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Machine-learned normalizing flows can be used in the context of lattice quantum field theory to
generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work
demonstrates how these correlations can be exploited for variance reduction in the computation of
observables. Three different proof-of-concept applications are demonstrated using a novel residual flow
architecture: continuum limits of gauge theories, the mass dependence of QCD observables, and hadronic
matrix elements based on the Feynman–Hellmann approach. In all three cases, it is shown that statistical
uncertainties are significantly reduced when machine-learned flows are incorporated as compared with the
same calculations performed with uncorrelated ensembles or direct reweighting.
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I. INTRODUCTION

Understanding the strongly interacting sector of the
Standard Model of particle physics, described by the
theory of quantum chromodynamics (QCD), is essential
for advancing particle and nuclear physics. The numerical
framework of lattice QCD is a systematically improvable
tool to explore the dynamics of the strong nuclear
force. This approach has enabled precise calculations
across applications spanning from hadron structure to
high-temperature QCD and nuclear physics [1,2].
Nevertheless, there is great potential to extend the reach
of lattice QCD beyond the current state of the art if
computational challenges such as critical slowing down,
topological freezing, and signal-to-noise problems can be
overcome. In this context, emerging machine learning
techniques offer a promising avenue towards mitigating
these computational obstacles [3,4].
A growing community effort is developing at the

intersection of machine learning and lattice QCD—see,
e.g., Refs. [5–9] for a selection of applications. In particu-
lar, generative flow models [10–12] are one of several

promising pathways which show potential to accelerate
the sampling of lattice field configurations. This line of
investigation is developing, with demonstrations in 2D
theories [9,13–40] and first applications to 4D gauge
theories with and without fermions [41–43]. While the
field is progressing rapidly, achieving high-quality models
that can be applied at the scale of state-of-the-art calcu-
lations still requires further engineering [44]. In addition to
their promise in the context of sampling, flow models—
functioning as approximate maps between distributions—
can be used to accelerate lattice QCD calculations in
qualitatively different ways. For example, flow models
provide a promising new approach to determining thermo-
dynamic observables [9,30,39,45].
In this work, we explore applications which utilize

flows to map gauge field configurations between distri-
butions defined by different Euclidean lattice action
parameters. Such flows can be used to generate multiple
statistically correlated ensembles at different parameters.
As we explore in this work, this may be particularly
valuable when the variation of some quantity with respect
to the action parameter is of physical or computational
interest—see also Refs. [46,47]. The advantage of flows
in this context originates from correlated cancellations of
uncertainties between expectation values evaluated at
different action parameters, which leads to reductions
in the number of configurations needed to achieve a fixed
statistical error.
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Examples of physically relevant applications of deriva-
tives with respect to action parameters include continuum
and chiral extrapolations as well as the computation of
matrix elements such as the chiral condensate, the nucleon
sigma term, or other observables, using Feynman–Hellmann
techniques. Another is derivatives with respect to the
electromagnetic coupling for scale setting or to compute
isospin breaking corrections in QCDþ QED [48,49]. One
may also consider applications in theories with a sign
problem, e.g., to derivatives with respect to the baryon
chemical potential or the QCD θ-term. In all of these cases,
the distributions to be related by a flow transformation are
much more similar than in applications intended to accel-
erate sampling, and current flow methods can already be
applied at the scale of typical lattice QCD calculations. Three
selected applications are investigated, namely the continuum
extrapolation of gradient flow scales, the computation of the
gluon momentum fraction of the pion in quenched lattice
QCD using the Feynman–Hellmann approach, and the mass
dependence of observables in Nf ¼ 2 QCD.
This paper is organized as follows. In Sec. II, we discuss

preliminaries on flows, their applicability in the context of
correlated ensembles, and the residual flow architectures
used in this work. The three numerical demonstrations
are presented in Sec. III. We conclude in Sec. IV. Appendix
provides further details of the flow models used in
this work.

II. FLOWS FOR THE GENERATION OF
CORRELATED ENSEMBLES

A. Flows for lattice QCD

This section presents an introduction to normalizing
flows [10–12], reviewing the key ideas relevant for the
present work.
A “flow” is defined as a diffeomorphism f between

probability distributions that maps samples from a base
(or prior) distribution, rðUÞ, to a model distribution with
density

qðVÞ ¼ rðUÞ
���� det ∂fðUÞ

∂U

����
−1
; ð1Þ

where V ¼ fðUÞ. Flows can be constructed such that they
have many free, trainable parameters. These parameters
may be optimized such that the model distribution approx-
imates some target distribution p, i.e., qðVÞ ≃ pðVÞ.
For the applications explored in this work, flow models

are constructed in which the samples U are lattice gauge-
field configurations, and the probability distributions pðUÞ
and rðUÞ are defined in terms of Euclidean lattice actions
such that rðUÞ ∝ expð−S0ðUÞÞ, and pðVÞ ∝ expð−S1ðVÞÞ.
In most cases, it is not necessary to know the normali-
zation of p or r (the exception being thermodynamic
observables [9]).

