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We consider the problem of the explicit description of the gauge-invariant subspace of pure lattice gauge
theories in the Hamiltonian formulation, where the gauge group is either a compact Lie group or a finite
group. The latter case is particularly interesting for quantum simulation. A basis of states where
configurations are grouped according to their holonomies is shown to have several advantages over other
descriptions. Using this basis, we compute some properties of interest for some non-Abelian finite groups
on small lattices, and in particular we examine the question of whether a certain ansatz introduced long ago
is a good approximation for the ground state.
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I. INTRODUCTION

The Hamiltonian formulation of lattice gauge theories
[1] has attracted renewed interest in recent years due to its
relevance in the field of quantum simulation, i.e., the
possibility of performing numerical calculations on quan-
tum devices. On the theoretical side, quantum simulation
requires a formulation of gauge theories with a finite-
dimensional Hilbert space. While many proposals have
been made, all of which may in principle work, here we
choose to focus on the approach where one replaces the
gauge group, typically a compact Lie group, with one of its
finite subgroups [2–5]. The general strategy was outlined in
[2]: the continuum limit is approached by tuning the theory
to a point in the phase diagram where the correlation length
is large (i.e., a phase transition). Despite the fact that finite
group theories only have a first-order transition (i.e., the
correlation length becomes large but not infinite), by
systematic improvement of the lattice action one may
nonetheless enter the scaling regime. This has been
demonstrated for the group Sð1080Þ, which is the largest
crystal-like subgroup of SU(3) and is therefore relevant for
QCD [6]. We also note that gauge theories with a finite
gauge group are also relevant in condensed matter [7–11]
and quantum gravity [12,13].
A peculiarity of gauge theories is that, due to the Gauss

law, only a small subset of the states in their Hilbert space
are physical. It is thus natural to look for a formulation
purely in terms of physical degrees of freedom. Generally
speaking, working in the physical subspace provides a

memory advantage, in that one needs to consider fewer
states; but the Hamiltonian acquires some degree of non-
locality which makes operations more expensive. A further
advantage of a gauge-invariant formulation is that one does
not need to correct errors arising from violations of the
Gauss law, which reduces memory and operational require-
ments. Whether this trade-off is worth making is application-
andplatform-dependent. For finitegroups, anexplicit descrip-
tion of the physical subspace in terms of spin networks was
recently considered in [14].
In this work we focus on pure gauge theories with finite

gauge group, but many of our results are also relevant for
compact Lie groups. In Sec. II, we review the Hamiltonian
formulation of gauge theories. In Sec. III, based on a
formulation introduced in the early days of lattice gauge
theory [15] to describe the gauge invariant content of
classical observables, we consider a set of “holonomy states”
which solve the Gauss law with the exception of one global
constraint which is treated separately. We discuss how these
states provide several advantages over the spin network
formulation. Working in this basis may be useful for
Hamiltonian simulations on current classical hardware as
well as on current quantum devices with few qubits. We also
review the issue of whether the Wilson loop observables are
sufficient to describe the gauge-invariant states. Further, the
issues of topology and center symmetry in this basis are
discussed. Finally, in Sec. IV we perform some numerical
simulations to demonstrate an application of the holonomy
basis. In particular, we discuss whether a conjectured ansatz
for the ground state wave function of Yang-Mills theory
proposed in [16–19] provides a good approximation to the
exact ground state for some non-Abelian finite groups.

II. HAMILTONIAN FORMULATION

In this section, we briefly review the Hamiltonian
formulation of pure lattice gauge theories, where the gauge
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group is either a compact Lie group or a finite group. We
also use this section to set the notation for the rest of
this work.
In the lattice Hamiltonian formulation [1], time is

continuous while space is given by a finite set of points,
most commonly a (periodic) cubic or hypercubic lattice. In
this work, however, we consider more generally the
situation where space is discretized into an arbitrary finite
graph (with vertices and links) which includes as a special
case any type of lattice discretization. In fact, as we will see
shortly, in order to define the Hilbert space and the Gauss
law (which are the focus of this work) a graph structure is
sufficient. Note that this excludes pathological cases such
as dangling links connected to only one site. We will
always assume that the graph discretizing space is con-
nected. On the other hand, to define the magnetic
Hamiltonian one requires the notion of a minimal cycle
(i.e., the plaquette) for which a graph structure is not
sufficient; in general, one requires the notion of a cell
complex. We will not consider this here; whenever dis-
cussion of the Hamiltonian is required, we always special-
ize to a hypercubic lattice.
The Hilbert space is most easily described in the “group

element basis”. Let G be the gauge group, which is either a
compact Lie group or a finite group. A classical configu-
ration is given by an assignment of a group element to each
link. In the quantum theory, states can also be found in a
superposition of various group elements. Therefore we
introduce a set of basis states jgi on each link indexed by
group elements g∈G. These are orthonormal, i.e.,
hgjhi ¼ δgh. The Hilbert space on each link is given by
the group algebra C½G�, i.e., the vector space spanned by
the jgi. For a compact Lie group, the group algebra C½G�
should be replaced with the space L2ðGÞ of square-
integrable functions on the group; apart from convergence
issues, its description is the same as the group algebra. Then
the Hilbert space on the whole discretized space is given by
a copy of C½G� on each link, i.e.,

