
2

−
�
Mphys

π

Λχ

	2

ð23Þ

allows for up to ≈25% difference between the B → D� and
Bs → D�

s form factors. For Y¼hA1
;hA2

;hA3
;hV the ðw−1Þn

coefficient, αYn , is given by

αYn ¼
X4
m¼0;

X¼f;F1 ;F2 ;g

MBGL→HQET
nm;YX aX;BGLm ð24Þ

with M the linear mapping from the continuum BGL z
expansion parametrization to the expansion in powers of
(w − 1) and aX;BGLm the BGL zm coefficient for form factor
X. Note that because of Luke’s theorem [63] we set the

coefficients b
hA1 ;1
0 and b̃

hðsÞA1
;1

0 , corresponding to the zero

recoil continuum Λ=mh term, equal to zero. The ΔðjÞ
h allow

for the dependence on the heavy quark mass. Here, we use

the Hs mass as a proxy for the heavy quark mass. Note
that w0 and w0=a, which are used to determine the
lattice spacing on each set, are included as priors. We use

Δð0Þ
h ¼ 1 and

Δðj≠0Þ
h ¼

�
Λ

MHs

	
j
−
�

Λ
Mphys

Bs

	
j
: ð25Þ

We take the physical value of the Bs mass to be MBs
¼

5.36688 GeV [3] and we take Λ ¼ 0.5 GeV.
The remainder of Eq. (21), N YðsÞ

n , takes into account the
small mistuning of the valence and sea quark masses.

N YðsÞ
n ¼ 1þ AYðsÞ

n δvalmc
þ BYðsÞ

n δseamc
þ CYðsÞ

n δvalms
þDYðsÞ

n δseams

ð26Þ

with

δvalmc
¼ ðamval

c − amtuned
c Þ=amtuned

c ;

δseamc
¼ ðamsea

c − amtuned
c Þ=amtuned

c ;

δvalms
¼ ðamval

s − amtuned
s Þ=ð10amtuned

s Þ;
δseams

¼ ðamsea
s − amtuned

s Þ=ð10amtuned
s Þ: ð27Þ

Note that CY
n ¼ 0 so that the valence strange quark

mistuning term is only included for the Bs → D�
s case.

The tuned values of the quark masses are given by

amtuned
c ¼ amval

c

Mphys
D�

s

MD�
s

; ð28Þ

and

amtuned
s ¼ amval

s

�
Mphys

ηs

Mηs

	2

: ð29Þ

MD�
s
on each set is given in lattice units in Table XII and we

use the values of Mηs given in [9] which used the same
values of amval

s . We determine Mηs on set 5 from inde-
pendent correlator fits to be 0.19824(8). Since the ηs
masses are only used to determine the strange quark
mistuning, and because they are very precise, we neglect
their correlations with our other data. We take priors of 0(1)
for each bn and b̃n. We also use priors of 0.0(0.1) for BYðsÞ

n ,
motivated by the results of the analysis ofmsea

c effects on w0

in [53]. We take priors of 0.0(0.5) for DYðsÞ
n for each form

factor, since sea quark mistuning effects enter at one loop.
We take a prior for gD�Dπ of 0.53(8), following [26].
Discretization effects enter our lattice calculation at the

level of matrix elements. It is therefore important to account
for them at this level, rather than at the level of the form
factors, where cancellations may cause them to be

FIG. 5. The physical value of the logs in Eq. (21),
g2
D�Dπ

16π2f2π
logsY

ðsÞ
SUð3Þ, plotted for gD�Dπ ¼ 0.53, illustrating the w and

chiral dependence of our fit function. It can be seen that the log
term varies slowly with w relative to the ðw − 1Þn terms in our fit,
and so we expect the subtraction of the physical B → D� logs in
Eq. (21) to only slightly modify the coefficients of the ðw − 1Þn
terms.
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underestimated. To do this, we convert the continuum form
factors given by Eq. (21) to the matrix elements Jν;Γphys ≡
J00nnðν;ΓÞ given in Eqs. (18) and (20) and allow for discre-

tization effects in this quantity. We then perform the fit
against the matrix elements directly, simultaneously for the
different combinations listed in Tables V and VI, including
discretization effects using the fit form

Jν;ΓðsÞlatt ¼ Jν;ΓðsÞphys þ
X3
j;n¼0

X3
k;l≠0

cðν;ΓÞ;jkln ΔðjÞ
h ðw − 1Þn

×

�
amval

c

π

	
2k
�
amval

h

π

	
2l

þ
X3
j;n¼0

X3
k;l≠0

c̃ðν;ΓÞðsÞ;jkln ΔðjÞ
h ðw − 1Þn

×

�
amval

c

π

	
2k
�
amval

h

π

	
2l

δðsÞχ : ð30Þ

We take priors of 0(1) for each cn and c̃n, multiplying terms
of order Oða2Þ by 0.5 in line with the tree level a2

improvement of the HISQ action [24]. All of the remaining
priors are taken as 0(1).

C. Tests of the stability of the analysis

Here,we demonstrate that our physical-continuum results
are insensitive to variations in both the parameters chosen
when fitting correlator data, as well as the para-
meters entering the chiral-continuum extrapolation. First,
we repeat the analysis described in Sec. IV B using different
combinations of the fits detailed in Table X. In order to
assess the sensitivity of our results, we follow [23] and
compare the values of the form factors, evaluated at q2 ¼ 1,
q2 ¼ 5, and q2 ¼ 10 GeV2. We perform this analysis in the
physically important helicity basis, in which each form
factor corresponds to a definiteD�

ðsÞ andW polarization. The

SM form factors in this basis are defined via

g ¼ hV
MBs

ffiffiffi
r

p

f ¼ MBs

ffiffiffi
r

p ð1þ wÞhA1

F1 ¼ M2
Bs

ffiffiffi
r

p ð1þ wÞððw − rÞhA1
− ðw − 1ÞðrhA2

þ hA3
ÞÞ

F2 ¼
1ffiffiffi
r

p ðð1þ wÞhA1
þ ðrw − 1ÞhA2

þ ðr − wÞhA3
Þ: ð31Þ

Wealso define definite helicity tensor form factors, related to
the tensor helicity amplitudes given in Eq. (A12),

FT1
¼ ð1þ wÞhT1

þ ðw − 1ÞhT2
− hT3

ðw2 − 1Þ;
FT2

¼ hT1
ð1 − rÞð1þ wÞ − hT2

ð1þ rÞðw − 1Þ;
FT3

¼ hT1
ð1þ rÞ − hT2

ð1 − rÞ: ð32Þ

These are plotted in Fig. 6 for f and g at q2 ¼ 1, q2 ¼ 5, and
q2 ¼ 10 GeV2, with n ¼ δ3 þ 3δ2 þ 9δ1 þ 27δ4 þ 81δ5
tracking the different fit parameters, where δi is the value
of δ given in Table X. In Fig. 6we see that no combination of
alternative correlator fit parameters listed in Table X results
in a significant variation of f or g across the full kinematic
range of the decay. Similar plots for the remaining form
factors, including those for the tensor form factors, are given
in the Supplemental Material [64], where we see that the
other form factors are also stable to these variations.
We also investigate the effect of reducing the prior widths,

as well as reducing the order summed to for each expansion
parameter in Eq. (21). We evaluate the form factors, again at
q2 ¼ 1, q2 ¼ 5, and q2 ¼ 10 GeV2, for different combina-
tions of these chiral-continuum extrapolation parameters.
We also investigate the effect of reducing the order to which
we sum in j, k, l in Eqs. (21), (22), and (30), as well as the
effect of halving the prior widths of bjn and cjkln defined in
Eq. (22) and halving the prior widths of b̃jn, c̃

jkl
n and gD�Dπ in

Eqs. (21) and (22). The resulting form factors for each
modification of chiral-continuum extrapolation procedure
are plotted in Fig. 7 for the form factorsf and g, wherewe see
that none of these changes to the extrapolation procedure
result in a significant change to the form factors. Plots for the
remaining B → D� and Bs → D�

s form factors are given in
the Supplemental Material [64], where we see that none of
our form factors are sensitive to these changes.

D. Error budget

In Fig. 8 we plot the fractional contribution of each
source of uncertainty to the total variance for the form
factors f and g across the full kinematic range of the decay.
These are computed from the partial variance of the form
factor at each w with respect to the priors, and so the size of
each band represents the extent to which the corresponding
terms in the chiral-continuum fit are not constrained by the
data. The band labeled χπ corresponds to the priors c̃jkln , b̃jn
and gD�Dπ , Λ=Mh corresponds to the priors bj≠0n , amc to
c0k≠00n , amh to c00l≠0n , δm to the priors entering N Y

n , and
“mixed” corresponds to priors for bjn c

jkl
n where at least two

of j, k. or l are nonzero. “Statistical” corresponds to the
uncertainty from our data. Unsurprisingly, we see that close
to w ¼ 1 where we have data on all ensembles for all
masses we have very good control over the discretization,
chiral and heavy-mass dependence, whereas towards the
maximum value of w, corresponding to q2 ¼ 0, where we
have less coverage with our data, we see that the uncer-
tainty coming from unconstrained terms in our fit function
is larger. For the SM form factors, we generally find that
control over discretization effects set by amh, as well as
control over the physical heavy mass dependence, are the
dominant sources of uncertainty not constrained by the
data. Plots for F1 and F2 as well as the tensor form factors
in the helicity basis defined in Eq. (32), are given in
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Figs. 21 and 22 in Appendix C, where we see a similar
situation for F1, F2, FT2

, and FT3
. The uncertainty in FT1

is
dominated by the unconstrained chiral dependence of the
factor hT3

, shown in Fig. 4. We also show plots for the
Bs → D�

s form factor uncertainties in Appendix C, with
similar behavior to those for B → D�.

E. BGL form factor parametrization

For comparison to other lattice and experimental deter-
minations, we fit synthetic data points generated at
w ¼ 1.025, w ¼ 1.225, and w ¼ 1.425 for each B → D�
form factor in the helicity basis, defined in Eq. (31), using
the BGL parametrization [13]. The BGL parametrization
expresses the form factors as

F ðtÞ ¼ 1

PðzÞϕðzÞ
X∞
n¼0

aFn zðt; t0Þn: ð33Þ

Here we adopt the conventions for Blaschke factors PðzÞ,
outer functions ϕðzÞ,Bð�Þ

c resonances of [14] which were also
used in [26]. We include up to quadratic order in z, though we
have confirmed that going to cubic order has only a very small

effect on the resulting coefficients. We also enforce the
condition F1ðw ¼ 1Þ ¼ MBð1 − rÞfðw ¼ 1Þ by fixing
a0F1

¼ a0fð1 − rÞ= ffiffiffi
2

p ð1þ ffiffiffi
r

p Þ2. Note that here we take

uniformly distributed priors between −1 and 1 for each aFn .
Although we do not enforce the condition at wmax,
F2ðwmaxÞ¼ð1þrÞ=ðM2

Bð1þwmaxÞð1−rÞrÞF1ðwmaxÞ, we
find that our fit satisfies this condition to within 0.07σ. The
fit parameters ai should satisfy the unitarity bounds given by

X∞
i

jagi j2 ≤ 1;

X∞
i

jafi j2 þ jaF1

i j2 ≤ 1;

X∞
i

jaF2

i j2 ≤ 1: ð34Þ

The results of this fit are given in TableXIV, wherewe see that
for the form factors g, f, and F1 we have a reasonably good
agreement with [26], and comparable uncertainties
(cf. Table 11 in that paper). However, forF2 we find a tension
at the level of 2σ. Table XIV includes checks of the unitarity

FIG. 6. Values of the form factors f and g for B → D� evaluated at q2 ¼ 1, q2 ¼ 5, and q2 ¼ 10 GeV2 for different combinations of
correlator fits using different parameters. The red line and error band corresponds to our chosen combination and the blue line and error
band corresponds to the form factors resulting from different fit combinations. Here, n ¼ δ3 þ 3δ2 þ 9δ1 þ 27δ4 þ 81δ5 where δi is the
value of δ for set i given in Table X. We see that no combination of correlator fits results in a significant variation of f or g.
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bounds, Eq. (34), which we find to be far from saturation for
the number of coefficients we include.

F. Reconstructing our form factors

We have included in the Supplemental Material [64]
a PYTHON script, LOAD_FIT.PY, that reads our physical-
continuum HQET fit parameters [see Eq. (21)] and their
correlations from the file hpqcd_BDstar.pydat, in order to
build the B → D� and Bs → D�

s form factors in the HQET
basis. Note that the Bs → D�

s form factors given here
supersede those given in [23]. The script also performs
checks against the values of the form factors at five equally
spaced values of q2, stored in CHECKS.txt and CHECKS_s.txt.

We also provide a file SYNTHETIC_DATA.PYDAT, which may
be loaded into PYTHON using GVAR.GLOAD, which contains
synthetic data points for the form factors in the HQET
basis computed at five equally spaced values of q2 ¼ i ×

q2max;ðsÞ=4; i∈ ½0; 1; 2; 3; 4� for the BðsÞ → D�
ðsÞ form factors.

These synthetic data points are also checked against those
computed from our fit parameter text files in LOAD_FIT.PY.

We have run these scripts using PYTHON-3.10.6, using the
packages NUMPY-1.21.5, SCIPY-1.8.0, GVAR-11.10.1 and
MATPLOTLIB-3.5.1.

V. DISCUSSION

A. Comparison to experiment, jVcbj
We can use our form factors together with the untagged

data for B → D�e−ν̄e and B → D�μ−ν̄μ from Belle [21] in

order to extract jVcbj. We use our physical-continuum form
factor parameters, given in the Supplemental Material [64]
as described in Sec. IV F, as priors to fit the experimental
differential rate data from Belle, which has been binned in
each of the variables w, θD� , θW , and χ defined in Fig. 1.
Note that throughout this section we assume no lepton
flavor universality (LFU) violation between the light l ¼ μ
and l ¼ e modes.
The covariance matrix for the Belle data does not include

the zero eigenvalues expected from the fact that the bins for
a given variable must sum to the same total. In order to
remedy this issue we normalize the bins for each variable so
that they sum to 1. This ensures that the covariance matrix
contains the expected zero eigenmodes, which we then
remove explicitly using an SVD cut. Following the obser-
vation in [26] that the experimental data used to extract Vcb
was dominated by the Belle dataset, we do not include any
synthetic data points generated using fits from BABAR [28].
Once the fit to Belle data described above has been

performed, a value of jVcbj can be read off by comparing
the total number of events to Γ=jVcbηEWj2 computed using
the form factors resulting from the joint theory/experiment
fit. We fit all four variables simultaneously, though we have
checked that fitting the Belle data for any single variable on
its own does not change the uncertainty in the resulting
value of jVcbj, exactly as one would expect from the fact
that the sum of each set of ten bins must be equal. In order
to reconstruct the combined electron-muon 80 × 80 covari-
ance matrix we follow the procedure described in [65] so

FIG. 7. Values of the form factors f and g for B → D� evaluated at q2 ¼ 1, q2 ¼ 5, and q2 ¼ 10 GeV2, corresponding to the blue, red,
and green points respectively, for different combinations of chiral-continuum extrapolation parameters. σ → σ=2 indicates that we
multiply the prior widths of bjn and c

jkl
n defined in Eqs. (22) and (30) by 0.5 and σ → 2σ indicates that we multiply the prior widths of bjn

and cjkln defined in Eqs. (22) and (30) by 2. σπ → σπ=2 indicates that we multiply the prior widths of b̃jn, c̃
jkl
n and gD�Dπ by 0.5 in

Eqs. (21), (22), and (30), and σπ → 2σπ indicates that we multiply the prior widths of b̃jn, c̃
jkl
n and gD�Dπ by 2. OðnMH

; namc
; namh

Þ
indicates the order to which we sum in j, k, l respectively in Eqs. (21), (22), and (30). For each fit going from top to bottom, the χ2 values
are 62, 55, 59, 64, 70, 62, 62, and 62, respectively, for 1224 degrees of freedom.
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that we may fit the l ¼ μ and l ¼ e cases simultaneously,
assuming no NP in either mode.
Since we have computed fully correlated form factors for

both B → D� and Bs → D�
s , it is possible for us to include

data from LHCb [66] for Bs → D�
s in our fits. Even though

this data is more limited, it can still inform the shape of the
form factors. We include the LHCb Bs → D�

s data in our
fits in the same manner as the Belle data, integrating our
differential decay rate over the bins used by LHCb and then
including these in our χ2 minimization. However, since the
available Bs → D�

s experimental data is significantly less
precise than that for B → D�, the inclusion of the LHCb
data does not significantly change the central value or
uncertainty of jVcbj determined in this way.
Our lattice-only normalized differential decay rates for

B → D� and Bs → D�
s are shown in Figs. 9 and 10

respectively, together with the experimental data points
for each bin. We see a difference in shape between our
results and the binned data from Belle and LHCb. The fit to
our results along with Belle and LHCb data gives
χ2=d:o:f: ¼ 0.95 and Q ¼ 0.55. The visible disagreement
in shape we see here is qualitatively similar to what was

seen in [26], where the authors observed a 2σ discrepancy
across the full kinematic range of the decay after extrapo-
lating their lattice results (covering 1 ≤ w ≤ 1.175) to wmax
using the BGL parametrization.
Using our fit to our lattice results along with the

experimental data enables us to determine jVcbj. We find

jVcbj ¼ 39.03ð56Þexpð67Þlatt × 10−3 ð35Þ
in good agreement with previous exclusive determinations
[10]. Note that in determining Vcb we take jηEWj2¼
ð1.00662Þ2×ð1þαQEDπÞ, with an additional Coulomb factor
[67,68] for the charged final states in the decay measured by
Belle, B0 → D�−lþν̄l, and neglect the uncertainty.
For the purpose of comparison to other lattice QCD

results from [26], we plot jF ðwÞVcbηEWj2 in Fig. 11, where
we use Vcb extracted from our joint theory/experiment fit,
Eq. (35), to multiply jF ðwÞj2 computed using only our
form factors. F ðwÞ is defined according to the equation for
the differential rate with respect to w:

dΓðBðsÞ → D�
ðsÞlν̄lÞ

dw

¼ G2
F

48π3
ðMBðsÞ −MD�

ðsÞ
Þ2M3

D�
ðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ðwþ 1Þ2

×

"
1þ 4w

wþ 1

M2
BðsÞ − 2wMBðsÞMD�

ðsÞ
þM2

D�
ðsÞ

ðMBðsÞ −MD�
ðsÞ
Þ2

#

× jF ðsÞðwÞηEWVcbj2: ð36Þ
Figure 11 confirms the disagreement in shape of jF j2 seen
in [26] between the SM and Belle data.

