
Electromagnetic form factors of the nucleon from Nf = 2 + 1 lattice QCD

Dalibor Djukanovic ,1,2 Georg von Hippel ,3 Harvey B. Meyer ,1,3 Konstantin Ottnad ,3

Miguel Salg ,3,* and Hartmut Wittig 1,3

1Helmholtz Institute Mainz, Staudingerweg 18, 55128 Mainz, Germany
2GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

3PRISMA+ Cluster of Excellence and Institute for Nuclear Physics, Johannes Gutenberg University Mainz,
Johann-Joachim-Becher-Weg 45, 55128 Mainz, Germany

(Received 20 September 2023; accepted 15 April 2024; published 22 May 2024)

There is a long-standing discrepancy between different measurements of the electric and magnetic radii of
the proton. Lattice QCD calculations are a well-suited tool for theoretical investigations of the structure of the
nucleon from first principles. However, all previous lattice studies of the proton’s electromagnetic radii have
either neglected quark-disconnected contributions or were not extrapolated to the continuum and infinite-
volume limit. Here, we present results for the electromagnetic form factors of the proton and neutron computed
on the (2þ 1)-flavor coordinated lattice simulations (CLS) ensembles including both quark-connected and
-disconnected contributions. From simultaneous fits to theQ2-, pion-mass, lattice-spacing, and finite-volume
dependence of the form factors, we determine the electric and magnetic radii and the magnetic moments of
the proton and neutron. For the proton, we obtain as our final values hr2Eip ¼ ð0.672� 0.014ðstatÞ �
0.018ðsystÞÞ fm2, hr2Mip ¼ ð0.658� 0.012ðstatÞ � 0.008ðsystÞÞ fm2, and μpM ¼ ð2.739� 0.063ðstatÞ �
0.018ðsystÞ. The magnetic moment is in good agreement with the experimental value, as is the one of the
neutron. On the one hand, our result for the electric (charge) radius of the proton clearly points towards a small
value, as favored by muonic hydrogen spectroscopy and the recent ep-scattering experiment by PRad.
Our estimate for the magnetic radius, on the other hand, is well compatible with that inferred from the
A1 ep-scattering experiment.

DOI: 10.1103/PhysRevD.109.094510

I. INTRODUCTION

Despite the fact that protons and neutrons, collectively
referred to as nucleons, make up the largest fraction of the
mass of the visible matter in the Universe [1], there are
many open problems relating to their internal structure,
which are the subject of a broad research effort in
subatomic physics. In particular, the question whether
discrepant measurements of the electric and magnetic radii
can be reconciled has been vigorously debated [2].
Regarding the electric radius, the value reported by the

A1 collaboration based on ep-scattering data [
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
¼

ð0.879� 0.005ðstatÞ � 0.006ðsystÞÞ fm [3]], while in
good agreement with hydrogen spectroscopy [

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
¼

0.8758ð77Þ fm [4]] at the time of publication, is incom-
patible with the most precise determination, which
comes from the spectroscopy of muonic hydrogen

[
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
¼ 0.84087ð39Þ fm [5,6]]. This significant incon-

sistency between measurements using either electrons or
muons has been dubbed the “proton radius puzzle” [7]. It
has triggered many additional efforts to explain or resolve
the discrepancy.
The most recent experiments using electronic hydrogen

spectroscopy favor the lower value [8–10], with the
exception of Ref. [11] which reports a larger value in
agreement with older measurements [4]. The latest deter-
minations from ep scattering yield differing results as
well: while the A1 collaboration has essentially confirmed
their previous result using the initial-state radiation tech-
nique [

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
¼ ð0.878� 0.011ðstatÞ � 0.031ðsystÞÞ fm

[12]], the PRad experiment at Jefferson Lab has reported
a smaller value [

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
¼ ð0.831� 0.007ðstatÞ �

0.012ðsystÞÞ fm [13]]. It is worth pointing out that dis-
persive analyses had already favored a smaller proton
radius for a long time [14,15] and continue to do so
[16–19]. This applies in particular to the dispersive analysis
of the data taken by the A1 experiment [20,21].
In an effort to resolve the still existing tensions, several

new experimental efforts are underway: A new ep-
scattering experiment, MAGIX [22], is being prepared at
the Mainz-based accelerator MESA, which is currently
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under construction. An upgrade of PRad, dubbed PRad-II,
has been approved [23], while the ULQ2 experiment at
ELPH in Tohoku, Japan, is already taking data [24]. To
complement the results from electronic and muonic hydro-
gen spectroscopy and ep scattering with a result from μp
scattering, the MUSE collaboration aims to measure the
μp cross section to subpercent precision at PSI [25].
Furthermore, the AMBER experiment at CERN plans to
determine the electric proton radius to a precision on the
order of 0.01 fm using a similar method [26].
For the magnetic radius, an analysis based on the

z-expansion obtains two different numbers, depending
on whether just the A1 data is analyzed [

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
¼

ð0.776� 0.034ðstatÞ � 0.017ðsystÞÞ fm [3,27]] or the rest
of the ep-scattering world data excluding A1 [

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
¼

0.914ð35Þ fm [27]]. The tension is not as large as for the
electric radius, but still, these two numbers are not
compatible with each other. For this reason, the magnetic
proton radius has received somewhat more attention
recently, see, e.g., Ref. [21]. Of the newly planned experi-
ments devoted to the electric proton radius, only MAGIX
will address the magnetic radius as well [28], though.
In order to understand whether these discrepancies can

be traced to the experimental data and their analyses, or
whether they are perhaps an indication for physics beyond
the standard model [7], a precise standard-model prediction
of the proton’s radii is required. Since the inner dynamics
of the nucleon is governed by the strong interaction, it is
mandatory to apply a nonperturbative methodology, such as
lattice QCD, since the QCD coupling is large at typical
hadronic scales [29,30].
In lattice QCD as in the context of scattering experi-

ments, radii are extracted from the derivative of the
electromagnetic form factors GE;MðQ2Þ at Q2 ¼ 0. To
distinguish between proton and neutron requires the cal-
culation of quark-disconnected diagrams, which are noto-
rious for their unfavorable signal-to-noise ratio. Previous
lattice calculations of electromagnetic form factors and
radii published in Refs. [31–48], with the exception of
Refs. [41,45], have neglected quark-disconnected contri-
butions due to this technical complication.
In this paper we present our results for the electromagnetic

form factors of the proton and neutron computed from a set
of coordinated lattice simulations (CLS) ensembles with
Nf ¼ 2þ 1 flavors of OðaÞ-improved Wilson quarks [49]
at four different lattice spacings and pion masses between
130 and 290 MeV. Our study improves on all previous
calculations by explicitly evaluating both quark-connected
and -disconnected contributions and, at the same time, taking
into account all relevant systematic effects due to excited-
state contamination, finite-volume effects and the extrapo-
lation to the physical point. To assess the influence of excited
states, we employ a wide range of source-sink separations
and apply the summation method. In addition to determining
the shape of the form factors at moderate momentum

transfers (Q2 ≲ 0.6 GeV2), we extract the electric and
magnetic radii and magnetic moments in the isovector and
isoscalar channels, as well as those of the proton and neutron.
For this purpose, we perform simultaneous fits to the Q2-,
pion-mass, lattice-spacing, and finite-volume dependence of
the form factors to the expressions resulting from covariant
baryon chiral perturbation theory (BχPT), including vector
mesons and amending the expressions by models for lattice
artifacts. Systematic errors are quantified using a model
average with weights derived from the Akaike information
criterion (AIC). Our model-averaged results at the physical
point reproduce the experimental values of the magnetic
moments within our quoted uncertainties and favor a small
value both for the electric and the magnetic radius of the
proton. Our main findings and conclusions are presented in
the companion letter [50].
This paper provides the full details of our calculation and

is organized as follows: Sec. II describes our lattice setup
and computational details, as well as the extraction of the
effective form factors from our lattice observables, while
Sec. III is dedicated to the treatment of excited states. In
Sec. IV, a comprehensive account of the parametrization of
the Q2 dependence of the form factors and their extrapo-
lation to the physical point is presented. Section V dis-
cusses the model average and our final results, and Sec. VI
draws some conclusions. Details on our treatment of the
pion and nucleon masses relevant to the analysis are
contained in Appendix A. Additional crosschecks on our
excited-state analysis can be found in Appendix B, and a
closer examination of the form factors on our near-physical
pion mass ensemble in Appendix C. For completeness and
ease of reference, we provide tables of all computed form
factors in Appendix D, of the results of all direct BχPT
fits in Appendix E, of the radii and magnetic moments
extracted using z-expansion fits in Appendix F, and of their
extrapolation to the physical point in Appendix G.

II. LATTICE SETUP

To compute the electromagnetic form factors of the
nucleon, we consider the vector current insertion for quark
flavor f,

Vμ
fðxÞ ¼ Ψ̄fðxÞγμΨfðxÞ; ð1Þ

and its nucleon matrix elements,

hNðp0; s0ÞjVμ
fðxÞjNðp; sÞi ¼ eiq·xūs

0 ðp0ÞVμ
fðqÞusðpÞ: ð2Þ

Here, Nðp; sÞ denotes a nucleon state with three-
momentum p and spin s, usðpÞ the corresponding Dirac
spinor, and qμ ¼ p0

μ − pμ the four-momentum transfer. The
quantities Vμ

fðqÞ are defined by

Vμ
fðqÞ ¼ γμFf

1ðQ2Þ þ i
σμνqν
2mN

Ff
2ðQ2Þ; ð3Þ
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where mN is the nucleon mass, and Q2 ¼ −q2 > 0 in the
spacelike region. Furthermore, we have introduced the
Dirac and Pauli form factors F1ðQ2Þ and F2ðQ2Þ, respec-
tively, which are connected to the electric and magnetic
Sachs form factors GEðQ2Þ and GMðQ2Þ via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
N
F2ðQ2Þ; ð4Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð5Þ

The electric form factor at zero momentum transfer
yields the nucleon’s electric charge, i.e., Gp

Eð0Þ ¼ 1 and
Gn

Eð0Þ ¼ 0, whereas the magnetic form factor at zero
momentum transfer is identified with the magnetic
moment, GMð0Þ ¼ μM. The corresponding radii are given
by the derivative of the form factors at zero momentum
transfer,

hr2i ¼ −
6

Gð0Þ
∂GðQ2Þ
∂Q2

����
Q2¼0

: ð6Þ

The only exception to this definition is the electric radius of
the neutron, where the normalization factor is omitted,

hr2Ein ¼ −6
∂Gn

EðQ2Þ
∂Q2

����
Q2¼0

: ð7Þ

For our lattice determination of these quantities, we use
the CLS ensembles [49] which have been generated with
2þ 1 flavors of nonperturbatively OðaÞ-improved Wilson
fermions [51,52] and a tree-level improved Lüscher-Weisz
gauge action [53]. Only ensembles following the chiral
trajectory characterized by trMq ¼ 2ml þms ¼ const are
employed. In order to prevent topological freezing [54],
the fields obey open boundary conditions (oBC) in time
[55,56], with the exception of the ensembles E250, D450,
and N451, which use periodic boundary conditions in time.
Table I displays the set of ensembles entering the analysis:
they cover four lattice spacings in the range from 0.050 fm
to 0.086 fm, and several different pion masses, including
one slightly below the physical value (E250). We note that
data is available on additional (heavier) ensembles, but only
the ones shown in Table I are included in this analysis.
In order to compensate for the twisted mass introduced

for the light quarks [56,57] and the rational approximation
used for the dynamical strange quark [58,59] during the
gauge field generation, all observables need to be
reweighted. We employ the reweighting factors computed
in Ref. [60] with exact low-mode deflation on all ensembles
except E300, where the standard stochastic CLS run [49] is
used. In all cases, we correct for the treatment of the
strange-quark determinant following the procedure out-
lined in Ref. [61].
We measure the two- and three-point functions of the

nucleon,

hC2ðp0; tsepÞi ¼
X
y

e−ip
0·yΓp

βαhNαðy; tsepÞN̄βð0Þi; ð8Þ

hC3;Oðp0;q; tsep; tÞi ¼
X
y;z

eiq·ze−ip
0·yΓp

βαhNαðy; tsepÞOðz; tÞN̄βð0Þi: ð9Þ

TABLE I. Overview of the ensembles used in this study. Nmeas;HP and Nmeas;LP denote the aggregated number of high-precision (HP)
and low-precision (LP) solves used for the computation of the connected and the disconnected contributions, respectively. For the
connected contribution,Nconn;max

meas refers to the number of measurements used for the largest value of tsep, while for the smaller values, the
number of measurements is scaled down in stages.

ID β tsym0 =a2 T=a L=a Mπ [MeV] Nconn
cfg Ndisc

cfg Nconn;max
meas;HP Nconn;max

meas;LP Ndisc
meas;HP Ndisc

meas;LP tsep=a

C101 3.40 2.860(11) 96 48 227 1988 994 1988 63 616 7 951 237 965 4–17
N101a 3.40 2.860(11) 128 48 283 1588 1588 1588 50 816 3 176 406 518 4–17
H105a 3.40 2.860(11) 96 32 283 1024 1024 4096 49 152 25 585 248 331 4–17
D450 3.46 3.659(16) 128 64 218 498 498 3984 63 744 3 984 63 744 4–20
N451a 3.46 3.659(16) 128 48 289 1010 1010 8080 129 280 8 080 129 280 4–20 (stride 2)

E250 3.55 5.164(18) 192 96 130 398 796 3184 101 888 6 368 203 776 4–22 (stride 2)
D200 3.55 5.164(18) 128 64 207 1996 998 1996 63 872 8 982 271 258 4–22 (stride 2)
N200a 3.55 5.164(18) 128 48 281 1708 1708 1708 22 828 13 664 406 016 4–22 (stride 2)
S201a 3.55 5.164(18) 128 32 295 2092 2092 2092 66 944 4 181 96 279 4–22 (stride 2)

E300 3.70 8.595(29) 192 96 176 569 569 569 18 208 1 138 163 872 4–28 (stride 2)
J303 3.70 8.595(29) 192 64 266 1073 1073 1073 17 168 3 219 145 872 4–28 (stride 2)

aThese ensembles are not used in the final fits but only to constrain discretization and finite-volume effects.
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Here, Γp denotes the polarization matrix of the
nucleon and we have set the source position x to zero
for simplicity. In our setup, the nucleon at the sink is at rest,
i.e., for a momentum transfer q the initial and final states
have momenta p ¼ −q and p0 ¼ 0, respectively. Our
interpolating operator for the proton is the same as in
Refs. [47,62,63], which is built using Gaussian-smeared
[64] quark fields with spatially APE-smeared [65] gauge
links and tuning the parameters so that a smearing radius
rG ≈ 0.5 fm [66] is realized.
For the three-point functions (9), the pertinent Wick

contractions yield a connected and a disconnected contri-
bution, hC3;Oi ¼ hCconn

3;O i þ hCdisc
3;Oi. They are depicted dia-

grammatically in Fig. 1. To calculate the connected part, we
employ the “fixed-sink” variant of the extended propagator
method. This requires additional inversions for each
source-sink separation while allowing the momentum
transfer to be varied via a phase factor at the point of
the current insertion [67]. The disconnected part of the
three-point functions is constructed from the quark loops
and the two-point functions according to

hCdisc
3;Oðp0;q; tsep; tÞi ¼ hLO;discðq; tÞC2ðp0; tsepÞi; ð10Þ

LO;discðq; z0Þ ¼ −
X
z

eiq·ztr½D−1
q ðz; zÞΓO�: ð11Þ

The all-to-all propagator D−1
q ðz; zÞ appearing in the quark

loops Eq. (11) is computed via stochastic estimation using a
variation of the frequency-splitting technique [68]. To that
end, we employ a generalized hopping-parameter expan-
sion [69] combined with hierarchical probing [70] for one
heavy quark flavor and subsequently apply a split-even
estimator, i.e., the one-end trick [68,71,72], for the remain-
ing flavors. For further details, we refer the interested
reader to Ref. [73].
To reduce the cost of the inversions, we apply the

truncated-solver method [74–76] with bias correction.
Details on our setup of sources are contained in Table I,
alongside the available source-sink separations tsep. On
ensembles with open boundary conditions in time, the
sources are generally placed on a single timeslice in the

middle of the lattice. Additional measurements of the
two-point function are used on all oBC ensembles except
S201 to extend the statistics for the disconnected
contribution. For these additional measurements, we
put the nucleon sources on different timeslices in the
bulk of the lattice. We have checked explicitly that the
observables studied in this work are not significantly
influenced by boundary effects for the chosen source
positions. No such issues arise for ensembles with
periodic boundary conditions in time. Here, one can
distribute the sources randomly on edges of subblocks of
the entire lattice volume, as dictated by even-odd [77]
and Schwarz [78] preconditioning. On all ensembles, we
employ iterative statistics for the different source-sink
separations. This means that with rising tsep, the number
of sources used for the computation of the connected
part is increased. The scaling of measurements is tuned
in such a way that the behavior of the effective statistics
as a function of tsep more closely resembles a constant
instead of showing an exponential decay of the signal-to-
noise ratio. For the disconnected part, the highest
statistics at our disposal is always utilized, in order to
obtain the best possible signal.
Instead of the local current Eq. (1), we use the conserved

vector current in the same way as in Ref. [47], so that no
renormalization is required. The OðaÞ improvement is also
performed analogously to Ref. [47], with the improvement
coefficient computed in Ref. [79].
As a first step towards extracting the effective form

factors, the nucleon two-point functions from Eq. (8) are
averaged over equivalent momentum classes. We call all
three-momenta p which share the same modulus jpj
equivalent and assign them the equivalence class p ¼
fp̃∈P3∶ jp̃j ¼ jpjg. Here, P3 is the set of possible lattice
momenta, P3¼fp¼2π

L np∶np∈Z3g⊂R3. The momentum-
averaged two-point functions are then defined as

hC̄2ðp; tsepÞi ¼
X
p̃∈ p

hC2ðp̃; tsepÞi
.X

p̃∈p

1: ð12Þ

Afterwards, we calculate the ratios [80]

FIG. 1. Diagrammatic representation of the two- and three-point functions of the nucleon. Only quark lines are shown, while all gluon
lines are suppressed. The red squares in the three-point functions represent the operator insertion, and the wavy red lines the external
photons.
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RVμ
ð0;q; tsep; tÞ ¼

hC3;Vμ
ð0;q; tsep; tÞi

hC2ð0; tsepÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC̄2ðq; tsep − tÞihC2ð0; tÞihC2ð0; tsepÞi
hC2ð0; tsep − tÞihC̄2ðq; tÞihC̄2ðq; tsepÞi

s
: ð13Þ

For the connected part, we employ for each value of tsep
matching statistics in terms of sources for the two- and
three-point functions entering Eq. (13). This preserves the
full correlation between them, which slightly reduces the
statistical fluctuations in the ratio. For the disconnected
part, on the other hand, the highest statistics at our disposal
is utilized for all values of tsep, both for the two-point
functions used to construct Eq. (10) and for the ones
entering Eq. (13). In all cases, the same projection matrix is
employed for both the two- and three-point functions
entering Eq. (13), again to ensure full correlation. For
the connected part, this is only Γp

3 ¼ 1
2
ð1þ γ0Þð1þ iγ5γ3Þ.