Htot ¼ ⊗
links

C½G�: ð1Þ

We call this the “total” Hilbert space because we have not
yet imposed the Gauss law. Since on each link we have jGj
basis states, dimðC½G�Þ ¼ jGj, and therefore dimHtot ¼
jGjL, where L is the number of links. Basis states in the
total Hilbert space are denoted as

jfggi≡ ⊗
l∈ links

jgli; ð2Þ

where gl ∈G is an assignment of a group element to each
link. In other words, the basis states in Htot are indexed by
classical configurations. Note that the graph discretizing
space is assumed to have an (arbitrary) fiducial orientation.
In particular, links can be traversed in either the positive or

negative orientation, but if a link l is traversed in the
negative orientation then the group element gl is assumed to
be replaced by its inverse g−1l .
To perform a gauge transformation, one first assigns a

group element gx to each site x. Given such an assignment,
which we denote fgxg, the corresponding operator GðfgxgÞ
which performs the gauge transformation acts on the basis
states as

GðfgxgÞjfggi ¼ ⊗
l¼hxyi∈ links

jgxglg−1y i; ð3Þ

where l ¼ hxyi is the link which connects sites x and y (in
the positive orientation). In other words, on each link one
performs the transformation jgli → jgxglg−1y i.
It is useful to introduce the operators Lg and Rg which

perform left- and right-translations on the group element
basis states on each link. These are defined as

Lgjhi ¼ jghi; Rgjhi ¼ jhg−1i: ð4Þ

Both L and R are faithful unitary representations of the
gauge group G, known as the left- and right-regular
representations [20,21]. In terms of these operators, the
gauge transformation takes the form,

GðfgxgÞ ¼ ⊗
l¼hxyi∈ links

LgxRgy ; ð5Þ

where it is understood that the L and R operators act on the
Hilbert space of the corresponding link in each tensor
product factor. Then one considers as belonging to the
physical, gauge-invariant Hilbert space Hphys only those
states jψi which are gauge-invariant [1,22,23], i.e.,

GðfgxgÞjψi ¼ jψi; ð6Þ

for any possible assignment gx of group elements to sites.
While our discussion of the Hilbert space is valid for

both compact Lie groups and finite groups, in the rest of
this work, we will only consider the Hamiltonian in the
special case where the gauge group is a finite group and
space is discretized as a hypercubic lattice. In this case, the
Hamiltonian is given by [1,3,12,14,24,25]

H ¼ λE
X

l∈ links

hE þ λB
X
□

hBðg□Þ: ð7Þ

Here □ are the plaquettes and g□ ¼ g1g2g−13 g−14 is the
associated plaquette variable, i.e., the oriented product of
the four links around the plaquette. For the magnetic
Hamiltonian, to match the notation of [14] we choose

hBðg□Þ ¼ −2Reχðg□Þ; ð8Þ
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where χ is the character of a faithful representation of the
gauge group G.
On the other hand, the electric Hamiltonian acts sepa-

rately on each link, where it is given by

hE ¼
X
k∈Γ

ð1 − LkÞ; ð9Þ

where Lk is the left translation operator defined in Eq. (4)
and Γ ⊂ G is a subset which does not contain the identity
and is invariant under group conjugation and group
inversion, i.e., gΓg−1 ¼ Γ and Γ−1 ¼ Γ. Invariance under
conjugation ensures that hE is gauge-invariant. Because of
these two requirements, it makes no difference whether one
chooses Lk or Rk in Eq. (9). The electric Hamiltonian on
each link Eq. (9) is nothing but a Laplacian on the finite
group [14]. In relativistic theories, the electric and magnetic
Hamiltonian are related, and one must have [12]

Γ ¼ fg∈G; g ≠ 1;max½ReχðgÞ�g; ð10Þ

i.e., Γ is the subset of non-identity elements of G which
maximise the real part Reχ of the character of the magnetic
Hamiltonian. Note that the set Γ in Eq. (10) is invariant
under both conjugation and inversion, as mentioned in the
previous paragraph. As has been pointed out recently [14],
the electric Hamiltonian on each link may be degenerate,
but in this work we do not consider situations where this
occurs. If this does not occur, then the electric Hamiltonian
has a unique ground state on each link, given by an equal
superposition over all group element states.
Finally, in Sec. IV we will numerically construct the

Hamiltonian H to compute some quantities of interest. We
choose to measure the energy in units of λE þ λB, so that in
practice the Hamiltonian may be written as

H ¼ ð1 − λÞ
X

l∈ links

hE þ λ
X
□

hBðg□Þ; ð11Þ

where λ∈ ½0; 1� is a real parameter. The “strong coupling
phase” where the electric Hamiltonian dominates then
occurs for small λ, while for large λ the physics is
dominated by the magnetic Hamiltonian.

