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This paper is devoted to the study of quantum chromodynamics (QCD) equation of state in external
magnetic field and nonzero baryon density. Our study is carried out by means of lattice simulation with
2þ 1 dynamical staggered quarks at the physical masses. The simulation is conducted at imaginary baryon
chemical potential what allowed us to overcome the sign problem. We expand the pressure in the baryon
imaginary chemical potential and study three leading nonzero coefficients in this expansion. These
coefficients were calculated for the following values of magnetic field: eB ¼ 0.3, 0.6, 1.2 GeV2 with the
lattice sizes 8 × 323, 10 × 403, 12 × 483. Using these data we take continuum limit for the coefficients. Our
results indicate considerable enhancement of the expansion coefficients by the magnetic field.
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I. INTRODUCTION

Equation of state (EoS) of quantum chromodynamics
(QCD) plays a fundamental role both from theoretical and
practical points of view. From the theoretical perspective
EoS contains an important information about thermo-
dynamic properties and QCD phase transitions. On the
other hand, from the practical perspective EoS is used for
hydrodynamic simulations of heavy-ion collision experi-
ments as well as in different astrophysical applications.
Despite lots of phenomenological works (see, for in-

stance, [1–3]), the most reliable information on QCD EoS
can be obtained by means of lattice QCD simulations.
At zero baryon density it was studied in papers [4–8].
Extension of lattice EoS studies to nonzero baryon chemi-
cal potential was conducted in papers [9–12].
It is believed that quark-gluon matter created in non-

central heavy-ion collisions is affected by strong magnetic
field [13,14]. For instance, it is expected that at RHIC
magnetic field can reach the magnitude eB ∼m2

π , while at
LHC it is about eB ∼ 15m2

π [14]. Such a strong magnetic
field gives rise to multiple interesting phenomena. Probably

the most famous example is the chiral magnetic effect
which consists in the generation of electric current along
magnetic field [15,16]. In addition, strong magnetic field
can noticeably modify QCD properties. In particular, one
could mention the influence of magnetic field on QCD
thermodynamics [17–20], QCD phase diagram [21–27],
the transport properties of quark gluon plasma [28], hadron
spectroscopy [29–33] and etc.
Strong magnetic field might have significant impact on

QCD EoS. This can be anticipated if one accounts for
dimensional reduction phenomenon realized in magnetic
field [34]. The idea is that for small magnetic field the
quarks live in 3þ 1 dimensions, whereas for strong
magnetic field they effectively live in 1þ 1 dimensions.
It is reasonable to expect that this phenomenon might lead
to strong dependence of EoS on magnetic field. At zero
baryon density EoS in external magnetic field was studied
on the lattice in [35–37]. The second-order fluctuations of
the baryon number, electric charge and strangeness, which
are related to EoS, in external magnetic field were studied
in papers [38,39]. It is worth to note that perturbatively
QCD EoS at nonzero density and magnetic field was
studied in Refs. [40,41].
In this paper we are going to study EoS of QCD in

external homogeneous magnetic field and nonzero baryon
chemical potential. Our study is carried out within lattice
simulation with dynamical staggered u-, d-, s-quarks at
their physical masses. To avoid the sign problem the
simulation is performed at imaginary chemical potentials
and at the following setup μu ¼ μd ¼ μ, μs ¼ 0 which
approximately corresponds to zero strangeness. We expand
the free energy into a series in imaginary chemical potential
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and restrict our study to three nonzero terms in this
expansion. Mainly we focus on the coefficients of this
expansion and their dependence on magnetic field.
This paper in organized as follows. In the next section we

derive the formulas important for our study. The lattice
setup used in the simulation is presented in Sec. III. In
Sec. IV the results of our study are shown. In last section
we discuss the results and draw conclusions.

II. EQUATION OF STATE AT FINITE BARYON
DENSITY IN EXTERNAL MAGNETIC FIELD

For a thermodynamic ensemble with a known partition
function Z, the pressure p may be found using the general
formula

p
T4

¼ 1

VT3
logZðV; T; μu; μd; μs; eBÞ; ð1Þ

where μu, μd, μs are the chemical potentials for u-, d- and
s-quarks correspondingly. These chemical potentials can be
rewritten in terms of the chemical potentials μB, μQ, μS
which correspond to the baryon charge B, electric charge
Q, and strangeness S. The formulas relating the chemical
potentials in different basis are well known