For the disconnected part, we employ all three polarization
directions, Γp

j ¼ 1
2
ð1þ γ0Þð1þ iγ5γjÞ, j ¼ 1, 2, 3, and

average the thus obtained effective form factors.
Moreover, we average over the forward- and backward-
propagating nucleon for the disconnected part. For the
determination of the nucleon mass (cf. Appendix A), we
make use of the unpolarized nucleon, i.e., Γp ¼ 1

2
ð1þ γ0Þ,

as this is equivalent to averaging over the three polarization
directions in the case of the two-point function.
We use the same estimators for the effective electric and

magnetic Sachs form factors as in Ref. [47], i.e., we do not
employ the spatial components of the vector current to
compute the electric form factor, as they are more noisy.
Note that for the disconnected contribution to the effective
magnetic form factor, one needs to adapt the indices of the
momenta and the current insertions in Eq. (11) of Ref. [47]
according to the polarization direction. We average these
estimators over all three-momenta q̃ belonging to the
equivalence class q and thus yielding the same Q2 [except
for those with q̃1 ¼ q̃2 ¼ 0 (or the components appropriate
for Γp

j ) in the case of the magnetic form factor].
Furthermore, we assume the relativistic dispersion relation
Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ jqj2
p

. We have checked explicitly that
employing the extracted ground-state energies also for
nonvanishing momenta instead of the above dispersion
relation does not change our results for the ground-state
form factors significantly.
We build the effective form factors in the isospin basis,

i.e., for the isovector (u − d) and the connected isoscalar
(uþ d) combinations, as well as for the disconnected
contributions of the light and strange quarks. Since we
impose strong SU(2) isospin symmetry (mu ¼ md) in our
calculation, the disconnected contribution cancels in the
isovector case. The full isoscalar (octet) combination
uþ d − 2s, on the other hand, can be obtained from the
connected and disconnected pieces as

Geff;uþd−2s
E;M ¼ Geff;conn;uþd

E;M þ 2Geff;disc;l−s
E;M : ð14Þ

Note that the disconnected part only requires the difference
l − s between the light and strange contributions, in which
correlated noise cancels and which can be computed very
effectively by the one-end trick. We drop the disconnected
contribution Geff;disc;l−s

E at Q2 ¼ 0, as it has to be zero. Our
data, on the other hand, shows fluctuations around the exact
zero due to the stochastic estimation of the quark loops and
the application of the truncated-solver method for the
calculation of the two-point functions. Thus, explicitly
adding this superfluous term, which is always compatible
with zero, would artificially enhance noise in all data points
for GE, because we normalize them by GEð0Þ (cf. Sec. IV).
The resulting isoscalar effective form factors are shown

in Fig. 2 for the first nonvanishing momentum on the
ensemble E300. This illustrates that we obtain a clear signal
including the disconnected contributions: the families of
points for the different source-sink separations can be
clearly distinguished in Geff;uþd−2s

E , and for the smaller
values of tsep also in Geff;uþd−2s

M .
Unless otherwise stated, errors are estimated using

single-elimination jackknife. Autocorrelations are largely
absent in the ratios of Eq. (13). Nevertheless, in order to
remove any residual autocorrelation, we block our data
with a bin size of two, if the spacing between two analyzed
configurations in terms of molecular dynamics time does
not already account for this factor. The latter is the case
for the disconnected contribution on C101 and D200, for
the connected contribution on E250, and for both the
connected and the disconnected contributions on E300
and J303.
On some ensembles, we observe that individual mea-

surements on a small number of configurations are located
very far outside the distribution of the vast majority of
configurations. Keeping these exceptional configurations in
the sample leads to a drastically increased error and, more
importantly, to an unexpected scaling of the error with the
source-sink separation, i.e., the error is inflated strongly
only for single values of tsep. The most prominent example
is D200, where we identify one configuration to be the root
cause of the gross overestimation of errors. Similar obser-
vations of outliers have already been reported for previous
analyses on CLS ensembles [63,81]. In order to identify the
problematic configurations, we first extract the effective
form factors using single-elimination jackknife on
unbinned data. We then scan the isovector, connected
isoscalar, and disconnected contributions for all relevant
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values ofQ2, tsep, and t, employing the procedure described
in the supplementary material of Ref. [63]. The corre-
sponding configurations are omitted during the whole main
analysis; the numbers in Table I already reflect this.
We express all dimensionful quantities in units of t0

using the determination of tsym0 =a2 from Ref. [82]. Only our
final results for the radii are converted to physical units by
means of the world-average value of

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p ¼ 0.14464ð87Þ fm ð15Þ

for Nf ¼ 2þ 1 from Ref. [83]. This procedure ensures that
the error of the calibration is treated independently of that
of the (more precise) pure lattice measurement of tsym0 =a2.

III. EXCITED-STATE ANALYSIS

In general, baryonic correlation functions suffer from a
strong exponential growth of the relative statistical noise
when the distance in Euclidean time between operators is
increased [84,85]. Therefore, for the typically accessible
source-sink separations in current lattice calculations of
baryon structure observables, it cannot be guaranteed that
contributions from excited states are sufficiently sup-
pressed. This underlines the necessity to explicitly address
the excited-state systematics in order to extract the ground-
state form factors from the effective ones [83,86].
In this work, we make use of the summation method

[87–89]. It takes advantage of the fact that in the ratios of
Eq. (13), when summed over timeslices in between source
and sink, the contributions from excited states are para-
metrically suppressed. Accordingly, we sum the effective

form factors over the operator insertion time, omitting
tskip ¼ 2a timeslices at both ends,1

SE;MðQ2; tsepÞ ¼
Xtsep−tskip
t¼tskip

Geff
E;MðQ2; tsep; tÞ: ð16Þ

In the asymptotic limit with only ground-state contribu-
tions, the slope of this quantity as a function of tsep is given
by the ground-state form factor [40,47],

SE;MðQ2; tsepÞ ⟶
tsep≫0

CE;MðQ2Þ

þ 1

a
ðtsep þ a − 2tskipÞGE;MðQ2Þ

þ…; ð17Þ

where the ellipsis denotes exponentially suppressed cor-
rections from excited states.
We perform several fits to Eq. (17) for different starting

values tmin
sep of the source-sink separation. Instead of

choosing a single value of tmin
sep on each ensemble, we

perform a weighted average over tmin
sep , where the weights

are given by a smooth window function [62,63],

Ĝ¼
P

iwiGiP
iwi

; wi¼ tanh
ti− tloww

Δtw
− tanh

ti− tupw
Δtw

: ð18Þ

FIG. 2. Isoscalar effective form factors at the first nonvanishing momentum on the ensemble E300 (Q2 ≈ 0.067 GeV2). The left plot
shows the electric and the right one the magnetic form factor. For each source-sink separation tsep, the effective form factors are
displayed as a function of the operator insertion time t, offset to the midpoint between nucleon source and sink. The data points are
horizontally displaced for better visibility. The gray bands and curves depict the results of the summation method using the window
average, as detailed in Sec. III.

1We justify this choice in Appendix B.
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Here, ti is the value of tmin
sep in the ith fit, and we choose

tloww ¼6.22
ffiffiffiffi
t0

p
≈0.9 fm, tupw ¼7.61

ffiffiffiffi
t0

p
≈1.1 fm, and Δtw ¼

0.553
ffiffiffiffi
t0

p
≈ 0.08 fm. Note that the window has been

shifted to larger values of tmin
sep by 0.1 fm compared to

the one originally used in Refs. [62,63]. The reason for this
is that our data for the electromagnetic form factors are
statistically more precise than those for the axial form
factor in Ref. [62] or the sigma term in Ref. [63]. Hence,
we can resolve excited-state effects for larger values of tmin

sep ,
so that the plateau region is expected to start later.
Accordingly, we have observed that the window using
larger tup;loww better captures the plateau on themajority of our
ensembles. Thus, we have opted for the more conservative
choice, which also yields a slightly larger error. The two
choices are compared in Fig. 9 in Appendix B.
We average over all available values of tmin

sep , subject to
the constraint that at least three values of tsep are contained
in the underlying fit to Eq. (16). It should be stressed that
the only quantity that is effectively restricted by this
method is the minimal source-sink separation; all fits go
up to the largest tsep we have computed. Essentially, the

window average merely serves as a smoothing of the lower
end of the fit interval.
This strategy is illustrated in Fig. 3 for the isoscalar

combination at the first nonvanishing momentum on the
ensembles D450 and E300. One can see that the window
averages agree within their errors with what one might
identify as plateaux in the blue points. This being valid to a
similar degree for all other ensembles, flavor combinations,
and momenta employed in the analysis, we conclude that
the window method reliably identifies the asymptotic value
of the effective form factors. Moreover, it reduces the
human bias compared to manually picking one particular
value for tmin

sep on each ensemble, since we use the same
window parameters in units of t0 on all ensembles. It is
important to note that even if a plateau appears to be
reached, this does not guarantee ground-state dominance.
The situation is aggravated by the fact that in general,
relatively few values of tmin

sep are available, and correlated
fluctuations in any direction can easily be mistaken for a
plateau. This underlines once more the necessity of an
automated strategy such as the window average which can
readily be applied to all ensembles and momenta. The size

FIG. 3. Isoscalar electromagnetic form factors at the first nonvanishing momentum on ensembles D450 (upper panel) and E300 (lower
panel) as a function of the minimal source-sink separation entering the fits to Eq. (16). Each blue point represents a single fit starting at
the source-sink separation given on the horizontal axis. The associated weights derived from Eq. (18) are shown by the red diamonds,
with the gray lines and bands depicting the averaged results.
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of the gray error bands in Fig. 3 furthermore shows that
our window average yields, in contrast to error-weighted
procedures, an error estimate which is comparable to the
errors of the individual points entering the average. Thus,
we are convinced that our error estimates are conservative
enough to exclude any systematic bias in the identification
of ground-state form factors.
In order to ensure that ground-state dominance is reached

by the method described above, we have explored addi-
tional variations of it as well as a complementary approach
based on two-state fits to the effective form factors. Details
on these crosschecks can be found in Appendix B. The
form factor values obtained by our preferred method are
collected in Appendix D for all ensembles and all momenta
which we have considered.

IV. PARAMETRIZATION OF
THE Q2 DEPENDENCE

As the radii are defined in terms of the slope of the form
factors at zero momentum transfer [cf. Eq. (6)], a descrip-
tion of their Q2 dependence is necessary. Proceeding
analogously to Refs. [40,47], we apply two different
methods: Our preferred strategy is to combine the para-
metrization of the Q2 dependence with the chiral, con-
tinuum, and infinite-volume extrapolation by performing a
simultaneous fit to the Q2-, pion-mass, lattice-spacing, and
finite-volume dependence of our form factor data directly
to the expressions resulting from covariant baryon chiral
perturbation theory (BχPT) [90]. This is explained in detail
in Sec. IVA. Alternatively, one can follow the more
traditional approach of first extracting the radii on each
ensemble from a generic parametrization of the Q2

dependence and subsequently extrapolating them to the
physical point. A crosscheck of our main analysis with this
two-step procedure is presented in Sec. IV B.

A. Direct BχPT fits

For our main analysis using the direct (simultaneous)
fits, we fit our data for the form factors to the full
expressions of Ref. [90] without explicit Δ degrees of
freedom. The fits are performed for the isovector and
isoscalar channels separately, but for GE and GM together.
This allows us to take the correlations not only between
different Q2, but also between GE and GM into account.
The ensembles, on the other hand, are treated as statistically
independent. GEð0Þ is fixed by fitting the normalized ratio
GEðQ2Þ=GEð0Þ. We incorporate the contributions from the
relevant vector mesons in the expressions for the form
factors. In the isovector case, this is the ρ meson, while in
the isoscalar channel, we include the leading-order terms
from the ω and ϕ resonances. Because the loop diagrams
involving ω or ϕ resonances only yield small numerical
contributions to the form factors, our fits depend only
marginally on them. This means that the corresponding

low-energy constants (LECs) gω and gϕ are very poorly
constrained by our data, so that we neglect these loop
diagrams. The corresponding tree-level diagrams, on the
other hand, only depend on the combinations cω ¼ fωgω
and cϕ ¼ fϕgϕ, respectively [90]. Thus, we only use the
products cω and cϕ as independent fit parameters. To
summarize, the fit for the isoscalar form factors depends
linearly on the LECs d7, c7, cω, and cϕ, whereas for the
isovector form factors, the relevant LECs are d6, c̃6, dx,
and Gρ [90].2 For further details on the LECs, we refer to
Table III in Ref. [40]. The full expressions for the form
factors which we employ can be found in Appendix D 2 1
of Ref. [97]. Starting from the formulae for the Dirac and
Pauli form factors given there, we form the appropriate
linear combinations for the electric and magnetic Sachs
form factors according to Eqs. (4) and (5).
The mass of the ρ meson is set on each ensemble to the

value at the corresponding pion mass and lattice spacing.
This is determined from a parametrization of the pion-mass
and lattice-spacing dependence of a subset of the values for
Mρ=Mπ obtained in Ref. [73],

Mρ

Mπ
¼ Mρ;phys

Mπ;phys
þ A

�
1ffiffiffiffi
t0

p
Mπ

−
1ffiffiffiffiffiffiffiffiffiffiffi

t0;phys
p

Mπ;phys

�

þ Cð ffiffiffiffi
t0

p
Mπ −

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
Mπ;physÞ þD

a2

t0
; ð19Þ

with the independent fit parameters A, C, and D. For the fit
to this formula, we disregard ensembles which are not
included in our main analysis (cf. Table I), or which are
solely used to study finite-volume effects (H105 and S201),
since the finite-volume dependence of the ρ masses is not
sufficiently constrained by the data. On each ensemble, we
set the ω mass equal to the ρ mass obtained from Eq. (19),
because no lattice data for the ω masses on our ensembles
are available, and the mass splitting between the ρ and ω
mesons is small. This means that the true ω mass on our
ensembles is probably much closer to the ensemble-
dependent ρ mass than to the physical value of the ω
mass.3 The physical pion mass Mπ;phys is fixed in units offfiffiffiffi
t0

p
using its value in the isospin limit [98],

2The nucleon (average of the proton and neutron) and ϕ
masses are fixed to their physical values [91]. Moreover, we
replace the pion decay constant and the axial-vector coupling
constant in the chiral limit, which appear in the BχPT formulas,
by their physical values, Fπ ¼ 92.2 MeV [82] and gA ¼ 1.2754
[91], respectively. We also use the KSRF relation [92–94]
g2 ¼ M2

ρ;phys=ð2F2
πÞ. For the numerical evaluation of one-loop

integrals, we make use of LoopTools [95,96], setting the renorm-
alization scale to μ ¼ 1 GeV.