III. ALMOST GAUGE-INVARIANT STATES

As we have seen in the previous section, only a small
subset of the states in the total Hilbert space are physical.
In some situations, it may therefore be advantageous to
work directly in the physical subspace. This reduces
memory requirements, but increases the complexity of
operations because the Hamiltonian generally becomes
somewhat nonlocal. Another advantage of working in a
physical basis is that one does not need to correct errors
which cause violations of the Gauss law, thus contributing
to reduced memory and operational requirements. Whether

the advantages outweigh the disadvantages is application-
and platform-dependent.
Several approaches have been devised to describe the

physical subspace of lattice gauge theories. Recently, the
physical subspace of pure gauge theories whose gauge group
is a finite group has been described in terms of spin-network
states [14,26,27]. This description has several advantages,
but it can be cumbersome due to the need for Clebsch-
Gordan coefficients as well as the formulation in the
representation basis, which together make access to oper-
ators diagonal in the group element basis quite difficult.
Since the early days of lattice gauge theory, gauge-fixing

has been a popular method to reduce the number of degrees
of freedom of lattice gauge theories [28]. In this section, we
will make extensive use of results in [15], where the gauge-
invariant content of gauge-field configurations is described
in terms of lattice holonomies based on a spanning rooted
tree. This description allows the introduction of a particu-
larly simple basis of states, which we call “holonomy
states”. They are almost gauge invariant, in the sense that
they satisfy all Gauss law constraints except for one overall
global transformation. Importantly, these states can be
constructed on arbitrary graphs, which includes any lattice
discretization, and in particular hypercubic lattices with
both open and periodic boundaries. We then discuss several
properties of these states, including how to compute matrix
elements of the Hamiltonian in this basis and their relation
to a basis of Wilson loops. Interestingly, as shown in
Sec. III D, the electric Hamiltonian in this basis involves
only OðjΓjÞ terms (i.e., independent of V), against a naive
expectation of OðVÞ terms where V is the volume. Using
this formulation, we also rederive a formula for the
dimension of the physical subspace first obtained in [14].
Here and throughout we use notation appropriate for

finite groups. But the results of this section remain valid
also for compact Lie groups, with the sole caveat that one
should replace the group sums 1

jGj
P

g∈G with the (nor-

malized) Haar measure
R
dg.

The simplest way of constructing gauge-invariant states
would be to start from a generic state jψi and project it onto
the gauge-invariant sector. The appropriate projector can be
constructed by averaging over all gauge transformations,

P ¼ 1

jGjV
X
fgxg

GðfgxgÞ; ð12Þ

where V is the number of sites. However, this method is
neither explicit nor efficient.
Alternatively, by repeatedly applying gauge transforma-

tions, the gauge field configurations split into gauge
equivalence classes X1; X2;…. One could then construct
gauge equivalence states,

jXii≡ 1ffiffiffiffiffiffiffiffijXij
p X

fgg∈Xi

jfggi; ð13Þ
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by equally superimposing all configurations in one gauge
equivalence class. The states jXii are gauge-invariant by
construction and form in fact an orthonormal basis of
gauge-invariant states. One could then work directly in the
physical subspace spanned by the jXii. The problem here is
that the gauge equivalence classes do not all have the same
size. This can be seen already in the simple examples
presented in Sec. III A. Therefore in order to work with the
states jXii, one would need to know the sizes jXij of the
gauge equivalence classes, but it is not clear how to
compute them.
In the next section, we give two simple examples to help

gain intuition for the general construction of Sec. III B.

A. A preliminary example

In this section, we consider two simple examples—a
2 × 2 and a 2 × 3 square lattice with open boundaries—in
order to gain intuition for the general construction which
will be presented in Sec. III B. We chose square lattices
with open boundaries because they are the simplest
example, although, as already remarked, our construction
works with arbitrary graph discretizations. Several of the
issues that we will encounter in the general case are already
present in these simple cases.
Consider first the 2 × 2 lattice, shown in Fig. 1. This