FIG. 8. Plots showing the fractional contribution of each source
of uncertainty to the total variance for the form factors f and g
across the full kinematic range. The vertical axis is truncated at
0.25 for clarity, with the remaining variance between 0.25 and 1
attributable to statistics.

TABLE XIV. BGL fit parameters, defined in Eq. (33), for our
B → D� form factors. Here we also include the sums of squared
coefficients, which we see are far from saturating the unitarity
bounds in Eq. (34).

ag0 0.0318(25)
ag1 −0.114ð96Þ
ag2 0.05(76)

af0 0.01222(20)

af1 0.014(16)

af2 −0.17ð45Þ
aF10 0.002047(33)
aF11 −0.0082ð88Þ
aF12 −0.05ð27Þ
aF20 0.0447(34)
aF21 −0.22ð13Þ
aF22 −0.009ð797ÞP

3
i jagi j2 0.017(86)P
3
i jafi j2 þ jaF1

i j2 0.03(16)P
3
i jaF2

i j2 0.052(59)
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It has been emphasized that a precise determination of
the slope of F at w ¼ 1 could significantly reduce the
uncertainty in Vcb [18]. While it is preferable to extract Vcb
using lattice and experimental data across the full kinematic
range, it is still interesting to examine the slope at w ¼ 1.

FIG. 10. Our normalized differential decay rate for Bs → D�
slν̄

with respect to w is shown as the blue band. We also include
binned data from LHCb [66]. Here, as for B → D�, we see a
similar difference in shape between SM theory and experiment to
that seen for Belle B → D� data in Fig. 9. The semitauonic mode
is plotted as the green band.

FIG. 9. Our lattice-only normalized differential decay rates for B → D�lν̄, with respect to the angular variables defined in Fig. 1, are
shown as the red bands. We also include binned untagged data for e=μ from Belle [21]. Note the clear difference in shape, particularly for
the differential rate with respect to w. Our tauonic differential decay rates are shown in green.

FIG. 11. jF ðwÞηEWVcbj2, defined via Eq. (36), plotted against
w. Our lattice-only jF ðwÞj2 is multiplied by Vcb extracted from
the joint theory/experiment fit.
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We find, for B → D� and Bs → D�
s ,

dF
dw

����
w¼1

¼ −0.97ð15Þ;

dFs

dw

����
w¼1

¼ −0.94ð11Þ: ð37Þ

The value for dFs=dw is in good agreement with the value
of −0.94ð15Þ from our previous study [23], and we find
that the slope in both light and strange spectator cases
agrees well.
Vcb may also be computed by combining the total decay

rate from our lattice form factors and the Belle total rate
without using the differential rate information. Doing this,
we find Vcb ¼ 42.9ð0.5Þexpð2.2Þlatt × 10−3, a larger value
than that in Eq. (35) and in much better agreement with the
inclusive value. This value may be understood from
Fig. 11, where it is apparent that our lattice results
multiplied by jVcbj2 from Eq. (35) lie below the binned
experimental data, and so give a greater value of Vcb when
only the total rate is considered. This approach discards
information about the form factors contained in the shape
of the experimentally measured differential rate, that
otherwise constrains the form factors, and so results in a
greater uncertainty. We may also use the experimental
average branching fraction, BðBþ → D�0lþνlÞ, and Bþ
lifetime from the Particle Data Group [69] to calculate the
total decay rate, which we can then combine with our lattice
results to find Vcb ¼ 43.4ð0.9Þexpð2.2Þlatt × 10−3, consis-
tent with the value above determined using the Belle total
decay rate alone. Note that the total rate for Bþ → D�0lþνl
does not include the additional Coulomb factor,
ð1þ αQEDπÞ, required for B0 → D�−lþνl [67,68].

B. Γ, RðD�
ðsÞÞ and angular observables

We can use our form factors to compute the total decay
rates for the different processes, normalized by the combi-
nation jVcbηEWj2. We find

ΓðB → D�eν̄eÞ=jVcbηEWj2 ¼ 1.13ð12Þ × 10−11 GeV;

ΓðB → D�μν̄μÞ=jVcbηEWj2 ¼ 1.13ð11Þ × 10−11 GeV;

ΓðB → D�τν̄τÞ=jVcbηEWj2 ¼ 3.10ð17Þ × 10−12 GeV;

ΓðBs → D�
seν̄eÞ=jVcbηEWj2 ¼ 1.201ð63Þ × 10−11 GeV;

ΓðBs → D�
sμν̄μÞ=jVcbηEWj2 ¼ 1.197ð63Þ × 10−11 GeV;

ΓðBs → D�
sτν̄τÞ=jVcbηEWj2 ¼ 3.20ð10Þ × 10−12 GeV:

ð38Þ

Note that the total decay rates for Bs → D�
s are approx-

imately 1σ lower than those computed by us previously
in [23]. This is discussed further in Appendix E, where we

compare our updated form factors for Bs → D�
s to those

in [23].
We use our form factors to compute RðD�

ðsÞÞ, defined in
Eq. (1).We compute both a lattice-only value, using only our
computed form factors, as well as a latticeþ experiment
valuewherewe use the form factors resulting from our fits to
lattice and experimental data in Sec. VA. These are given in
Table XV, together with the improved ratios in which the
rates are integrated only between q2max and m2

τ ,

RimpðD�
ðsÞÞ ¼

R q2max

m2
τ

dq2 dΓ
dq2 ðBðsÞ → D�

ðsÞτν̄τÞR q2max

m2
τ

dq2 dΓ
dq2 ðBðsÞ → D�

ðsÞμν̄μÞ
: ð39Þ

We see that the inclusion of experimental data shifts RðD�Þ
downwards significantly and reduces the uncertainty. Our
lattice-only RðD�Þ is shown in Fig. 12, together with the
latticeþ experiment value. In that figure we also plot the
lattice-only and latticeþ experiment values of RðD�Þ com-
puted by the Fermilab-MILC collaboration [26], where the

FIG. 12. “Lattice-only” and “latticeþ experiment” values of
RðD�Þ. The results of this work are shown in green, while the
recent results from the Fermilab-MILC collaboration [26] are
shown in red. The inclusion of experimental data produces a
similar downward shift in both cases. The two most
recent experimental measurements of RðD�Þ, from Belle [34]
and LHCb [35], are also shown in blue, together with the HFLAV
average value.

TABLE XV. RðD�
ðsÞÞ and RimpðD�

ðsÞÞ computed first using our
form factors only, as well as computed using our form factors
together with the joint fits to experimental data described in the
text. Here we see that the inclusion of experimental data moves
the values down by ≈2σ, and reduces their uncertainties.

Lattice-only Latticeþ experiment

RðD�Þ 0.273(15) 0.2482(20)
RðD�

sÞ 0.266(9) 0.2459(34)
RimpðD�Þ 0.342(6) 0.3372(23)
RimpðD�

sÞ 0.340(3) 0.3358(21)
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inclusion of experimental data produces a similar downward
shift. The two most recent experimental measurements of
RðD�Þ, from Belle [34] and LHCb [35], are also shown,
together with the heavy flavor averaging group (HFLAV)
average value.
We may also use our form factors to compute observ-

ables related to the angular asymmetry of the decay. Here
we compute the lepton polarization asymmetry, Aλl , the

longitudinal polarization fraction, F
D�

ðsÞ
L , and the forward-

backward asymmetry, AFB. These are defined as

Aλlðq2Þ ¼
dΓλl¼−1=2=dq2 − dΓλl¼þ1=2=dq2

dΓ=dq2
;

F
D�

ðsÞ
L ðq2Þ ¼ dΓ

λD�
ðsÞ

¼0
=dq2

dΓ=dq2
;

AFBðq2Þ ¼ −
1

dΓ=dq2
2

π

Z
π

0

dΓ
dq2d cosðθWÞ

cosðθWÞdθW:

ð40Þ

The integrated observables related to these quantities are
defined as in [23] with the numerators and denominators
integrated over q2 independently. We find for B → D�τν̄τ

hAλτi ¼ 0.547ð19Þ;
hFD�

L i ¼ 0.395ð24Þ;
hAFBi ¼ 0.100ð25Þ; ð41Þ

and for Bs → D�
sτν̄τ

hAs
λτ
i ¼ 0.5331ð91Þ;

hFD�
s

L i ¼ 0.420ð12Þ;
hAs

FBi ¼ 0.084ð12Þ: ð42Þ

These values are in disagreement with expectations
from the heavy quark expansion (HQE) [37]. They are
also in tension at the level of 2.2σ with the recent
measurement of the D� longitudinal polarization fraction
by Belle [39], FD�Belle

L ¼ 0.60ð8Þstatð4Þsys. Our value of
hAλτi ¼ −PτðD�Þ is in good agreement with the measured
value from Belle [38], although there is a large statistical
uncertainty on the experimental measurement: PτðD�Þ ¼
−0.38� 51ðstatÞþ21

−16ðsystÞ.

C. SUð3Þflav
SUð3Þflav symmetry breaking effects between B → D�

and Bs → D�
s are expected to be small [37]. RðD�Þ and

RðD�
sÞ are expected to differ by ≈1%. Here, using our

lattice-only results, we find

RðD�Þ=RðD�
sÞ ¼ 1.028ð50Þ: ð43Þ

This result, together with our result for RðJ=ψÞ [45],
implies the simple relation to increasing spectator quark
mass RðD�Þ > RðD�

sÞ > RðJ=ψÞ. We also compute the
ratios of the angular observables given in Sec. V B. We find

hAλτi=hAs
λτ
i ¼ 1.040ð29Þ;

hFD�
L i=hFD�

s
L i ¼ 0.942ð46Þ;

hAFBi=hAs
FBi ¼ 1.19ð23Þ: ð44Þ

These results are in slight tension with the HQE expectation
of ≈1% SUð3Þflav symmetry breaking, though this tension
is not significant for our level of uncertainty. The SM form
factors for B → D� and Bs → D�

s are plotted in the helicity
basis in Figs. 13 and 14, where we see SUð3Þflav symmetry
breaking with difference ranges from ≈1% for f and g up to
≈10% for F2.

D. Constraining new physics in B → D�lν̄l
The effective Hamiltonian Eq. (3) is most commonly

expressed in terms of left- and right-handed fermions as

Heff ¼
4GFVcbffiffiffi

2
p �

gVL
c̄LγμbLlLγ

μνL þ gVR
c̄RγμbRlLγ

μνL

þ gSL c̄RbLlRνL þ gSR c̄Lγ5bRlRνL

þ gTL
c̄RσμνbLlRσ

μννL þ H:c:
�
; ð45Þ

where gTL
¼ ðgT − gT5Þ=2, gVL

¼ ðgV − gAÞ=2,
gVR

¼ ðgV þ gAÞ=2, gSL ¼ ðgS − gPÞ=2, and
gSR ¼ ðgS þ gPÞ=2. Note that there is no gTR

, since the
corresponding current, c̄LσμνbRlRσ

μννL, is identically zero.
Here we have given the effective Hamiltonian for only a
single flavor of lepton. Unlike in Sec. VA, we will now not
assume LFU between the l ¼ μ and l ¼ e modes and
instead study each case separately. The couplings for each
lepton flavor will be indicated by a superscript, as in glX.
In [70] the authors give the patterns of couplings

produced by different tree level models of NP. For the
models they considered at most one of either the left- or
right-handed vector coupling differed from its SM value,
together with different nonzero combinations of the left-
and right-handed scalar couplings and left-handed tensor
coupling. Throughout this subsection we compute con-
straints for different combinations of the various couplings
and Vcb. Because gVL

may be absorbed into Vcb, it is
sufficient in our case to fix gVL

¼ 1. For gVL
≠ 1 one should

take gX → g̃X ¼ gX=gVL
and Vcb → Ṽcb ¼ Vcb × gVL

in
the constraints given below. In order to compute the
constraints we fit the Belle data using our lattice form
factors in the same manner as described in Sec. VA, for
fixed numerical values of gX. We fit the normalized binned
differential data from Belle, and only include the total rate,
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Γ, as a single additional data point when we compute
constraints including Vcb.

1. Scalar operators

In [70] it was found that B → D� produces only very
weak constraints on the left-handed scalar coupling.
Indeed, using just B → D� it is only possible to constrain
the pseudoscalar combination gSL − gSR ¼ gP, with the
QCD matrix element of the scalar current zero by parity

as shown in Eq. (6). We find the constraints considering
modifications to gP alone are very weak, as shown in
Fig. 15 for both l ¼ e and l ¼ μ. Note that, since B →
Dlν provides complementary constraints for the scalar
operators, fully correlated lattice results for both B → D�
and B → D SM and NP form factors would allow for the
simultaneous constraint of all NP couplings.

2. Tensor operator

Of themodels considered in [70] only S1 andR2 produced
a nonzero tensor coupling. These models also produced a

FIG. 13. B → D� and Bs → D�
s helicity basis form factors f

and g, defined in Eq. (31).

FIG. 14. B → D� and Bs → D�
s helicity basis form factors F1

and F2, defined in Eq. (31).
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correlated nonzero left-handed scalar operator, with
gSL ¼ �4gT . Based on the expectation that renormalization
group mixing effects will leave the relations between left-
handed scalar and tensor couplings approximately intact
[70], we include the pseudoscalar as a Gaussian random
variable with central value �4gT and uncertainty �10%.
For the l ¼ e case the terms proportional to m2

l=q
2 andffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
l=q

2
q

may be neglected. Then the only relevant

combinations of helicity amplitudes are those appearing
in Table XVI. These do not mix the tensor or pseudoscalar
helicity amplitudes with the helicity amplitudes for the SM
currents. For the l ¼ e mode we can then only determine
constraints on the relative phase of gP and gTL

. Since we fix
gP ¼ �4gTL

, we may look at just the real part of gTL
,

together with the value of jVcbj. The constraints for both
gP ¼ �4gTL

cases for l ¼ e are shown in Fig. 16, where
we see that the constraints in the gP ¼ −4gTL

case are
similar to the gP ¼ þ4gTL

case.

The situation for l ¼ μ is more complicated. In the SM
the lepton-mass-suppressed terms have factors m2

l=q
2 but

in NP scenarios combinations of the SM and NP helicity

amplitudes appear at order
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l=q
2

q
. This contribution can

be significant for l ¼ μ, depending on the size of gμTL
, and

so we cannot remove the overall phase and must consider
both the real and imaginary parts of gμTL

. The resulting
constraint, using only the normalized differential rate,
which is insensitive to Vcb, is shown in Fig. 17, where
we see that the Belle B0 → D�−μþνμ data is consistent with
gμTL

¼ 0 at the level of ≈1σ.

3. Right-handed vector operator

The constraints on the right-handed vector coupling, glVR
,

computed using our lattice results and the Belle data are
shown in Fig. 18 for the l ¼ e and l ¼ μ cases, where we
also see no strong preference for a nonzero value.