3The ϕ resonance, on the other hand, is much heavier than the
ρ and ω mesons. In the absence of lattice data for the ϕ mass on
our ensembles, we thus employ the physical valueMϕ;phys [91] in
our fits.
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Mπ;phys ¼ Mπ;iso ¼ 134.8ð3Þ MeV; ð20Þ

i.e., we employ
ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
Mπ;phys ¼ 0.09881ð59Þ. Here, we

neglect the uncertainty of Mπ;iso in MeV since it is
completely subdominant compared to that of

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
,

which enters in the unit conversion and is propagated into
the fits (see below). For the pion masses we use on our
ensembles, see Appendix A.
Two of the major benefits of the approach presented in

this subsection as compared to the two-step procedure
described in the next one are the following: On the one
hand, performing a fit across several ensembles signifi-
cantly decreases the errors on the resulting radii. On the
other hand, it leads to a much larger number of degrees of
freedom for the fit. This increases the stability against
lowering the applied momentum cut considerably. These
advantages have already been noticed in our publication on
the isovector electromagnetic form factors, Ref. [47], and
apply in a similar manner to the data presented in this paper.
We perform several such fits, using different models to

describe the lattice-spacing and/or finite-volume depend-
ence and, at the same time, applying various cuts in the pion
mass (Mπ ≤ 0.23 GeV and Mπ ≤ 0.27 GeV) and momen-
tum transfer (Q2 ≤ 0.3;…; 0.6 GeV2), in order to estimate
the corresponding systematic uncertainties. The variations
of the results due to the cuts are in most cases much smaller
than their statistical errors. In any case, these variations
will be included in our systematic errors by means of a
model average (cf. Sec. V below). Moreover, the p values
of all our direct fits remain on an acceptable level (cf.
Appendix E). We conclude that we do not observe any sign
of a breakdown of the BχPT expansions in the aforemen-
tioned range of pion masses and momentum transfers.
We adopt two different models for lattice artifacts, either

based on an additive or a multiplicative Ansatz [47],

Gadd
E ðQ2Þ ¼ Gχ

EðQ2Þ þGa
Ea

2Q2 þ GL
Et0Q

2e−MπL; ð21Þ

Gadd
M ðQ2Þ ¼ Gχ

MðQ2Þ þ Ga
M
a2

t0
þ κLMπ

�
1 −

2

MπL

�
e−MπL

þ GL
Mt0Q

2e−MπL; ð22Þ

Gmult
E ðQ2Þ ¼ Gχ

EðQ2Þ þ Ga
Ea

2Q2 þ GL
Et0Q

2e−MπL

t0ðM2
ρ þQ2Þ ; ð23Þ

Gmult
M ðQ2Þ ¼ Gχ

MðQ2Þ þGa
Ma

2=t0 þ GL
Mt0Q

2e−MπL

t0ðM2
ρ þQ2Þ

þ κLMπ

�
1 −

2

MπL

�
e−MπL: ð24Þ

The precise form of the multiplicative model has been
altered compared to the one used in Ref. [47], where the
correction terms directly multiplied Gχ

E;MðQ2Þ. With our

updated, more precise data we have found that such terms
containing both Ga;L

E;M and the LECs [via Gχ
E;MðQ2Þ] lead to

instabilities in the determination of Ga;L
E;M. This is most

probably due to the fit becoming nonlinear in the fit
parameters. By contrast, our new model in Eqs. (23)
and (24) is, from a technical point of view, also purely
additive and thus linear in the fit parameters, while still
capturing the essential contribution of Gχ

E;MðQ2Þ to the
falloff of the form factors with rising momentum transfer.4

Fits leaving κL as a free parameter are unstable, and we
therefore fix κL to the value from heavy-baryon chiral
perturbation theory [99],

κL ¼ −
mN;physg2A
4πF2

π
τ3: ð25Þ

Here, τ3 ¼ þ1 for the proton and τ3 ¼ −1 for the neutron.
Following Eq. (D1), this implies that τu−d3 ¼ þ2 and
τuþd−2s
3 ¼ 0. In total, we have seven different fit models:
one without any parametrization of lattice artifacts, three
including discretization and/or finite-volume effects with
the additive model of Eqs. (21) and (22), and three
corresponding ones using the multiplicative prescription
of Eqs. (23) and (24). The results for all of them are
collected in Appendix E.
The inclusion of a term describing lattice artifacts

requires the use of Gaussian priors for the relevant
coefficients to stabilize the fits. For this purpose, we first
perform fits to ensembles at Mπ ≈ 0.28 GeV only (N101,
H105, N451, N200, S201, and J303; cf. Table I). Here, we
have relatively precise data in a wide range of lattice
spacings and volumes. For these fits, we use a cut in Q2 at
0.6 GeV2 and a simultaneous description of the lattice-
spacing and finite-volume dependence. The coefficients for
the correction terms as determined from the fits, together
with their associated errors, are then employed as priors for
the final fits to the ensembles satisfying the aforementioned
cuts in the pion mass. The only exception are the coef-
ficientsGa

E parametrizing the lattice-spacing dependence of
the isovector electric form factor: our data for Gu−d

E is
sufficiently precise even at low pion masses to allow a
determination of Ga

E, so that we can leave it as a free
parameter.
Since the number of configurations and hence the

number of jackknife samples differ between ensembles
(cf. Table I), we use parametric bootstrap to resample the
distributions on each ensemble. With all mean values for
the form factors entering a specific fit, the nucleon and
the pion mass, as well as their covariance matrix, we draw
10 000 random samples from a corresponding multivariate

4Note that because we employ Mρ in place of Mω on our
ensembles, the expressions in Eqs. (23) and (24) are valid for the
isovector and isoscalar channels alike.
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Gaussian distribution. The covariance matrix one can build
from these samples is consistent with the original covari-
ance matrix. Moreover, the parametric bootstrap procedure
enables us to account for the errors of the scale parameters
tsym0 =a2 and

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
, as well asMρ=Mπ , which are external

to this analysis. Hence, we create an independent random
Gaussian distribution for

ffiffiffiffiffiffiffiffiffiffiffi
t0;phys

p
, for tsym0 =a2 at each value

of β, and for Mρ=Mπ on each ensemble.
From the fits in the isovector and isoscalar channels, we

reconstruct the form factors and all derived observables for
the proton and neutron. For this purpose, we build the
appropriate linear combinations of the BχPT formulas
and plug in the LECs as determined from the fits to the
isovector and isoscalar form factors. This is the more
natural approach both from the perspective of lattice QCD
and of chiral perturbation theory: The form factors in the
isospin basis are our primary5 lattice observables, while the
proton and neutron form factors can only be obtained
indirectly as linear combinations of them [cf. Eq. (D1)].
For the BχPT fits, the isospin basis is also advantageous
because of the clear separation of the contributing reso-
nances in the isovector and isoscalar channels, so that there
are no common fit parameters between the two of them.
The quality of the direct fits is illustrated in Fig. 4 for our

two most chiral ensembles E250 and E300. The fits shown
here correspond to the additive model of Eqs. (21) and (22)
employed to parametrize discretization and finite-volume
effects, with Mπ;cut ¼ 0.23 GeV and Q2

cut ¼ 0.6 GeV2. In
general, the fits describe the data very well. We observe that
the error of the fits is significantly reduced compared to the
data points on E250, but only slightly on E300. The latter is
also the case on all other ensembles entering the displayed
fits (D200, D450, and C101, which are not shown in
Fig. 4). We conclude that the error reduction on E250 is due
to the global fit, i.e., the inclusion of several ensembles in
one fit, with the data at larger pion masses being more
precise than near Mπ;phys.
For the electric form factors on E250, we find a slight

deviation between the fit and the data, which is mostly
absent in all other cases. Nevertheless, the p values of the
shown fits are acceptable, with p > 0.15 in both channels,
because the data points are highly correlated, so that
actually fewer degrees of freedom deviate than it naively
appears from the plots in Fig. 4. Also, the fits are more
consistent with the data on most of the other ensembles.
We take this as an indication that the form factors on E250
are more heavily affected by correlated statistical fluctua-
tions which are not sufficiently suppressed by our choice
of window parameters in the summation method. In
Appendix C, we discuss this point in more detail, con-
cluding that it is in fact not caused by residual excited-state

contamination. Regarding the isovector form factors, the
fact that the fit lies somewhat below the data for Gu−d

E and
somewhat above for Gu−d

M on E250, but to a much lesser
degree so on ensembles with heavier pion masses, has
already been noticed in Ref. [47], and is qualitatively
confirmed by this updated study.
Note that the curves shown in Fig. 4 only correspond to

one specific model and are thus not be interpreted as our
definitive results for the form factors. These can be found in
Fig. 7 for the proton and neutron.

B. Crosscheck with z expansion

As an alternative to the direct fits, one can treat the
parametrization of the Q2 dependence and the chiral,
continuum, and infinite-volume extrapolation as two sep-
arate steps. A model-independent description of the Q2

dependence of the form factors can be achieved by the
z expansion [100],

GEðQ2Þ
GEð0Þ

¼
Xn
k¼0

akzðQ2Þk; ð26Þ

GMðQ2Þ ¼
Xn
k¼0

bkzðQ2Þk; ð27Þ

with

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τcut þQ2

p
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τcut − τ0
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τcut þQ2
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τcut − τ0

p : ð28Þ

The parameter τ0 (not to be confused with the gradient flow
scale t0, hence the slightly uncommon nomenclature) is the
value of −Q2 which is mapped to z ¼ 0. In this work, we
employ τ0 ¼ 0. On each ensemble, we set τcut ¼ 9M2

π for
the isoscalar channel and τcut ¼ 4M2

π for the remaining
channels, respectively, where Mπ is the pion mass on the
respective ensemble (cf. Appendix A). For the purpose of
the z-expansion analysis, we use the form factors of the
proton and neutron obtained as described in Appendix D.
In analogy to the direct fits, we fit the normalized ratio
GEðQ2Þ=GEð0Þ and enforce the normalization by fixing
a0 ¼ 1. For the exceptional case of the neutron, where
Gn

Eð0Þ ¼ 0, we do not normalizeGn
EðQ2Þ, exclude the point

at Q2 ¼ 0, and set a0 ¼ 0.
Using the same strategy to set priors on the coefficients

ak and bk as in our earlier publication Ref. [47], we observe
with our updated, more precise data that such priors impose
too strict constraints on theQ2 behavior of the form factors.
In particular, the fits with priors tend to follow more closely
the data points at large Q2 than those at low Q2, which is
undesirable for an extraction of the radii and the magnetic
moment. Hence, we resort to fits without priors, going up to
order n ¼ 2. This represents a compromise between the fit

5The form factors in the isospin basis are also secondary
quantities in the sense that they are functions of gauge averages
due to the reweighting and the ratio method [cf. Eq. (13)].
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FIG. 4. Isovector and isoscalar electromagnetic form factors on the ensembles E250 (upper panel) and E300 (lower panel) as a
function of Q2. Our original lattice data as obtained from the summation method using the window average are represented by the faint
blue points, while the opaque ones have been corrected for the continuum and infinite-volume limit. The orange curves and bands depict
direct fits withMπ;cut ¼ 0.23 GeV andQ2

cut ¼ 0.6 GeV2, evaluated at the pion mass of the respective ensemble, zero lattice spacing, and
infinite volume.
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function not being unduly stiff and avoiding overfitting
especially on ensembles with a bad resolution in Q2.
The errors on the nucleon and pion masses as well as

those from the scale setting are included in the analysis
using the same parametric bootstrap procedure as for the
direct fits. In order to account for the correlation between
GE and GM, the two form factors are fitted simultaneously
even though they do not share any common fit parameters.
However, the different channels (proton, neutron, isovector,
and isoscalar) are treated separately, in order to mirror the
analysis with the direct fits as closely as possible.
We find that the z expansion describes the data generally

very well. In particular for GM, however, the form factor is
in some cases very flat around Q2 ¼ 0. This seems to be
partly due to fluctuations in the data, against which the z
expansion is not sufficiently stable. Consequently, it can be
assumed that the magnetic moments and radii determined
from these fits are considerably too small.

Using the z expansion, we obtain a set of results for
the electromagnetic radii and the magnetic moment on
each ensemble. They are listed in Appendix F for two
different cuts in the momentum transfer (Q2 ≤ 0.6 GeV2

and Q2 ≤ 0.7 GeV2). We note that the lowest cut in Q2

which is applicable for all ensembles required for a chiral
and continuum extrapolation is in fact roughly 0.6 GeV2.
The ensembles dedicated to the study of finite-volume
effects (H105 and S201) do not even have enough data
points to permit a z expansion with these momentum cuts.
As the finite-volume dependence is not sufficiently con-
strained by the z-expansion data on the remaining ensem-
bles, we neglect it for the purpose of this crosscheck.
For the chiral and continuum extrapolation of the above

datasets, we employ fit formulas inspired by heavy-baryon
chiral perturbation theory (HBχPT) [31]. We only take
the leading-order dependence on the pion mass into
account, since any higher-order coefficients are very poorly

FIG. 5. Electromagnetic radii and magnetic moment of the proton as a function of the pion mass. The faint symbols represent our
original lattice data obtained from a z expansion with Q2

cut ¼ 0.6 GeV2, while the opaque ones have been corrected for the continuum
limit. The cyan lines and bands depict an extrapolation fit (CC fit) according to Eqs. (29)–(31). Its results at the physical point are shown
as cyan squares and the model-averaged results of the direct fits as black crosses [cf. Eqs. (42)–(44)], with a dotted vertical line at the
physical pion mass (in units of

ffiffiffiffi
t0

p
) to guide the eye.
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constrained by our data, and add terms ∝ a2 in order to
account for discretization effects. This leads us to the
following Ansätze for the isovector, proton, and neutron
channels,

hr2Ei
t0

¼ AþD lnð ffiffiffiffi
t0

p
MπÞ þ E

a2

t0
; ð29Þ

hr2Mi
t0

¼ Aþ Dffiffiffiffi
t0

p
Mπ

þ E
a2

t0
; ð30Þ

μM ¼ Aþ B
ffiffiffiffi
t0

p
Mπ þ E

a2

t0
: ð31Þ

The terms in the one-loop HBχPT expressions for the
electromagnetic radii and the magnetic moment with the
pion-mass dependence shown in Eqs. (29)–(31) do not
contribute in the isoscalar channel [31,90,101]. In the absence
of any concrete higher-order HBχPT results, we employ the
following Ansatz for all three isoscalar observables,

Aþ Ct0M2
π þ E

a2

t0
: ð32Þ

The extrapolated results at the physical point are col-
lected in Appendix G for two different cuts each in the pion
mass (Mπ ≤ 0.27 GeV andMπ ≤0.3GeV) and the momen-
tum transfer (Q2 ≤ 0.6 GeV2 and Q2 ≤ 0.7 GeV2). The
numbers for hr2Ei are, with the slight exception of the
neutron, stable within their errors and compare well to
the results of the direct fits [cf. Eqs. (36), (39), (42),
and (45) below]. The magnetic radii exhibit somewhat
more variation while having a considerably larger error
compared with the direct fits. This is mostly due to the latter
fitting GE and GM together with common fit parameters,
thus leveraging the knowledge that both form factors are
governed by the same underlying physics. For the magnetic
moments, the agreement with the direct fits tends to be
worse than for the radii: they are (except in the isoscalar
channel) significantly smaller in magnitude than those
obtained from the direct fits [cf. Eqs. (38), (41), (44),
and (47)], which are in turn well compatible with the
experimentally very precisely known values (cf. Fig. 8).
For illustration, we display in Fig. 5 the extrapolation for

the proton using Mπ;cut ¼ 0.3 GeV and Q2
cut ¼ 0.6 GeV2.

We note that individual ensembles can deviate rather
strongly from the fit curve, which is most apparent for
the magnetic observables on J303 and N200. This is
probably due to the low momentum resolution on these
two ensembles, which implies a long extrapolation to
Q2 ¼ 0, where the radius and the magnetic moment are
defined, but no lattice data is available. We also note that
the relative weights in the extrapolation fit do not reflect
the number of Q2 points entering the z expansion, which is
different on each ensemble. In this sense the two-step

process, first performing z-expansion fits and subsequently
extrapolating, masks the relative paucity of data points at
small momentum transfer for some ensembles.
We conclude that the direct fits are superior to the

analysis using a z-expansion followed by a chiral and
continuum extrapolation, in particular for the description
of the magnetic form factor: they are more stable against
fluctuations on individual momenta or ensembles and take
more information about the physical properties of the form
factors into account, which helps in reducing the errors.
In cases where the two-step procedure based on the
z-expansion is stable and trustworthy, both methods give
consistent results. Therefore, we do not find any evidence
that the functional forms employed by the direct BχPT fits
introduce a systematic bias. We also remark that there is no
meaningful possibility of averaging the results from the
direct BχPT fits with those from the z expansion because
the latter are, in particular for the magnetic quantities, much
less precise and simply not competitive.

V. MODEL AVERAGE AND FINAL RESULTS

For the reasons stated above,we favor the analysis basedon
the direct fits and hence restrict our presentation of the final
results to this method. Within this approach, we have no
strong a priori preference for one specific setup, and thus
determine our final results and total errors from averages over
different fit models and kinematic cuts. For this purpose, we
employ weights derived from the AIC [102,103].
The applicability of the AIC in its original form is called

into question in the presence of Bayesian priors for some fit
parameters or when only subsets of data are fitted as a result
of applying kinematical cuts. Therefore, we apply the
Bayesian Akaike information criterion (BAIC) proposed
in Ref. [104]. It reads

BAICi ¼ χ2noaug;min;i þ 2nf;i þ 2nc;i; ð33Þ

where χ2noaug;min;i denotes the minimum of the χ2 function for
the ith model excluding the contribution of the priors. nf;i is
the corresponding number of fit parameters and nc;i the
number of cut data points. This criterion takes the goodness
of fit into account, while at the same time penalizing a
reduction of the degrees of freedom that may result either
from the introduction of further fit parameters or from
cutting away data points. For the proton and neutron
observables, which are derived from two separate fits to
the isovector and isoscalar form factors, the BAIC is
obtained as the sum of the BAIC values of both fits (which
would be the BAIC resulting from a combined fit with the
cross-correlations between the two channels set to zero6).