μu ¼ μB=3þ 2μQ=3; ð2aÞ

μd ¼ μB=3 − μQ=3; ð2bÞ

μs ¼ μB=3 − μQ=3 − μS: ð2cÞ

In this paper we restrict our consideration to the following
relation between quark chemical potentials: μu ¼ μd ¼ μ,
μs ¼ 0, which approximately corresponds to zero strange-
ness hSi ≃ 0. In this case Eqs. (2) give μB ¼ 3μ, μQ ¼ 0,
μS ¼ μ. More accurate tuning of the chemical potential
values relevant for modern heavy-ion experiments can be
found in Refs. [10,39].
For a sufficiently small baryon density the EoS (1) can be

expanded in a series in μB=T:

pðμBÞ
T4

¼ c0 þ c2

�
μB
T

�
2

þ c4

�
μB
T

�
4

þ c6

�
μB
T

�
6

þO

��
μB
T

�
8
�
: ð3Þ

The coefficient c0 determines QCD EoS at zero baryon
density and external magnetic field. This case was studied
in papers [35–37] and we are not going to consider it.
On contrary in this paper we are going to focus on the co-
efficients c2, c4, c6 and their dependence on the magnitude
of external magnetic field.
The coefficients c2, c4, c6 are related to the fluctuations

χBQS
ijk of the conserved charges B, Q, S at zero baryon
density

χBQS
ijk ¼ ∂

iþjþkðp=T4Þ
∂
iðμB=TÞ∂jðμQ=TÞ∂kðμS=TÞ

����
μB¼μQ¼μS¼0

: ð4Þ

It causes no difficulties to find the formulas which connect
the χBQS

ijk to the c2, c4, c6 coefficients

c2ðμu ¼ μd ¼ μ; μs ¼ 0Þ ¼ 1

2!32

�
9χB2 þ 6χBS11 þ χS2

�
;

c4ðμu ¼ μd ¼ μ; μs ¼ 0Þ ¼ 1

4!34
�
81χB4 þ 108χBS31 þ 54χBS22 þ 12χBS13 þ χS4

�
;

c6ðμu ¼ μd ¼ μ; μs ¼ 0Þ ¼ 1

6!36

�
729χB6 þ 1458χBS51 þ 1215χBS42 þ 540χBS33 þ 135χBS24 þ 18χBS15 þ χS6

�
: ð5Þ

Lattice simulations at real values of the chemical potential
are hampered by the sign problem [42], so we perform the
simulations at the imaginary values of the chemical
potential, characterized by θ ¼ μI=T ¼ iμB=T and expand
our results in θ. Using the data we can conduct an analytical
continuation to the real values of μ as long as we do not
encounter any discontinuity. Since the thermal QCD phase
transitions at baryon density and not too large magnetic
field are expected to be a crossover, we believe that the
analytical continuation procedure is justified in our case.
The partition function itself and the pressure cannot be

measured in the lattice simulations. One can only measure
pressure derivatives with respect to external parameters.
The basic quantity, which we measure on the lattice is the

(imaginary) baryon density nI, which is defined as the
derivative of the pressure with respect to θ ¼ iμB=T:

nI
T3

¼ ∂ðp=T4Þ
∂θ

¼ −2c2θ þ 4c4θ3 − 6c6θ5 þOðθ7Þ: ð6Þ

By fitting the dependence of the imaginary baryon density
nI on the values of the (imaginary) chemical potential θ we
can extract the values of the coefficients c2, c4, and c6.

III. LATTICE SETUP

We perform simulations in QCD with Nf ¼ 2þ 1

staggered fermions at the physical pion mass in the pres-
ence of an external magnetic field B and quark chemical
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potentials μf. The partition function Z of the system under
study has the following form:

Z ¼
Z

DUx;μe−Sg½Ux;μ�ðdetDu½Ux;μ; quB; μu�Þ1=4

× det ðDd½Ux;μ; qdB; μd�Þ1=4
× det ðDs½Ux;μ; qsB; μs�Þ1=4; ð7Þ

where detDf½Ux;μ; qfB; μf� corresponds to the staggered
Dirac operator of the quark flavor f. Note that various
quark flavors have different quark charges qf and values
of the chemical potential μf, thus we treat all three
flavors separately. Each staggered Dirac operator
detDf½Ux;μ; qfB; μf� corresponds to 4 quark tastes and
we take the fourth root to have one quark taste. Expression
for the Df½Ux;μ; qfB; μf� has the following form:

Df½Ux;μ; qfB; μf�x;y

¼ amfδx;y þ
1

2

X4
μ¼1

ημ
�
eaμfδμ;4ux;μU

ð2Þ
x;μδx;y−μ

− e−aμfδμ;4u�x−μ;μ
�
Uð2Þ

x−μ;μ
�†δx;yþμ

�
; ð8Þ

where amf is the quark mass, ημ ¼ ð−1Þx1þ���þxμ−1 are the

standard factors for the staggered fermions, and Uð2Þ
x;μ are

two-times stout smeared gauge links Ux;μ with isotropic

smearing parameter ρ ¼ 0.15 [43]. The factors ufx;μ ∈Uð1Þ
correspond to the magnetic field B pointing in the
z-direction and they are given by the following expressions
(Ns is the spatial lattice size):

uqx;1 ¼ e−ia
2qfBx2=2; x1 ≠ Ns − 1; ð9aÞ

uqx;1 ¼ e−ia
2qfBðNsþ1Þx2=2; x1 ¼ Ns − 1; ð9bÞ

uqx;2 ¼ eia
2qfBx1=2; x2 ≠ Ns − 1; ð9cÞ

uqx;2 ¼ eia
2qfBðNsþ1Þx1=2; x2 ¼ Ns − 1; ð9dÞ

uqx;3 ¼ uqx;4 ¼ 1: ð9eÞ

On the lattice with the periodic boundary conditions the
magnetic flux is quantized. Since different quarks have
different quarks charges, we take the minimum absolute
value for the quark charge q ¼ jqdj ¼ jqsj ¼ e=3 and the
quantization condition for the magnetic field value takes
the form

eB ¼ e
q
× qB ¼ 6πn

N2
sa2

; n∈N; 0 ≤ n < N2
s : ð10Þ

It should be noted that the condition n ≪ N2
s is required

in order to avoid lattice artifacts. In our simulations this

condition is also fulfilled, moreover the comparison of
results obtained at different values of Nt suggest rather
small lattice artifacts almost for all points used in the
simulations. Another restriction comes from the existence
of the Roberge-Weiss phase transition [44] in the plane of
complex chemical potentials, μI=T ≤ π, which is also
always fulfilled in our simulations.
For the gluon sector we use the tree-level Symanzik

improved gauge action:

Sg ¼ −
β

3

X
x;μ≠ν

�
5

6
W1×1

x;μν −
1

12
W1×2

x;μν

�
; ð11Þ

where β ¼ 6=g2 corresponds to the bare lattice gauge
coupling and Wn×k

x;μν stands for the trace of the rectangular
with the size n × k constructed from the gauge links Ux;μ,
starting from the point x in directions μ and ν.

FIG. 1. The density nI=T3 as a function of the imaginary
chemical potential μI=T ¼ θ calculated on the lattice 10 × 403

for three values of the magnetic field eB ¼ 0.3, 0.6, 1.2 GeV2

and several temperatures in the vicinity of the thermal phase
transition.
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Bare parameters have been set so as to stay on a line of
constant physics [4,5,45], at the isospin symmetric point,
mu ¼ md ¼ ml, a physical strange-to-light mass ratio,
ms=ml ¼ 28.15, and a physical pseudo-Goldstone pion
mass, mπ ≃ 135 MeV.
We perform simulations with three lattice sizes 8 × 323,

10 × 403 and 12 × 483, keeping the aspect ratioNs=Nt ¼ 4.
Previous simulations [46] suggest that such aspect ratio
has sufficiently small finite volume effects. By using three
different lattice spacings we can study the continuum
extrapolation of the studied quantities. Typically, the results
for different Nt are close to each other and we perform
continuum extrapolation using simple quadratic ansatz
for the dependence on the lattice spacing a: OðaÞ ¼
Oð0Þ þ Aa2. To assess the systematic uncertainty, we
do the same procedure keeping only two fine lattice sizes
Nt ¼ 10 and Nt ¼ 12 and take half of the sum as our final
result and half of the difference as the systematic
uncertainty.