FIG. 15. The top (bottom) plot shows the constraints on geðμÞP
using our theory-only differential decay rate and the data for
B0 → D�−eþðμþÞνeðμÞ from Belle [21] for different combinations

of geðμÞP and Vcb. The different shaded regions correspond to the
confidence level to which those values are excluded with intervals
of p ¼ 0%; 68.3%; 95.4%; 99.7%; 99.99%. The unshaded re-
gions of the plot have p > 99.99%. The vertical and horizontal
blue lines correspond to the SM value.

FIG. 16. Tension between our theory-only differential decay
rate and the data for B0 → D�−eþνe from Belle [21] for different
combinations of ReðgeTL

Þ and Vcb. The top (bottom) plot
corresponds to the gP ≈þð−Þ4gTL

case described in the text.
The different shaded regions correspond to the confidence level to
which those values are excluded with intervals of
p ¼ 0%; 68.3%; 95.4%; 99.7%; 99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical blue line corresponds
to the SM value.

JUDD HARRISON and CHRISTINE T. H. DAVIES PHYS. REV. D 109, 094515 (2024)

094515-22



E. VeðμÞ
cb , ΔAFB

A clear feature of the constraints produced is that the
l ¼ μ data does not agree well with our SM predictions,
compared to the l ¼ e case, for any values of the couplings
considered. Having reconstructed the full 80 × 80 Belle
covariancematrix as described in Sec.VA,wemay compute
a value of Vcb using l ¼ e and l ¼ μ separately and
calculate their difference including correlations. We find

Ve
cb ¼ 39.26ð91Þ × 10−3;

Vμ
cb ¼ 38.75ð96Þ × 10−3; ð46Þ

and

Ve
cb=V

μ
cb ¼ 1.013ð17Þ; ð47Þ

consistent with Ve
cb=V

μ
cb ¼ 1 as we would expect in the

absence of NP. This is a similar level of consistency as was
seen in [70].
In [65] it was found that the 2018 Belle dataset was

inconsistent with the SM prediction for ΔAFB ¼
hAμ

FBi − hAe
FBi, using a combination of HQE, light-cone

sum rules, and lattice QCD results for the zero recoil
B → D� form factor, hA1

, and for the SM B → D form
factors across the full q2 range. Here, using our lattice-only
results, we find

hAμ
FBi ¼ 0.266ð34Þ;

hAe
FBi ¼ 0.270ð33Þ: ð48Þ

This is in tension at the level of ≈2.5σ with the SM results
for both l ¼ e and l ¼ μ in [65]. We also find

ΔAFB ¼ −0.0036ð10Þ: ð49Þ

FIG. 17. Tension between our theory-only differential decay
rate and the data for B0 → D�−μþνμ from Belle [21] for different
combinations of ReðgμTL

Þ and Vcb. The top (bottom) plot
corresponds to the gP ≈þð−Þ4gTL

case described in the text.
The different shaded regions correspond to the confidence level to
which those values are excluded with intervals of
p ¼ 0%; 68.3%; 95.4%; 99.7%; 99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical and horizontal blue
line corresponds to the SM value.

FIG. 18. The top (bottom) plot shows the constraints on geðμÞP
using our theory-only differential decay rate and the data for
B0 → D�−eþðμþÞνeðμÞ from Belle [21] for different combinations

of geðμÞVR
. The different shaded regions correspond to the con-

fidence level to which those values are excluded with intervals of
p ¼ 0%; 68.3%; 95.4%; 99.7%; 99.99%. The unshaded regions
of the plot have p > 99.99%. The vertical blue line corresponds
to the SM value.
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This result is in tension with the SM results in [65] at the
level of ≈2σ, although note that it is still much smaller than
and of opposite sign to the corresponding result using fits to
experimental data [65], in tension at the level of 3.5σ.

VI. CONCLUSION

We have computed the BðsÞ → D�
ðsÞ form factors for the

complete set of vector, axial-vector, and tensor currents
needed to describe both SM physics and potential new
physics appearing in the effective Hamiltonian, Eq. (3).
These form factors include a fully relativistic treatment of
both charm and bottom quarks in lattice QCD and span the
full kinematic range of the decay. Our calculation includes
two sets of gauge configurations with physical up/down
quarks, which we use to constrain the chiral dependence in
our chiral-continuum extrapolation using the full rooted
staggered chiral perturbation theory (see Appendix D).
We have used our form factors to perform the first

combined fit to both B → D� data, from Belle [21], as well
Bs → D�

s data, from LHCb [66]. This gives a value of Vcb:

jVcbj ¼ 39.03ð56Þexpð67Þlatt × 10−3: ð50Þ

This is in good agreement with other exclusive determi-
nations and confirms the tension seen with inclusive
determinations [10]. For our result this tension is at
the level of ≈3.6σ with the most recent inclusive value
jVcbj ¼ 42.16ð51Þ × 10−3 [5]. We have also determined a
less precise value of Vcb ¼ 42.9ð0.5Þexpð2.2Þlatt × 10−3,
computed using only the total decay rate. This value is
in good agreement with the inclusive result. The significant
upward shift can be understood as a result of the observed
tension between our results for the shape of the differential
decay rate and the experimental data from Belle. This
tension is similar to the tension seen by the Fermilab-MILC
collaboration using their lattice QCD form factors, deter-
mined using a different formalism for b and c quarks [26].
A tension in the shape of the differential decay rate to light
leptons is difficult to explain, since new physics is only
expected to appear in the semitauonic mode. We have also
computed the slope of F , defined in Eq. (36), and plotted
jFVcbηEWj2 in Fig. 11, where the difference in shape is
visible.
We have also used our form factors to compute the

phenomenologically important quantities, RðimpÞðD�
ðsÞÞ,

hAðsÞ
λτ
i, hFD�

ðsÞ
L i, and hAðsÞ

FBi, given in Table XV and
Eqs. (41) and (42), respectively. We find our value of
RðD�Þ ¼ 0.273ð15Þ is in good agreement with the latest
experimental measurements from Belle and LHCb [34,35],
and with the most recent HFLAV average [10]. However,
our value of the semitauonic D� longitudinal polarization
fraction is in tension with the recent Belle measure-
ment [39] at the level of 2.2σ. We have also determined
a latticeþ experiment value of RðD�Þ ¼ 0.2482ð20Þ,

computed using the form factors resulting from the fit to
both our lattice results and the experimental data from
Belle, described in Sec. VA. The downward shift of the
value of RðD�Þ when including the experimental differ-
ential rate data means that this lower value is in tension at
the level of 3σ with the HFLAV average for RðD�Þ. So we
see that the “RðD�Þ anomaly,” like the “Vcb puzzle,” arises
from the inclusion of the experimental differential rate data.
The inclusion of Bs → D�

s correlators in our lattice
calculation has allowed us to perform a simultaneous fit
to both modes, using a parametrization allowing for
SUð3Þflav-breaking effects at the very conservative level
of ≈25%. Using this fit, we provide updated Bs → D�

s
form factors that supersede those from our earlier calcu-
lation [23]. We find the additional data and chiral infor-
mation used here, as well as changes to correlator fitting
procedures and extrapolation method, result in Bs → D�

s
form factors which are compatible with our previous results
for the less noisy form factors hA1

and hV but in some
tension for the more noisy form factors hA2

and hA3
. The

updated results here are substantially more precise particu-
larly for hA1

and hV close to w ¼ 1 where we see an
improvement in precision by a factor of ≈2. We have used
our updated Bs → D�

s form factors to investigate SUð3Þflav
symmetry breaking effects appearing in RðimpÞðD�

ðsÞÞ,
hAðsÞ

λτ
i, hFD�

ðsÞ
L i, and hAðsÞ

FBi. In each observable we find that
the B → D� differs by þ0.6ð1.4Þ%, þ4.0ð2.9Þ%,
−5.8ð4.6Þ%, and þ19.0ð23.0Þ%, respectively, from the
Bs → D�

s value.
We have used our form factors to generate synthetic data

points which we fit using the popular BGL parametrization,
which we found gave a good fit with the unitarity bounds
far from saturation. Our fitted BGL parameters agree well
with those in [26] for f, g, and F1 but for the form factor F2,
corresponding to the pseudoscalar current, are in significant
disagreement. Note that in decay rates F2 is suppressed by
the square of the lepton mass and so only contributes to the
semitauonic mode.
Finally we examined the constraints on the NP cou-

plings for the l ¼ μ=e modes resulting from combining
our lattice results with the 2018 untagged Belle dataset.
We found that none of the couplings, when varied in the
combinations described in Sec. V D, strongly preferred
values different from the SM ones. We used our results to
compute SM values for hAFBi for both l ¼ μ=e modes.
Our values differ from the SM predictions given in [65]
using a combination of light-cone sum rules, HQE,
and lattice QCD results, at the level of 2.5σ. We also
computed the difference, ΔAFB ¼ hAμ

FBi − hAe
FBi, and

found a value different to that given in [65] by ≈2σ,
and in tension with fits to the 2018 Belle data at the level
of 3.5σ. This result confirms the need for further inves-
tigation of lepton flavor universality violating effects in
the l ¼ μ=e modes of the decay.
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This work demonstrates the feasibility of computing a
complete set of fully correlated SM and NP form factors for
pseudoscalar to vector semileptonic decays using the
heavy-HISQ approach, across different chiral regimes.
Our calculation has allowed us to perform the first
simultaneous analysis of data for B → D� together with
data for Bs → D�

s, paving the way for the analysis of more
precise experimental data that is expected from LHCb and
Belle II in these channels in the near future.
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APPENDIX A: FULL DIFFERENTIAL DECAY
RATE INCLUDING TENSOR OPERATORS

The matrix element M is given by

MλD� λl ¼ ChDπjD�ðλD�ÞihD�ðλD�ÞjJhadα jBi
× hlðλlÞν̄jJlepαj0i; ðA1Þ

where C−1 ¼ gD�Dπjp⃗πj is a constant normalization, with
p⃗π the pion spatial momentum in the D� rest frame, such
that integrating over Dπ phase space yields the rate for our
choice of overall normalization Nðq2Þ including the D� →
Dπ branching fraction in Eq. (4). The sum on α includes
scalar, vector, and tensorlike currents,

X
α

Jhadα Jlepα ¼ gSðPÞJhadSðPÞJlepSðPÞ þ gVðAÞJ
hadVðAÞ
μ JlepVðAÞμ

þ gTðT5ÞJ
hadTðT5Þ
μν JlepTðT5Þμν: ðA2Þ

It is conventional to insert off-shell vector boson polari-
zation vectors in order to define helicity amplitudes. These
polarization vectors, ϵ̄ðλÞ, possess the property that

X
λ

ϵ̄μðλÞ�ϵ̄νðλÞδλ ¼ gμν ðA3Þ

with δ0;� ¼ −1 and δt ¼ 1. We use vector boson polari-
zation vectors in the W rest frame,

ϵ̄μðλ ¼ tÞ ¼

0
BBBB@

1

0

0

0

1
CCCCA; ϵ̄μðλ ¼ 0Þ ¼

0
BBBB@

0

0

0

−1

1
CCCCA;

ϵ̄μðλ ¼ �Þ ¼ � 1ffiffiffi
2

p

0
BBBB@

0

−1
�i

0

1
CCCCA ðA4Þ

and D� polarization vectors in the D� rest frame

ϵμðλ¼�Þ¼� 1ffiffiffi
2

p

0
BBB@

0

−1
∓ i

0

1
CCCA; ϵμðλ¼0Þ¼

0
BBB@
0

0

0

1

1
CCCA: ðA5Þ

In the B rest frame the polarization vectors are

ϵ̄μðλ¼ tÞ¼ 1ffiffiffiffiffi
q2

p
0
BBB@

q0
0

0

−jq⃗j

1
CCCA; ϵ̄μðλ¼0Þ¼ 1ffiffiffiffiffi

q2
p

0
BBB@

jq⃗j
0

0

−q0

1
CCCA;

ϵ̄μðλ¼�Þ¼� 1ffiffiffi
2

p

0
BBB@

0

−1
�i

0

1
CCCA; ðA6Þ

and

ϵμðλ¼�Þ¼� 1ffiffiffi
2

p

0
BBB@

0

−1
∓ i

0

1
CCCA; ϵμðλ¼0Þ¼ 1

M2
D�

0
BBB@

jq⃗j
0

0

ED�

1
CCCA:

ðA7Þ

We take D, π, l, and ν momenta
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pμ
D ¼

0
BBB@

ED

k cosðχÞ sinðθD� Þ
−k sinðχÞ sinðθD�Þ

k cosðχÞ

1
CCCA;

pμ
π ¼

0
BBB@

k

−k cosðχÞ sinðθD� Þ
k sinðχÞ sinðθD� Þ

−k cosðχÞ

1
CCCA; ðA8Þ

pμ
l¼

0
BBBB@

El

k0 sinðθWÞ
0

−k0 cosðθWÞ

1
CCCCCA; pμ

ν ¼

0
BBB@

k0

−k0 sinðθWÞ
0

k0cosðθWÞ

1
CCCA: ðA9Þ

The leptonic and hadronic helicity amplitudes are defined by

gVðAÞhD�ðλD� ÞjJhadVðAÞμ jBihlðλlÞν̄jJlepV−Aμj0i
¼

X
λ

δλgVðAÞhD�ðλD� ÞjJhadVðAÞμ jBiϵ̄μðλÞ�

× ϵ̄νðλÞhlðλlÞν̄jJlepV−Aν j0i
¼

X
λ

δλH
λD� ;λ
VðAÞL

λl;λ
V−A: ðA10Þ

The expressions for the vector and axial-vector helicity
amplitudes, H� ¼ H�;�

V þH�;�
A , H0 ¼ −H0;0

A , and
Ht ¼ −H0;t

A , are given in Eq. (7). Note that for the λ ¼
0; t cases, it is conventional to define the helicity amplitude
with an additional factor of −1. For the tensor currents, it is
conventional to also insert a factor of ið−iÞ:

igTðT5ÞhD�ðλD�ÞjJhadTðT5Þμν jBið−ihlðλlÞν̄jJlepT−T5μνj0iÞ
¼

X
λλ̄

δλδλ̄H
λD� ;λλ̄
TðT5ÞL

λl;λλ̄
T−T5: ðA11Þ

Note that the tensor current JhadTðT5Þ includes a continuum
MS renormalization, defined at a scale μ which we take to
be μ ¼ 4.8 GeV.
The nonzero tensor helicity amplitudes are, using

Eq. (6),

H0;þ−
T ¼ −H0;−þ

T ¼ −gT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p �ð1þ wÞhT1

þ ðw − 1ÞhT2
− hT3

ðw2 − 1Þ�
H�;�0

T ¼ −H�;0�
T ¼ �gTMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p ffiffiffiffiffi
q2

p
×
�
hT1

ð1 − rÞð1þ wÞ
− hT2

ð1þ rÞðw − 1Þ�
H�;�t

T ¼ −H�;t�
T ¼ �gTMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD� ðw2 − 1Þ

p
ffiffiffiffiffi
q2

p
× ðhT1

ð1þ rÞ − hT2
ð1 − rÞÞ: ðA12Þ

For the axial-tensor current, we may use the fact
that γ5σμν ¼ i

2
εμνσρσσρ to relate hD�jc̄γ5σμνbjBi ¼

i
2
εμνσρhD�jc̄σσρbjBi. Inserting this into the definition of

the helicity amplitudes allows us to relate the axial-tensor
helicity amplitudes to the tensor helicity amplitudes:

H�;�0
T5 ¼ −H�;0�

T5 ¼∓ gT5
gT

H�;�t
T

H�;�t
T5 ¼ −H�;t�

T5 ¼∓ gT5
gT

H�;�0
T

H0;0t
T5 ¼ −H0;t0

T5 ¼ −
gT5
gT

H0;þ−
T : ðA13Þ

The pseudoscalar current is straightforwardly

gPhD�ðλD� ÞjJhadP jBihlðλlÞν̄jJlepP j0i ¼ HλD�
P Lλl

S−P: ðA14Þ

We can use the partially conserved axial current relation,
hD�jqμc̄γμγ5bjB̄i ¼ −ðmb þmcÞhD�jc̄γ5bjB̄i, to write

HP ¼ HλD�¼0
P ¼

ffiffiffiffiffi
q2

p
ðmb þmcÞ

gP
gA

Ht: ðA15Þ

Together with the parametrization of the amplitude

hDπjD�ðλD�Þi ¼ gD�DπϵμðλD� Þpμ
D ðA16Þ

this gives

MλD� λl ¼ CgD�DπϵμðλD�Þpμ
D

�
HλD�

P Lλl
S−P

þ
X
λ

δλ
�
HλD� ;λ

V þHλD� ;λ
A

�
Lλl;λ
V−A

þ
X
λλ̄

δλδλ̄
�
HλD� ;λλ̄

T þHλD� ;λλ̄
T5

�
Lλl;λλ̄
T−T5

�
: ðA17Þ

For the charge conjugate mode, we have
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g�VðAÞhD�ðλD� ÞjJhadVðAÞ†μ jB̄ihlðλlÞνjJlepV−Aμ†j0i