6Estimating these correlations is not feasible because the size
of the resulting covariance matrices would be much larger than
the number of available configurations on some ensembles.
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For the weighting of the different models, one can
use [104–106]

wBAIC
i ¼ e−BAICi=2P

j e
−BAICj=2

: ð34Þ

When computing these weights for our set of models, it
turns out that the BAIC strongly prefers the fits with the least
stringent cut inQ2. This is due to the relatively large number
of data points which is cut away by lowering Q2

cut in a fit
across several ensembles. The effect is enhanced by our two
most chiral ensembles E250 and E300, which feature a
comparatively large density ofQ2 points. Since the radii and
the magnetic moment are defined in terms of the low-Q2

behavior of the form factors, a stricter cut in Q2 is
theoretically better motivated for an extraction of these
quantities. Hence, we employ Eq. (34) for each value of
Q2

cut at a time to weight the remaining variations, i.e., the
pion-mass cut and the modelling of lattice artifacts. Using
these separately normalized BAICs, we finally apply a flat
weight function to the estimates originating from the differ-
entQ2

cut. This prescription, which we dub BAIC, ensures that
the stricter cuts in Q2, and thus our low-momentum data,
have a strong influence on our final results.
In order to estimate the statistical and systematic

uncertainties of our model averages, we adopt the pro-
cedure from Ref. [107], which we briefly sketch in the
following. To this end, one treats the model-averaged
quantity as a random variable with a cumulative distribu-
tion function (CDF) adding up from the weighted CDFs of
the individual models,

PxðyÞ ¼
XNM

i¼1

wBAIC
i

NB

XNB

n¼1

Θðy − xi;nÞ: ð35Þ

Here, the outer sum runs over our NM ¼ 4 × 2 × 7 ¼ 56

models with the associated weights wBAIC
i computed as

explained above. The inner sum runs over the NB ¼ 10000
bootstrap samples obtained from our resampled analysis
(cf. Sec. IVA). Θ denotes the Heaviside step function and
xi;n the estimate for the observable x on the nth sample and
using the ith model. Due to the large number of bootstrap
samples NB, the distribution in Eq. (35) is effectively
smoothed in spite of being a sum of step functions. The
final value and the total error are easily read off from this
distribution as the median and the quantiles which would
correspond to the central 1σ of an effective Gaussian
distribution, respectively. In order to isolate the statistical
and systematic errors, one can scale the width of the
bootstrap distributions entering Eq. (35) by a factor of λ.
Under the assumption that such a rescaling of the errors
of the individual model results only affects the statistical,
but not the systematic error, one can separate these two
contributions as demonstrated in Ref. [107]. We use λ ¼ 2

as in Ref. [107], but we remark that the results of this
method are essentially independent of the choice of λ for
our data as long as λ≳ 2.
The collection of results for the electromagnetic radii and

the magnetic moment of the proton together with the CDF
obtained as explained above is displayed in Fig. 6. One can
see that approximately the expected fraction of results lie
within the 68% quantiles of the averaged distribution.
Moreover, the symmetrized errors as shown by the gray
bands agree well with the (generally nonsymmetric) quan-
tiles of the distributions, which are indicated by the dashed
lines. Since this statement holds for all four channels, we
quote the symmetrized errors together with our final results,

hr2Eiu−d¼ð0.785�0.022ðstatÞ�0.026ðsystÞÞ fm2; ð36Þ

hr2Miu−d¼ð0.663�0.011ðstatÞ�0.008ðsystÞÞ fm2; ð37Þ

μu−dM ¼ 4.62� 0.10ðstatÞ � 0.07ðsystÞ; ð38Þ

hr2Eiuþd−2s¼ð0.554�0.018ðstatÞ�0.013ðsystÞÞ fm2;

ð39Þ

hr2Miuþd−2s¼ð0.657�0.030ðstatÞ�0.031ðsystÞÞ fm2;

ð40Þ

μuþd−2s
M ¼ 2.47� 0.11ðstatÞ � 0.10ðsystÞ; ð41Þ

hr2Eip ¼ ð0.672� 0.014ðstatÞ � 0.018ðsystÞÞ fm2;

ð42Þ

hr2Mip ¼ ð0.658� 0.012ðstatÞ � 0.008ðsystÞÞ fm2;

ð43Þ

μpM ¼ 2.739� 0.063ðstatÞ � 0.018ðsystÞ; ð44Þ

hr2Ein ¼ ð−0.115� 0.013ðstatÞ � 0.007ðsystÞÞ fm2;

ð45Þ

hr2Min ¼ ð0.667� 0.011ðstatÞ � 0.016ðsystÞÞ fm2;

ð46Þ

μnM ¼ −1.893� 0.039ðstatÞ � 0.058ðsystÞ: ð47Þ

We find that we can obtain the magnetic radii of the proton
and neutron to a very similar precision to their respective
electric radii.
We have compared the above numbers to the results of

two alternative averaging strategies: the BAIC weights
of (34) applied to all variations, i.e., also the cut in Q2, or a
naive (flat) average imposing a p-value cut at 1%. For the
latter, we have used the average statistical uncertainty, and
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the variance determined from the spread of the fit results
as a systematic error estimate [108]. While this method is
robust, it is also very conservative and susceptible to
overestimating the true errors. The “plain” BAIC, on the
other hand, drastically underestimates the systematic error
for observables which display a non-negligible dependence
on Q2

cut. For these reasons, we adopt the model averaging
procedure BAIC explained above. We note, however, that
the results of all three methods are compatible within errors.
In analogy to the radii and the magnetic moments, one

can also average the form factors evaluated at the physical
point and at particular values of Q2 over the model
variations. The results are plotted in Fig. 7 for the proton
and neutron and are directly compared to experimental
data. For the proton, one can observe a moderate deviation
in the slope of the electric form factor between our result
and that of the A1 collaboration [3] over the whole range
of Q2. As shown in the inset, the slope of our electric form
factor at low Q2 is much closer to that of the PRad
experiment [13] than to that of Ref. [3]. The magnetic
form factor, on the other hand, agrees well with that of
Ref. [3]. For the neutron, we compare with the collected
experimental world data [109], which are largely

compatible with our curves within our quoted errors.
Only the slope of our magnetic form factor differs some-
what from experiment. Furthermore, our results reproduce
within their errors the experimental values of the magnetic
moments both of the proton and of the neutron [91].
Our updated radii and magnetic moment in the isovector

channel [cf. Eqs. (36)–(38)] agree well with our previously
published results [47], with similar errors on the electric
radius and the magnetic moment, and an improved error on
the magnetic radius.
In Fig. 8, we compare our results for the proton and

neutron [cf. Eqs. (42)–(47)] to recent lattice determinations
and to the experimental values. We remark that the only
other complete lattice study including disconnected con-
tributions is Ref. [45], which, however, does not perform a
continuum and infinite-volume extrapolation. Our esti-
mates for the electric radii of the proton and neutron are
larger in magnitude than the results of Refs. [44–46], while
Ref. [38] quotes an even larger central value for

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
.

We stress that any difference between our estimate and
previous lattice calculations is not related to our preference
for direct fits to the form factors, as opposed to the more
traditional analysis via the z expansion. In fact, the

FIG. 6. Cumulative distribution function of the electromagnetic radii and the magnetic moment of the proton for all fitted models. The
green points depict the central values and errors of the individual fit results. The thick black line shows the weighted CDF according to

Eq. (35). For comparison, we also include a CDF based on the central values only, i.e., PxðyÞ ¼ PNM
i¼1 w

BAIC
i Θðy − xiÞ, which is

displayed by the light blue line. The dashed-dotted and dashed lines indicate the median and the central 68% quantiles, respectively. The
gray bands, on the other hand, depict the symmetrized errors quoted in Eqs. (42)–(44).

ELECTROMAGNETIC FORM FACTORS OF THE NUCLEON … PHYS. REV. D 109, 094510 (2024)

094510-15



z-expansion approach yields similar values for our data.
Furthermore, we obtain results for the magnetic moments
of the proton and neutron, as well as for

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Min

p
, which are

considerably larger in magnitude than that of Refs. [37,45],
while being compatible with that of Ref. [44]. This
improves the agreement with the experimental values [91].
In the case of the magnetic moments, the latter are very
precisely known and are reproduced by our estimates
within our quoted uncertainties. For

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Min

p
, we observe

nevertheless a 3.2σ tension between our result and the
experimental average by the Particle Data Group (PDG)
(after combining all errors in quadrature). On the level of
the form factor Gn

M evaluated at any particular value of Q2,
however, the discrepancy is much smaller, as can be seen
from Fig. 7 (bottom right). For

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
, our result is only

about 1.2 combined standard deviations larger than that of
Ref. [45]. We note that our results for the isoscalar radii
[cf. Eqs. (39) and (40)] are larger than those of Ref. [45] by
a greater amount, while μuþd−2s

M compares well between our
study and Ref. [45].
For the electric and magnetic radii of the proton, the

experimental situation is much less clear than for the
magnetic moment. As is the case for most of the other

recent lattice calculations [44–46], our result for
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
is

much closer to the PDG value [91], which is completely
dominated bymuonic hydrogen spectroscopy, than to the A1
ep-scattering result [3]: While we only observe a very mild
1.5σ tension with the former, we disagree at the 3.7σ level
with the latter (after combining all errors in quadrature).
We note that we achieve an even better 0.6σ agreement with
the recent ep-scattering experiment by PRad [13], which
has also yielded a small electric radius of the proton. Forffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
, on the other hand, our estimate is well compatible

with the value inferred from the A1 experiment by the
analyses [3,27] and exhibits a sizable 2.8σ tension with the
other collected world data [27]. As can be seen from
Fig. 7 (top right), the good agreement with A1 is not only ob-
served in themagnetic radius, but also for theQ2 dependence
of the magnetic form factor over thewhole range ofQ2 under
study. We note that the dispersive analysis of the Mainz/A1
and PRad data in Ref. [17] has yielded a significantly
larger magnetic radius [

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
¼ ð0.847� 0.004ðstatÞ�

0.004ðsystÞÞ fm] than the z-expansion-based analysis of the
Mainz/A1 data in Ref. [27]. The former value also exhibits a
3.4σ tension with our result, which is partly due to its
substantially smaller error compared to Ref. [27]. Possible

FIG. 7. Electromagnetic form factors of the proton and neutron at the physical point as a function ofQ2. The orange curves and bands
correspond to our final results with their full uncertainties obtained as model averages over the different direct fits. The light orange
bands indicate the statistical uncertainties only. For the proton, the black diamonds represent the experimental ep-scattering data from
A1 [3] obtained using Rosenbluth separation, and the green diamonds the corresponding data from PRad [13]. For the neutron, the black
diamonds show the experimental world data collected in Ref. [109]. The experimental values of the magnetic moments [91] are depicted
by red crosses.
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reasons for this discrepancy include unaccounted-for
isospin-breaking effects.
Our statistical and systematic error estimates for the

electric radii and magnetic moments are commensurate with
the other lattice studies, while being substantially smaller for
the magnetic radii. We remark that the missing data point at
Q2 ¼ 0 complicates the extraction of the magnetic low-Q2

observables in most recent lattice determinations, especially
for z-expansion fits on individual ensembles. The direct
approach has, additionally to combining information from
several ensembles and from GE and GM, less freedom and
by itself allows for considerably less variation in the form
factors at low Q2. We believe this to be responsible, in large
part, for the small errors we find in the magnetic radii.

VI. CONCLUSIONS

In this paper, we have investigated the electromagnetic
form factors of the proton and neutron in lattice QCD
with 2þ 1 flavors of dynamical quarks at the physical
point including both quark-connected and -disconnected
contributions. For the precise and effective computation
of the latter, we have made use of a split-even estimator,
i.e., the one-end trick [68,71,72]. Systematic effects due to
excited states have been accounted for by using the
summation method with a conservative choice for the
window in the minimal source-sink separation over which
the summation fits have been averaged. By matching our

lattice results with the predictions from covariant baryon
chiral perturbation theory, we have performed simultaneous
fits to the Q2-, pion-mass, lattice-spacing, and finite-
volume dependence of the form factors in the isospin
basis. From these fits, the electromagnetic radii and
magnetic moments of the proton and neutron have been
extracted. We thus obtain the first complete lattice results
for these quantities which have a full error budget, i.e., all
relevant systematic effects are taken into account. Our final
estimates can be found in Eqs. (36)–(47).
As an important benchmark, we reproduce the exper-

imentally very precisely known magnetic moments within
our quoted uncertainties. Our result for the electric (charge)
radius of the proton is much closer to the value extracted
from muonic hydrogen spectroscopy [6] and recent
ep-scattering experiments [13] than to the A1 ep-scattering
result [3]. For the magnetic radius, on the other hand, our
estimate is compatible with the analyses [3,27] of the A1
data, while being in tension with the other collected world
data [27]. In summary, we contribute additional evidence to
suggest that lattice calculations agree with the emerging
consensus about the experimental value of the electric
proton radius [110–112]. Meanwhile, the results for the
magnetic proton radius require further investigation.
For lattice studies of the electromagnetic form factors, the

excited-state contamination remains an important source of
systematic uncertainty. Using the summation method, the

FIG. 8. Comparison of our best estimates (red downward-pointing triangle) for the electromagnetic radii and the magnetic moments of
the proton and neutron with other lattice calculations, i.e., Mainz21 [47] (blue circle), ETMC20 [46] (green upward-pointing triangle),
ETMC19 [45] (orange leftward-pointing triangle), PACS19 [44] (yellow rightward-pointing triangle), and CSSM/QCDSF/UKQCD14
[37,38] (pink hexagon). Only studies with filled markers, i.e., ETMC19 and this work, include disconnected contributions and hence
represent a full lattice calculation. The Mainz21 values for the proton have been computed by combining their isovector results with the
PDG values for the neutron [91]. We also show this estimate using our updated isovector results from this work (blue downward-pointing
triangle). The experimental values for the neutron and for μpM are taken from PDG [91] (black cross). The two data points for

ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

p
represent the values from PDG [91] (cross) and Mainz/A1 [3] (square), respectively. The two data points for

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2Mip

p
, on the other hand,

depict the reanalysis of Ref. [27] either using the world data excluding that of Ref. [3] (diamond) or using only that of Ref. [3] (square). For
ease of comparison, the red bands show our final results with the full uncertainty, with the light bands indicating the statistical errors.
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signal gets lost in the exponentially growing noise very
quickly after the plateau region is reached. This renders firm
statements about the exact location of the plateau impossible.
A promising strategy to tackle this issue, besides drastically
increasing statistics at large source-sink separations, is to
perform a dedicated study of the excitation spectrum. To
improve on the systematic error due to the continuum and
infinite-volume extrapolation, a larger range of lattice spac-
ings and volumes at or near the physical pion mass is
necessary. Because of concerns regarding the algorithmic
stability of our simulations, the production of coarse and
light ensembles is not feasible in our current setup. We are,
however, working on the production of a fine ensemble at the
physical pion mass, which would help to further constrain
both the chiral interpolation and the continuum extrapola-
tion. Moreover, its large volume implies a high density ofQ2

points, which is crucial for an accurate extraction of the radii.
We plan to update our analysis including this new ensemble
in a future publication.
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APPENDIX A: PION AND NUCLEON MASSES

In Table II, we tabulate the nucleon masses on the gauge
ensembles listed in Table I which we employ in the
kinematical prefactors entering the effective form factors

and in the definition of Q2, as well as the corresponding
pion masses used for the extrapolation to the physical point
and for setting τcut in the z-expansion fits.
Note that the values differ from the ones used in our

earlier studies [47,118]. With significantly increased sta-
tistics on many ensembles, we now aim for an analysis
which is as self-contained as possible. Hence, the nucleon
and pion masses are extracted from the two-point functions
of the nucleon and pion at zero momentum, respectively,
employing a setup that matches the one of our main
analysis as closely as possible.
For the nucleon, we use Γp ¼ 1

2
ð1þ γ0Þ and the highest

available statistics in terms of sources. Since we want to
utilize much larger source-sink separations than for the
construction of the disconnected part of the three-point
function, however, we need to ensure that boundary effects
are sufficiently suppressed on oBC ensembles. Hence, we
impose a minimal temporal distance of 4 fm that the source
of the nucleon propagating towards the boundary has to
keep from the latter. Afterwards, we average the two-point
functions of the forward- and backward-propagating
nucleon. On periodic boundary condition ensembles, such
a constraint is obviously not required, and all sources
can be used for the forward- as well as the backward-
propagating nucleon. On the oBC ensemble S201, all
sources are placed on a single timeslice which is less than
4 fm from the lower temporal boundary of the lattice, so
that only the forward-propagating nucleon can be used.
The two-point functions of the pion have only been

measured on a subset of the sources employed for the
nucleon because they are already much more precise.

APPENDIX B: ADDITIONAL CROSSCHECKS
ON THE EXCITED-STATE ANALYSIS

In this appendix, we provide additional crosschecks on
our excited-state analysis in order to ensure that ground-
state dominance is reached by our preferred procedure
which is described in Sec. III.

TABLE II. Pion and nucleon masses used in this study (in units
of

ffiffiffiffi
t0

p
). The quoted errors include the error of

ffiffiffiffiffiffiffiffi
tsym0

p
=a [82].

ID
ffiffiffiffi
t0

p
Mπ

ffiffiffiffi
t0

p
MN

C101 0.1662(10) 0.7160(35)
N101 0.20777(78) 0.7555(22)
H105 0.2073(19) 0.7704(35)
D450 0.16010(62) 0.7160(40)
N451 0.21167(60) 0.7728(22)
E250 0.09560(59) 0.6882(21)
D200 0.15162(74) 0.7261(23)
N200 0.20626(93) 0.7796(27)
S201 0.2163(13) 0.8323(49)
E300 0.12898(70) 0.7151(23)
J303 0.19476(64) 0.7667(22)
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1. Summation method

As mentioned in Sec. III, the choice of the parameters
defining the window average in Eq. (18) is not unique. In
Fig. 9, we compare two different options corresponding to
windows centered at tmin

sep ≈ 0.9 and 1 fm, respectively. We
observe that both windows lead to compatible (in most
cases actually very well compatible) results. Furthermore,
the window located at larger tmin

sep , which is the one we have
chosen for our main analysis, is not only more conservative

regarding the suppression of excited states but also yields a
larger error.
Another tunable parameter of the summation method is

the number of timeslices tskip omitted at both ends of the
operator insertion time [cf. Eq. (16)]. Contrary to the naive
expectation, a larger value of tskip actually leads to a larger
excited-state contamination in the summed ratio at fixed
tsep. This is due to the factor ∝ exp½−Δðtsep − tskipÞ� in the
two-state truncated version of the summation method7 [47],

SE;MðQ2; tsepÞ ¼ r00ðQ2Þ
�
1 −

ρðQ2Þ
2

e−ΔðQ2Þtsep −
ρð0Þ
2

e−Δð0Þtsep
�
1

a
ðtsep þ a − 2tskipÞ

þ
�
r01ðQ2Þ þ r00ðQ2Þ ρðQ

2Þ
2

�
e−ΔðQ2Þðtskip−aÞ − e−ΔðQ2Þðtsep−tskipÞ

eaΔðQ2Þ − 1

þ
�
r10ðQ2Þ þ r00ðQ2Þ ρð0Þ

2

�
e−Δð0Þðtskip−aÞ − e−Δð0Þðtsep−tskipÞ

eaΔð0Þ − 1

þ r11ðQ2Þ e
−ΔðQ2Þðtskip−aÞ−Δð0Þðtsep−tskipÞ − e−ΔðQ2Þðtsep−tskipÞ−Δð0Þðtskip−aÞ

eaΔðQ2Þ − eaΔð0Þ
þ… ðB1Þ

FIG. 9. Extension of Fig. 3 with a different choice of window parameters. Upper panel: D450, lower panel: E300. The gray band
corresponds to the result obtained with the weights shown by the diamonds connected by the solid line (centered at 1 fm, our preferred
choice). The orange band corresponds to the result obtained with the weights shown by the squares connected by the dashed line
(centered at 0.9 fm, as in Refs. [62,63]).