Expressive flow transformations can be constructed in a
variety of ways, for example as the composition of n
invertible layers

f ¼ g1∘g2∘…∘gn: ð2Þ

Architectures for invertible layers gi which act on lattice
gauge fields have been discussed in Ref. [43]. The
particular constructions used in this work are detailed in
Sec. II C. Given a model, its trainable parameters may be
optimized in various ways. One choice is to minimize the
Kullback–Leibler (KL) divergence [50] between the model
and target distributions. Approaches such as path gradients
[51], related control variate methods [43], as well as the
“REINFORCE” algorithm [52], may be be used to improve
and accelerate training dynamics by reducing the variance
associated with stochastic gradient estimates. After opti-
mization, model quality can be characterized using the
Effective Sample Size per configuration (ESS),

ESS ¼ 1

N
½PN

i¼1 wðViÞ�2P
N
i¼1½wðViÞ�2

; ð3Þ

estimated using N gauge field configurations generated
from qðVÞ, and where wðViÞ ¼ pðViÞ=qðViÞ is the
reweighting factor of the ith configuration. The values of
the ESS lie in the interval ESS∈ ½1=N; 1�, with ESS ¼ 1
corresponding to a perfect model.
In practice, a learned flow is not perfect, but may

function as an approximate map between distributions.
To ensure correctness of expectation values computed on
the flowed configurations, one may use the independence
Metropolis algorithm [53–55] or simply reweighting,
with the weight of each configuration given by wðUÞ.
Expectation values of observables such as plaquettes,
hadronic correlation functions, or the topological charge
can be directly reweighted as

hOip ¼ hwOiq; ð4Þ

where the notation hiq is used to refer to expectation
values with respect to the probability distribution q, and we
assume the reweighting factors have been properly nor-
malized such that hwiq ¼ 1. Derived quantities, such as
gradient flow scales or hadron masses, can be computed
from reweighted correlation functions. Statistical uncer-
tainties in reweighted quantities are typically larger than
those before reweighting. A rough estimate of the increase
in the variance is a factor of ≃1=ESS.

B. Correlated ensembles and flows

While applications of flows to accelerate the generation
of field configurations continue to advance, here we
describe another avenue for flow models to improve lattice
QCD calculations by reducing the variance of observables
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that can be computed from differences between quantities
at different action parameters. The key idea is the follow-
ing. Consider a generic parameter of the action, α. The goal
is to compute some observable O as a function of α, and in
particular the derivative

dhOi
dα

≃
hOiα1 − hOiα2

Δα
; ð5Þ

where the right-hand side is a finite-difference approxima-
tion of the derivative using Δα ¼ α1 − α2, with hiα de-
noting the expectation under the distribution defined by the
action parameter α, i.e., pα. Higher order derivatives, or
derivatives of one observable with respect to another, may
be computed in a similar way.
In this work, we consider three qualitatively different

approaches to the computation of the quantity in Eq. (5).
The first two are standard tools in common use:
(1) Use a very small step Δα ¼ ϵ, and compute the

numerator in Eq. (5) with ϵ reweighting:

hOiα1 − hOiα1þϵ ¼ hO − wϵOiα1 ; ð6Þ

where wϵ ¼ pα1þϵ=pα1 . For this approach, the ESS
generically degrades as ESS ¼ 1 − kðΔαÞ2 þ � � �,
where k is a problem-specific constant. The sepa-
ration ϵ may be made small without compromising
signal to noise due to correlated noise cancellations
between the two expectation values. As ϵ → 0 it
becomes exact, recovering an estimate statistically
identical to that obtained by applying the derivative
analytically.

(2) Generate independent ensembles to separately com-
pute expectation values at α1 and α2 in Eq. (5). This
enables use of much more widely separated α1 and α2
than accessible with reweighting, thereby allowing
exploitation of the bias-variance tradeoff to reduce
statistical uncertainties while accepting additional dis-
cretization artifacts from the finite-difference approxi-
mation in order to improve signal-to-noise. However,
this effect must be sufficiently large to compensate for
the lack of correlated noise cancellations.

These two methods each have different capabilities, with
each useful for different applications. Incorporating flows
provides an additional approach that combines some of the
advantages of both:
(3) Use a trained flow model to map configurations

between the distributions given by α1 and α2.
Including flow reweighting factors, correlated
differences can be calculated as:

hOðUÞ − wðfðUÞÞOðfðUÞÞiα1 ; ð7Þ

where wðfðUÞÞ ¼ pα2ðfðUÞÞ=qðfðUÞÞ, such that a
perfect flow would remove the reweighting factors

entirely. This approach benefits from the same
correlated cancellation of uncertainties as does ϵ
reweighting, while allowing for larger steps in Δα
to exploit the bias-variance tradeoff as does the
approach using independent ensembles.