¼
X
λ

δλη
g�VðAÞ
gVðAÞ

HλD� ;λ
VðAÞL

0λl;λ
V−A; ðA18Þ

ig�TðT5ÞhD�ðλD� ÞjJhadTðT5Þ†μν jB̄i
× ð−ihlðλlÞνjJlepT−T5μν†j0iÞ

¼
X
λλ̄

δλδλ̄
ηg�TðT5Þ
gTðT5Þ

HλD� ;λλ̄
TðT5ÞL

0λl;λλ̄
T−T5; ðA19Þ

and

g�PhD�ðλD� ÞjJhadP†jB̄ihlðλlÞνjJlepP†j0i ¼ η
g�P
gP

HλD�
P L0λl

S−P:

ðA20Þ
η ¼ �1 is a phase dependent upon the sign of the current
under combined Hermitian conjugation and charge con-
jugation CJhad†α C−1 ¼ ηJhadα . Specifically for the currents
defined in Eq. (3), P; V; A; T; T5, this phase is
−1;−1; 1;−1, 1, respectively.
Inserting these expressions, either for the normal or

conjugate mode, into Eq. (4) gives the corresponding
differential decay rate in terms of lepton tensors and
helicity amplitudes. The lepton tensor combinations may
be evaluated straightforwardly using standard spinor iden-
tities when summing over polarizations,X
λl

Lλl
γ ðLλl

Γ Þ� ¼
X
ss0

hlðsÞν̄ðs0Þjlγνj0iðhlðsÞν̄ðs0ÞjlΓνj0iÞ†

¼
X
ss0

ūsðplÞγvs0 ðpν̄Þ
�
ūsðplÞΓvs0 ðpν̄Þ

�†
¼

X
ss0

ūsðplÞγvs0 ðpν̄Þv̄s0 ðpν̄Þγ0Γ†γ0usðplÞ

¼ Tr
�ð=pl þmlÞγ=pν̄γ

0Γ†γ0
�
: ðA21Þ

For the conjugate mode lepton tensors

X
λl

L0λl
γ
�
L0λl
Γ
��

¼
X
ss0

hlðsÞνðs0Þjν̄γ0γ†γ0lj0i

× ðhlðsÞνðs0Þjν̄γ0Γ†γ0lj0iÞ†

¼
X
ss0

ūs
0 ðpνÞγ0γ†γ0vsðplÞ

�
ūs

0 ðpνÞγ0Γ†γ0vsðplÞ
�†

¼
X
ss0

ūs
0 ðpνÞγ0γ†γ0vsðplÞv̄sðplÞΓus0 ðpνÞ

¼ Tr
�
=pνγ

0γ†γ0
�
=pl −ml

�
Γ
�
: ðA22Þ

TABLE XVI. The helicity amplitude combinations and coef-
ficients for them that appear in Eq. (10) at order ðm2

l=q
2Þ0 for

B0 → D�−lþν.

Hi kiðθW; θD� ; χÞ
H0;þ−

T ðH0;þ−
T Þ� 16 cos2ðθWÞ cos2ðθD� Þ

H0;þ−
T ðHþ;þ0

T Þ� 2eiχ sinð2θWÞ sinð2θD� Þ
H0;þ−

T ðHþ;þt
T Þ� −2eiχ sinð2θWÞ sinð2θD� Þ

H0;þ−
T ðH−;−0

T Þ� −2e−iχ sinð2θWÞ sinð2θD� Þ
H0;þ−

T ðH−;−t
T Þ� −2e−iχ sinð2θWÞ sinð2θD� Þ

H0;þ−
T ðHPÞ� 8 cosðθWÞ cos2ðθD� Þ

Hþ;þ0
T ðH0;þ−

T Þ� 2e−iχ sinð2θWÞ sinð2θD� Þ
Hþ;þ0

T ðHþ;þ0
T Þ� 4 sin2ðθWÞ sin2ðθD� Þ

Hþ;þ0
T ðHþ;þt

T Þ� −4 sin2ðθWÞ sin2ðθD� Þ
Hþ;þ0

T ðH−;−0
T Þ� −4e−2iχ sin2ðθWÞ sin2ðθD� Þ

Hþ;þ0
T ðH−;−t

T Þ� −4e−2iχ sin2ðθWÞ sin2ðθD� Þ
Hþ;þ0

T ðHPÞ� 2e−iχ sinðθWÞ sinð2θD� Þ
Hþ;þt

T ðH0;þ−
T Þ� −2e−iχ sinð2θWÞ sinð2θD� Þ

Hþ;þt
T ðHþ;þ0

T Þ� −4 sin2ðθWÞ sin2ðθD� Þ
Hþ;þt

T ðHþ;þt
T Þ� 4 sin2ðθWÞ sin2ðθD� Þ

Hþ;þt
T ðH−;−0

T Þ� 4e−2iχ sin2ðθWÞ sin2ðθD� Þ
Hþ;þt

T ðH−;−t
T Þ� 4e−2iχ sin2ðθWÞ sin2ðθD� Þ

Hþ;þt
T ðHPÞ� −2e−iχ sinðθWÞ sinð2θD� Þ

H−;−0
T ðH0;þ−

T Þ� −2eiχ sinð2θWÞ sinð2θD� Þ
H−;−0

T ðHþ;þ0
T Þ� −4e2iχ sin2ðθWÞ sin2ðθD� Þ

H−;−0
T ðHþ;þt

T Þ� 4e2iχ sin2ðθWÞ sin2ðθD� Þ
H−;−0

T ðH−;−0
T Þ� 4 sin2ðθWÞ sin2ðθD� Þ

H−;−0
T ðH−;−t

T Þ� 4 sin2ðθWÞ sin2ðθD� Þ
H−;−0

T ðHPÞ� −2eiχ sinðθWÞ sinð2θD� Þ
H−;−t

T ðH0;þ−
T Þ� −2eiχ sinð2θWÞ sinð2θD� Þ

H−;−t
T ðHþ;þ0

T Þ� −4e2iχ sin2ðθWÞ sin2ðθD� Þ
H−;−t

T ðHþ;þt
T Þ� 4e2iχ sin2ðθWÞ sin2ðθD� Þ

H−;−t
T ðH−;−0

T Þ� 4 sin2ðθWÞ sin2ðθD� Þ
H−;−t

T ðH−;−t
T Þ� 4 sin2ðθWÞ sin2ðθD� Þ

H−;−t
T ðHPÞ� −2eiχ sinðθWÞ sinð2θD� Þ

HþðHþÞ� 4 sin4ðθW
2
Þ sin2ðθD� Þ

HþðH−Þ� −e2iχ sin2ðθWÞ sin2ðθD� Þ
HþðH0Þ� −2eiχ sin2ðθW

2
Þ sinðθWÞ sinð2θD� Þ

H−ðHþÞ� −e−2iχ sin2ðθWÞ sin2ðθD� Þ
H−ðH−Þ� 4 cos4ðθW

2
Þ sin2ðθD� Þ

H−ðH0Þ� e−iχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
H0ðHþÞ� −2e−iχ sin2ðθW

2
Þ sinðθWÞ sinð2θD� Þ

H0ðH−Þ� eiχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
H0ðH0Þ� 4 sin2ðθWÞ cos2ðθD� Þ
HPðH0;þ−

T Þ� 8 cosðθWÞ cos2ðθD� Þ
HPðHþ;þ0

T Þ� 2eiχ sinðθWÞ sinð2θD� Þ
HPðHþ;þt

T Þ� −2eiχ sinðθWÞ sinð2θD� Þ
HPðH−;−0

T Þ� −2e−iχ sinðθWÞ sinð2θD� Þ
HPðH−;−t

T Þ� −2e−iχ sinðθWÞ sinð2θD� Þ
HPðHPÞ� 4 cos2ðθD� Þ
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The combinations of helicity amplitudes and ki factors
entering the squared matrix element, Eq. (10), for
general complex choices of gX in Eq. (3), are given in
Tables XVI–XVIII for the conjugate mode B0 → D�−lþν.
Note that these include the factor η, and so should be used
with the helicity amplitudes for B0 → D�þl−ν̄, just taking
gX → g�X. We have checked explicitly that our method of
constructing the differential decay rate reproduces the

TABLE XVII. The helicity amplitude combinations and co-
efficients for them that appear in Eq. (10) at order ðm2

l=q
2Þ12 for

B0 → D�−lþν.

Hi kiðθW; θD� ; χÞffiffiffiffiffi
m2

l
q2

q
H0;þ−

T ðHþÞ� −2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0;þ−

T ðH−Þ� 2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0;þ−

T ðH0Þ� 8 cos2ðθD� Þffiffiffiffiffi
m2

l
q2

q
H0;þ−

T ðHtÞ� −8 cosðθWÞ cos2ðθD� Þffiffiffiffiffi
m2

l
q2

q
Hþ;þ0

T ðH−Þ� −8 cos2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
Hþ;þ0

T ðH0Þ� −2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
Hþ;þ0

T ðHtÞ� −2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
Hþ;þt

T ðH−Þ� 8 cos2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
Hþ;þt

T ðH0Þ� 2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
Hþ;þt

T ðHtÞ� 2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H−;−0

T ðHþÞ� 8 sin2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
H−;−0

T ðH0Þ� −2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H−;−0

T ðHtÞ� 2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H−;−t

T ðHþÞ� 8 sin2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
H−;−t

T ðH0Þ� −2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H−;−t

T ðHtÞ� 2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HþðH0;þ−

T Þ� −2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HþðH−;−0

T Þ� 8 sin2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
HþðH−;−t

T Þ� 8 sin2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
HþðHPÞ� −eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi

m2
l

q2

q
H−ðH0;þ−

T Þ� 2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H−ðHþ;þ0

T Þ� −8 cos2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
H−ðHþ;þt

T Þ� 8 cos2ðθW
2
Þ sin2ðθD� Þffiffiffiffiffi

m2
l

q2

q
H−ðHPÞ� −e−iχ sinðθWÞ sinð2θD� Þ

(Table continued)

TABLE XVII. (Continued)

Hi kiðθW; θD� ; χÞffiffiffiffiffi
m2

l
q2

q
H0ðH0;þ−

T Þ� 8 cos2ðθD� Þffiffiffiffiffi
m2

l
q2

q
H0ðHþ;þ0

T Þ� −2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0ðHþ;þt

T Þ� 2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0ðH−;−0

T Þ� −2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0ðH−;−t

T Þ� −2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
H0ðHPÞ� 4 cosðθWÞ cos2ðθD� Þffiffiffiffiffi

m2
l

q2

q
HtðH0;þ−

T Þ� −8 cosðθWÞ cos2ðθD� Þffiffiffiffiffi
m2

l
q2

q
HtðHþ;þ0

T Þ� −2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HtðHþ;þt

T Þ� 2eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HtðH−;−0

T Þ� 2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HtðH−;−t

T Þ� 2e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi
m2

l
q2

q
HtðHPÞ� −4 cos2ðθD� Þffiffiffiffiffi

m2
l

q2

q
HPðHþÞ� −e−iχ sinðθWÞ sinð2θD� Þffiffiffiffiffi

m2
l

q2

q
HPðH−Þ� −eiχ sinðθWÞ sinð2θD� Þffiffiffiffiffi

m2
l

q2

q
HPðH0Þ� 4 cosðθWÞ cos2ðθD� Þffiffiffiffiffi

m2
l

q2

q
HPðHtÞ� −4 cos2ðθD� Þ

TABLE XVIII. The helicity amplitude combinations and co-
efficients for them that appear in Eq. (10) at order m2

l=q
2 for

B0 → D�−lþν.

Hi kiðθW; θD� ; χÞ
m2

l
q2 H

0;þ−
T ðH0;þ−

T Þ� 16 sin2ðθWÞ cos2ðθD� Þ
m2

l
q2 H

0;þ−
T ðHþ;þ0

T Þ� −4eiχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
m2

l
q2 H

0;þ−
T ðHþ;þt

T Þ� 4eiχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
m2

l
q2 H

0;þ−
T ðH−;−0

T Þ� −8e−iχ sin2ðθW
2
Þ sinðθWÞ sinð2θD� Þ

m2
l

q2 H
0;þ−
T ðH−;−t

T Þ� −8e−iχ sin2ðθW
2
Þ sinðθWÞ sinð2θD� Þ

m2
l

q2 H
þ;þ0
T ðH0;þ−

T Þ� −4e−iχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
m2

l
q2 H

þ;þ0
T ðHþ;þ0

T Þ� 16 cos4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
þ;þ0
T ðHþ;þt

T Þ� −16 cos4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
þ;þ0
T ðH−;−0

T Þ� 4e−2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

þ;þ0
T ðH−;−t

T Þ� 4e−2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

þ;þt
T ðH0;þ−

T Þ� 4e−iχ sinðθWÞðcosðθWÞ þ 1Þ sinð2θD� Þ
m2

l
q2 H

þ;þt
T ðHþ;þ0

T Þ� −16 cos4ðθW
2
Þ sin2ðθD� Þ

(Table continued)
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results of [36]. Note, however, that in [36] Ht and H0 are
defined without the additional (−1), and also that our
angular conventions for the lepton angle are related by
θW → π − θW . The full differential decay rate is also
available in a slightly more compact notation in [71], though
the notation here makes clear which helicity amplitudes are
suppressed by the lepton mass.

Because

ðc̄γ5σμνbÞðlRσ
μννLÞ ¼ −ðc̄σμνbÞðlRσ

μννLÞ; ðA23Þ

the gT5 term is redundant, and it is typical to identify
ðgT − gT5Þ≡ 2gTL

. As such, we may replace gT → 2gTL

and gT5 → 0 in Eqs. (A12) and (A13), respectively, and
omit the helicity combinations including HT5.

APPENDIX B: nt BINNING STRATEGY

On each gauge configuration we compute multiple
instances of each correlation function, with nt sources
placed at different values of tsrc, spaced equally across the
time extent of a given configuration. The values of nt used
on each configuration are given in Table II. In previous
calculations [23,45] the correlation functions with different
tsrc on a given configuration were binned. Both calculations
included states whose correlation functions exhibited
significant correlation between the nt source times, such
as the ηh. However, correlation functions that are suffi-
ciently far apart in time are expected to be only weakly
correlated and it is preferable not to bin the multiple nt in
order to improve the resolution of the covariance matrix of
our data points, particularly on sets 3 and 5 where ncfg is
relatively small. On set 1, we have computed the correla-
tions between data generated from different values of tsrc.
We find that excluding ηh and ηc, the maximum correlation
between any two data points using different tsrc, using four
equally spaced values of tsrc, is ≈0.2. On set 4, the
maximum correlation between data from four different,
equally spaced tsrc is also ≈0.2. With these findings in
mind, we choose to use the Bs and D�

s masses, instead of
those of the ηh and ηc as was done in [23,45], to parametrize
the physical heavy and charm quark masses. We do not then
bin our data on set 2, 3 or 5, and on sets 1 and 4 we only bin
every four and two adjacent source times, respectively. We
have investigated the effect this has on the uncertainty of
the raw correlator data points, expecting that for fully
uncorrelated data the standard deviation will not change.
Histogram plots of σunbinned=σbinned are shown in Figs. 19
and 20, for all correlator data points entering the correlator
fits used in this work, where we see that on each set binning
results in very similar uncertainties consistent with the
different time sources being uncorrelated. This allows us to
use a smaller SVD cut when fitting our correlation
functions and results in numerically more stable fits.
We have also checked the maximum and minimum

values of this ratio obtained for any combination of mh
and D�

ðsÞ momentum for the three-point functions as a

function of t for each ensemble. We find that for the three-
point functions the maximum reduction in standard
deviation is ≈5%, with the majority of data points changing
by less than ∼2%. For the two-point functions, the
maximum reduction in standard deviation is ≈10%, with

TABLE XVIII. (Continued)

Hi kiðθW; θD� ; χÞ
m2

l
q2 H

þ;þt
T ðHþ;þt

T Þ� 16 cos4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
þ;þt
T ðH−;−0

T Þ� −4e−2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

þ;þt
T ðH−;−t

T Þ� −4e−2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

−;−0
T ðH0;þ−

T Þ� −8eiχ sin2ðθW
2
Þ sinðθWÞ sinð2θD� Þ

m2
l

q2 H
−;−0
T ðHþ;þ0

T Þ� 4e2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

−;−0
T ðHþ;þt

T Þ� −4e2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H

−;−0
T ðH−;−0

T Þ� 16 sin4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
−;−0
T ðH−;−t

T Þ� 16 sin4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
−;−t
T ðH0;þ−

T Þ� −8eiχ sin2ðθW
2
Þ sinðθWÞ sinð2θD� Þ

m2
l

q2 H
−;−t
T ðHþ;þ0

T Þ� 4e2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2
H−;−t

T ðHþ;þt
T Þ� −4e2iχ sin2ðθWÞ sin2ðθD� Þ

m2
l

q2 H
−;−t
T ðH−;−0

T Þ� 16 sin4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 H
−;−t
T ðH−;−t

T Þ� 16 sin4ðθW
2
Þ sin2ðθD� Þ

m2
l

q2 HþðHþÞ� sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 HþðH−Þ� e2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 HþðH0Þ� − 1

2
eiχ sinð2θWÞ sinð2θD� Þ

m2
l

q2 HþðHtÞ� eiχ sinðθWÞ sinð2θD� Þ
m2

l
q2 H−ðHþÞ� e−2iχ sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H−ðH−Þ� sin2ðθWÞ sin2ðθD� Þ
m2

l
q2 H−ðH0Þ� − 1

2
e−iχ sinð2θWÞ sinð2θD� Þ

m2
l

q2 H−ðHtÞ� e−iχ sinðθWÞ sinð2θD� Þ
m2

l
q2 H0ðHþÞ� − 1

2
e−iχ sinð2θWÞ sinð2θD� Þ

m2
l

q2 H0ðH−Þ� − 1
2
eiχ sinð2θWÞ sinð2θD� Þ

m2
l

q2 H0ðH0Þ� 4 cos2ðθWÞ cos2ðθD� Þ
m2

l
q2 H0ðHtÞ� −4 cosðθWÞ cos2ðθD� Þ
m2

l
q2 HtðHþÞ� e−iχ sinðθWÞ sinð2θD� Þ
m2

l
q2 HtðH−Þ� eiχ sinðθWÞ sinð2θD� Þ
m2

l
q2 HtðH0Þ� −4 cosðθWÞ cos2ðθD� Þ
m2

l
q2 HtðHtÞ� 4 cos2ðθD� Þ
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the vast majority of points changing by less than ≈5%. We
also see that these small changes are not strongly dependent
on t. Since the statistical uncertainty of the three-point
correlators is the dominant uncertainty entering the

determination of the matrix elements, the observation that
the three-point uncertainties remain essentially unchanged
indicates that the partial binning procedure does not
introduce any significant systematic under or overestima-
tion of uncertainties in our final results.