7This expression can be obtained by summing Eq. (B2) below over t according to Eq. (16).
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Here, ΔðQ2Þ and Δð0Þ are energy gaps, while the factors
ρðQ2Þ and ρð0Þ are defined in terms of the overlaps in the
two-point functions entering the ratio Eq. (13) [for the exact
definition of the latter, see below Eq. (B3)]. r00ðQ2Þ ¼
GE;MðQ2Þ is the ground-state form factor.
If the limit tsep → ∞ is taken at fixed tskip, all extractions

should, independently of tskip, converge to the same
ground-state form factor. Both aforementioned trends are
actually observed in stability plots for the results of the
summation method as a function of tmin

sep and tskip, which can
be found in Fig. 10. In the region where the window of (18)
has its largest support (indicated in gray in Fig. 10), all
(not unreasonably large) values of tskip already agree well.
Therefore, using only one value of tskip is perfectly
adequate to obtain a reliable estimate of the ground-state
form factors and their uncertainties. It can also be seen from
Fig. 10 that the errors tend to get smaller with rising tskip

because less of the somewhat more noisy data at the borders
of the insertion time are employed to build the summed
ratios. Consequently, tskip ¼ 2a appears to be a good
compromise between not increasing the excited-state con-
tamination in the summed ratio due to the effect mentioned
before and excluding some of the potentially slightly less
reliable data close to the source or sink. This is the value we
have employed for our main analysis.

2. Two-state fits

Even if the results of the summation method with the
window average tuned as explained above appear to yield
very conservative error estimates, a comparison with a
completely different approach is desirable in order to
exclude any systematic bias introduced by relying exclu-
sively on the summation method. Therefore, we perform
two-state fits to the effective form factors according to

Geff
E;MðQ2; tsep; tÞ ¼ r00ðQ2Þ

�
1þ ρðQ2Þ

2
½e−ΔðQ2Þðtsep−tÞ − e−ΔðQ2Þtsep � þ ρð0Þ

2
½e−Δð0Þt − e−Δð0Þtsep �

	

þ r01ðQ2Þe−ΔðQ2Þt þ r10ðQ2Þe−Δð0Þðtsep−tÞ þ r11ðQ2Þe−ΔðQ2Þte−Δð0Þðtsep−tÞ; ðB2Þ

FIG. 10. Extension of 3 (which only shows tskip ¼ 2a) to other values of tskip. Upper panel: D450, lower panel: E300. The vertical gray
bands indicate the interval tmin

sep ∈ ½tloww ; tupw � in which the window of (18) has its largest support.
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in order to extract the ground-state form factors
r00ðQ2Þ ¼ GE;MðQ2Þ. We fit the electric and magnetic
effective form factors together, with the energy gaps
ΔðQ2Þ, Δð0Þ and the overlap factors ρðQ2Þ, ρð0Þ as
common fit parameters.
To achieve stable fits, priors on the energy gaps and also

on the overlap factors are required. To determine these, we
perform two-state fits to the two-point functions,

hC2ðp0;tsepÞi¼c0ðp02Þe−E0ðp0Þtsep þc1ðp02Þe−E1ðp0Þtsep : ðB3Þ

From these fits, we extract the energy gaps ΔðQ2Þ ¼P
p̃∈p½E1ðp̃2Þ − E0ðp̃2Þ�=Pp̃∈p 1 and the overlap factors

ρðQ2Þ ¼ P
p̃∈ p½c1ðp̃2Þ=c0ðp̃2Þ�=Pp̃∈ p 1, i.e., we average

over equivalent three-momenta. The systematic uncertainty
originating from the choice of fit ranges is accounted for by

FIG. 11. Isovector electromagnetic form factors at Q2 ≈ 0.2 GeV2 on the ensembles E300 (upper panel), D200 (middle panel), and
C101 (lower panel) as a function of the minimal source-sink separation entering the fits to (B2) and for different numbers of timeslices
skipped from the borders. Open circles refer to fits with a p value less than 5%. Seemingly missing points lie, due to convergence issues,
outside of the plotted range.
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averaging over all reasonable options using AIC weights
[cf. Eqs. (33) and (34)] and adding Gaussian noise to the
jackknife distribution according to the systematic covari-
ance matrix [the second term in Eq. (7) in Ref. [119], which
is a straightforward generalization of Eq. (7) in Ref. [104]].
Both the two-state fits to the two-point functions and those
to the effective form factors are performed using the VarPro

method [120] to eliminate the need for initial guesses for
the prefactors cj and rjk, respectively.
As the ρ factors, which are defined by the overlaps in the

two-point function, only enter the spectral representation of
the ratio used to derive Eq. (B2) via the expansion of the
two-point function, we directly take the values obtained
from the fits to Eq. (B3) as priors for them. Here, we
increase the width of the priors by multiplying the error of ρ
by a conservative factor of 3.
The energy gaps, on the other hand, also enter the terms

in Eq. (B2) which originate from the expansion of the three-
point function. Hence, the situation is less clear than for the
ρ factors because the three-point function might have a
stronger overlap with different excited states than the two-
point function. This is intimately connected with the issue
that our calculation, as almost certainly all other current
lattice calculations of nucleon matrix elements, is not in the

regime where a single excited state dominates the excited-
state contamination. Since it is impossible to fit more than
one excited state without putting unduly strict priors on the
energy gaps (which would correspond to making an a priori
assumption about what the states are which couple most
strongly, and not really letting the data decide on this), the
latter must be regarded as effective gaps summarizing the
contribution of several excited states. Therefore, we employ
relatively loose priors set to the range between 2Mπ and the
energy gap obtained from fitting the two-point function.
This comes of course at the expense of less stable fits to
the effective form factors. But we stress again that it is
necessary in order to not introduce a systematic bias by
assuming a particular value of the gap.
To determine the range of points which should enter the

two-state fits to the effective form factors, we compare
different choices of tmin

sep and tskip in Fig. 11. We find that
both parameters need to be set to relatively large values in
order to obtain stable fit results and p values which are
acceptable at least in the majority of cases. Our final
choices are tmin

sep ≳ 6.9
ffiffiffiffi
t0

p
, which corresponds to the peak

of the window used in the summation method, and tskip≳
2.6

ffiffiffiffi
t0

p
≈ 0.4 fm. The latter is realized by tskip ¼ 8a on

E300, 6a on D200, and 5a on C101. We remark that these

FIG. 12. Isovector and isoscalar electromagnetic form factors on the ensemble E300 as a function of Q2. The blue points originate
from two-state fits to the effective form factors according to Eq. (B2), while the orange ones have been obtained from the summation
method using the window average.

DALIBOR DJUKANOVIC et al. PHYS. REV. D 109, 094510 (2024)

094510-22



FIG. 14. Same as Fig. 12 for ensemble C101.

FIG. 13. Same as Fig. 12 for ensemble D200.
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values correspond to omitting about half of the data points
even at our largest source-sink separation.
In Figs. 12–14, we show plots of the Q2 dependence of

GE and GM on the ensembles E300, D200, and C101,
comparing the two-state and the summation method. These
plots reveal that the two-state fits in general yield smaller

errors than the summation method, in particular for the
magnetic form factor. We remark that many other lattice
studies of nucleon form factors have observed a similar
trend in the errors [86]. Besides, the comparison in
Figs. 12–14 does not permit the conclusion that either
method introduces a directed, systematic bias.

FIG. 15. Isovector and isoscalar effective form factors for ensemble E300 and Q2 ≈ 0.196 GeV2. The data points are horizontally
displaced for better visibility. The curves represent the two-state fits in their respective fit intervals, and the horizontal bands their
extrapolation to tsep; t → ∞.

FIG. 16. Same as Fig. 15 for ensemble D200 and Q2 ≈ 0.177 GeV2.
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To further quantify the effect on the resulting radii of
choosing either the summation method or the two-state fits
for the extraction of the ground-state form factors, we have
performed BχPT fits on individual ensembles (the ones
mentioned above) for both datasets. This may not be the
exact same method used to obtain our final results, but it
employs the same functional forms and permits a relatively
straightforward comparison of the two datasets on the level
of individual ensembles. We stress that for the purpose of
the subsequent comparison, we have subjected both data-
sets to exactly the same procedure. While we observe some
variations in the results and the correlated difference of the
radii extracted either from the summation or the two-state
data can be larger than 1σ, there is absolutely no clear
pattern to see. On the contrary, the variations appear to be
completely random in nature.
Any judgment about the reliability of a method to extract

the ground-state form factors should also be based on plots
of the effective form factors themselves. These can be
found in Figs. 15–17 for the three aforementioned ensem-
bles and Q2 ≈ 0.2 GeV2. They show that the two-state fits
in many cases miss the data (even if the p value is decent)
and/or lead to an unrealistically large correction compared
to the largest source-sink separation we have computed.
They also demonstrate that the summation method yields
entirely plausible values for the ground-state form factors.
To summarize the discussion, we did not find any

indication that the summation method introduces a sys-
tematic bias compared to two-state fits. In contrast to the
former, the latter require the use of priors. We have
observed that the choice of the location as well as of the
width of the priors on the energy gaps strongly influences

both the central values of the resulting ground-state form
factors and their errors. Furthermore, with the relatively
broad priors which we have finally adopted, we observe
some instabilities in the two-state fits, mostly on ensembles
with less statistics than the ones shown here and at higher
momenta than those included in the analysis. The oppor-
tunity to avoid the use of priors in this very sensitive and
crucial step of the analysis is our main reason for preferring
the summation method.

APPENDIX C: FORM FACTORS ON E250

As mentioned in the main text describing Fig. 4, the form
factors on our near-physical pion mass ensemble E250
seem to exhibit more pronounced statistical fluctuations
than on other ensembles. Here, we investigate this point in
more detail.
In Fig. 18, the isoscalar effective form factors are shown

for the first nonvanishing momentum on E250. It is obvious
that the largest two source-sink separations (tsep ¼ 20a
and 22a) represent an upwards fluctuation. In the electric
form factor, this is particularly clear because excited-state
effects always have a positive sign here, so that the effective
form factor is expected to monotonically decrease with
rising tsep. Moreover, doubling the statistics for the
disconnected part from the original 398 to now 796
configurations has had (almost) no effect on the largest
two source-sink separations as far as the errors are con-
cerned, while reducing the errors of the disconnected
contribution substantially for the lower values of tsep.
This indicates likewise that fluctuations are still dominant
for the largest two source-sink separations.

FIG. 17. Same as Fig. 15 for ensemble C101 and Q2 ≈ 0.174 GeV2.
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The upwards fluctuation is also clearly visible in the
tmin
sep plots for the form factors extracted from the sum-
mation method (cf. Fig. 19). Here, mostly the extractions
with the largest two values of tmin

sep are affected, as in these
cases the influence of the effective form factors at large
tsep on the summation fit becomes sizable. Due to our
choice for the window, these points have a significant
effect on the averaged result as well. This means that
on E250, the window average with our values for the
parameters tup;loww is not able to suppress this statistical
fluctuation sufficiently. On the other hand, excited-state
effects are also expected to be stronger at lower pion
masses. Hence, it does not appear reasonable to adjust
the window to lower values of tmin

sep on E250. Besides,
the lowest point for Guþd−2s

E in Fig. 19 is still within 2σ of

our averaged result, so that these two values are not
incompatible with each other, and our error is not grossly
underestimated.
As can be seen from Fig. 4, our direct fits are stable

against such fluctuations on single ensembles: the fit curves
lie below the data at the first ∼6 Q2 points for the isoscalar
form factors on E250, i.e., the fit follows much more
closely the trend determined by the other ensembles than
this obvious fluctuation on E250.

APPENDIX D: FORM FACTOR DATA

In Tables III–XIII, we present the results of extracting the
electromagnetic form factors with the summation method
using the window average, as described in Sec. III, for
every gauge ensemble listed in Table I. The effective form

FIG. 19. Isoscalar electromagnetic form factors at the first nonvanishing momentum on the ensemble E250 as a function of the
minimal source-sink separation entering the summation fit. The meaning of the points and bands is analogous to Fig. 3.

FIG. 18. Isoscalar effective form factors at the first nonvanishing momentum on the ensemble E250 (Q2 ≈ 0.041 GeV2). The meaning
of the points and bands is analogous to Fig. 2.
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TABLE III. Electric and magnetic form factors on C101.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.089 0.7991(66) 3.480(89) 0.8175(44) 2.26(16) 0.8075(45) 2.116(61) 0.0092(33) −1.368ð40Þ
0.174 0.6715(89) 2.939(69) 0.6885(63) 1.99(12) 0.6777(60) 1.804(48) 0.0096(47) −1.137ð31Þ
0.256 0.564(11) 2.534(68) 0.5968(86) 1.63(12) 0.5792(78) 1.538(47) 0.0189(58) −0.996ð32Þ
0.335 0.484(15) 2.264(75) 0.516(11) 1.44(13) 0.495(11) 1.367(52) 0.0140(79) −0.886ð35Þ
0.412 0.428(13) 1.931(63) 0.4630(98) 1.32(12) 0.4376(93) 1.180(43) 0.0164(65) −0.748ð31Þ
0.485 0.380(15) 1.748(62) 0.410(11) 1.11(13) 0.392(11) 1.061(43) 0.0174(73) −0.692ð32Þ
0.627 0.318(20) 1.513(81) 0.329(17) 1.06(16) 0.324(15) 0.945(56) 0.0050(99) −0.566ð39Þ
0.695 0.276(21) 1.470(82) 0.301(17) 0.89(15) 0.292(16) 0.887(54) 0.011(10) −0.584ð40Þ
0.761 0.245(24) 1.35(10) 0.262(21) 0.93(21) 0.254(19) 0.826(70) 0.003(11) −0.517ð54Þ
0.825 0.234(25) 1.275(98) 0.231(24) 0.70(22) 0.232(21) 0.754(70) −0.001ð12Þ −0.523ð53Þ
0.888 0.258(49) 1.07(16) 0.272(41) 0.43(33) 0.272(40) 0.60(11) 0.011(21) −0.483ð82Þ

TABLE IV. Electric and magnetic form factors on N101.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.089 0.8090(52) 3.583(70) 0.8372(29) 2.42(10) 0.8227(36) 2.189(46) 0.0128(24) −1.405ð32Þ
0.175 0.6753(63) 3.065(55) 0.7129(34) 1.997(82) 0.6940(43) 1.866(36) 0.0174(29) −1.199ð25Þ
0.258 0.5763(78) 2.657(51) 0.6199(43) 1.711(84) 0.5980(53) 1.612(34) 0.0206(35) −1.045ð24Þ
0.338 0.4790(92) 2.311(58) 0.5360(60) 1.56(11) 0.5058(66) 1.400(42) 0.0263(41) −0.908ð28Þ
0.415 0.4277(91) 2.074(52) 0.4802(59) 1.349(77) 0.4538(65) 1.265(32) 0.0259(40) −0.806ð25Þ
0.491 0.381(12) 1.882(52) 0.4385(65) 1.153(75) 0.4102(81) 1.136(32) 0.0264(53) −0.739ð25Þ
0.635 0.296(14) 1.534(62) 0.358(10) 1.039(95) 0.327(11) 0.936(42) 0.0321(58) −0.593ð27Þ
0.704 0.272(16) 1.456(59) 0.3345(99) 0.982(91) 0.303(11) 0.885(41) 0.0290(67) −0.574ð25Þ
0.772 0.249(17) 1.383(77) 0.295(13) 1.14(12) 0.269(13) 0.879(50) 0.0252(73) −0.504ð37Þ
0.838 0.238(19) 1.281(76) 0.279(16) 0.90(10) 0.257(14) 0.789(49) 0.0262(87) −0.495ð33Þ
0.903 0.239(32) 1.30(11) 0.265(21) 1.05(14) 0.257(24) 0.828(71) 0.021(13) −0.470ð45Þ

TABLE V. Electric and magnetic form factors on H105.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.196 0.632(29) 2.71(20) 0.660(17) 1.58(25) 0.646(20) 1.59(12) 0.013(12) −1.112ð88Þ
0.378 0.428(29) 2.31(17) 0.482(18) 1.32(16) 0.452(21) 1.298(95) 0.022(12) −0.923ð78Þ
0.548 0.304(39) 1.75(16) 0.369(24) 1.39(22) 0.330(27) 1.12(10) 0.033(16) −0.649ð71Þ
0.708 0.147(51) 1.30(25) 0.274(38) 0.95(32) 0.214(38) 0.75(15) 0.058(23) −0.53ð11Þ
0.859 0.165(41) 1.08(16) 0.246(30) 0.72(19) 0.208(33) 0.650(97) 0.035(16) −0.436ð74Þ
1.003 0.126(41) 0.64(14) 0.199(36) 0.65(20) 0.160(35) 0.425(91) 0.035(17) −0.223ð65Þ
1.402 0.028(68) 0.03(29) −0.012ð66Þ 0.20(33) 0.002(56) 0.04(18) −0.033ð35Þ −0.00ð13Þ
1.526 0.06(13) −0.91ð42Þ −0.04ð10Þ −0.40ð68Þ −0.004ð96Þ −0.60ð28Þ −0.054ð53Þ 0.28(20)
1.645 −0.061ð97Þ −0.42ð36Þ −0.06ð11Þ 0.14(60) −0.067ð88Þ −0.22ð25Þ −0.017ð55Þ 0.28(17)