In Sec. III below, we provide numerical demonstrations of
the advantages of this flow-based approach.
Note that the latter two approaches, with finite separation

in α, can be combined with improved finite-difference
estimators of derivatives to reduce the OðΔαÞ bias, or by
fitting the α dependence at the cost of introducing model
dependence.

C. Architecture based on residual flows

The flow architecture used in this work is based on that
introduced in Ref. [43], with a series of improvements that
are detailed below. The flow transformation is defined as
the composition of trainable gauge-equivariant layers that
act directly on the gauge links. The transformation of a
gauge field U → U0 through an SUðNÞ-residual layer can
be expressed as

U0
μðxÞ ¼ egxðUÞUμðxÞ; ð8Þ

where gxðUÞ is an algebra-valued matrix which can
in principle have an arbitrary dependence on the entire
gauge-field configuration, as long as it transforms locally
under gauge transformations, gxðUÞ → Ω†

xgxðUÞΩx; here
Ωx denotes a gauge transformation and the subscript labels
the spacetime dependence. This transformation can be
inverted by fixed point iteration, with a unique solu-
tion guaranteed if the Lipschitz continuity condition is
satisfied [43].
For numerical tractability, each layer partitions the gauge

field and transforms only the active links, defined as those
with fixed direction μ on a subset of lattice sites fxag,
conditioned on the values of the remaining frozen links Uf.
Each layer acts as

U0
μðxaÞ ¼ egxðUf;UμðxaÞÞUμðxaÞ; ð9Þ

that is, gx for any given active link depends on all frozen
links but only the same active link. This separation of
variables allows efficient computation of the Jacobian of
the transformation using automatic differentiation as
described in Eq. (26) of Ref. [43]. In the present work,
we use two partitioning schemes (also referred to as
“masking patterns”) for the site index:
(1) A checkerboard or “mod 2” masking pattern, where

the active links are those with direction μ in the
positions that satisfy ðpþP

μ xμÞ ¼ 0 ðmod 2Þ for
p∈ 0, 1. A stack of eight layers is needed to
transform all links, i.e., two complementary checker-
boards in each of the four directions μ. This is a
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simple nontrivial choice that updates all variables
within a small number of layers.

(2) A “mod 4” masking pattern, where the positions
of active links satisfy ðpþP

μ xμÞ ¼ 0 ðmod 4Þ, for
p∈ 0 , 1, 2, 3. Sixteen layers are thus needed to
transform every link on the lattice. This choice is
more expensive than the “mod 2” pattern described
above, but it can also be more expressive by
allowing a more complicated dependence of the
transformation on the frozen links.

The function gxðUf;UμðxaÞÞ must be constructed in a way
that is expressive but simple to evaluate. One simple
construction utilizes 1 × 1 staples (depicted in Fig. 1),

SRx;μνðUÞ ¼ Uνðxþ μÞU†
μðxþ νÞU†

νðxÞ and

SLx;μνðUÞ ¼ U†
νðxþ μ − νÞU†

μðx − νÞUνðx − νÞ; ð10Þ

such that the 1 × 1 loops,

WR
x;μνðUÞ ¼ UμðxÞSRx;μνðUfÞ and

WL
x;μνðUÞ ¼ UμðxÞSLx;μνðUfÞ; ð11Þ

have the same gauge transformation as gx. One can then
define a covariant algebra-valued object as, e.g.,

Gx;μ ¼
X
ν≠μ

αð1Þμν PðWx;μνðUÞÞ

þ
X
ν;ρ≠μ

αð2ÞμνρPðWx;μνðUÞWx;μρðUÞÞ; ð12Þ

where Wx;μν ¼ WR
x;μν þWL

x;μν, and PðWÞ is the gauge-
covariant traceless anti-Hermitian projection of W. More-

over, αð1Þμν and αð2Þμνρ are d − 1 and ðd − 1Þ2 trainable
parameters in d spacetime dimensions for fixed μ, respec-
tively. Any polynomial function of Gx;μ with coefficients

that are arbitrary function of Tr½Gx;μG
†
x;μ� is thus gauge

covariant and can be used to construct gxðUÞ. One choice of
such a construction is:

gxðUf;UμðxaÞÞ ¼ Gx;μ × fðTr½Gx;μG
†
x;μ�Þ; ð13Þ

where fðxÞ is, e.g., a ratio of polynomials—see the
Appendix for an example.
A useful modification to this construction is to consider