APPENDIX C: LATTICE DATA

1. Lattice form factor results

Here we give our lattice results for the form factors
extracted from correlator fits. The SM form factors for
B → D� are given in Tables XIX–XXIII and in
TablesXXIX–XXXIII forBs → D�

s. The tensor form factors
for B → D� are also given in Tables XXIV–XXVIII and in
Tables XXXIV–XXXVIII for Bs → D�

s. These numbers
include the renormalization factors given in Tables VII
and VIII.

FIG. 19. Histogram plots showing the ratio of standard devia-
tions, σunbinned=σbinned, on each set for correlator data that has
been only partially binned, or fully binned, as described in the
text. The vertical black line corresponds to the mean. We only
include data points in the range tmin ≤ t ≤ tmax.

FIG. 20. Histogram plots showing the ratio of standard devia-
tions, σunbinned=σbinned, on each set for correlator data that has
been only partially binned, or fully binned, as described in the
text. The vertical black line corresponds to the mean. We only
include data points in the range tmin ≤ t ≤ tmax.
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2. Error band plots

Here we show plots for the fractional contribution of
each source of uncertainty to the total variance for the B →
D� form factors F1 and F2, as well as the tensor form

TABLE XX. Lattice form factor results for set 2. ak here is the
value of the x and y components of the lattice momentum for the
D�. ak is calculated from the corresponding twist in Table IV.

amh ak hA1
hA2

hA3
hV

0.427 0.0 0.916(37) � � � � � � � � �
0.055399 0.916(42) −9ð15Þ 10(14) 1.11(31)
0.110798 0.900(44) −3.0ð4.9Þ 3.7(3.8) 1.13(24)
0.166197 0.872(53) −1.9ð3.7Þ 2.4(2.0) 1.10(22)
0.221596 0.832(66) −1.6ð4.4Þ 1.9(1.4) 1.04(22)
0.276995 0.780(84) −2ð10Þ 1.6(1.1) 0.98(25)

0.525 0.0 0.921(40) � � � � � � � � �
0.055399 0.921(44) −10ð16Þ 11(15) 1.11(32)
0.110798 0.904(47) −3.2ð4.7Þ 3.9(4.0) 1.13(24)
0.166197 0.876(57) −1.9ð3.0Þ 2.5(2.1) 1.10(22)
0.221596 0.836(71) −1.4ð2.7Þ 1.9(1.5) 1.05(23)
0.276995 0.785(90) −1.2ð3.1Þ 1.6(1.2) 0.99(26)

0.65 0.0 0.930(43) � � � � � � � � �
0.055399 0.930(48) −11ð17Þ 12(16) 1.12(32)
0.110798 0.913(51) −3.4ð4.8Þ 4.1(4.3) 1.14(25)
0.166197 0.884(61) −1.9ð2.9Þ 2.6(2.3) 1.11(23)
0.221596 0.845(77) −1.4ð2.4Þ 2.0(1.6) 1.06(24)
0.276995 0.794(97) −1.2ð2.4Þ 1.7(1.3) 1.00(27)

0.8 0.0 0.943(46) � � � � � � � � �
0.055399 0.943(51) −11ð18Þ 12(17) 1.13(33)
0.110798 0.927(55) −3.5ð5.0Þ 4.2(4.7) 1.15(26)
0.166197 0.898(67) −2.0ð3.0Þ 2.7(2.5) 1.13(24)
0.221596 0.859(83) −1.5ð2.4Þ 2.1(1.8) 1.08(24)
0.276995 0.81(10) −1.2ð2.2Þ 1.7(1.5) 1.02(28)

TABLE XIX. Lattice form factor results for set 1. ak here is the
value of the x and y components of the lattice momentum for the
D�. ak is calculated from the corresponding twist in Table IV.

amh ak hA1
hA2

hA3
hV

0.65 0.0 0.933(15) � � � � � � � � �
0.0378853 0.932(14) 5(22) −4ð21Þ 1.19(38)
0.0757705 0.926(15) 2.0(6.1) −0.7ð5.6Þ 1.24(28)
0.113656 0.916(18) 1.2(3.4) 0.05(2.78) 1.24(23)
0.151541 0.907(18) 0.8(2.3) 0.4(1.6) 1.24(20)
0.189426 0.893(20) 0.7(2.0) 0.6(1.1) 1.22(19)

0.725 0.0 0.939(16) � � � � � � � � �
0.0378853 0.938(15) 5(22) −3ð22Þ 1.19(38)
0.0757705 0.932(16) 1.7(6.2) −0.6ð5.8Þ 1.24(28)
0.113656 0.922(18) 1.0(3.3) 0.08(2.89) 1.25(24)
0.151541 0.913(18) 0.7(2.1) 0.4(1.7) 1.24(21)
0.189426 0.898(21) 0.5(1.7) 0.6(1.2) 1.23(19)

0.8 0.0 0.946(16) � � � � � � � � �
0.0378853 0.945(15) 4(23) −3ð23Þ 1.20(39)
0.0757705 0.939(16) 1.6(6.3) −0.5ð6.0Þ 1.25(28)
0.113656 0.929(19) 0.9(3.3) 0.1(3.0) 1.26(24)
0.151541 0.920(19) 0.6(2.1) 0.4(1.7) 1.25(21)
0.189426 0.905(21) 0.4(1.6) 0.6(1.2) 1.24(20)

TABLE XXI. Lattice form factor results for set 3. ak here is the
value of the x and y components of the lattice momentum for the
D�. ak is calculated from the corresponding twist in Table IV.

amh ak hA1
hA2

hA3
hV

0.5 0.0 0.916(22) � � � � � � � � �
0.061831 0.902(25) 0.05(3.91) 0.9(3.7) 1.21(14)
0.123662 0.850(39) −0.2ð1.7Þ 1.1(1.4) 1.11(12)
0.185493 0.774(58) 0.3(1.4) 0.89(93) 0.97(14)
0.247324 0.689(91) 1.1(1.7) 0.67(85) 0.84(18)
0.309155 0.60(10) 0.3(1.9) 0.70(68) 0.77(15)

0.65 0.0 0.932(24) � � � � � � � � �
0.061831 0.917(28) −0.3ð4.2Þ 1.2(4.1) 1.26(14)
0.123662 0.863(43) −0.4ð1.8Þ 1.3(1.6) 1.15(12)
0.185493 0.789(63) −0.002ð1.375Þ 1.0(1.0) 1.00(14)
0.247324 0.711(98) 0.4(1.5) 0.85(93) 0.86(19)
0.309155 0.62(11) −0.3ð1.4Þ 0.88(73) 0.77(16)

0.8 0.0 0.950(26) � � � � � � � � �
0.061831 0.934(31) −0.3ð4.6Þ 1.2(4.5) 1.30(15)
0.123662 0.880(47) −0.5ð2.0Þ 1.4(1.8) 1.19(13)
0.185493 0.809(70) −0.2ð1.5Þ 1.2(1.2) 1.03(15)
0.247324 0.74(11) 0.02(1.52) 1.0(1.0) 0.87(20)
0.309155 0.64(12) −0.6ð1.3Þ 1.04(80) 0.77(18)

TABLE XXII. Lattice form factor results for set 4. ak here is the
value of the x and y components of the lattice momentum for the
D�. ak is calculated from the corresponding twist in Table IV.

amh ak hA1
hA2

hA3
hV

0.65 0.0 0.935(29) � � � � � � � � �
0.0376581 0.937(27) −5ð40Þ 7(40) 1.20(50)
0.0753162 0.934(27) −2ð11Þ 3(10) 1.23(35)
0.112974 0.927(28) −0.9ð5.6Þ 2.1(4.7) 1.23(29)
0.150632 0.919(31) −0.7ð4.0Þ 1.8(2.9) 1.21(26)
0.188291 0.907(34) −0.7ð3.3Þ 1.7(2.1) 1.19(24)

0.725 0.0 0.941(30) � � � � � � � � �
0.0376581 0.943(28) −5ð42Þ 7(42) 1.21(51)
0.0753162 0.939(28) −2ð11Þ 3(11) 1.24(35)
0.112974 0.933(30) −1.1ð5.6Þ 2.2(5.0) 1.24(29)
0.150632 0.924(32) −0.9ð3.7Þ 1.9(3.0) 1.23(26)
0.188291 0.913(35) −0.8ð3.0Þ 1.8(2.2) 1.21(25)

0.8 0.0 0.948(31) � � � � � � � � �
0.0376581 0.950(29) −6ð44Þ 7(43) 1.23(52)
0.0753162 0.947(30) −2ð12Þ 3(11) 1.25(36)
0.112974 0.940(31) −1.2ð5.7Þ 2.2(5.2) 1.25(30)
0.150632 0.931(33) −1.0ð3.7Þ 1.9(3.2) 1.24(27)
0.188291 0.920(37) −0.9ð2.9Þ 1.8(2.3) 1.22(25)
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TABLE XXV. Lattice tensor form factor results for set 2. ak
here is the value of the x and y components of the lattice
momentum for the D�. ak is calculated from the corresponding
twist in Table IV.

amh ak hT1
hT2

hT3

0.427 0.0 � � � � � � � � �
0.055399 0.878(59) −0.05ð26Þ 6(20)
0.110798 0.860(63) −0.07ð20Þ 1.7(5.3)
0.166197 0.831(76) −0.07ð19Þ 0.9(2.8)
0.221596 0.791(94) −0.06ð20Þ 0.7(1.9)
0.276995 0.74(12) −0.07ð22Þ 0.6(1.5)

0.525 0.0 � � � � � � � � �
0.055399 0.887(59) −0.06ð27Þ 7(20)
0.110798 0.869(64) −0.08ð21Þ 2.1(5.3)
0.166197 0.840(76) −0.08ð20Þ 1.1(2.8)
0.221596 0.799(95) −0.07ð21Þ 0.8(1.9)
0.276995 0.75(12) −0.08ð23Þ 0.7(1.6)

0.65 0.0 � � � � � � � � �
0.055399 0.899(61) −0.08ð29Þ 8(21)
0.110798 0.881(65) −0.10ð22Þ 2.4(5.4)
0.166197 0.851(78) −0.10ð21Þ 1.3(2.9)
0.221596 0.810(98) −0.09ð23Þ 0.9(2.0)
0.276995 0.76(12) −0.08ð24Þ 0.8(1.6)

0.8 0.0 � � � � � � � � �
0.055399 0.915(63) −0.10ð30Þ 9(21)
0.110798 0.898(68) −0.12ð23Þ 2.7(5.6)
0.166197 0.867(81) −0.11ð23Þ 1.4(3.0)
0.221596 0.83(10) −0.10ð24Þ 1.0(2.1)
0.276995 0.77(13) −0.09ð26Þ 0.8(1.7)

TABLE XXVI. Lattice tensor form factor results for set 3. ak
here is the value of the x and y components of the lattice
momentum for the D�. ak is calculated from the corresponding
twist in Table IV.

amh ak hT1
hT2

hT3

0.5 0.0 � � � � � � � � �
0.061831 0.877(32) −0.04ð14Þ −1.8ð4.6Þ
0.123662 0.820(50) −0.03ð13Þ −0.6ð1.8Þ
0.185493 0.748(73) 0.001(168) −0.4ð1.1Þ
0.247324 0.66(12) 0.02(24) −0.5ð1.1Þ
0.309155 0.65(16) 0.45(48) 0.23(86)

0.65 0.0 � � � � � � � � �
0.061831 0.898(33) −0.04ð15Þ −1.2ð4.7Þ
0.123662 0.843(52) −0.04ð14Þ −0.2ð1.8Þ
0.185493 0.772(76) 0.007(177) −0.1ð1.2Þ
0.247324 0.69(13) 0.05(25) −0.2ð1.1Þ
0.309155 0.68(16) 0.47(51) 0.41(89)

0.8 0.0 � � � � � � � � �
0.061831 0.920(35) −0.05ð16Þ −0.9ð5.1Þ
0.123662 0.866(56) −0.04ð15Þ 0.0004(1.9847)
0.185493 0.798(82) 0.01(19) 0.08(1.25)
0.247324 0.73(13) 0.07(27) 0.06(1.14)
0.309155 0.71(17) 0.50(54) 0.61(94)

TABLE XXIII. Lattice form factor results for set 5. ak here is
the value of the x and y components of the lattice momentum for
the D�. ak is calculated from the corresponding twist in Table IV.

amh ak hA1
hA2

hA3
hV

0.427 0.0 0.886(77) � � � � � � � � �
0.055399 0.882(73) 7(24) −4ð23Þ 0.88(51)
0.110798 0.854(79) 2.7(7.7) −0.5ð6.1Þ 1.03(38)
0.166197 0.804(95) 2.1(5.5) 0.2(3.2) 1.02(35)
0.221596 0.74(12) 2.2(6.0) 0.4(2.2) 0.95(37)
0.276995 0.67(14) 4(10) 0.4(1.7) 0.83(38)

0.525 0.0 0.888(81) � � � � � � � � �
0.055399 0.884(77) 6(25) −4ð24Þ 0.88(51)
0.110798 0.857(83) 2.1(7.3) −0.5ð6.4Þ 1.02(38)
0.166197 0.807(99) 1.4(4.7) 0.2(3.4) 1.02(36)
0.221596 0.74(12) 1.2(4.1) 0.4(2.3) 0.95(37)
0.276995 0.67(14) 1.4(4.2) 0.3(1.8) 0.83(39)

0.65 0.0 0.892(86) � � � � � � � � �
0.055399 0.889(81) 6(26) −5ð25Þ 0.88(52)
0.110798 0.862(87) 1.9(7.4) −0.5ð6.7Þ 1.03(38)
0.166197 0.81(10) 1.1(4.4) 0.2(3.6) 1.02(36)
0.221596 0.75(13) 0.9(3.6) 0.4(2.5) 0.95(38)
0.276995 0.67(15) 1.0(3.3) 0.3(1.9) 0.83(40)

0.8 0.0 0.899(90) � � � � � � � � �
0.055399 0.897(85) 6(27) −5ð26Þ 0.88(52)
0.110798 0.870(91) 1.8(7.6) −0.6ð7.0Þ 1.03(39)
0.166197 0.82(11) 1.0(4.4) 0.2(3.7) 1.03(37)
0.221596 0.75(13) 0.8(3.4) 0.3(2.6) 0.96(39)
0.276995 0.67(15) 0.9(3.0) 0.3(2.0) 0.84(41)

TABLE XXIV. Lattice tensor form factor results for set 1. ak
here is the value of the x and y components of the lattice
momentum for the D�. ak is calculated from the corresponding
twist in Table IV.