TABLE VI. Electric and magnetic form factors on D450.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.065 0.8520(75) 3.73(13) 0.8767(50) 2.62(20) 0.8657(52) 2.305(85) 0.0083(37) −1.411ð58Þ
0.127 0.727(10) 3.26(11) 0.7668(64) 2.15(17) 0.7489(71) 1.973(72) 0.0164(47) −1.269ð50Þ
0.188 0.631(13) 2.92(11) 0.6768(85) 1.85(16) 0.6561(90) 1.738(71) 0.0192(60) −1.153ð51Þ
0.247 0.566(14) 2.69(10) 0.628(11) 1.92(17) 0.597(10) 1.667(67) 0.0268(72) −1.016ð49Þ
0.304 0.506(15) 2.403(90) 0.557(10) 1.52(15) 0.534(11) 1.444(59) 0.0247(66) −0.972ð44Þ
0.360 0.458(17) 2.211(93) 0.506(11) 1.39(15) 0.487(12) 1.316(63) 0.0260(74) −0.880ð43Þ
0.468 0.392(21) 1.746(92) 0.445(15) 1.13(18) 0.420(16) 1.020(64) 0.025(10) −0.715ð46Þ

(Table continued)
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TABLE VIII. Electric and magnetic form factors on E250.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.041 0.894(16) 3.96(28) 0.939(18) 3.38(70) 0.919(14) 2.51(21) 0.022(11) −1.41ð16Þ
0.081 0.818(20) 3.67(23) 0.869(19) 2.58(56) 0.844(16) 2.36(15) 0.030(11) −1.35ð14Þ
0.119 0.742(27) 3.24(18) 0.807(25) 1.87(47) 0.771(23) 1.94(13) 0.029(13) −1.31ð11Þ
0.158 0.666(30) 3.30(21) 0.742(29) 2.17(58) 0.694(23) 2.02(15) 0.027(19) −1.27ð15Þ
0.195 0.612(27) 3.04(16) 0.665(23) 2.36(35) 0.633(20) 1.91(11) 0.016(16) −1.125ð91Þ
0.232 0.559(31) 2.58(14) 0.639(25) 1.76(33) 0.592(23) 1.582(99) 0.029(18) −1.015ð76Þ
0.303 0.505(33) 2.30(15) 0.498(34) 1.46(34) 0.497(27) 1.36(11) −0.005ð21Þ −0.925ð75Þ
0.338 0.464(33) 2.07(13) 0.498(30) 0.50(31) 0.475(27) 1.095(97) 0.010(19) −0.951ð68Þ
0.372 0.432(38) 1.89(19) 0.443(40) 0.92(38) 0.444(32) 1.09(12) −0.001ð26Þ −0.78ð10Þ
0.406 0.407(35) 1.74(17) 0.433(30) 0.83(31) 0.428(28) 1.00(12) 0.001(22) −0.747ð84Þ
0.439 0.400(53) 1.54(18) 0.443(53) 0.42(50) 0.428(43) 0.81(14) 0.022(32) −0.74ð11Þ
0.472 0.393(36) 1.68(17) 0.362(53) 0.39(34) 0.376(36) 0.90(11) −0.016ð29Þ −0.733ð89Þ
0.504 0.360(39) 1.57(14) 0.379(45) 0.58(29) 0.368(34) 0.844(98) 0.010(26) −0.699ð73Þ
0.567 0.333(73) 1.22(30) 0.469(88) 0.17(72) 0.402(66) 0.65(21) 0.048(50) −0.60ð14Þ
0.598 0.319(47) 1.17(21) 0.373(45) 0.35(37) 0.347(41) 0.65(13) 0.015(25) −0.48ð12Þ
0.629 0.273(44) 1.23(21) 0.288(49) 0.93(47) 0.279(40) 0.76(14) 0.006(27) −0.48ð13Þ
0.659 0.274(54) 1.25(20) 0.325(66) 0.17(45) 0.296(50) 0.62(13) 0.038(34) −0.59ð12Þ

(Table continued)

TABLE VII. Electric and magnetic form factors on N451.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.114 0.7753(62) 3.509(66) 0.7930(40) 2.461(90) 0.7843(46) 2.169(41) 0.0089(26) −1.336ð30Þ
0.222 0.6211(78) 2.939(55) 0.6520(45) 2.034(76) 0.6362(53) 1.813(35) 0.0157(35) −1.126ð25Þ
0.326 0.5147(94) 2.508(54) 0.5555(60) 1.649(80) 0.5344(64) 1.530(34) 0.0189(46) −0.973ð25Þ
0.426 0.447(13) 2.220(60) 0.4911(82) 1.540(92) 0.4683(92) 1.365(39) 0.0219(54) −0.861ð29Þ
0.522 0.389(12) 1.971(55) 0.4346(84) 1.419(79) 0.4102(85) 1.223(36) 0.0210(59) −0.752ð24Þ
0.615 0.340(14) 1.779(60) 0.393(11) 1.210(89) 0.366(10) 1.094(39) 0.0246(69) −0.685ð27Þ
0.792 0.284(23) 1.537(91) 0.330(17) 1.02(11) 0.305(18) 0.942(56) 0.0209(97) −0.593ð42Þ
0.877 0.229(22) 1.307(85) 0.302(19) 0.89(11) 0.265(18) 0.800(53) 0.036(10) −0.504ð38Þ
0.960 0.214(32) 1.27(14) 0.281(24) 1.16(21) 0.246(26) 0.822(92) 0.030(12) −0.453ð67Þ
1.040 0.195(33) 1.16(14) 0.276(27) 1.00(21) 0.235(26) 0.735(86) 0.039(14) −0.427ð64Þ
1.119 0.147(57) 0.95(21) 0.246(52) 0.35(28) 0.198(50) 0.54(14) 0.047(22) −0.404ð92Þ

TABLE VI. (Continued)

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.520 0.363(21) 1.706(92) 0.392(15) 1.16(15) 0.381(15) 1.019(62) 0.0150(95) −0.676ð43Þ
0.571 0.305(24) 1.71(11) 0.349(18) 1.13(19) 0.329(18) 1.041(74) 0.024(11) −0.641ð49Þ
0.621 0.284(23) 1.60(10) 0.345(19) 1.11(18) 0.314(18) 0.990(70) 0.027(11) −0.604ð46Þ
0.670 0.315(36) 1.41(14) 0.341(30) 0.66(24) 0.333(28) 0.801(94) 0.017(19) −0.613ð64Þ
0.718 0.262(31) 1.20(11) 0.296(24) 0.83(18) 0.279(24) 0.714(72) 0.016(14) −0.512ð58Þ
0.765 0.249(29) 1.14(12) 0.276(22) 0.71(17) 0.266(23) 0.673(76) 0.014(13) −0.474ð54Þ
0.858 0.125(72) 1.12(25) 0.303(60) 1.47(40) 0.221(53) 0.78(17) 0.065(33) −0.37ð12Þ
0.902 0.178(42) 1.14(18) 0.249(33) 0.82(31) 0.206(32) 0.70(12) 0.028(19) −0.436ð77Þ
0.947 0.143(43) 1.09(18) 0.284(40) 0.41(34) 0.210(35) 0.62(12) 0.043(21) −0.516ð91Þ
0.990 0.129(49) 0.59(20) 0.226(46) 0.37(32) 0.171(41) 0.33(13) 0.033(26) −0.320ð95Þ
1.033 0.128(61) 0.75(21) 0.194(51) 0.72(40) 0.160(49) 0.47(14) 0.019(27) −0.35ð12Þ
1.075 0.118(58) 0.87(24) 0.263(54) 0.61(35) 0.199(48) 0.53(16) 0.048(27) −0.36ð11Þ
1.117 −0.013ð88Þ 0.64(39) 0.178(96) 0.39(56) 0.065(78) 0.34(26) 0.026(43) −0.32ð17Þ
1.199 −0.004ð91Þ 0.47(38) 0.210(95) 0.32(58) 0.117(80) 0.20(26) 0.035(48) −0.35ð18Þ
1.239 0.08(10) 0.52(36) 0.158(98) −0.08ð65Þ 0.129(88) 0.15(25) −0.037ð47Þ −0.45ð18Þ
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factors of the proton and neutron are put together from the
isovector and isoscalar combinations according to

Geff;p
E;M ¼ 1

6



Geff;uþd−2s

E;M þ 3Geff;u−d
E;M

�
;

Geff;n
E;M ¼ 1

6



Geff;uþd−2s

E;M − 3Geff;u−d
E;M

�
: ðD1Þ

To obtain the corresponding numbers in the tables
below, we subsequently apply the summation method
and the window average. The electric form factors are
normalized by GEð0Þ, except for the neutron, where
Gn

Eð0Þ ¼ 0. To clarify the notation, we have marked the
table columns to which the normalization has been
applied with a hat.

TABLE VIII. (Continued)

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.689 0.273(53) 1.17(25) 0.323(67) 0.13(66) 0.300(49) 0.56(18) 0.018(37) −0.52ð14Þ
0.718 0.208(50) 1.07(22) 0.291(58) 0.45(47) 0.247(44) 0.57(15) 0.056(33) −0.46ð12Þ
0.747 0.189(72) 0.59(25) 0.30(10) 0.57(66) 0.238(68) 0.39(18) 0.057(53) −0.21ð16Þ
0.805 0.106(66) 0.64(24) 0.256(76) −0.18ð76Þ 0.163(57) 0.22(20) 0.094(47) −0.35ð16Þ
0.833 0.202(84) 0.78(29) 0.242(91) −0.77ð82Þ 0.243(69) 0.26(23) 0.035(51) −0.52ð17Þ
0.860 0.210(70) 0.68(32) 0.307(86) 0.15(71) 0.261(67) 0.34(23) 0.050(42) −0.28ð17Þ
0.888 0.075(75) 0.30(37) 0.371(90) 0.44(91) 0.237(69) 0.32(26) 0.118(50) −0.14ð23Þ
0.942 0.015(75) 0.38(28) 0.16(10) −0.16ð88Þ 0.088(72) 0.11(23) 0.063(52) −0.26ð18Þ
0.969 0.050(89) 1.10(47) 0.20(12) 0.2(1.2) 0.113(82) 0.52(36) 0.056(60) −0.39ð25Þ
1.022 0.12(16) 0.34(51) 0.17(18) −0.3ð1.6Þ 0.11(14) 0.16(43) 0.040(95) −0.29ð33Þ
1.048 0.04(11) 0.26(33) 0.06(16) 0.1(1.1) 0.06(11) 0.15(29) 0.040(79) −0.19ð22Þ
1.073 −0.07ð12Þ 0.16(37) 0.14(15) −0.7ð1.1Þ 0.03(11) −0.05ð30Þ 0.078(91) −0.19ð23Þ
1.099 −0.04ð13Þ 0.41(45) −0.07ð20Þ −0.2ð1.2Þ −0.07ð13Þ 0.07(38) −0.05ð10Þ −0.49ð27Þ
1.124 −0.14ð13Þ 0.20(47) −0.01ð20Þ 0.9(1.2) −0.10ð13Þ 0.32(36) 0.06(10) −0.05ð29Þ

TABLE IX. Electric and magnetic form factors on D200.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.091 0.801(13) 3.47(14) 0.8390(58) 2.18(19) 0.8201(78) 2.094(91) 0.0192(63) −1.379ð65Þ
0.177 0.668(14) 2.87(11) 0.7131(80) 1.78(14) 0.6904(96) 1.725(66) 0.0221(68) −1.147ð49Þ
0.261 0.563(18) 2.55(11) 0.616(10) 1.68(14) 0.590(12) 1.551(64) 0.0257(81) −1.000ð51Þ
0.341 0.474(20) 2.17(11) 0.533(12) 1.38(14) 0.504(14) 1.316(65) 0.0284(96) −0.857ð49Þ
0.419 0.410(18) 1.890(90) 0.482(11) 1.33(13) 0.448(12) 1.162(56) 0.0360(87) −0.725ð43Þ
0.494 0.370(21) 1.761(93) 0.437(14) 1.13(13) 0.406(15) 1.070(59) 0.034(10) −0.691ð41Þ
0.638 0.293(32) 1.66(12) 0.381(22) 0.93(17) 0.339(25) 0.990(75) 0.043(12) −0.663ð56Þ
0.707 0.306(33) 1.37(11) 0.353(22) 0.94(14) 0.331(25) 0.846(70) 0.024(13) −0.532ð47Þ
0.774 0.261(38) 1.50(17) 0.347(30) 1.20(23) 0.305(30) 0.95(11) 0.046(16) −0.553ð71Þ
0.839 0.286(38) 1.33(17) 0.335(31) 1.12(24) 0.311(30) 0.85(11) 0.025(17) −0.480ð70Þ
0.904 0.202(68) 0.84(23) 0.243(58) 0.49(35) 0.222(56) 0.51(15) 0.013(30) −0.33ð10Þ

TABLE X. Electric and magnetic form factors on N200.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.159 0.731(14) 3.12(13) 0.7317(77) 2.19(17) 0.7313(97) 1.925(83) 0.0011(69) −1.189ð57Þ
0.308 0.576(18) 2.69(11) 0.580(10) 1.85(14) 0.578(12) 1.651(69) 0.0025(81) −1.035ð48Þ
0.449 0.493(25) 2.23(12) 0.493(16) 1.40(15) 0.493(18) 1.345(78) 0.001(11) −0.880ð55Þ
0.584 0.350(36) 1.67(15) 0.386(22) 1.20(18) 0.369(26) 1.034(96) 0.021(14) −0.632ð65Þ
0.712 0.303(32) 1.52(14) 0.326(22) 1.18(16) 0.315(24) 0.959(86) 0.014(13) −0.564ð60Þ
0.834 0.352(42) 1.63(18) 0.331(30) 1.09(19) 0.342(33) 1.00(11) −0.009ð16Þ −0.635ð75Þ
1.066 0.279(81) 0.83(30) 0.206(61) 0.62(34) 0.248(66) 0.51(19) −0.026ð28Þ −0.33ð13Þ
1.176 0.297(96) 0.98(36) 0.291(81) 0.54(35) 0.293(83) 0.57(22) −0.010ð30Þ −0.42ð15Þ
1.283 −0.07ð17Þ 1.24(94) 0.17(17) 1.9(1.1) −0.00ð14Þ 0.92(62) 0.165(77) −0.36ð36Þ
1.387 0.10(18) 0.92(84) 0.30(19) 1.68(99) 0.19(17) 0.74(56) 0.071(60) −0.20ð31Þ
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APPENDIX E: DIRECT BχPT FITS

In Tables XIV–XVII, we summarize the results for the
physical values of the electromagnetic radii and the
magnetic moment obtained from the direct BχPT fits as
explained in Sec. IVA, applying various cuts in the pion

mass (Mπ ≤ 0.23 GeV and Mπ ≤ 0.27 GeV) and the
momentum transfer (Q2 ≤ 0.3;…; 0.6 GeV2). The entries
with and without an asterisk in the third column refer to the
multiplicative model of Eqs. (23) and (24) and the additive
model of Eqs. (21) and (22), respectively. All variations

TABLE XI. Electric and magnetic form factors on S201.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.347 0.482(45) 2.31(27) 0.554(26) 1.31(30) 0.518(31) 1.39(16) 0.035(20) −0.91ð13Þ
0.657 0.390(49) 1.40(20) 0.399(33) 1.35(33) 0.400(37) 0.91(14) 0.012(21) −0.551ð86Þ
0.940 0.47(17) 2.23(57) 0.44(10) 1.81(57) 0.47(13) 1.42(36) −0.017ð53Þ −0.80ð23Þ
1.202 0.31(23) 1.70(92) 0.11(16) 2.4(1.1) 0.19(18) 1.23(62) 0.028(76) −0.47ð35Þ

TABLE XII. Electric and magnetic form factors on E300.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.067 0.825(13) 3.48(20) 0.8602(71) 2.11(28) 0.8422(86) 2.09(13) 0.0183(61) −1.390ð85Þ
0.132 0.705(16) 2.97(17) 0.7459(89) 1.94(23) 0.725(10) 1.80(11) 0.0211(72) −1.167ð70Þ
0.196 0.623(19) 2.69(15) 0.661(12) 1.96(22) 0.639(13) 1.67(10) 0.0197(89) −1.023ð65Þ
0.257 0.541(23) 2.57(16) 0.602(14) 1.49(21) 0.571(16) 1.54(10) 0.029(11) −1.036ð70Þ
0.316 0.504(21) 2.29(14) 0.551(14) 1.53(18) 0.527(15) 1.399(89) 0.0245(97) −0.891ð58Þ
0.374 0.445(23) 2.10(13) 0.501(15) 1.52(17) 0.472(16) 1.297(82) 0.030(11) −0.802ð54Þ
0.486 0.380(31) 1.89(14) 0.427(20) 1.38(19) 0.402(23) 1.172(89) 0.021(13) −0.710ð59Þ
0.540 0.356(30) 1.69(13) 0.398(20) 1.14(16) 0.375(22) 1.037(83) 0.020(13) −0.659ð59Þ
0.593 0.321(37) 1.53(17) 0.360(25) 1.06(22) 0.341(28) 0.94(11) 0.016(15) −0.591ð75Þ
0.645 0.267(35) 1.55(16) 0.322(26) 1.06(21) 0.294(27) 0.95(10) 0.027(16) −0.600ð69Þ
0.695 0.293(53) 1.43(19) 0.327(37) 1.19(26) 0.310(39) 0.92(12) 0.020(24) −0.512ð86Þ
0.745 0.231(45) 1.36(18) 0.296(34) 1.17(23) 0.264(36) 0.87(11) 0.033(17) −0.487ð77Þ
0.794 0.223(44) 1.33(17) 0.276(33) 0.96(22) 0.249(34) 0.83(11) 0.026(19) −0.491ð72Þ
0.889 0.202(91) 1.15(37) 0.340(71) 1.11(41) 0.273(73) 0.76(23) 0.070(36) −0.38ð15Þ
0.935 0.159(56) 1.11(23) 0.260(45) 0.89(29) 0.208(45) 0.70(15) 0.045(23) −0.405ð97Þ
0.981 0.129(60) 1.06(25) 0.192(48) 0.61(34) 0.165(49) 0.63(17) 0.030(25) −0.41ð10Þ
1.026 0.102(69) 1.32(30) 0.176(59) 0.90(34) 0.140(57) 0.81(19) 0.029(30) −0.50ð12Þ
1.070 0.090(70) 0.52(29) 0.154(60) 1.14(41) 0.121(58) 0.46(20) 0.033(29) −0.06ð12Þ
1.113 0.055(67) 0.63(26) 0.110(55) 0.67(34) 0.082(54) 0.43(17) 0.023(28) −0.18ð11Þ
1.156 0.18(11) 1.23(47) 0.21(10) 0.86(51) 0.20(10) 0.76(30) 0.004(44) −0.46ð19Þ
1.240 0.06(10) 0.96(41) 0.184(92) 0.63(50) 0.121(87) 0.59(27) 0.042(45) −0.36ð16Þ
1.282 −0.00ð10Þ 0.85(51) 0.15(12) 0.53(55) 0.08(10) 0.52(32) 0.071(49) −0.33ð21Þ

TABLE XIII. Electric and magnetic form factors on J303.