IV. RESULTS OF THE CALCULATION
AND DISCUSSION

In Fig. 1 we present the dependence of the density nI on
the (imaginary) chemical potential μI for all three studied

values of magnetic field eB ¼ 0.3, 0.6, and 1.2 GeV2 and
for various temperatures in the vicinity of the phase
transition. The data shown in Fig. 1 were obtained on
the lattice 10 × 403. The density nI for various μI , eB, and
T was also calculated on the lattices 8 × 323, 12 × 483.
Fitting our lattice data for the nI by formula (6) we

obtained the coefficients c2, c4, c6. In Fig. 2 we plot these
coefficients as function of temperature for all values of
magnetic field and lattices considered in our study. In addi-
tion in Fig. 2 we show continuum limit for the coefficients
c2, c4, c6. The numerical values of these coefficients in
continuum limit are listed in the Appendix, and the bands in
Fig. 2 represent the interpolation of these data by the cubic
splines [47].
In Fig. 3 we show the continuum extrapolation for the

coefficients c2, c4, c6, but contrary to Fig. 2 we draw each
coefficient for all values of magnetic field on one plot. In
addition in Fig. 3 we present the results from Ref. [38]
obtained at the following values of magnetic field eB ¼
0.314; 0.627; 1.255 GeV2 and at zero magnetic field,
determined from [12]. In these works the authors calculated
the fluctuations of the conserved charges, from which one
can easily reconstruct the coefficients c2, c4 and c6 using
formulas (5). In particular, the results of [38] allow to

FIG. 2. The coefficients c2, c4, c6 as functions of temperature for all studied values of magnetic field calculated on the lattices:
8 × 323, 10 × 403, 12 × 483. The orange bands correspond to the continuum extrapolation of the coefficients, their widths reflect full
uncertainties, combined from statistical and systematic. The dashed line represents the coefficients in the ideal gas approximation.
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determine the c2 only, while using the results of [12] one
can find all three coefficients c2, c4, c6 considered in this
paper. The results of [38] were obtained at slightly larger
pion mass mπ ≈ 220 MeV and magnetic fields eB ¼
0.314; 0.627; 1.255 GeV2, which are very close to the
values used in this work. We see good agreement with our
results for the c2 at high temperatures and some difference
between them at T ≤ 140 MeV. We believe, that this
discrepancy can be attributed to the higher pion mass
in [38]. It might also be attributed to the fact that the authors
of [38] did not take continuum limit.
Now few comments are in order. First let us consider

continuum extrapolated c2 coefficient. It seen in Fig. 3 that
the c2 coefficient, i.e. fluctuations, gradually increases with

magnetic field. At the largest value of magnetic field eB ¼
1.2 GeV2 the c2 is by an order of magnitude larger than that
at zero magnetic field. Moreover magnetic field changes
the dependence of the c2 on temperature. Thus at zero
magnetic field the c2 coefficient is monotonously rising
function of temperature, while for large magnetic fields
considered in this paper the c2 clearly develops a peak
structure. For larger magnetic fields the peak is more
pronounced. In addition the position of the peak shifts
to lower temperatures with increasing of the value of eB.
We believe that this peak is related to the QCD critical
temperature and the shift of the peak position to the left is
related to inverse magnetic catalysis phenomenon [20].
Further let us pay attention to the c4 and c6 coefficients.

They are known to exhibit nontrivial behavior around the
phase transition/crossover. For example, if one looks at the
plot for c4 (middle panel of Fig. 3), then one observes a
peak around the transition temperature. At the same time,
the dependence of c6 (lower panel of Fig. 3) is even more
complicated, it has positive peak before the transition and a
negative dip after the phase transition. It can clearly seen,
that corresponding peaks and dips are shifted to the left
with increasing magnetic field, which is in agreement with
inverse magnetic catalysis phenomenon. Moreover, their
magnitude significantly grows with the magnetic field,
while their width decreases.
Using our results for coefficients c2, c4, and c6 we

calculated additional contribution to the pressure coming
from nonzero baryon density Δp ¼ pðμBÞ − pðμB ¼ 0Þ. In
order to perform it we carried out analytical continuation
from imaginary to real values of the baryon chemical
potential using formula (3). We would like to note here that
the problem of analytical continuation is not well defined
and becomes unstable at large values of baryon chemical
potential. For this reason we consider values of chemical
potential μB=πT ≤ 0.9, within this region the results from
analytical continuation are stable against various functional
forms for zero magnetic field [10]. In Fig. 4 we plot the
pressure excess Δp as a function of temperature for various
values of real baryon chemical potential μB and all
magnetic fields considered in this work. To assess the
stability of our results, we determined the pressure excess
Δp either using all three coefficients c2, c4 and c6 or using
only two lower coefficients c2 and c4 (shown in Fig. 4 by
different hatching). It can be clearly seen that the results
obtained in two different ways are almost the same, only for
the largest studied value of chemical potential μB=πT ¼
0.90 there is some difference. It confirms that for the
studied values of μB the analytical continuation is under
control.
From the Fig. 4 one can conclude that magnetic field not

only enhances the pressure Δp but also modifies its
dependence on temperature and chemical potential.
It is believed that at high temperatures the quark-gluon

plasma reveal properties of ideal gas of quarks and gluons.