amh ak hT1
hT2

hT3

0.65 0.0 � � � � � � � � �
0.0378853 0.873(24) −0.07ð27Þ 0.06(38.61)
0.0757705 0.867(25) −0.08ð20Þ −1ð10Þ
0.113656 0.858(28) −0.08ð17Þ −0.9ð5.1Þ
0.151541 0.845(28) −0.07ð15Þ −0.8ð2.8Þ
0.189426 0.831(31) −0.06ð14Þ −0.7ð2.0Þ

0.725 0.0 � � � � � � � � �
0.0378853 0.878(24) −0.08ð28Þ −0.2ð38.9Þ
0.0757705 0.873(26) −0.09ð20Þ −1ð10Þ
0.113656 0.863(29) −0.09ð17Þ −1.0ð5.1Þ
0.151541 0.850(28) −0.08ð15Þ −0.9ð2.8Þ
0.189426 0.836(31) −0.07ð14Þ −0.7ð2.0Þ

0.8 0.0 � � � � � � � � �
0.0378853 0.885(24) −0.08ð28Þ −0.5ð39.2Þ
0.0757705 0.880(26) −0.10ð21Þ −1ð10Þ
0.113656 0.870(29) −0.10ð18Þ −1.0ð5.1Þ
0.151541 0.857(29) −0.09ð16Þ −0.9ð2.8Þ
0.189426 0.843(32) −0.08ð15Þ −0.7ð2.0Þ
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TABLE XXVIII. Lattice tensor form factor results for set 5. ak
here is the value of the x and y components of the lattice
momentum for the D�. ak is calculated from the corresponding
twist in Table IV.

amh ak hT1
hT2

hT3

0.427 0.0 � � � � � � � � �
0.055399 0.840(92) −0.07ð42Þ −3ð28Þ
0.110798 0.81(10) −0.12ð33Þ −0.8ð7.6Þ
0.166197 0.75(12) −0.15ð32Þ −0.3ð4.1Þ
0.221596 0.69(16) −0.18ð35Þ −0.2ð2.9Þ
0.276995 0.61(19) −0.22ð39Þ −0.3ð2.2Þ

0.525 0.0 � � � � � � � � �
0.055399 0.845(91) −0.06ð43Þ −3ð28Þ
0.110798 0.81(10) −0.12ð34Þ −0.8ð7.6Þ
0.166197 0.76(12) −0.15ð34Þ −0.3ð4.1Þ
0.221596 0.69(16) −0.18ð37Þ −0.2ð2.9Þ
0.276995 0.61(19) −0.22ð41Þ −0.3ð2.2Þ

0.65 0.0 � � � � � � � � �
0.055399 0.851(92) −0.03ð45Þ −4ð28Þ
0.110798 0.82(10) −0.11ð35Þ −0.9ð7.6Þ
0.166197 0.76(12) −0.15ð35Þ −0.4ð4.1Þ
0.221596 0.69(16) −0.18ð39Þ −0.2ð2.9Þ
0.276995 0.61(19) −0.22ð43Þ −0.3ð2.2Þ

0.8 0.0 � � � � � � � � �
0.055399 0.861(92) −0.01ð47Þ −4ð28Þ
0.110798 0.83(10) −0.10ð37Þ −1.0ð7.6Þ
0.166197 0.77(12) −0.15ð37Þ −0.4ð4.1Þ
0.221596 0.70(16) −0.18ð41Þ −0.2ð2.9Þ
0.276995 0.62(20) −0.22ð46Þ −0.3ð2.3Þ

TABLE XXVII. Lattice tensor form factor results for set 4. ak
here is the value of the x and y components of the lattice
momentum for the D�. ak is calculated from the corresponding
twist in Table IV.

amh ak hT1
hT2

hT3

0.65 0.0 � � � � � � � � �
0.0376581 0.875(44) −0.19ð40Þ 4(67)
0.0753162 0.872(44) −0.18ð29Þ 1(17)
0.1129 74 0.867(47) −0.17ð24Þ 0.8(7.9)
0.150632 0.859(51) −0.16ð22Þ 0.5(4.8)
0.188291 0.849(56) −0.15ð21Þ 0.4(3.4)

0.725 0.0 � � � � � � � � �
0.0376581 0.881(44) −0.19ð41Þ 3(68)
0.0753162 0.878(45) −0.18ð30Þ 1(17)
0.112974 0.873(48) −0.17ð25Þ 0.6(8.1)
0.150632 0.865(52) −0.16ð23Þ 0.5(4.9)
0.188291 0.855(57) −0.15ð22Þ 0.4(3.4)

0.8 0.0 � � � � � � � � �
0.0376581 0.888(45) −0.19ð42Þ 2(70)
0.0753162 0.885(46) −0.18ð30Þ 0.8(17.7)
0.112974 0.880(49) −0.17ð26Þ 0.5(8.2)
0.150632 0.872(53) −0.17ð23Þ 0.4(5.0)
0.188291 0.861(58) −0.16ð22Þ 0.4(3.5)

TABLE XXX. Lattice form factor results for set 2. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak hsA1
hsA2

hsA3
hsV

0.427 0.0 0.908(15) � � � � � � � � �
0.055399 0.902(16) −3.3ð6.0Þ 4.2(5.6) 1.23(16)
0.110798 0.879(17) −1.1ð2.0Þ 2.0(1.5) 1.21(12)
0.166197 0.844(21) −0.7ð1.5Þ 1.50(81) 1.15(11)
0.221596 0.801(26) −0.6ð1.9Þ 1.30(57) 1.08(12)
0.276995 0.753(34) −0.2ð4.2Þ 1.15(48) 1.00(13)

0.525 0.0 0.913(15) � � � � � � � � �
0.055399 0.907(17) −3.5ð6.1Þ 4.3(5.8) 1.23(16)
0.110798 0.884(18) −1.2ð1.9Þ 2.0(1.6) 1.21(12)
0.166197 0.849(22) −0.8ð1.2Þ 1.50(86) 1.15(11)
0.221596 0.804(27) −0.6ð1.1Þ 1.29(61) 1.08(12)
0.276995 0.756(36) −0.5ð1.3Þ 1.15(51) 1.00(13)

0.65 0.0 0.922(16) � � � � � � � � �
0.055399 0.916(18) −3.6ð6.3Þ 4.3(6.1) 1.24(16)
0.110798 0.893(19) −1.2ð1.9Þ 2.0(1.7) 1.21(12)
0.166197 0.856(23) −0.8ð1.1Þ 1.50(91) 1.16(11)
0.221596 0.812(29) −0.65ð96Þ 1.30(65) 1.09(12)
0.276995 0.764(38) −0.53ð99Þ 1.17(55) 1.01(13)

0.8 0.0 0.936(17) � � � � � � � � �
0.055399 0.930(19) −3.6ð6.6Þ 4.3(6.5) 1.26(16)
0.110798 0.906(21) −1.3ð2.0Þ 2.0(1.8) 1.23(13)
0.166197 0.869(25) −0.9ð1.2Þ 1.51(97) 1.18(12)
0.221596 0.824(31) −0.69ð93Þ 1.32(70) 1.11(12)
0.276995 0.776(41) −0.57ð92Þ 1.19(60) 1.02(14)

TABLE XXIX. Lattice form factor results for set 1. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak hsA1
hsA2

hsA3
hsV

0.65 0.0 0.9293(50) � � � � � � � � �
0.0378853 0.9281(48) 0.5(7.1) 0.8(6.9) 1.27(16)
0.0757705 0.9231(53) 0.3(2.1) 0.9(1.9) 1.27(11)
0.113656 0.9152(58) 0.2(1.1) 0.99(93) 1.258(87)
0.151541 0.9040(64) 0.25(82) 1.02(58) 1.241(74)
0.189426 0.8900(72) 0.30(69) 1.02(41) 1.219(67)

0.725 0.0 0.9342(51) � � � � � � � � �
0.0378853 0.9330(50) 0.3(7.2) 0.8(7.1) 1.27(17)
0.0757705 0.9280(55) 0.2(2.1) 0.9(2.0) 1.27(11)
0.113656 0.9200(59) 0.1(1.1) 0.97(96) 1.264(89)
0.151541 0.9088(66) 0.08(74) 1.00(60) 1.248(76)
0.189426 0.8947(74) 0.08(59) 1.01(42) 1.226(69)

0.8 0.0 0.9404(52) � � � � � � � � �
0.0378853 0.9392(51) 0.2(7.4) 0.9(7.3) 1.28(17)
0.0757705 0.9341(56) 0.1(2.1) 0.9(2.0) 1.28(11)
0.113656 0.9261(61) 0.02(1.09) 0.97(99) 1.274(91)
0.151541 0.9148(68) −0.005ð722Þ 1.00(61) 1.257(78)
0.189426 0.9006(76) −0.01ð56Þ 1.01(44) 1.235(70)
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factors in the helicity basis defined in Eq. (32) (plots for g
and f for B → D� are given in Fig. 8 in the main text). Plots
for the full set of Bs → D�

s form factors are given in
Figs. 23–25.

TABLE XXXI. Lattice form factor results for set 3. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak hsA1
hsA2

hsA3
hsV

0.5 0.0 0.9169(92) � � � � � � � � �
0.061831 0.8984(90) −0.4ð1.4Þ 1.2(1.3) 1.247(58)
0.123662 0.845(12) −0.45ð53Þ 1.18(44) 1.142(38)
0.185493 0.772(17) −0.48ð42Þ 1.15(28) 1.021(41)
0.247324 0.688(30) −0.33ð58Þ 1.02(28) 0.901(92)
0.309155 0.597(54) −0.25ð97Þ 0.87(33) 0.86(12)

0.65 0.0 0.931(10) � � � � � � � � �
0.061831 0.9117(99) −0.4ð1.5Þ 1.2(1.4) 1.272(64)
0.123662 0.857(13) −0.48ð56Þ 1.19(49) 1.162(43)
0.185493 0.785(19) −0.54ð42Þ 1.18(31) 1.035(46)
0.247324 0.705(33) −0.46ð52Þ 1.08(32) 0.902(99)
0.309155 0.620(58) −0.50ð76Þ 0.98(38) 0.84(13)

0.8 0.0 0.948(11) � � � � � � � � �
0.061831 0.928(11) −0.4ð1.6Þ 1.2(1.6) 1.300(69)
0.123662 0.872(14) −0.52ð60Þ 1.21(54) 1.186(48)
0.185493 0.801(20) −0.60ð44Þ 1.23(35) 1.054(51)
0.247324 0.726(36) −0.58ð52Þ 1.17(36) 0.91(11)
0.309155 0.651(64) −0.70ð74Þ 1.12(43) 0.82(14)

TABLE XXXII. Lattice form factor results for set 4. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak hsA1
hsA2

hsA3
hsV

0.65 0.0 0.9271(42) � � � � � � � � �
0.0376581 0.9269(41) −1.8ð5.7Þ 2.9(5.6) 1.31(14)
0.0753162 0.9222(46) −0.7ð1.8Þ 1.8(1.6) 1.284(95)
0.112974 0.9148(51) −0.39ð96Þ 1.51(80) 1.262(77)
0.150632 0.9043(56) −0.23ð68Þ 1.38(50) 1.237(68)
0.188291 0.8911(62) −0.12ð57Þ 1.31(35) 1.207(64)

0.725 0.0 0.9323(43) � � � � � � � � �
0.0376581 0.9321(42) −1.9ð5.9Þ 2.9(5.8) 1.31(14)
0.0753162 0.9274(48) −0.8ð1.8Þ 1.9(1.7) 1.290(97)
0.112974 0.9199(52) −0.51ð94Þ 1.51(83) 1.268(79)
0.150632 0.9093(58) −0.36ð64Þ 1.38(52) 1.242(70)
0.188291 0.8960(64) −0.28ð50Þ 1.31(37) 1.212(65)

0.8 0.0 0.9387(44) � � � � � � � � �
0.0376581 0.9384(43) −2.0ð6.0Þ 3.0(6.0) 1.32(15)
0.0753162 0.9337(49) −0.9ð1.8Þ 1.9(1.7) 1.30(10)
0.112974 0.9261(54) −0.58ð94Þ 1.52(86) 1.276(81)
0.150632 0.9155(60) −0.44ð63Þ 1.39(54) 1.250(72)
0.188291 0.9021(66) −0.36ð49Þ 1.31(38) 1.220(67)

TABLE XXXIV. Lattice tensor form factor results for set 1. ak
here is the value of the x and y components of the lattice
momentum for the D�

s . ak is calculated from the corresponding
twist in Table IV.

amh ak hsT1
hsT2

hsT3

0.65 0.0 � � � � � � � � �
0.0378853 0.8654(76) −0.08ð13Þ 0.06(10.90)
0.0757705 0.8597(75) −0.083ð82Þ −0.4ð2.7Þ
0.113656 0.8506(79) −0.079ð64Þ −0.3ð1.3Þ
0.151541 0.8383(84) −0.075ð56Þ −0.29ð76Þ
0.189426 0.8231(93) −0.070ð53Þ −0.25ð53Þ

0.725 0.0 � � � � � � � � �
0.0378853 0.8712(77) −0.09ð13Þ 0.08(10.96)
0.0757705 0.8654(76) −0.095ð84Þ −0.4ð2.7Þ
0.113656 0.8563(80) −0.091ð65Þ −0.4ð1.3Þ
0.151541 0.8440(85) −0.086ð57Þ −0.30ð77Þ
0.189426 0.8286(94) −0.081ð54Þ −0.26ð54Þ

0.8 0.0 � � � � � � � � �
0.0378853 0.8778(78) −0.10ð14Þ 0.1(11.1)
0.0757705 0.8720(77) −0.106ð86Þ −0.4ð2.7Þ
0.113656 0.8629(81) −0.101ð67Þ −0.4ð1.3Þ
0.151541 0.8504(87) −0.097ð58Þ −0.32ð78Þ
0.189426 0.8349(95) −0.091ð55Þ −0.27ð55Þ

TABLE XXXIII. Lattice form factor results for set 5. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak hsA1
hsA2

hsA3
hsV

0.427 0.0 0.898(22) � � � � � � � � �
0.055399 0.894(21) 1.4(6.3) −0.3ð6.0Þ 1.24(15)
0.110798 0.874(21) 0.1(1.9) 0.9(1.5) 1.22(11)
0.166197 0.838(24) 0.002(1.409) 1.01(80) 1.16(11)
0.221596 0.790(31) 0.05(1.65) 0.97(61) 1.09(11)
0.276995 0.734(42) 0.2(3.0) 0.90(53) 1.01(13)

0.525 0.0 0.903(23) � � � � � � � � �
0.055399 0.900(22) 1.5(6.5) −0.5ð6.3Þ 1.24(15)
0.110798 0.880(22) 0.06(1.86) 0.8(1.6) 1.22(11)
0.166197 0.843(25) −0.1ð1.2Þ 0.97(86) 1.17(11)
0.221596 0.794(33) −0.1ð1.1Þ 0.94(65) 1.10(12)
0.276995 0.737(44) −0.06ð1.37Þ 0.87(58) 1.02(13)

0.65 0.0 0.912(24) � � � � � � � � �
0.055399 0.909(23) 1.8(6.9) −0.9ð6.7Þ 1.25(16)
0.110798 0.889(23) 0.08(1.92) 0.8(1.7) 1.23(12)
0.166197 0.851(27) −0.1ð1.2Þ 0.93(94) 1.18(11)
0.221596 0.801(35) −0.1ð1.0Þ 0.91(71) 1.11(12)
0.276995 0.743(48) −0.1ð1.1Þ 0.84(63) 1.03(14)

0.8 0.0 0.926(26) � � � � � � � � �
0.055399 0.922(25) 2.1(7.4) −1.3ð7.3Þ 1.27(16)
0.110798 0.901(25) 0.1(2.0) 0.7(1.9) 1.25(12)
0.166197 0.862(29) −0.1ð1.2Þ 0.9(1.0) 1.19(12)
0.221596 0.811(38) −0.1ð1.0Þ 0.88(78) 1.12(13)
0.276995 0.752(52) −0.1ð1.0Þ 0.81(69) 1.04(14)
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TABLE XXXV. Lattice tensor form factor results for set 2. ak
here is the value of the x and y components of the lattice
momentum for the D�

s . ak is calculated from the corresponding
twist in Table IV.

amh ak hsT1
hsT2

hsT3

0.427 0.0 � � � � � � � � �
0.055399 0.870(22) −0.09ð14Þ 2.3(7.7)
0.110798 0.845(25) −0.09ð11Þ 0.5(2.2)
0.166197 0.807(30) −0.07ð11Þ 0.2(1.2)
0.221596 0.763(37) −0.05ð12Þ 0.20(80)
0.276995 0.714(48) −0.05ð14Þ 0.19(65)

0.525 0.0 � � � � � � � � �
0.055399 0.878(22) −0.11ð14Þ 2.5(7.7)
0.110798 0.852(25) −0.11ð12Þ 0.5(2.2)
0.166197 0.814(30) −0.09ð12Þ 0.3(1.2)
0.221596 0.769(38) −0.07ð13Þ 0.21(82)
0.276995 0.720(49) −0.06ð14Þ 0.20(67)