Q2 [GeV2] Ĝu−d
E Gu−d

M Ĝuþd−2s
E Guþd−2s

M Ĝp
E Gp

M Gn
E Gn

M

0.149 0.726(15) 3.27(14) 0.7569(80) 2.17(18) 0.741(10) 1.999(87) 0.0149(70) −1.279ð58Þ
0.289 0.554(18) 2.53(11) 0.596(10) 1.68(13) 0.575(12) 1.547(67) 0.0204(80) −0.987ð46Þ
0.422 0.469(25) 2.29(12) 0.494(14) 1.44(15) 0.481(17) 1.389(73) 0.011(11) −0.904ð51Þ
0.548 0.418(36) 2.12(16) 0.452(24) 1.36(19) 0.435(27) 1.289(98) 0.016(14) −0.829ð67Þ
0.669 0.377(30) 1.73(13) 0.372(20) 1.15(16) 0.376(23) 1.059(81) −0.002ð12Þ −0.674ð54Þ
0.784 0.334(38) 1.52(15) 0.315(26) 1.12(18) 0.329(29) 0.952(92) −0.003ð16Þ −0.574ð63Þ
1.003 0.320(70) 1.15(26) 0.145(46) 1.06(31) 0.242(53) 0.76(17) −0.050ð28Þ −0.39ð11Þ
1.107 0.295(78) 1.27(31) 0.185(58) 1.31(34) 0.245(63) 0.87(20) −0.016ð28Þ −0.41ð12Þ
1.208 0.34(13) 1.02(50) 0.32(11) 1.10(56) 0.33(11) 0.69(32) −0.010ð39Þ −0.32ð21Þ
1.306 0.09(11) 0.57(43) 0.028(76) 1.11(50) 0.057(83) 0.47(27) 0.010(41) −0.11ð18Þ
1.401 0.66(54) 1.5(1.8) 0.27(38) 2.6(2.1) 0.57(48) 1.3(1.3) −0.08ð13Þ 0.09(52)
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TABLE XIV. Results for the direct BχPT fits to the isovector electromagnetic form factors.

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM p value BAIC weight

0.23 0.3 None 0.793(19) 0.651(13) 4.610(76) 0.188 0.0463
0.23 0.3 a2 0.758(28) 0.653(18) 4.58(12) 0.214 0.0319
0.23 0.3 �a2 0.742(36) 0.656(15) 4.51(15) 0.274 0.0663
0.23 0.3 MπL 0.791(20) 0.654(15) 4.644(76) 0.165 0.00610
0.23 0.3 �MπL 0.795(21) 0.654(16) 4.640(76) 0.167 0.00798
0.23 0.3 a2;MπL 0.752(30) 0.657(22) 4.61(12) 0.199 0.00400
0.23 0.3 �a2; �MπL 0.737(40) 0.661(19) 4.53(15) 0.252 0.00855

0.23 0.4 None 0.803(16) 0.6558(93) 4.625(70) 0.172 0.0247
0.23 0.4 a2 0.767(23) 0.659(15) 4.59(11) 0.251 0.0574
0.23 0.4 �a2 0.747(31) 0.660(12) 4.52(14) 0.305 0.110
0.23 0.4 MπL 0.804(17) 0.654(13) 4.661(70) 0.139 0.00373
0.23 0.4 �MπL 0.808(18) 0.655(13) 4.658(70) 0.147 0.00610
0.23 0.4 a2;MπL 0.759(26) 0.660(21) 4.62(12) 0.220 0.00596
0.23 0.4 �a2; �MπL 0.742(36) 0.662(17) 4.54(15) 0.266 0.0119

0.23 0.5 None 0.810(13) 0.6675(73) 4.665(66) 0.115 0.0897
0.23 0.5 a2 0.793(19) 0.668(14) 4.66(11) 0.114 0.0317
0.23 0.5 �a2 0.776(27) 0.672(10) 4.58(14) 0.147 0.0844
0.23 0.5 MπL 0.808(15) 0.669(12) 4.702(67) 0.0950 0.00938
0.23 0.5 �MπL 0.813(16) 0.671(12) 4.695(66) 0.101 0.0153
0.23 0.5 a2;MπL 0.784(22) 0.672(21) 4.69(11) 0.103 0.00350
0.23 0.5 �a2; �MπL 0.770(32) 0.679(16) 4.59(15) 0.136 0.0110

0.23 0.6 None 0.810(12) 0.6662(70) 4.653(65) 0.171 0.0728
0.23 0.6 a2 0.791(18) 0.667(14) 4.64(11) 0.182 0.0378
0.23 0.6 �a2 0.773(26) 0.671(10) 4.56(14) 0.224 0.0970
0.23 0.6 MπL 0.810(14) 0.662(11) 4.688(65) 0.141 0.0112
0.23 0.6 �MπL 0.814(16) 0.665(11) 4.686(65) 0.148 0.0160
0.23 0.6 a2;MπL 0.784(21) 0.665(20) 4.68(11) 0.156 0.00391
0.23 0.6 �a2; �MπL 0.769(31) 0.673(16) 4.59(14) 0.196 0.0105

0.27 0.3 None 0.790(18) 0.650(12) 4.666(73) 0.112 0.0499
0.27 0.3 a2 0.776(25) 0.642(16) 4.72(11) 0.0959 0.00840
0.27 0.3 �a2 0.766(31) 0.648(13) 4.70(13) 0.106 0.0103
0.27 0.3 MπL 0.788(19) 0.653(15) 4.702(73) 0.0854 0.00407
0.27 0.3 �MπL 0.791(20) 0.654(15) 4.697(73) 0.0862 0.00486
0.27 0.3 a2;MπL 0.770(27) 0.645(20) 4.76(11) 0.0751 0.000651
0.27 0.3 �a2; �MπL 0.762(35) 0.652(17) 4.73(14) 0.0818 0.000822

0.27 0.4 None 0.804(15) 0.6548(88) 4.682(67) 0.0956 0.0169
0.27 0.4 a2 0.785(20) 0.648(13) 4.73(10) 0.0944 0.00447
0.27 0.4 �a2 0.775(26) 0.653(10) 4.72(13) 0.103 0.00534
0.27 0.4 MπL 0.803(16) 0.654(13) 4.721(67) 0.0649 0.00120
0.27 0.4 �MπL 0.807(18) 0.656(13) 4.717(67) 0.0681 0.00172
0.27 0.4 a2;MπL 0.779(23) 0.647(19) 4.77(11) 0.0670 0.000268
0.27 0.4 �a2; �MπL 0.773(32) 0.654(15) 4.75(13) 0.0729 0.000348

0.27 0.5 None 0.812(13) 0.6630(70) 4.716(63) 0.0209 0.00294
0.27 0.5 a2 0.800(16) 0.650(12) 4.813(97) 0.0219 0.000827
0.27 0.5 �a2 0.793(22) 0.6586(88) 4.79(12) 0.0209 0.000709
0.27 0.5 MπL 0.809(14) 0.668(12) 4.758(63) 0.0143 0.000165
0.27 0.5 �MπL 0.813(16) 0.670(12) 4.747(63) 0.0154 0.000258
0.27 0.5 a2;MπL 0.793(19) 0.653(18) 4.851(99) 0.0156 4.48 × 10−5
0.27 0.5 �a2; �MπL 0.789(28) 0.665(15) 4.82(13) 0.0154 4.81 × 10−5

0.27 0.6 None 0.813(12) 0.6588(65) 4.694(61) 0.0184 0.000389
0.27 0.6 a2 0.797(16) 0.643(13) 4.81(11) 0.0233 0.000210

(Table continued)
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TABLE XV. Results for the direct BχPT fits to the isoscalar electromagnetic form factors.

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM p value BAIC weight

0.23 0.3 None 0.561(19) 0.656(32) 2.42(11) 0.140 0.0397
0.23 0.3 a2 0.550(20) 0.615(42) 2.58(16) 0.183 0.0133
0.23 0.3 �a2 0.537(22) 0.592(35) 2.72(18) 0.198 0.0181
0.23 0.3 MπL 0.558(19) 0.666(34) 2.42(11) 0.143 0.00680
0.23 0.3 �MπL 0.558(21) 0.656(36) 2.42(11) 0.120 0.00451
0.23 0.3 a2;MπL 0.546(21) 0.625(47) 2.57(16) 0.187 0.00215
0.23 0.3 �a2; �MπL 0.530(25) 0.588(40) 2.73(18) 0.180 0.00211

0.23 0.4 None 0.571(18) 0.675(26) 2.452(94) 0.168 0.0234
0.23 0.4 a2 0.557(18) 0.623(34) 2.64(15) 0.274 0.0312
0.23 0.4 �a2 0.542(20) 0.599(30) 2.76(16) 0.284 0.0342
0.23 0.4 MπL 0.568(18) 0.689(30) 2.443(94) 0.187 0.00829
0.23 0.4 �MπL 0.568(20) 0.680(31) 2.445(95) 0.150 0.00406
0.23 0.4 a2;MπL 0.552(19) 0.637(42) 2.61(15) 0.290 0.00690
0.23 0.4 �a2; �MπL 0.535(23) 0.598(36) 2.75(17) 0.263 0.00444

0.23 0.5 None 0.572(17) 0.676(25) 2.459(82) 0.398 0.00785
0.23 0.5 a2 0.562(17) 0.621(33) 2.67(14) 0.527 0.00934
0.23 0.5 �a2 0.546(19) 0.601(29) 2.75(15) 0.529 0.00861
0.23 0.5 MπL 0.567(17) 0.690(28) 2.447(82) 0.440 0.00359
0.23 0.5 �MπL 0.569(19) 0.682(30) 2.446(84) 0.379 0.00173
0.23 0.5 a2;MπL 0.555(18) 0.636(41) 2.63(15) 0.557 0.00243
0.23 0.5 �a2; �MπL 0.539(22) 0.601(36) 2.73(16) 0.508 0.00121

0.23 0.6 None 0.573(17) 0.675(25) 2.441(78) 0.437 0.00700
0.23 0.6 a2 0.563(17) 0.620(33) 2.65(13) 0.548 0.00700
0.23 0.6 �a2 0.550(19) 0.605(30) 2.70(14) 0.516 0.00372
0.23 0.6 MπL 0.569(17) 0.686(28) 2.427(78) 0.455 0.00207
0.23 0.6 �MπL 0.570(19) 0.679(30) 2.428(80) 0.414 0.00127
0.23 0.6 a2;MπL 0.558(18) 0.632(40) 2.62(14) 0.550 0.00112
0.23 0.6 �a2; �MπL 0.544(22) 0.603(37) 2.69(16) 0.491 0.000443

0.27 0.3 None 0.557(18) 0.672(29) 2.39(11) 0.0952 0.0680
0.27 0.3 a2 0.541(20) 0.653(39) 2.44(15) 0.129 0.0330
0.27 0.3 �a2 0.527(22) 0.623(34) 2.55(16) 0.119 0.0368
0.27 0.3 MπL 0.555(18) 0.680(31) 2.39(10) 0.0877 0.00918
0.27 0.3 �MπL 0.556(19) 0.669(33) 2.40(11) 0.0786 0.00763
0.27 0.3 a2;MπL 0.537(21) 0.663(45) 2.43(15) 0.125 0.00466
0.27 0.3 �a2; �MπL 0.521(25) 0.615(39) 2.56(16) 0.107 0.00413

0.27 0.4 None 0.566(16) 0.682(25) 2.398(91) 0.119 0.0388
0.27 0.4 a2 0.551(17) 0.655(34) 2.48(13) 0.181 0.0333
0.27 0.4 �a2 0.536(20) 0.627(30) 2.57(15) 0.172 0.0374
0.27 0.4 MπL 0.564(17) 0.695(28) 2.389(90) 0.124 0.0103
0.27 0.4 �MπL 0.565(18) 0.685(30) 2.394(91) 0.102 0.00595
0.27 0.4 a2;MπL 0.546(19) 0.670(42) 2.45(14) 0.188 0.00721
0.27 0.4 �a2; �MπL 0.529(23) 0.623(37) 2.57(16) 0.155 0.00458

(Table continued)

TABLE XIV. (Continued)

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM p value BAIC weight

0.27 0.6 �a2 0.790(22) 0.6537(92) 4.78(14) 0.0201 0.000128
0.27 0.6 MπL 0.812(13) 0.661(11) 4.737(61) 0.0112 1.87 × 10−5
0.27 0.6 �MπL 0.816(15) 0.663(11) 4.727(62) 0.0122 2.89 × 10−5
0.27 0.6 a2;MπL 0.791(19) 0.643(19) 4.85(11) 0.0151 9.38 × 10−6
0.27 0.6 �a2; �MπL 0.788(28) 0.658(15) 4.81(15) 0.0133 6.51 × 10−6
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TABLE XVI. Results for the proton from the direct BχPT fits.

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM BAIC weight

0.23 0.3 None 0.677(15) 0.652(13) 2.709(52) 0.0597
0.23 0.3 a2 0.654(21) 0.647(19) 2.722(84) 0.0138
0.23 0.3 �a2 0.639(25) 0.645(15) 2.707(97) 0.0390
0.23 0.3 MπL 0.675(16) 0.656(15) 2.726(52) 0.00135
0.23 0.3 �MπL 0.676(17) 0.655(16) 2.724(52) 0.00117
0.23 0.3 a2;MπL 0.649(22) 0.652(23) 2.734(86) 0.000279
0.23 0.3 �a2; �MπL 0.634(29) 0.649(19) 2.72(10) 0.000586

0.23 0.4 None 0.687(12) 0.6587(96) 2.721(45) 0.0198
0.23 0.4 a2 0.662(16) 0.653(17) 2.733(75) 0.0611
0.23 0.4 �a2 0.644(20) 0.650(13) 2.719(92) 0.129
0.23 0.4 MπL 0.686(12) 0.659(13) 2.738(45) 0.00106
0.23 0.4 �MπL 0.688(14) 0.659(14) 2.737(45) 0.000845
0.23 0.4 a2;MπL 0.656(18) 0.656(22) 2.744(77) 0.00141
0.23 0.4 �a2; �MπL 0.639(24) 0.652(17) 2.731(95) 0.00180

0.23 0.5 None 0.691(10) 0.6688(86) 2.742(41) 0.0840
0.23 0.5 a2 0.677(12) 0.660(16) 2.774(70) 0.0354
0.23 0.5 �a2 0.661(16) 0.660(12) 2.747(87) 0.0867
0.23 0.5 MπL 0.688(11) 0.672(12) 2.759(41) 0.00402
0.23 0.5 �MπL 0.691(13) 0.672(13) 2.755(41) 0.00314
0.23 0.5 a2;MπL 0.670(14) 0.666(21) 2.783(73) 0.00101
0.23 0.5 �a2; �MπL 0.655(21) 0.666(17) 2.752(91) 0.00159

0.23 0.6 None 0.691(11) 0.6675(84) 2.733(40) 0.103
0.23 0.6 a2 0.677(12) 0.660(16) 2.761(70) 0.0536
0.23 0.6 �a2 0.661(16) 0.660(12) 2.732(85) 0.0731
0.23 0.6 MπL 0.690(12) 0.666(12) 2.748(40) 0.00469
0.23 0.6 �MπL 0.692(13) 0.667(12) 2.748(40) 0.00412
0.23 0.6 a2;MπL 0.671(15) 0.660(21) 2.773(72) 0.000887
0.23 0.6 �a2; �MπL 0.657(21) 0.661(17) 2.742(89) 0.000941

0.27 0.3 None 0.673(15) 0.653(12) 2.732(50) 0.110
0.27 0.3 a2 0.658(19) 0.644(17) 2.768(76) 0.00900
0.27 0.3 �a2 0.647(22) 0.644(14) 2.775(87) 0.0123
0.27 0.3 MπL 0.672(16) 0.657(15) 2.750(50) 0.00122

(Table continued)

TABLE XV. (Continued)

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM p value BAIC weight

0.27 0.5 None 0.569(16) 0.685(24) 2.404(77) 0.355 0.0723
0.27 0.5 a2 0.558(16) 0.656(33) 2.50(12) 0.430 0.0366
0.27 0.5 �a2 0.542(19) 0.630(30) 2.56(13) 0.423 0.0492
0.27 0.5 MπL 0.565(16) 0.698(27) 2.392(77) 0.378 0.0254
0.27 0.5 �MπL 0.567(18) 0.690(29) 2.395(79) 0.328 0.0133
0.27 0.5 a2;MπL 0.551(17) 0.673(41) 2.47(13) 0.459 0.0114
0.27 0.5 �a2; �MπL 0.535(22) 0.630(37) 2.55(14) 0.402 0.00700

0.27 0.6 None 0.571(16) 0.686(24) 2.394(73) 0.347 0.0705
0.27 0.6 a2 0.559(16) 0.656(37) 2.49(14) 0.439 0.0580
0.27 0.6 �a2 0.544(20) 0.634(34) 2.53(15) 0.401 0.0458
0.27 0.6 MπL 0.569(16) 0.697(27) 2.382(74) 0.356 0.0228
0.27 0.6 �MπL 0.570(18) 0.690(29) 2.386(76) 0.320 0.0125
0.27 0.6 a2;MπL 0.554(18) 0.670(46) 2.46(15) 0.446 0.0121
0.27 0.6 �a2; �MπL 0.539(23) 0.632(41) 2.52(16) 0.377 0.00572
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TABLE XVII. Results for the neutron from the direct BχPT fits.