Wilson loops that are larger than 1 × 1. Sums of such loops
can be constructed iteratively, by repeatedly adding
together links and staples which transform in the same
way, and finally computing a 1 × 1 loop. This is inspired by
similar transformations used in Refs. [41,56] and resembles
the learned smearing of Ref. [57]. This gauge-equivariant
“convolution” can be written explicitly as the recursion

Vðiþ1Þ
μ ¼ VðiÞ

μ þ
X
ρ≠μ;
l

ηli;ρ
�
Rl
μρðVðiÞÞ þ Ll

μρðVðiÞÞ�; ð14Þ

where

Vð0Þ
μ ðxÞ ¼

�
UμðxÞ UμðxÞ is frozen;
0 UμðxÞ is active;

ð15Þ

ηli;ρ are trainable coefficients, and Ll and Rl label generic
staplelike objects that transform in the same way as the
gauge links. Here we use two explicit choices, R1

μν ¼
ðSRx;μνÞ† in Eq. (10) and R2

μν ¼ WR
x;μνUμ, and similarly for

Ll
μν; see Fig. 1. Note that in Eq. (14), these objects are

computed using the variables VðiÞ. After iterating, VðiÞ is
not an element of the gauge group, but this is not important
since ultimately there is a projection to the algebra to
construct Gμ in Eq. (12).
The iterative procedure in Eq. (14) can be used to

construct expressive residual layers. After applying npt
iterations of Eqs. (14) and (15), the resulting values of VðnptÞ

can be used to construct the quantity gxðVðnptÞ; UμðxaÞÞ that
enters in the transformation of the residual layer defined in
Eq. (9). Specifically, the convoluted frozen links, VðnptÞ, are
used to construct the staples in Eq. (11) instead of Uf.

III. EXAMPLE APPLICATIONS

Physics contexts in which derivatives of the form of
Eq. (5) arise are ubiquitous; here we discuss three exam-
ples. First, derivatives with respect to the gauge coupling β
can be used to constrain continuum extrapolations. Second,
matrix elements may be computed using Feynman–
Hellmann techniques, where derivatives with respect to
action parameters correspond to single insertions of the
corresponding operator. Second-order derivatives using
Feynman–Hellmann also access physically relevant proc-
esses, e.g., Compton scattering. Third, derivatives with
respect to the quark mass can be employed to constrain
chiral extrapolations or in calculations of, e.g., sigma terms.
This section presents numerical demonstrations using flows
to improve estimates of these three kinds of derivatives.
The flow models used in these applications are summa-

rized in Table I. All flow models have been optimized using
FIG. 1. Sketch of the recursive transformation, Eq. (14), to
build generic Wilson loops in the residual layers.
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path gradients [51] as described in Ref. [43]. Gauge
field samples for both training and evaluation are obtained
using standard Markov Chain Monte Carlo methods,
specifically the (pseudo-)heatbath algorithm with over-
relaxation [58–62] for Yang–Mills theory and the
Hybrid/Hamiltonian Monte Carlo [63] (HMC) algorithm
for QCD.

A. Continuum limit of gauge theories

One application in lattice QCD for flow-correlated
ensembles is in taking the continuum limit. For a numerical
demonstration, we consider gradient flow scales.
We use the pure-gauge SU(3) theory, with action

SgðUÞ ¼ −
β

Nc
Tr Re

X
μ>ν

Uμν; ð16Þ

where β is the inverse squared bare gauge coupling andUμν

is the plaquette. The continuum limit of lattice spacing
a → 0 corresponds to β → ∞.
One class of observables is obtained by using the

gradient flow; in particular, a scale tc can be defined
implicitly from

ht2EðtÞijt¼tc ¼ c; ð17Þ

where c is a numerical constant, and EðtÞ is the energy
density at flow time t, for which we use the plaquette
definition; see Eq. (3.1) in Ref. [64]. The choice c ¼ 0.3
defines the scale t0.3, often referred to as “t0.” One can
compute the ratio of two gradient flow scales t0.3=t0.35,
which can be related to the ratio of the strong coupling at
two different energy scales [64]. The continuum limit of
this quantity takes the form

t0.3
t0.35

����
lat

¼ t0.3
t0.35

����
cont

þ k1
a2

t0.3
þ � � � ; ð18Þ

where k1 is a dimensionless constant, the ellipsis indicates
higher orders in a2, the subscripts “lat” and “cont” refer to
finite-a and continuum values, and discretization effects are
parameterized by powers of a2=t0.3.
The standard approach for performing a continuum

extrapolation in lattice QCD relies on computing the

desired quantity at several different lattice spacings using
independent ensembles and extrapolating. This method can
be improved by additional constraints on such an extrapo-
lation in the form of derivatives

kða2Þ ¼ dðt0.3=t0.35Þ
dða2=t0.3Þ

¼ k1 þOða2Þ: ð19Þ

Without generating more ensembles, this derivative can be
computed using finite differences combined with ϵ reweight-
ing or with flows to nearby values of the lattice spacing, or
equivalently, values of the bare gauge coupling β:

kða2Þ ≃
t0.3
t0.35

jβþΔβ −
t0.3
t0.35

jβ
a2
t0.3

jβþΔβ − a2
t0.3

jβ
: ð20Þ

Note that the gradient flow scales tc are derived quantities,
so we use the notation “jβ” to indicate that they have been
computed in a theory with the given β.
To demonstrate the advantage gained by using flows, we

compute Eq. (20) using ϵ reweighting [Eq. (6)] and the
flowed approach [Eq. (7)] and compare. For this test, we
use 96k configurations at β ¼ 6.02 on volume L4 ¼ 164.
For ϵ reweighting, we use a step of Δβ ¼ 0.001, leading to
an ESS of 96% on this ensemble. For the flowed approach,
we use Model A of Table I, which maps from β ¼ 6.02 to
β ¼ 6.03, that is Δβ ¼ 0.01. This model achieves an ESS
of 67%, which is significantly higher than direct reweight-
ing, which has an ESS of 2% at the same target parameters.
Using these approaches, we find

Flow∶ kða2Þ ¼ −0.0167ð41Þ;
ϵ reweighting∶ kða2Þ ¼ −0.0208ð63Þ; ð21Þ

that is, the statistical uncertainly using ϵ reweighting is 50%
larger than that obtained with flows. In other words, one
needs about 2.4× fewer samples using the flow method as
compared with ϵ reweighting to achieve the same statistical
uncertainty.
Assuming that cutoff effects are already in the linear

regime at this value of the lattice spacing, one can use this
procedure to perform a simple continuum extrapolation
of the ratio of flow scales. The continuum-extrapolated

TABLE I. Summary of flow models used in this work. All flow models have been trained on a hypercubic lattice volume of size 44,
while the evaluation lattice volume at which the flows are used (Eval. vol.) is given explicitly in the table.

Model Prior type Parameters Target type Parameters Train ESS Eval vol ESS

A Pure Gauge SU(3) β ¼ 6.02 Pure Gauge SU(3) β ¼ 6.03 99.72% 164 67%
B1 Pure Gauge SU(3) β ¼ 6.00 Feynman–Hellmann β ¼ 6.00; λ ¼ þ0.01 99.4% 16 × 83 84%
B2 Pure Gauge SU(3) β ¼ 6.00 Feynman–Hellmann β ¼ 6.00; λ ¼ −0.01 99.4% 16 × 83 84%
C Nf ¼ 2 QCD β ¼ 5.60, κ ¼ 0.153 Nf ¼ 2 QCD β ¼ 5.60, κ ¼ 0.1545 99.2% 84 48%
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results show the same hierarchy of uncertainties as in
Eq. (21):

Flow∶ t0.3=t0.35jcont ¼ 0.8539ð13Þ;
ϵ reweighting∶ t0.3=t0.35jcont ¼ 0.8552ð20Þ: ð22Þ

These results are shown in Fig. 2 for the two methods.

B. Hadron structure with
Feynman–Hellmann techniques

Another promising application of machine-learned flows
is in the calculation of matrix elements via the Feynman–
Hellmann (FH) approach—see Refs. [65–68] for recent
applications. In this framework, a matrix element

Th ¼ hhjOjhi; ð23Þ
where h is a stable hadron at rest and O is the operator
of interest projected to zero momentum, is computed by
taking derivatives with respect to a parameter in the action.
Specifically, adding the operator to the action as

S → Sλ ¼ Sþ λO; ð24Þ
the matrix element can be obtained as

Th ¼
1

2Mh

dMh

dλ

����
λ→0

; ð25Þ

where Mh is the hadron mass. In practice, this can be
estimated using a finite-difference approximation of the
derivative, e.g.,

Th ¼
1

2Mhð0Þ
MhðþλÞ −Mhð−λÞ

2λ
þOðλ2Þ: ð26Þ

Other improved finite-difference approximations or mod-
eling-based approaches may also be used to better control
the Oðλ2Þ bias. As a numerical demonstration, we consider
a Feynman–Hellmann calculation of the gluon momentum
fraction of the pion in the quenched approximation of
lattice QCD, similar to Ref. [65]. In this case the operatorO
may be defined as

O ¼ −
β

Nc
TrRe

�X
i

Ui0 −
X
i<j

Uij

�
; ð27Þ

where i; j∈ ð1; 2; 3Þ, which is a discretization of the
Energy-Momentum-Tensor (EMT). The matrix element
can then be related to the gluon momentum fraction of
the hadron hxig by

dMh

dλ

����
λ→0

¼ −
3Mh

2
hxilattg ; ð28Þ

where the superscript “latt” emphasizes that it is a bare
matrix element. When adding this operator to the gauge
action with a small parameter λ, the full action can be seen
as an anisotropic action with different couplings for the
temporal and spatial plaquettes:

Sλ ¼ −
β

Nc
ð1þ λÞReTr

X
i

Ui0 −
β

Nc
ð1 − λÞReTr

X
i<j

Uij:

ð29Þ

It is therefore possible to use flow transformations to map
from the isotropic pure gauge action at λ ¼ 0 to nonzero
values of λ. This target is referred to as “Feynman–
Hellmann” in Table I.
We test the flowed approach by computing the difference

in Eq. (26) using an ensemble generated at λ ¼ 0 and
flowed to nonzero �λ values. The choice λ ¼ 0.01 is small
enough that Oðλ2Þ discretization artifacts in the derivative
are negligible; compare to the results in Ref. [65]. We train
two flows, B1 and B2 in Table I, which achieve an ESS of
84% at the evaluation volume, cf. the direct reweighting
ESS of around 2% at the same values of λ. The target
parameters are matched to Ref. [65], albeit at a smaller
volume. The value of β ¼ 6 corresponds to a lattice spacing
of a ≃ 0.09 fm (using the Sommer radius to set the
scale [69]), and the hopping parameter κ in the quenched
Dirac operator—related to the bare quark mass as
κ ¼ 1=ð2m0 þ 4Þ—is taken to be κ ¼ 0.132. The lattice
spatial and temporal extent are L ¼ 8 and T ¼ 16, such that
MπL > 4. For the purpose of this demonstration, we
approximate the pion masses using the effective mass at
the center of the lattice,

cosh aMπ ¼
CπðT=2þ 1Þ þ CπðT=2 − 1Þ

2CπðT=2Þ
; ð30Þ

FIG. 2. Continuum extrapolation of the ratio of two gradient
flow scales t0.3=t0.35, using the quantity in the numerator to set the
scale. Two methods are shown: ϵ reweighting (dotted grey line),
and using a flowed ensemble (solid orange line). Statistical
uncertainties are displayed as bands.
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where CπðtÞ is the pion correlator. In physical units,
Mπ ≃ 1.2 GeV.
For evaluation, 14k gauge-field configurations are gen-

erated using one heatbath step with five overrelaxation
steps between measurements for each independent
ensemble. Correlation functions are measured with four
smeared sources per configuration with point sinks, using
Chroma [70]. The pion mass as a function of λ is shown in
Fig. 3a, as determined using ϵ reweighting, independent
ensembles, and flowed ensembles. Since the flow model
quality at the volume of interest is very high, uncertainties
in the observables computed on flowed ensembles are very
similar to those computed using ensembles generated with
heatbath.
The physical quantity of interest, hxilattg , depends on the

difference between the pion mass determined at different
values of λ. When this difference is computed using
independent ensembles, statistical uncertainties add in
the usual way, and the error in the correlated difference
is larger than that of each MπðλÞ estimate. In contrast,
for flowed ensembles or ϵ reweighting, cancellations of
correlated fluctuations significantly reduce the variances.
This can be seen in Fig. 3b, which shows hxilattg computed
following the different methods outlined in Sec. II. The use
of flowed ensembles reduces the uncertainty by a factor
of ≃7 with respect to independent ensembles, and ≃5
with respect to ϵ reweighting (using λ ¼ 10−4 with an
ESS of 99.93%). Thus, incorporating flows into this
calculation leads to a reduction of more than 20× in the
number of configurations necessary to achieve the same
statistical error.

It is also possible to compute the second derivative ofMπ

with respect to λ, which can be approximated as

d2Mπ

dλ2

����
λ¼0

≃
MhðþλÞ þMhð−λÞ − 2Mhð0Þ

λ2
: ð31Þ

While for the particular case of the gluon energy-
momentum tensor this derivative is not physically relevant,
second derivatives are related to matrix elements of two-
current insertions—see for instance Compton scattering
applications [71,72]. Using the same three methods as for
the first derivative, we find:

Flow∶
d2Mπ

dλ2

����
λ¼0

¼ −6ð15Þ;

ϵ reweighting∶
d2Mπ

dλ2

����
λ¼0

¼ −140ð110Þ;

Indep ens ∶
d2Mπ

dλ2

����
λ¼0

¼ −120ð150Þ: ð32Þ

All the determinations yield numbers that are zero within
two standard deviations, but the relative magnitude of the
uncertainties can nevertheless be used to assess the advan-
tage of the flowed approach. In particular, for the second
derivative, the error reduction when using flows is larger
than for the case of the first derivative, a factor of 7–10
smaller than that obtained using ϵ reweighting or indepen-
dent ensembles. This, in turn, leads to requiring one to two
orders of magnitude fewer configurations to achieve some
target statistical precision.