FIG. 3. Continuum extrapolated coefficients c2, c4, c6 as
functions of temperature. The dashed lines represent the ideal
gas approximation for the same coefficients. Various magnetic
fields considered in this work are marked by colors as follows
eB ¼ 0.3 GeV2 (green), 0.6 GeV2 (blue), 1.2 GeV2 (red). In
addition we show the results for the c2 coefficient [38] obtained at
the magnetic fields eB ¼ 1.255 GeV2 (red diamonds), eB ¼
0.627 GeV2 (blue squares), eB ¼ 0.314 GeV2 (green circles)
and the coefficients c2, c4, c6 at zero magnetic field (brown
bands) determined from [12].

QCD EQUATION OF STATE AT NONZERO BARYON DENSITY … PHYS. REV. D 109, 094511 (2024)

094511-5



In the ideal gas approximation magnetic field acts only on
quarks. The pressure for massless quarks in magnetic field
can be written in the following form [24]

p
T4

¼ 8π2

45
þ

X
f¼u;d;s

3jqfjB
π2T2

	
π2

12
þ μ̂2f

4
þ pfðBÞ



;

pfðBÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjB

p
T

X∞
l¼1

ffiffi
l

p X∞
k¼1

ð−1Þkþ1

k
coshðkμ̂fÞ

× K1

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjBl

p
T

�
; ð12Þ

where we have used the designation μ̂f ¼ μf=T.
Expression (12) allows us to find the coefficients c2, c4,
c6 for an ideal gas which have the following form

c2 ¼
1

12

eB
π2T2

þ 1

3

eB
π2T2

X
f¼u;d

jqfj
e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjB

p
T

×
X∞
l¼1

ffiffi
l

p X∞
k¼1

ð−1Þkþ1kK1

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjBl

p
T

�
; ð13Þ

c4 ¼
2

4!33
eB
π2T2

X
f¼u;d

jqfj
e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjB

p
T

×
X∞
l¼1

ffiffi
l

p X∞
k¼1

ð−1Þkþ1k3K1

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjBl

p
T

�
; ð14Þ

c6 ¼
2

6!35
eB
π2T2

X
f¼u;d

jqfj
e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjB

p
T

×
X∞
l¼1

ffiffi
l

p X∞
k¼1

ð−1Þkþ1k5K1

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqfjBl

p
T

�
: ð15Þ

It should be noted here that the first term in the coefficient
c2 (13) arises from the lowest Landau level, whereas the
second term results from the excited Landau levels. What
concerns the coefficients c4, c6 (14), (15) they acquire
contribution from the excited Landau levels only. The
values of magnetic fields studied in this paper obey the
inequality eB > T2. Moreover, for the largest magnetic
field it takes the form of eB ≫ T2. So, in the ideal gas
approximation the contribution of the exited Landau levels
are suppressed leading to the suppression of the coefficients
c4 and c6. However, radiative corrections to these coef-
ficients might change this picture.
In Figs. 2 and 3 we also show the coefficients c2, c4, c6 in

the ideal gas approximation. First let us consider the c2
coefficient. Our continuum limit for the c2 and ideal gas
approximation prediction differ by 20%–30% in the region
T > 160 MeV for the smallest magnetic field. However, as
one increases the value of magnetic field this discrepancy
decreases and at the largest magnetic field lattice results are
in agreement with the ideal gas approximation. Taking into
account the above discussion this result implies that the
lowest Landau level plays more and more important role
as one increases the magnitude of magnetic field in the
temperature range T ≥ 160 MeV. Probably for the largest
magnetic field eB ¼ 1.2 GeV2 the contribution of the
lowest Landau level becomes dominant. What concerns
the coefficients c4, c6 lattice results are in agreement with
the ideal gas approximation in the temperature interval
T > 160 MeV. Notice, however, that the uncertainties of
our lattice results are quite large in this case.
In Fig. 4 we have shown the excess of pressure Δp in the

ideal gas approximation by the dashed lines. Similarly to
Figs. 2 and 3 lattice results for theΔp are in agreement with
the ideal gas approximation in the temperature interval
T > 160 MeV.