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM BAIC weight

0.23 0.3 None −0.116ð11Þ 0.650(16) −1.901ð28Þ 0.0597
0.23 0.3 a2 −0.104ð13Þ 0.662(20) −1.863ð41Þ 0.0138
0.23 0.3 �a2 −0.103ð15Þ 0.672(18) −1.800ð55Þ 0.0390
0.23 0.3 MπL −0.117ð11Þ 0.651(18) −1.918ð28Þ 0.00135
0.23 0.3 �MπL −0.118ð12Þ 0.654(18) −1.916ð28Þ 0.00117
0.23 0.3 a2;MπL −0.103ð13Þ 0.664(25) −1.878ð42Þ 0.000279
0.23 0.3 �a2; �MπL −0.104ð17Þ 0.679(23) −1.810ð58Þ 0.000586

0.23 0.4 None −0.116ð12Þ 0.652(11) −1.904ð30Þ 0.0198
0.23 0.4 a2 −0.105ð13Þ 0.668(16) −1.854ð47Þ 0.0611
0.23 0.4 �a2 −0.102ð16Þ 0.676(14) −1.799ð58Þ 0.129
0.23 0.4 MπL −0.118ð12Þ 0.647(15) −1.923ð30Þ 0.00106
0.23 0.4 �MπL −0.120ð13Þ 0.650(15) −1.922ð30Þ 0.000845
0.23 0.4 a2;MπL −0.104ð14Þ 0.665(23) −1.873ð48Þ 0.00141
0.23 0.4 �a2; �MπL −0.103ð18Þ 0.679(20) −1.813ð61Þ 0.00180

0.23 0.5 None −0.119ð12Þ 0.6657(81) −1.922ð30Þ 0.0840
0.23 0.5 a2 −0.115ð13Þ 0.679(14) −1.885ð45Þ 0.0354
0.23 0.5 �a2 −0.115ð16Þ 0.690(11) −1.832ð58Þ 0.0867
0.23 0.5 MπL −0.120ð12Þ 0.664(13) −1.943ð30Þ 0.00402
0.23 0.5 �MπL −0.122ð12Þ 0.668(13) −1.940ð30Þ 0.00314
0.23 0.5 a2;MπL −0.114ð14Þ 0.680(22) −1.905ð46Þ 0.00101
0.23 0.5 �a2; �MπL −0.116ð17Þ 0.698(19) −1.841ð61Þ 0.00159

(Table continued)

TABLE XVI. (Continued)

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM BAIC weight

0.27 0.3 �MπL 0.673(17) 0.657(15) 2.748(50) 0.00121
0.27 0.3 a2;MπL 0.653(20) 0.648(21) 2.784(77) 9.86 × 10−5
0.27 0.3 �a2; �MπL 0.641(26) 0.647(18) 2.791(90) 0.000110

0.27 0.4 None 0.685(11) 0.6588(91) 2.741(43) 0.0225
0.27 0.4 a2 0.668(14) 0.649(15) 2.776(67) 0.00509
0.27 0.4 �a2 0.655(18) 0.649(12) 2.786(81) 0.00682
0.27 0.4 MπL 0.684(12) 0.660(12) 2.758(43) 0.000422
0.27 0.4 �MπL 0.686(13) 0.660(13) 2.758(43) 0.000350
0.27 0.4 a2;MπL 0.663(16) 0.651(20) 2.793(69) 6.60 × 10−5
0.27 0.4 �a2; �MπL 0.651(22) 0.649(16) 2.805(84) 5.45 × 10−5

0.27 0.5 None 0.6900(92) 0.6661(80) 2.759(39) 0.0253
0.27 0.5 a2 0.679(11) 0.651(14) 2.823(63) 0.00361
0.27 0.5 �a2 0.667(15) 0.654(11) 2.824(77) 0.00416
0.27 0.5 MπL 0.687(10) 0.672(12) 2.778(39) 0.000499
0.27 0.5 �MπL 0.690(12) 0.672(12) 2.773(39) 0.000410
0.27 0.5 a2;MπL 0.672(14) 0.656(19) 2.837(65) 6.11 × 10−5
0.27 0.5 �a2; �MπL 0.662(20) 0.660(15) 2.834(81) 4.02 × 10−5

0.27 0.6 None 0.692(10) 0.6627(77) 2.746(38) 0.00555
0.27 0.6 a2 0.678(11) 0.645(15) 2.819(71) 0.00246
0.27 0.6 �a2 0.667(15) 0.651(12) 2.814(89) 0.00119
0.27 0.6 MπL 0.691(11) 0.666(12) 2.765(38) 8.66 × 10−5

0.27 0.6 �MπL 0.693(13) 0.667(12) 2.761(38) 7.33 × 10−5

0.27 0.6 a2;MπL 0.673(13) 0.647(21) 2.835(74) 2.29 × 10−5

0.27 0.6 �a2; �MπL 0.663(20) 0.654(16) 2.828(93) 7.54 × 10−6
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which are presented here are included in our model average (cf. Sec. V). Note that the results for the proton and neutron have
been obtained from the fits in the isovector and isoscalar channels; for more details, we refer to Sec. IVA.

APPENDIX F: z-EXPANSION RESULTS

In Tables XVIII–XXI, we present the results for the electromagnetic radii and the magnetic moment obtained from
z-expansion fits on individual ensembles as detailed in Sec. IVB, applying two different cuts in the momentum transfer
(Q2 ≤ 0.6 GeV2 and Q2 ≤ 0.7 GeV2).

TABLE XVII. (Continued)

Mπ;cut [GeV] Q2
cut [GeV2] Correction hr2Ei [fm2] hr2Mi [fm2] μM BAIC weight

0.23 0.6 None −0.119ð10Þ 0.6644(75) −1.920ð29Þ 0.103
0.23 0.6 a2 −0.114ð12Þ 0.678(13) −1.879ð44Þ 0.0536
0.23 0.6 �a2 −0.112ð16Þ 0.687(11) −1.831ð58Þ 0.0731
0.23 0.6 MπL −0.120ð11Þ 0.657(13) −1.939ð29Þ 0.00469
0.23 0.6 �MπL −0.122ð11Þ 0.662(12) −1.938ð29Þ 0.00412
0.23 0.6 a2;MπL −0.113ð13Þ 0.673(21) −1.902ð45Þ 0.000887
0.23 0.6 �a2; �MπL −0.113ð17Þ 0.689(18) −1.846ð62Þ 0.000941

0.27 0.3 None −0.117ð10Þ 0.645(14) −1.934ð28Þ 0.110
0.27 0.3 a2 −0.117ð12Þ 0.640(17) −1.956ð37Þ 0.00900
0.27 0.3 �a2 −0.120ð15Þ 0.653(15) −1.924ð49Þ 0.0123
0.27 0.3 MπL −0.117ð10Þ 0.648(17) −1.952ð28Þ 0.00122
0.27 0.3 �MπL −0.117ð11Þ 0.651(17) −1.949ð28Þ 0.00121
0.27 0.3 a2;MπL −0.116ð13Þ 0.641(22) −1.975ð39Þ 9.86 × 10−5

0.27 0.3 �a2; �MπL −0.121ð16Þ 0.661(20) −1.938ð52Þ 0.000110

0.27 0.4 None −0.119ð11Þ 0.649(11) −1.941ð29Þ 0.0225
0.27 0.4 a2 −0.117ð12Þ 0.647(13) −1.951ð42Þ 0.00509
0.27 0.4 �a2 −0.120ð15Þ 0.659(12) −1.930ð51Þ 0.00682
0.27 0.4 MπL −0.119ð12Þ 0.646(15) −1.962ð29Þ 0.000422
0.27 0.4 �MπL −0.121ð12Þ 0.650(15) −1.960ð29Þ 0.000350
0.27 0.4 a2;MπL −0.117ð13Þ 0.643(20) −1.976ð43Þ 6.60 × 10−5

0.27 0.4 �a2; �MπL −0.122ð16Þ 0.660(18) −1.950ð53Þ 5.45 × 10−5

0.27 0.5 None −0.122ð11Þ 0.6585(78) −1.957ð29Þ 0.0253
0.27 0.5 a2 −0.121ð12Þ 0.648(11) −1.989ð40Þ 0.00361
0.27 0.5 �a2 −0.126ð14Þ 0.6648(95) −1.970ð50Þ 0.00416
0.27 0.5 MπL −0.122ð11Þ 0.662(13) −1.980ð29Þ 0.000499
0.27 0.5 �MπL −0.123ð12Þ 0.666(13) −1.974ð29Þ 0.000410
0.27 0.5 a2;MπL −0.121ð12Þ 0.649(19) −2.014ð41Þ 6.11 × 10−5

0.27 0.5 �a2; �MπL −0.127ð15Þ 0.673(17) −1.984ð53Þ 4.02 × 10−5

0.27 0.6 None −0.1208ð96Þ 0.6533(71) −1.948ð27Þ 0.00555
0.27 0.6 a2 −0.119ð12Þ 0.640(11) −1.989ð41Þ 0.00246
0.27 0.6 �a2 −0.123ð15Þ 0.6580(85) −1.970ð56Þ 0.00119
0.27 0.6 MπL −0.122ð10Þ 0.654(12) −1.971ð27Þ 8.66 × 10−5

0.27 0.6 �MπL −0.123ð11Þ 0.657(12) −1.966ð28Þ 7.33 × 10−5

0.27 0.6 a2;MπL −0.119ð13Þ 0.638(19) −2.016ð42Þ 2.29 × 10−5

0.27 0.6 �a2; �MπL −0.125ð16Þ 0.663(16) −1.987ð59Þ 7.54 × 10−6

TABLE XVIII. Results for the z-expansion fits to the isovector electromagnetic form factors.

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

C101 0.6 0.644(26) 0.580(75) 4.21(16) 0.225
C101 0.7 0.643(26) 0.686(57) 4.36(15) 0.0358

(Table continued)
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TABLE XIX. Results for the z-expansion fits to the isoscalar electromagnetic form factors.

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

C101 0.6 0.549(15) 0.46(13) 2.74(24) 0.507
C101 0.7 0.546(15) 0.542(91) 2.82(22) 0.399
N101 0.6 0.4861(92) 0.517(67) 2.94(15) 0.394
N101 0.7 0.4812(89) 0.530(57) 2.96(15) 0.281
D450 0.6 0.517(16) 0.59(13) 2.94(25) 0.587
D450 0.7 0.518(15) 0.57(12) 2.92(25) 0.706
N451 0.6 0.494(11) 0.541(65) 3.16(16) 0.298
N451 0.7 0.489(11) 0.499(47) 3.09(14) 0.231
E250 0.6 0.635(46) 1.08(42) 3.52(66) 0.257
E250 0.7 0.619(44) 1.18(38) 3.52(66) 0.377
D200 0.6 0.492(19) 0.36(29) 2.40(35) 0.458
D200 0.7 0.501(18) 0.39(21) 2.45(30) 0.428
N200 0.6 0.484(18) 0.24(33) 2.64(50) 0.0972
N200 0.7 0.484(18) 0.24(33) 2.64(50) 0.0972
E300 0.6 0.579(26) 0.21(31) 2.26(38) 0.495
E300 0.7 0.562(25) 0.30(27) 2.33(37) 0.397
J303 0.6 0.480(20) 0.60(27) 3.04(55) 0.574
J303 0.7 0.469(17) 0.51(15) 2.88(39) 0.671

TABLE XX. Results for the z-expansion fits to the proton electromagnetic form factors.

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

C101 0.6 0.615(19) 0.598(83) 2.61(11) 0.683
C101 0.7 0.618(19) 0.678(70) 2.66(11) 0.0739
N101 0.6 0.552(14) 0.545(36) 2.703(65) 0.181
N101 0.7 0.552(13) 0.543(33) 2.701(64) 0.326
D450 0.6 0.609(23) 0.551(78) 2.58(12) 0.00248
D450 0.7 0.607(23) 0.551(77) 2.58(11) 0.00774
N451 0.6 0.565(15) 0.502(50) 2.699(82) 0.104
N451 0.7 0.566(15) 0.506(39) 2.702(74) 0.218
E250 0.6 0.562(80) 0.21(50) 2.47(27) 0.367

(Table continued)

TABLE XVIII. (Continued)

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

N101 0.6 0.597(19) 0.546(31) 4.385(97) 0.496
N101 0.7 0.595(17) 0.540(28) 4.385(96) 0.672
D450 0.6 0.687(33) 0.564(63) 4.20(17) 0.00299
D450 0.7 0.691(33) 0.577(60) 4.23(16) 0.0114
N451 0.6 0.592(19) 0.479(50) 4.34(13) 0.363
N451 0.7 0.590(19) 0.497(38) 4.37(12) 0.571
E250 0.6 0.62(11) 0.16(41) 3.98(39) 0.779
E250 0.7 0.59(11) 0.35(36) 4.03(37) 0.812
D200 0.6 0.639(46) 0.63(15) 4.26(28) 0.839
D200 0.7 0.655(44) 0.77(12) 4.42(26) 0.423
N200 0.6 0.511(39) −0.09ð36Þ 3.27(47) 0.268
N200 0.7 0.511(39) −0.09ð36Þ 3.27(47) 0.268
E300 0.6 0.771(65) 0.56(19) 3.97(33) 0.570
E300 0.7 0.758(64) 0.62(17) 4.02(32) 0.595
J303 0.6 0.611(47) 0.87(15) 5.15(50) 0.320
J303 0.7 0.628(41) 0.59(13) 4.43(37) 0.136
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APPENDIX G: CHIRAL AND CONTINUUM EXTRAPOLATION

In Table XXII, we summarize the results for the physical values of the electromagnetic radii and the magnetic moment
obtained from the HBχPT-inspired chiral and continuum extrapolation of the z-expansion data as explained in Sec. IV B,
applying two different cuts each in the pion mass (Mπ ≤ 0.27 GeV and Mπ ≤ 0.3 GeV) and the momentum transfer
(Q2 ≤ 0.6 GeV2 andQ2 ≤ 0.7 GeV2). Ensembles which are solely used to study finite-volume effects (H105 and S201) are
excluded from all fits.

TABLE XX. (Continued)

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

E250 0.7 0.555(79) 0.17(49) 2.42(26) 0.536
D200 0.6 0.574(31) 0.54(18) 2.49(18) 0.644
D200 0.7 0.588(30) 0.68(14) 2.59(17) 0.255
N200 0.6 0.513(26) −0.03ð35Þ 2.08(30) 0.218
N200 0.7 0.513(26) −0.03ð35Þ 2.08(30) 0.218
E300 0.6 0.699(43) 0.42(22) 2.33(21) 0.733
E300 0.7 0.679(42) 0.49(20) 2.36(21) 0.545
J303 0.6 0.559(32) 0.83(17) 3.07(33) 0.176
J303 0.7 0.568(28) 0.57(13) 2.68(24) 0.150

TABLE XXI. Results for the z-expansion fits to the neutron electromagnetic form factors.

Ensemble Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

C101 0.6 −0.031ð13Þ 0.605(86) −1.660ð73Þ 0.227
C101 0.7 −0.031ð12Þ 0.691(68) −1.726ð67Þ 0.0664
N101 0.6 −0.0392ð69Þ 0.546(41) −1.709ð49Þ 0.454
N101 0.7 −0.0371ð67Þ 0.551(38) −1.717ð49Þ 0.424
D450 0.6 −0.061ð14Þ 0.45(10) −1.576ð76Þ 0.581
D450 0.7 −0.063ð14Þ 0.473(96) −1.577ð75Þ 0.538
N451 0.6 −0.0274ð76Þ 0.442(67) −1.624ð60Þ 0.870
N451 0.7 −0.0258ð75Þ 0.468(48) −1.640ð54Þ 0.896
E250 0.6 −0.123ð50Þ −0.15ð78Þ −1.46ð21Þ 0.893
E250 0.7 −0.114ð49Þ −0.25ð74Þ −1.43ð20Þ 0.969
D200 0.6 −0.056ð22Þ 0.73(15) −1.75ð12Þ 0.649
D200 0.7 −0.060ð21Þ 0.88(12) −1.83ð12Þ 0.417
N200 0.6 0.003(19) −0.22ð49Þ −1.18ð21Þ 0.504
N200 0.7 0.003(19) −0.22ð49Þ −1.18ð21Þ 0.504
E300 0.6 −0.082ð30Þ 0.65(20) −1.59ð14Þ 0.561
E300 0.7 −0.079ð29Þ 0.70(19) −1.62ð14Þ 0.667
J303 0.6 −0.045ð20Þ 0.92(16) −2.05ð21Þ 0.596
J303 0.7 −0.054ð18Þ 0.61(14) −1.74ð16Þ 0.203

TABLE XXII. Results of the chiral and continuum extrapolation for the z-expansion extractions.

Channel Mπ;cut [GeV] Q2
cut [GeV2] hr2Ei [fm2] hr2Mi [fm2] μM p value

u − d 0.27 0.6 0.740(80) 0.38(27) 4.09(36) 0.562
u − d 0.27 0.7 0.727(79) 0.54(24) 4.02(34) 0.364
u − d 0.30 0.6 0.739(54) 0.65(16) 4.04(26) 0.0573
u − d 0.30 0.7 0.750(53) 0.81(14) 4.04(25) 0.0676

uþ d − 2s 0.27 0.6 0.557(31) 0.52(34) 2.43(46) 0.0557
uþ d − 2s 0.27 0.7 0.551(29) 0.52(29) 2.41(45) 0.247
uþ d − 2s 0.30 0.6 0.553(20) 0.44(23) 2.40(35) 0.167
uþ d − 2s 0.30 0.7 0.550(19) 0.47(17) 2.39(32) 0.350

(Table continued)
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