FIG. 3. (a) Pion mass in lattice units as a function of the coupling to the gluonic energy-momentum tensor λ. Marker shapes denote
how the ensembles were obtained: orange circles for heatbath ensembles at fixed values of λ, blue squares for ensembles flowed from
λ ¼ 0, and red triangles when using configurations generated at λ ¼ 0 and reweighted to λ ¼ ϵ ¼ 10−4. The pion mass is evaluated in
quenched lattice QCD at β ¼ 6.0, κ ¼ 0.132, L ¼ 8, and T ¼ 16. (b) Bare gluon momentum fraction of the pion from Eq. (28) using a
finite-difference approximation computed using the three different methods: independent heatbath ensembles, ϵ reweighting, and
correlated flowed ensembles.
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C. Mass dependence of QCD observables

As a third example, we compute derivatives with respect
to the quark mass in QCD withNf ¼ 2 unimproved Wilson
fermions. As a simple demonstration, we work directly
with the action including the exact fermion determinant,

SðUÞ ¼ SgðUÞ − log detDw½U�D†
w½U�; ð33Þ

where SgðUÞ is the plaquette gauge action and Dw is the
discrete standard Wilson operator. The quark mass enters
in the action via the hopping parameter κ. This target is
referred to as “Nf ¼ 2 QCD” in Table I.
For this test, we compute the derivative of some simple

observables (generically labeled as X) with respect to κ,
approximated via finite differences:

dX
dκ

≃
Xðκ2Þ − Xðκ1Þ

κ2 − κ1
: ð34Þ

Depending on the observable, such derivatives can be
useful, e.g., to extract sigma terms or to constrain chiral
extrapolations. Here we specifically consider the average
plaquette, the squared topological charge measured using
the gradient flow at flow time t=a2 ¼ 2, and gradient flow
scales tc.
We train a flow to map configurations from κ ¼ 0.1530

to κ ¼ 0.1545 at β ¼ 5.6 (Model C in Table I). Such
parameters are close to those in Ref. [73]. We use 9k
configurations generated using standard HMC with pseu-
dofermions. Note, however, the reweighting factor and KL
divergence for each configuration are computed with
Eq. (33); this is statistically consistent and introduces no
approximations. At the evaluation volume of 84, the flow
achieves ESS ¼ 48%, which should be compared with the
ESS ¼ 28% obtained using direct reweighting to the same
target parameters.
The results are given in Fig. 4, which compares the

(normalized) values of several observables computed using
the two methods, i.e., correlated flowed ensembles and ϵ
reweighting (with Δκ ¼ 3 × 10−4 for an ESS of 95%).
At these statistics and for these choices of κ, independent
ensembles result in statistical errors ≳2× larger than those
attained with flows, and we do not display them. In all
cases, flows provide a variance reduction and the central
values are consistent within a standard deviation with those
obtained with independent ensembles, which indicates that
systematic errors in the finite-difference approximation
of the derivative are not significant in this example. The
error reduction varies between observables in the range
∼20%–40%. In particular, the largest reduction is seen for
the 1 × 1 plaquette loop, while the smallest is seen for the
topological charge. Thus, depending on the observable of
interest, one requires a factor of 1.5 − 2× fewer configu-
rations to obtain a comparable statistical error when
using flows.

IV. CONCLUSION

In thiswork,we present the application ofmachine-learned
flows to the computationofobservables involvingderivatives.
Specifically, we use flows to map ensembles between dis-
tributions defined by different parameters in the lattice action.
By exploiting correlated cancellations of uncertainties
between these ensembles, this application has the potential
to provide a computational advantage in the evaluation of
finite-difference approximations of derivatives.
To illustrate this idea, we showcase three numerical

demonstrations in the context of lattice QCD: continuum
limit extrapolations, matrix elements using the Feynman–
Hellmann approach, and themass dependenceof observables.
In all cases, flows provide a reduction of variance, which
implies that fewer configurations are needed to achieve the
same statistical error. The improvement factor for all dem-
onstrations of this work, defined as the variance reduction in
observables computed using flowswith respect to ϵ reweight-
ing, is summarized in Fig. 5. These values are in the range of
1.5× for observables in QCD to more than 20× for quantities
in the Feynman–Hellmann approach. With higher-quality
flow models, these factors can be improved.
This comparison does not account for the differing costs

of the different steps in each method, namely generating
the initial ensemble with heatbath, applying the flow
(in the flowed case), and measuring correlation functions.
Of course, the potential advantages of this approach depend
sensitively on not only the model used, but on the particular
application, the cost of evaluating observables, how auto-
correlations are treated, and the precision goal. For a