0.65 0.0 � � � � � � � � �
0.055399 0.889(22) −0.13ð15Þ 2.5(7.7)
0.110798 0.863(25) −0.13ð12Þ 0.6(2.2)
0.166197 0.824(31) −0.11ð12Þ 0.3(1.2)
0.221596 0.778(39) −0.09ð14Þ 0.22(84)
0.276995 0.729(51) −0.08ð15Þ 0.21(69)

0.8 0.0 � � � � � � � � �
0.055399 0.904(23) −0.16ð16Þ 2.6(7.9)
0.110798 0.877(26) −0.15ð13Þ 0.6(2.3)
0.166197 0.838(32) −0.13ð13Þ 0.3(1.2)
0.221596 0.791(41) −0.11ð14Þ 0.23(88)
0.276995 0.742(54) −0.10ð16Þ 0.22(73)

TABLE XXXVI. Lattice tensor form factor results for set 3. ak
here is the value of the x and y components of the lattice
momentum for the D�

s . ak is calculated from the corresponding
twist in Table IV.

amh ak hsT1
hsT2

hsT3

0.5 0.0 � � � � � � � � �
0.061831 0.883(12) −0.135ð70Þ −0.04ð1.74Þ
0.123662 0.823(16) −0.120ð56Þ −0.10ð59Þ
0.185493 0.747(23) −0.072ð79Þ 0.02(36)
0.247324 0.670(41) 0.04(15) 0.11(36)
0.309155 0.628(92) 0.42(39) 0.36(51)

0.65 0.0 � � � � � � � � �
0.061831 0.902(13) −0.159ð75Þ −0.04ð1.90Þ
0.123662 0.841(17) −0.140ð60Þ −0.06ð65Þ
0.185493 0.764(25) −0.091ð84Þ 0.06(41)
0.247324 0.688(45) 0.02(16) 0.16(40)
0.309155 0.645(97) 0.39(40) 0.42(55)

0.8 0.0 � � � � � � � � �
0.061831 0.921(14) −0.176ð81Þ −0.03ð2.05Þ
0.123662 0.859(19) −0.154ð65Þ −0.009ð705Þ
0.185493 0.782(27) −0.102ð89Þ 0.11(45)
0.247324 0.710(49) 0.008(167) 0.24(45)
0.309155 0.67(10) 0.38(42) 0.53(59)

TABLE XXXVII. Lattice tensor form factor results for set 4. ak
here is the value of the x and y components of the lattice
momentum for the D�

s . ak is calculated from the corresponding
twist in Table IV.

amh ak hsT1
hsT2

hsT3

0.65 0.0 � � � � � � � � �
0.0376581 0.8644(69) −0.10ð12Þ 2.9(9.2)
0.0753162 0.8586(68) −0.102ð72Þ 0.7(2.2)
0.112974 0.8498(70) −0.099ð55Þ 0.3(1.1)
0.150632 0.8377(74) −0.096ð48Þ 0.10(63)
0.188291 0.8226(79) −0.093ð45Þ 0.02(44)

0.725 0.0 � � � � � � � � �
0.0376581 0.8703(70) −0.11ð12Þ 2.9(9.3)
0.0753162 0.8644(69) −0.112ð73Þ 0.8(2.3)
0.112974 0.8556(71) −0.109ð57Þ 0.3(1.1)
0.150632 0.8434(75) −0.107ð50Þ 0.10(64)
0.188291 0.8282(80) −0.104ð46Þ 0.03(44)

0.8 0.0 � � � � � � � � �
0.0376581 0.8770(71) −0.12ð12Þ 2.9(9.5)
0.0753162 0.8711(70) −0.122ð75Þ 0.8(2.3)
0.112974 0.8622(73) −0.119ð58Þ 0.3(1.1)
0.150632 0.8499(76) −0.116ð51Þ 0.11(65)
0.188291 0.8346(82) −0.113ð48Þ 0.03(45)

TABLE XXXVIII. Lattice tensor form factor results for set 5.
ak here is the value of the x and y components of the lattice
momentum for the D�

s . ak is calculated from the corresponding
twist in Table IV.

amh ak hsT1
hsT2

hsT3

0.427 0.0 � � � � � � � � �
0.055399 0.858(24) −0.08ð16Þ −1.7ð7.6Þ
0.110798 0.835(25) −0.09ð13Þ −0.3ð2.0Þ
0.166197 0.794(30) −0.09ð12Þ −0.2ð1.0Þ
0.221596 0.743(39) −0.08ð13Þ −0.13ð76Þ
0.276995 0.686(53) −0.08ð15Þ −0.10ð64Þ

0.525 0.0 � � � � � � � � �
0.055399 0.866(25) −0.09ð17Þ −1.9ð7.7Þ
0.110798 0.843(26) −0.10ð13Þ −0.3ð2.1Þ
0.166197 0.802(31) −0.10ð12Þ −0.2ð1.1Þ
0.221596 0.751(40) −0.09ð13Þ −0.12ð79Þ
0.276995 0.693(55) −0.09ð15Þ −0.10ð67Þ

0.65 0.0 � � � � � � � � �
0.055399 0.878(26) −0.11ð17Þ −2.1ð8.0Þ
0.110798 0.854(27) −0.12ð14Þ −0.4ð2.1Þ
0.166197 0.813(32) −0.12ð13Þ −0.2ð1.1Þ
0.221596 0.761(42) −0.11ð14Þ −0.12ð83Þ
0.276995 0.702(57) −0.10ð16Þ −0.09ð70Þ

0.8 0.0 � � � � � � � � �
0.055399 0.893(27) −0.14ð18Þ −2.4ð8.3Þ
0.110798 0.869(28) −0.14ð15Þ −0.4ð2.2Þ
0.166197 0.827(34) −0.13ð14Þ −0.2ð1.2Þ
0.221596 0.774(45) −0.12ð15Þ −0.11ð89Þ
0.276995 0.714(61) −0.11ð17Þ −0.09ð76Þ
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APPENDIX D: STAGGERED CHIRAL
PERTURBATION THEORY

To compute the chiral logarithms for the B → Dð�Þ
tensor form factors we use heavy-meson chiral perturbation
theory, modified to account for the multiple tastes present
when using staggered quarks [72]. The heavy meson fields
are given by

Ha ¼
1þ v
2

½γμB�
aμ þ iγ5Ba�

H̄a ¼ γ0H
†
aγ0 ¼ ½γμB�†

aμ þ iγ5B†
a� 1þ v

2
; ðD1Þ

FIG. 21. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the B → D� form
factors F1 and F2 across the full kinematic range. The vertical
axis is truncated at 0.25 for clarity, with the remaining variance
between 0.25 and 1 attributable to statistics.

FIG. 22. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the B → D� tensor
form factors in the helicity basis defined in Eq. (32), across the
full kinematic range. The vertical axis is truncated at 0.25 for
clarity, with the remaining variance between 0.25 and 1 attrib-
utable to statistics. Note the large contribution of the uncon-
strained chiral dependence entering FT1

that originates from hT3
.
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where a labels taste and flavor. The pion fields are

Σ ¼ exp ðiΦ=fÞ; ðD2Þ

where

Φab ¼ Φiα;jβ ¼ πij;ΞT̃Ξ
αβ; ðD3Þ

with Ξ labeling the taste of the pion and the SUð4Þ taste
generators T̃Ξ ¼ fξ5; iξμ5; iξμν; ξμ; ξIg. ξμ are the Euclidean
gamma matrices, with ξI ¼ 1, ξμν ¼ 1

2
½ξμ; ξν�, and

ξμ5 ¼ ξμξ5.
The leading order Minkowski staggered chiral

Lagrangian for three flavors of light quarks is given by [72],
including heavy quarks,

LΣ ¼ f2

8
STr½∂μΣ∂μΣ†� þ 1

4
μf2STr½MΣþMΣ†�

−
2m0

3
ðUI þDI þ SIÞ2 − a2V

− itr½H̄avμ∂μHa� þ tr½H̄aHb�vμVba
μ

þ gπtr½H̄aHbγ
νγ5�Aba

ν þ λ2
mQ

tr½H̄aσ
μνHaσμν�; ðD4Þ

where UI , DI , and SI are the diagonal elements of Φ. We
use these rather than the physical basis in order to simplify
the quark flow analysis. We will take m0 → ∞ at the end.
We use “tr” to indicate a trace over dirac indices, and “STr”
to indicate a trace over SU(4n) indices. The final term
generates a mass splitting for the D� and D,

FIG. 23. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the Bs → D�

s form
factors fs and gs across the full kinematic range. The vertical axis
is truncated at 0.35 for clarity, with the remaining variance
between 0.35 and 1 attributable to statistics.

FIG. 24. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the Bs → D�

s form
factors Fs

1 and Fs
2 across the full kinematic range. The vertical

axis is truncated at 0.35 for clarity, with the remaining variance
between 0.35 and 1 attributable to statistics.
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Δc ¼ ðmD� −mDÞ ¼ −λ2=8mc. V contains operators that
generate the taste splittings, as well as operators that mix
the taste-(axial-)vector, flavor-neutral mesons. In Eq. (D4),
Aμ and Vμ are constructed from the pion fields and couple
to the heavy-meson fields. They are given by

Vμ ¼
i
2
½σ†∂μσ þ σ∂μσ

†�;

Aμ ¼
i
2
½σ†∂μσ − σ∂μσ

†�; ðD5Þ

where σ ¼ ffiffiffi
Σ

p
. At first order in the pion fields,

these are

Viα;jβ
μ ¼ 0þOðπ2Þ;

Aiα;jβ
μ ¼ −

1

2f
∂μπij;ΞT̃Ξ

αβ:

Expanding Eq. (D4) to first order in the pion fields
we find

L1
Σ ¼ 1

2
∂μπij;Ξ∂

μπji;Ξ þ 1

2
M2

ij;Ξπij;Ξπji;Ξ

−
2m0

3
ðUI þDI þ SIÞ2 − a2V 0 − itr½H̄avμ∂μHa�

− gπtr½H̄jβHiαγ
νγ5� 1

2f
∂μπij;ΞT̃Ξ

αβ

þ λ2
mQ

tr½H̄aσ
μνHaσμν�; ðD6Þ

where M2
ij;Ξ ¼ μðmi þmjÞ þ a2ΔΞ and a2V 0 contains the

remaining hairpin vertices mixing flavor-neutral taste
vector and axial-vector pions. The pion propagator for
flavor non-neutral pions is then

fπij;Ξπj0i0;Ξ0gcon ¼
iδii0δjj0δΞΞ0

p2 −M2
ij;Ξ þ iε

: ðD7Þ

For vector, axial-vector, and singlet taste, flavor-
neutral pions there is an additional disconnected
hairpin contribution. In Minkowski space this is given
by [72]

fπij;Ξπj0i0;Ξ0 gdisc ¼ δijδj0i0δΞΞ0DΞ
ii;i0i0 ; ðD8Þ

where

FIG. 25. Plots showing the fractional contribution of each
source of uncertainty to the total variance for the Bs → D�

s
tensor form factors in the helicity basis defined in Eq. (32), across
the full kinematic range. The vertical axis is truncated at 0.35 for
clarity, with the remaining variance between 0.35 and 1 attrib-
utable to statistics. Note the large contribution of the uncon-
strained chiral dependence entering FT1

that originates from hT3
.
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DΞ
ii;i0i0 ¼ ia2δ0Ξ

ðp2 −m2
UΞÞðp2 −m2

DΞÞðp2 −m2
SΞÞ

ðp2 −m2
iiΞÞðp2 −m2

i0i0ΞÞðp2 −m2
π0ΞÞðp2 −m2

ηΞÞðp2 −m2
η0ΞÞ

ðD9Þ

such that

fπij;Ξπj0i0;Ξ0 g ¼ iδii0δjj0δΞΞ0

p2 −M2
ij;Ξ þ iε

þ δijδj0i0δΞΞ0DΞ
ii;i0i0 : ðD10Þ

Formu ¼ md relevant to 2þ 1þ 1 simulations for B → D� where the spectator quark is either a u or a d, the flavor-neutral
disconnected propagator is

DΞ
ii;i0i0 ¼ ia2δ0Ξ

ðp2 −m2
SΞÞ

ðp2 −m2
π0ΞÞðp2 −m2

ηΞÞðp2 −m2
η0ΞÞ

¼ ia2δ0Ξ
m2

π0Ξ −m2
SΞ

ðm2
π0Ξ −m2

ηΞÞðm2
π0Ξ −m2

η0ΞÞ
1

p2 −m2
π0Ξ

þ ia2δ0Ξ
m2

ηΞ −m2
SΞ

ðm2
ηΞ −m2

π0ΞÞðm2
ηΞ −m2

η0ΞÞ
1

p2 −m2
ηΞ

þ ia2δ0Ξ
m2

η0Ξ −m2
SΞ

ðm2
η0Ξ −m2

π0ΞÞðm2
η0Ξ −m2

ηΞÞ
1

p2 −m2
η0Ξ

¼ ia2δ0Ξ

�
AΞ

1

p2 −m2
π0Ξ þ iε

þ BΞ
1

p2 −m2
ηΞ þ iε

þ CΞ
1

p2 −m2
η0Ξ þ iε



ðD11Þ

for i; i0 ¼ u, d. For Bs → D�
s we are interested in the case

i; i0 ¼ s. In this case, using the fact that MπΞ ¼
MUΞ

¼ MDΞ
, we just swap MπΞ ↔ MSΞ in Eq. (D11).

We write the pion propagator as

fπij;Ξπj0i0;Ξ0g ¼ δΞΞ0
X
n

PΞ;n
ii0jj0

i
p2 −M2

ij;Ξ;n þ iε
; ðD12Þ

where

M2
ij;Ξ;n ¼

0
BBBBB@

M2
ij;Ξ

m2
π0Ξ

m2
ηΞ

m2
η0Ξ

1
CCCCCA

n

ðD13Þ

and

PΞ;n
ii0jj0 ¼

0
BBBBB@

δii0δjj0

a2δ0ΞAΞδijδj0i0

a2δ0ΞBΞδijδj0i0

a2δ0ΞCΞδijδj0i0

1
CCCCCA

n

: ðD14Þ

Here δ0V; δ
0
A are the parameters determined from V 0,

a2δ0I ¼ 4m2
0=3, and δ05 ¼ δ0T ¼ 0.

The heavy meson propagators for the B, B�, D, and D�
are given by

fBaB
†
bg¼fBiαB

†
jβg¼

iδijδαβ
2ðv ·kþ iεÞ

fB�
a;μB

�†
b;νg¼fB�

iα;μB
�†
jβ;νg¼−

iδijδαβðgμν−vμvνÞ
2ðv ·k−Δbþ iεÞ

fDaD
†
bg¼fDiαD

†
jβg¼

iδijδαβ
2ðv ·kþ iεÞ

fD�
a;μD

�†
b;μg¼fD�

iα;μD
�†
jβ;νg¼−

iδijδαβðgμν−vμvνÞ
2ðv ·k−Δcþ iεÞ : ðD15Þ

Throughout the remainder of this section we will assume
Δb ¼ 0 and write Δc ¼ Δ. We can expand the H̄Hπ
interaction from Eq. (D4):

gπtr½H̄aHbγ
νγ5�Aba

ν ¼ i
gπ
f
εμκλνB�†

iα;μB
�
jβ;λvκT

Ξ
βα∂νπji;Ξ

þ i
gπ
f
ðB�†

iα;λBjβ−B†
iαB

�
jβ;λÞTΞ

βα∂
λπji;Ξ:

ðD16Þ

Finally, we must add terms corresponding to the electro-
weak b → c current whose matrix elements we are inter-
ested in computing. These will take the form

−ϵðwÞtr½H̄ðc;v0Þ
a ΓHðb;vÞ

a �; ðD17Þ

where w ¼ v0 · v and ϵðwÞ is the Isgur-Wise function. We
define
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−ϵðwÞtr½H̄ðc;v0Þ
a ΓHðb;vÞ

a � ¼ D�†
a;μJ Γ;μBa −D†

aJ Γ;μB�
a;μ

þD�†
a;μKΓ;μνB�

a;ν þD†
aPΓBa;

ðD18Þ

where J , P, and K depend on v, v0, and Γ. Note that P
does not contribute at one-loop to the current corrections,
since there is no BBπ coupling. P will only enter for
B → D at tree level and multiplied by the wave function
and current renormalization. J , P, and K maybe be
computed straightforwardly for the currents of interest
from standard γ-matrix trace methods.