FIG. 4. The excess of pressure Δp ¼ pðμBÞ − pðμB ¼ 0Þ due to nonzero baryon density, reconstructed using Eq. (3), as a function of
temperature for the values of (real) baryon chemical potential μB=πT ¼ 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 for all magnetic fields used in
our study. Different directions of diagonal hatching correspond to the results obtained using all three coefficients c2, c4, c6 or using only
two lower coefficients c2, c4 in Eq. (3). The dashed lines represent the ideal gas limit.
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V. CONCLUSION

In this paper we conducted the study of QCD equation of
state in external magnetic field and nonzero baryon density.
Our study is carried out within lattice simulation with 2þ 1
dynamical staggered quarks at their physical masses. Non-
zero baryon density was introduced to the system through
baryon chemical potential. To avoid the sign problem the
simulation is performed at imaginary chemical potential. We
expand the pressure into a series in imaginary chemical
potential and focus in our study on the first three nonzero
coefficients in this expansion. These coefficients were cal-
culated on the lattices 8 × 323, 10 × 403, 12 × 483 for the
following values of magnetic field: eB ¼ 0.3;0.6; 1.2 GeV2,
and the continuum limit was taken.
Our data indicate that magnetic field modifies the temper-

ature dependence of the coefficients. For instance, large
magnetic field gives rise to the peak of the c2 coefficients
which was absent at zero magnetic field. Notice also that for
large magnetic fields positions of peaks and dips in the
temperature dependence of coefficients are shifted to lower
temperatures. It is reasonable to assume that nontrivial
behavior of the coefficients takes place in the crossover
region and the shift of this region to lower temperatures is
related to the inverse magnetic catalysis phenomenon.
In addition to modifying the temperature dependence,

magnetic field enhances the magnitude of the coefficients
c2, c4, c6 considerably. The coefficients are known to be
connected to the fluctuations of the conserved charges,
i.e. magnetic field enhances these fluctuations. The origin
of this enhancement is not completely clear. It is might be
related to the dimensional reduction phenomenon. Indeed,
we observe considerable enhancement of the c2 coefficient
in an ideal fermion gas approximation, but this approxi-
mation is not sufficient to explain the behavior of the c4 and
c6 coefficients, possibly indicating that the enhancement of
the fluctuations in the c4 and c6 coefficients is of non-
perturbative nature.
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APPENDIX: DATA TABLES

The continuum limit values of the coefficients c2, c4, c6
in the pressure expansion (3) at fixed magnetic fields
eB ¼ 0.3; 0.6; 1.2 GeV2 are listed in Tables I–III. Data
are presented with full uncertainty, which includes both
statistical and systematic errors.

TABLE II. Continuum limit results for the coefficients of the
series, Eq. (3), at eB ¼ 0.6 GeV2.

T, MeV 10 · c2 100 · c4 1000 · c6

126 0.855(155) 0.700(265) 0.256(170)
135 1.192(116) 0.794(180) 0.173(122)
143 1.621(92) 1.115(184) 0.299(133)
149 1.762(90) 0.871(204) 0.029(134)
152 1.882(55) 0.643(152) −0.188ð123Þ
160 1.879(58) −0.156ð232Þ −0.742ð199Þ
168 1.819(51) −0.251ð119Þ −0.464ð109Þ
173 1.774(68) −0.092ð168Þ −0.273ð132Þ
184 1.739(52) 0.077(89) 0.003(66)
198 1.573(39) 0.029(65) 0.005(48)

TABLE III. Continuum limit results for the coefficients of the
series, Eq. (3), at eB ¼ 1.2 GeV2.

T, MeV 10 · c2 100 · c4 1000 · c6

125 3.099(172) 2.163(378) 0.488(307)
131 3.809(185) 2.679(285) 0.642(186)
137 4.280(311) 2.345(245) 0.244(178)
143 4.448(127) 0.938(334) −0.789ð277Þ
152 4.237(143) −0.221ð181Þ −1.499ð186Þ
160 3.912(45) 0.013(109) −0.241ð131Þ

TABLE I. Continuum limit results for the coefficients of the
series, Eq. (3), at eB ¼ 0.3 GeV2.

T, MeV 10 · c2 100 · c4 1000 · c6

135 0.405(63) 0.133(170) −0.050ð141Þ
140 0.561(108) 0.224(152) −0.029ð113Þ
146 0.762(89) 0.578(166) 0.213(116)
152 0.963(89) 0.578(163) 0.129(110)
160 1.162(120) 0.566(213) 0.060(144)
168 1.078(46) 0.091(106) −0.145ð90Þ
178 1.107(64) 0.005(112) −0.118ð78Þ
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