FIG. 4. Illustration of the error reduction in derivatives of
observables with respect to the action parameter κ. Wn×n is the
average square Wilson loop of size n, Q2 is the squared
topological charge defined via the gradient flow, and tc labels
gradient flow scales, as in Eq. (17). The y-axis shows the values
of the observables and their statistical errors normalized to the
value obtained with flows. Results that incorporate flows are
shown as blue squares, while the errors with ϵ reweighting are
denoted by red triangles.
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ballpark comparison, consider the results for the compu-
tation of matrix elements in the Feynman–Hellmann
approach. In this application, the cost of applying the flow
is comparable to the cost of measuring correlation func-
tions, while the cost of a heatbath update is less by an order
of magnitude. This amounts to a factor of ≲3 increase in
computational cost to achieve a variance reduction by a
factor of more than 20. This constitutes a real computa-
tional advantage of approximately one order of magnitude,
neglecting the costs of training. Given expected further
improvements through the continued development of flow
architectures, these results are promising.
This work focuses on target actions that only depend on

the gauge fields, e.g., pure gauge SU(3), quenched QCD,
and exact-determinant QCD. To generalize these results to
state-of-the-art lattice QCD scales, where the fermion
determinant cannot be explicitly evaluated, one must
combine these flows with pseudofermion flows for
QCD, as explored in Refs. [18,41,42].
As flow model technology for lattice QCD continues to

advance, applications of correlated ensembles could be
extended to compute other interesting quantities, such as
sigma terms of hadrons or observables in QEDþ QCD. If
the success seen in the proof-of-principle applications of
this work can be achieved in such contexts, it holds the
potential to drive substantial advances in the field.
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APPENDIX: DETAILS OF MODELS

In this appendix, we provide some additional details of
the models of this work and the scheme used to train them.
It is important to stress that the hyperparameters and
training schemes of these models have not been fine-tuned
to be optimal, but they suffice for the present demonstra-
tion. It is therefore likely that the model quality can be
increased with further training or simple modifications of
the hyperparameters.
The layers considered in this work use a ratio of

polynomials

fðxÞ ¼ 1

1þ 2x
a0 þ a1x
b0 þ b1x

ðA1Þ

to construct gx in Eq. (13), where ai and bi are trainable
parameters.
All models have npt ¼ 6, where npt is the number of

iterations of Eq. (14) in each layer. This choice has been
found to be empirically better than lower values of npt. In
models A, B1, and B2 we alternate the masking pattern
between mod 2 or mod 4, since empirically this results in
slight improvements compared to just using the mod 2
masking at the same computational cost (a mod 4 stack is

FIG. 5. Summary of the variance reduction in observables
computed from derivatives with respect to the action parameters
when using flows compared with ϵ reweighting. The improve-
ment factor is defined as the ratio of variances of the observables
computed with ϵ reweighting over flows. The label “Nf ¼ 2

QCD” denotes derivatives of observables with respect to κ in two-
flavor QCD, the label “Pure Gauge” corresponds to the result for
the continuum limit extrapolation of gradient flow scales in the
pure gauge theory, and the label “Feynman–Hellmann” indicates
observables computed using the Feynman–Hellmann approach in
quenched QCD.
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computationally equivalent to two mod 2 stacks). The
model architectures are shown in Table II.
The models are optimized by minimizing the reverse KL

divergence:

DKL;rev ¼
1

B

XB
i¼1

½log qðUiÞ þ SðUiÞ� þ const; ðA2Þ

where the sum runs over the B configurations in a batch and
the (unknown) normalization constant need not be evalu-
ated for optimization. Samples from the prior distribution
are generated using heatbath/overrelaxation (pure gauge) or
HMC (QCD). The training scheme consists of a constant
learning rate for a fixed number of gradient steps. We use a
constant batch size to train each model. Between gradient
steps, each configuration in the batch is evolved independ-
ently using the corresponding update algorithm. These
details are summarized in Table II.
In all cases, we use path gradients, which are imple-

mented by computing the gradients for optimization using
the path derivative rather than the total derivative:

d log qðUÞ
dθ

→
∂ logqðUÞ

∂U
dU
dθ

: ðA3Þ

This reduces the variance of the gradients without changing
their expectation. See Ref. [51] for more details.
These models have been trained for different wall times:

ten days using six nodes with eight NVIDIA A100 GPUs
each for model A, two days using two nodes for models B1
and B2, and two days using four nodes for model C. Note
that no attempts have been made to optimize either the
training procedure nor implementation of the approach to
reduce training times.
A sufficient condition to guarantee invertibility of the

residual layers (Lipschitz condition) is

kgxðV1Þ − gxðV2Þk < kV1 − V2k; ðA4Þ
where k · k denotes the matrix norm. This is not explicitly
enforced in the transformations used in this work, but we
have not detected any violations in trained models. See
Appendix B of Ref. [82] for a discussion on the Lipschitz
condition.
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