1. Current renormalization

We will follow the conventions in Manohar and Wise
[73] and write the renormalized operator of which we wish
to compute the matrix elements as

OR
Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZBZD�p

ZO
OΓ: ðD19Þ

Here OΓ is the local composite operator built from
renormalized fields

ffiffiffiffiffiffi
Zq

p
Hq

R ¼ Hq
0 . We write this as

OR
½H̄cΓHb� ¼ −ϵðwÞ

�
1þ 1

2
ðδZB þ δZD� Þ − δZO

	

× tr½H̄c;v0
a ΓHb;v

a �: ðD20Þ

Here we have defined δZO
¼ ZO − 1 and, for the charm and

bottom fields, δZq ¼ Zq − 1.
The wave function renormalization of the B

may be computed from the self-energy [72]
ð1=2Þ∂v·pΣBðv · pÞjv·p¼0 ¼ δZB , where −iΣðp · vÞ is the
1PI diagram with two external lines and with the overall
identity in taste and flavor space removed. For the D�,
ð1=2Þ∂v·pΣD� ðv · pÞjv·p¼Δ ¼ δZD� . Evaluating the Feynman
diagram for the B self-energy we have

ΣB ¼ −i
�
gπ
f



2
Z

d4k
ð2πÞ4

X
Ξ;in

PΞ;n
uu;ii

1

k2 −M2
ui;Ξ;n þ iε

×
kνðgμν − vμvμÞkμ
2ðv · ðkþ pÞ þ iεÞ : ðD21Þ

We look just at the contribution of a single mass of pion, as
the sum can be reinserted straightforwardly:

ΣB
m ¼ −i

�
gπ
f



2
Z

d4k
ð2πÞ4

1

k2 −m2 þ iε

kνðgμν − vμvμÞkμ
2ðv · ðkþ pÞ þ iεÞ :

ðD22Þ

Following the notation of [59], we denote

I3ðw;m;ΔÞ

¼
Z

∞

0

dα
Z

d4k
ð2πÞ4

αk2

½k2 − ðα2 þ 2αΔþm2Þ þ iε�3 ;

ðD23Þ

and find δmZB ¼ 3
2
iðgπ=fÞ2I3ðw;m; 0Þ. A similar calculation

yields δm
ZD� ¼ i

2
ðgπ=fÞ2½I3ðw;m;−ΔÞ þ 2I3ðw;m; 0Þ�.

The combination appearing in the current renormalization
is then given by

1

2
ðδmZB þ δm

ZD� Þ ¼ i
1

2

�
gπ
f



2

×

�
1

2
I3ðw;m;−ΔÞ þ 5

2
I3ðw;m; 0Þ

	
:

ðD24Þ

2. One-loop matrix element contribution

The one-loop contribution to the matrix elements of
−ϵðwÞtr½ ¯HΓH� are given by the amputated on-shell two-
point correlation functions in momentum space, contracted
with the appropriate D� polarization vector, ϵλ0 ðv0Þ, for
which ϵλ0 ðv0Þv0λ0 ¼ 0. For B → D� the current correction is
given by

�
gπ
f



2
Z

d4k
ð2πÞ4

X
Ξ;in

PΞ;n
uu;ii

i
k2 −M2

ui;Ξ;n þ iε
ϵ�λ0

×

�
iϵλ

0
κγνv0κkν

2ðv0 · kþ iεÞK
Γ;γρ iðkρ − ðk · vÞvρÞ

2ðv · kþ iεÞ

þ ikλ
0

2ðv0 · kþ Δþ iεÞJ
Γ;ρ iðkρ − ðk · vÞvρÞ

2ðv · kþ iεÞ


: ðD25Þ

Here we have left implicit that we will divide sea quark
loops by a factor of 4 to reduce the number of tastes from 4
to 1. Noting that the sum over tastes and hairpin terms may
be straightforwardly reinserted, we evaluate the contribu-
tion of a single mass,

�
gπ
f



2
Z

d4k
ð2πÞ4

i
k2 −m2 þ iε

ϵ�λ0

×

�
iϵλ

0
κγνv0κkν

2ðv0 · kþ iεÞK
Γ;γρ iðkρ − ðk · vÞvρÞ

2ðv · kþ iεÞ

þ ikλ
0

2ðv0 · kþ Δþ iεÞJ
Γ;ρ iðkρ − ðk · vÞvρÞ

2ðv · kþ iεÞ


: ðD26Þ

For the currents considered here, these may all be expressed
in terms of the integral
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Z
d4k
ð2πÞ4

1

2ðv0 ·k−Δþ iεÞ
1

2ðv ·kþ iεÞ
kδkν

k2−m2þ iε

¼1

2
I1ðw;m;ΔÞgδνþ1

2
I2ðw;m;ΔÞv0δvνþ��� ; ðD27Þ

where only the I1 contains a UV divergence and the …
indicate terms which give zero when summing over Lorentz
indices. These definitions for the integrals match
those given by Chow et al. [59]. They include a factor
of i=16π2 that has been removed from the definitions
used in Appendix A of [26] that has I ¼ IFNAL ¼
i16π2 × IChow. We will adopt the conventions in
Appendix A of [26]. With these conventions we have

1

2
ðδmZB þ δm

ZD� Þ ¼ 1

2

�
gπ
4πf



2

×

�
1

2
I3ðw;m;−Δ=mÞ þ 5

2
I3ðw;m; 0Þ

	
:

ðD28Þ

This yields a total one-loop current correction for
B → D�, for a single pion mass,

−1
2

�
gπ
4πf



2

ϵ�λ0 ½I1ðw;m; 0Þϵλ0κγνv0κðKΓ;γν −KΓ;γρvρvνÞ

þ I1ðw;m;−Δ=mÞðJ Γ;λ0 − J Γ;ρvρvλ
0 Þ

þ I2ðw;m; 0Þϵλ0κγνv0κvνðKΓ;γρv0ρ − wKΓ;γρvρÞ
þ I2ðw;m;−Δ=mÞvλ0 ðJ Γ;ρv0ρ − wJ Γ;ρvρÞ

�
: ðD29Þ

For B → D this procedure gives the one-loop current
correction for a single pion mass

1

2

�
gπ
4πf



2�
I1ðw;m;ΔÞKΓ;γρðgγρ=2þ wvρv0γÞ

þ I2ðw;m;ΔÞKΓ;γρðv0ρ − wvρÞðvγ − wv0γÞ
�
: ðD30Þ

We evaluate K, J , and P for Γ ¼ γi; γ5γi, and σαβ

corresponding to the vector, axial-vector, and tensor cur-
rents, respectively. Defining δmhX as the deviation from the
tree level value resulting from loops including a pionm, we
find, dropping δZO

and including only the finite parts of the
integrals regularized using dimensional regularization,

δmhA1
=εðwÞ ¼ 1

2
ðδmZc þ δm

ZbÞ − 1

2

�
gπ
4πf



2�ð1þ wÞI1ðw;m; 0Þ þ I1ðw;m;−Δ=mÞ þ ðw2 − 1ÞI2ðw;m; 0Þ�

¼ −
1

2

�
gπ
4πf



2
�
−
1

2
I3ðw;m;−Δ=mÞ − 5

2
I3ðw;m; 0Þ þ ð1þ wÞI1ðw;m; 0Þ þ I1ðw;m;−Δ=mÞ

þ ðw2 − 1ÞI2ðw;m; 0Þ
	

¼ 1

4

g2π
16π2f2

FhA1 ðw;m;−Δ=mÞ; ðD31Þ

δmhA2
=εðwÞ ¼ −

1

2

�
gπ
4πf



2�
I1ðw;m;−Δ=mÞ − I1ðw;m; 0Þ þ ðwþ 1ÞI2ðw;m;−Δ=mÞ − ð1þ wÞI2ðw;m; 0Þ�

¼ 1

4

g2π
16π2f2

FhA2 ðw;m;−Δ=m
�

δmhA3
¼ δmhA1

− δmhA2

δmhV ¼ δmhA1
ðD32Þ

and for the tensor current
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δmhT1
=εðwÞ¼1

2
ðδmZc þδm

ZbÞ−1

2

�
gπ
4πf



2�ð1þwÞI1ðw;m;0ÞþI1ðw;m;−Δ=mÞþðw2−1ÞI2ðw;m;0Þ�
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�
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4πf



2
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I3ðw;m;−Δ=mÞ−5

2
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¼ δmhA1

=εðwÞ
δmhT2

=εðwÞ¼0

δmhT3
=εðwÞ¼−

1

2

�
gπ
4πf



2
�
ðI1ðw;m;−Δ=mÞ−I1ðw;m;0ÞÞ−ðwþ1ÞI2ðw;m;0Þþð1þwÞI2ðw;m;−Δ=mÞ

	
¼ δmhA2

=εðwÞ: ðD33Þ

Here we have defined the quantities FhAi ðw;m;−Δ=mÞ to match those given in [26]:

FhA1 ðw;m; xÞ ¼ −2
�
I1ðw;m; xÞ − 1

2
I3ðw;m; xÞ þ ðwþ 1ÞI1ðw;m; 0Þ þ ðw2 − 1ÞI2ðw;m; 0Þ − 5

2
I3ðw;m; 0Þ



;

FhA2 ðw;m; xÞ ¼ −2
�
I1ðw;m; xÞ þ ðwþ 1ÞI2ðw;m; xÞ − I1ðw;m; 0Þ − ðwþ 1ÞI2ðw;m; 0Þ�;

FhA3 ðw;m; xÞ ¼ FhA1 ðw;m; xÞ − FhA2 ðw;m; xÞ: ðD34Þ

We also have the tree level values htreeA1
¼ htreeA3

¼ htreeV ¼ htreeT1
¼ εðwÞ and htreeA2

¼ htreeT2
¼ htreeT3

¼ 0. With these definitions we
have

hX ¼
�
htreeX þ

X
Ξ;in

PΞ;n
uu;iiδ

Mui;Ξ;n
hX

	
: ðD35Þ

Since the sum over tastes acts in the same way for different form factors, we find

hT1
¼ hA1

hT2
¼ 0

hT3
¼ hA2

: ðD36Þ

We also find for B → D that fT ¼ fþ and confirm the one-loop relation hA1
¼ hV and f− ¼ 0.

3. Chiral logarithms

Denoting FhY ðw;mj;−Δ=mjÞ ¼ F̄Y
j as in [26], the sum in Eq. (D35) over n and i gives

δhX ¼ g2π
16π2f2

X
Ξ;in

PΞ;n
uu;ii

1

4
F̄Y
ui;Ξ;n

¼ g2π
16π2f2

×

�
1

4

X
Ξ
ð2F̄Y

πΞ þ F̄Y
KΞ
Þ
	
þ 1

4

X
Ξ
a2δ0Ξ

h
AΞF̄Y

π0Ξ
þ BΞF̄Y

ηΞ þ CΞF̄Y
η0Ξ
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¼ g2π
16π2f2

×

�
1

4

X
Ξ
ð2F̄Y

πΞ þ F̄Y
KΞ
Þ
	
þ

X
Ξ¼A;V

a2δ0Ξ
h
AΞF̄Y

π0Ξ
þ BΞF̄Y

ηΞ þ CΞF̄Y
η0Ξ

i
þm2

0

3

h
AIF̄Y

π0I
þ BIF̄Y

ηI þ CIF̄Y
η0I

i
; ðD37Þ

where A, B, and C are defined as in Eq. (D11). Following [61] to move from 4þ 4þ 4 to 1þ 1þ 1 flavor tastes of light
quark, we find after taking m0 → ∞,
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δhX ¼
�

g2π
16π2f2

	�
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16
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; ðD38Þ

where we have used the relations given in [60] for the
flavor-neutral pion mass eigenstates. Note that our results
here differ from those given in [26] by an overall factor of 3.
We have checked that our results match those in [59] for
hA1

; hA2
, and hA3

, and we have also checked that our zero
recoil results match those in [60]. The chiral logarithms,
logsYSUð3Þ, in Eq. (21), for B → D� thus take the form

logsYSUð3Þ ¼
1

16

X
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ðD39Þ

and for Bs → D�
s a similar calculation gives the logs

logsY
s

SUð3Þ ¼
1

16
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: ðD40Þ

The chiral logarithms are most sensitive to variation of the
pion and ηV;A masses, and the effect of the taste splittings
and hairpin contributions is most pronounced near the
“cusp” mπ ≈ Δ, which roughly coincides with the physical
pion mass. The sum over tastes appearing in Eq. (D39) acts
to wash out the cusp, averaging over the masses of the

different tastes [60]. This effect is somewhat mitigated for
HISQ quarks by the fact that the taste splittings are all
approximately proportional [47], withM2

πξ −M2
π5 ≈ nξa2δt,

where nA ¼ 1, nT ¼ 2, nV ¼ 3, and nI ¼ 4.
We can analyze the effect of taste splittings by expanding

the pion log terms to first order in a2, and dropping terms
proportional to a2F̄Y

π5 that produce only normal discretiza-
tion effects. This gives

logsYSUð3Þ ≈ a2ð2δt þ δ0V þ δ0AÞ
∂F̄Y

π5

∂m2
π5

: ðD41Þ

Together with the approximate relation, δ0V þ δ0A ≈ −2δt,
for HISQ [51,62], this leading order correction is
suppressed so there is no nonanalytic behavior in a.
This matches what was seen in [62], where a similar
approximate cancellation of leading order taste splitting
and hairpin terms was seen. Note, however, that in our
fits we use the full expressions given in Eqs. (D39)
and (D40).

APPENDIX E: COMPARISON TO PREVIOUS
HPQCD Bs → D�

s FORM FACTORS

In Figs. 26 and 27 we plot our previous results for Bs →
D�

s from [23] together with the updated form factors given
in this work. We see good agreement for the form factors
hA1

and hV and some differences for the form factors hA2

and hA3
. The improved calculation presented here has the

addition of a physical ensemble with a ≈ 0.06 fm, set 5,
and includes the additional B → D� correlator data that
informs the Bs → D�

s form factors through our chiral
extrapolation. Additionally, in this work we adopt the time
source binning strategy described in Appendix B, provid-
ing improved resolution of the correlator covariance matri-
ces. Reference [23] also used a BGL-like parametrization to
describe the kinematic dependence of the form factors,
compared to the simpler expression in powers of (w − 1)
used here. Plots showing form factor results for B → D�
resulting from both separate and simultaneous fit results are
included in the Supplemental Material, where we see that
fitting B → D� separately produces very similar form factor
results for B → D� to the simultaneous fit described in
Sec. IV B. We have also confirmed that fitting the Bs → D�

s
in isolation produces very similar form factor results to the
simultaneous fit.
Further investigation of the differences for Bs → D�

s
between this work and [23] found that the choice of ΔT2pt

in that work, for correlator fits on set 3, was too small, and
that this resulted in excited state contamination which
shifted the extracted matrix elements on set 3 upwards by
≈1σ. However, this had little impact on the final form
factors. Instead the differences seen in hA2

and hA3
arise

from the differences in the fit forms used for the
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chiral-continuum extrapolation. We see that applying the
chiral-continuum extrapolation used in [23] to the Bs → D�

s
dataset used in this work, excluding set 5, results in similar
form factors to those given in this work, except for hA2

and

hA3
, where ≈1–2σ differences are seen. The same picture

emerges if we apply the chiral-continuum fit used here to
the dataset used in [23]. We include in Figs. 26 and 27 the
results that would have been obtained in [23] if ΔT2pt ¼ 12

FIG. 27. Bs → D�
s HQET basis form factors hA2

and hA3
. We

show the results of this work as a blue band, compared to the
results of [23] given as a gray band. We also include a red band,
labeled [23]*, showing the result that would have been obtained
in [23] ifΔT2pt ¼ 12 had been used on set 3 of that work. Finally,
in yellow, we include the result of fitting the form factor data of
[23], with larger ΔT2pt on set 3, using the fit function Eq. (21).
Here, we see that both datasets produce consistent results for each
chiral continuum fit function and the differences arise from the
differences in the fit functions.

FIG. 26. Bs → D�
s HQET basis form factors hA1

and hV . We
show the results of this work as a blue band, compared to the
results of [23] given as a gray hatched band. We also include a red
band, labeled [23]*, showing the result that would have been
obtained in [23] if ΔT2pt ¼ 12 had been used on set 3 of that
work. Finally, in yellow, we include the result of fitting the form
factor data of [23], with larger ΔT2pt on set 3, using the fit
function Eq. (21). Here, we see that both datasets produce
consistent results for each chiral-continuum fit function.
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had been used on set 3 of that work, as well as the result of
fitting that corrected data using the chiral continuum fit
function given in Eq. (21). We see that the results for hA1

and hV are largely insensitive to the fitting scheme, but the
noisier form factors hA2

and hA3
are sensitive to the choice

of fit function at the level of a few σ relative to the statistical
and systematic uncertainties.

We conclude that the ≈1–2σ differences between this
work and [23] seen for hA2

and hA3
are a result of the much

more conservative description of kinematic dependence of
the form factors used in this work (Sec. IV B) and the use of
a z expansion in [23] whose form led to some bias in the
shape of the continuum form factors and an underestima-
tion of some uncertainties.
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