lattice has V ¼ 4 sites and L ¼ 4 links. A state in the group
element basis is then of the form jg1; g2; g3; g4i where gi is
the group element assigned to link i. In order to reduce the
number of variables, we want to gauge-fix as many links as
possible to the identity. Thus we choose a maximal tree,
shown in Fig. 1 by the bold links, and ideally we would like
to set all links in the tree to the identity. This leaves out
exactly one link (in this case, the one labeled 3), and
therefore the gauge-invariant content can be described by
simply one variable.
This is how the story would go in the path-integral

approach. However, the situation is slightly different in the
Hamiltonian formulation. In fact, the “gauge-fixed” state in
this case takes the form j1; 1; g3; 1i, and it can be easily
checked that it is not invariant under gauge transformations
of the usual form Eq. (5). Instead, we construct (in this case,
the only) untraced Wilson loop in this lattice, which is
h≡ g4g3g−12 g−11 , i.e., the plaquette. Note that we have
chosen the orientation of the path defining h so that it

traverses link 3 in its positive orientation. Link 3 is
precisely the one which we do not want to fix to the
identity. Also, since the Wilson loop is untraced, the base
point (marked x0 in Fig. 1) is important. As we have seen
above, the gauge-invariant content on this lattice can be
described by a single variable, which is the holonomy h.
Therefore we define a state jhi associated to h by equally
superimposing all configurations with the same h,

jhi≡ 1ffiffiffiffiffiffiffijGjp
3

X
g1 ;g2 ;g3 ;g4 ∈G
g4g3g

−1
2

g−1
1

¼h

jg1; g2; g3; g4i: ð14Þ

In his case, it is possible to check explicitly that the states
jhi for h∈G are orthonormal; in particular the normali-
zation factor is the same for all h. It is also not hard
to check that the state jhi is invariant under all gauge-
transformations except those at the base point x0. This is
not surprising, since h is an holonomy with base point x0.
Therefore, we can think of h as a “more” gauge-invariant
version of the simple link variable g3 which is the only one
which we do not gauge-fix. In fact, on the gauge-fixed
configuration, h ¼ g3.
But, as we said, the state jhi is not fully gauge-invariant.

There is one remaining gauge transformation, the one at the
base point x0, under which jhi is not invariant. This acts
simply by conjugation, i.e., jhi → jgx0hg−1x0 i. This means
that it simply groups together the states jhi in the same
conjugacy class. Therefore the gauge-invariant states on
this lattice are labelled by the conjugacy classes C of the
gauge group G, and they are of the form,

jCi≡ 1ffiffiffiffiffiffijCjp X
h∈C

jhi: ð15Þ

These are the gauge-equivalence states of Eq. (13). The
states jCi are again orthonormal, but their normalization is
different for each state. In this case, it is simply given by the
size of the conjugacy classes. As we will see in the other
example presented in this section, computing the equivalent
normalizations is in general not easy. In particular, as
anticipated in the introduction to Sec. III, this shows that
even in this simple example the gauge-equivalence classes
do not all have the same size, as the conjugacy classes of a
non-Abelian group generally have different sizes. The
result remains true also for compact Lie groups. In that
case one cannot simply count the elements (which would
be infinity); the appropriate notion which generalizes
counting is volume under the Haar measure. Then the fact
that different conjugacy classes have different sizes is made
precise by the Weyl integration formula [21].
Alternatively, the gauge-invariant states on this lattice

can be described in terms of wavefunctions of the hol-
onomy as

FIG. 1. A 2 × 2 (left) and 2 × 3 (right) square lattice with open
boundaries. The arrows depict the standard orientation of the
links. In each case, the bold links form a possible maximal tree.
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jψi ¼
X
h∈G

ψðhÞjhi; ð16Þ

where the wave function satisfies ψðghg−1Þ ¼ ψðhÞ. Such
functions are known as “class functions” and by standard
theorems [20,21] they can be expanded in a basis of
irreducible characters,

ψðhÞ ¼
X
i

ψ iχiðhÞ; ð17Þ

where the ψ i are arbitrary complex coefficients and the χi
are the irreducible characters of G. These are simply traces
of irreps ofG, i.e., for this lattice with only one independent
holonomy, the χiðhÞ are nothing but all the traced Wilson
loops in all irreducible representations of G. Note that it is
generally true that the number of conjugacy classes of a
finite group equals the number of its irreps [20], so that the
two descriptions of the gauge-invariant states are consis-
tent. While in this case it is possible to express the gauge-
invariant states as functions of traced Wilson loops, this is
not true in general. We will explore this issue further in the
rest of this section as well as in Sec. III C.
We now turn to the 2 × 3 square lattice shown on the

right side of Fig. 1. In this case we have V ¼ 6 sites and
L ¼ 7 links. A maximal tree like the one shown in Fig. 1
includes 5 links. Therefore after fully “gauge-fixing”, we
are left with two group-valued variables related to the links
labeled 3 and 7 in Fig. 1. But again we cannot simply
gauge-fix elements to the identity, as the resulting state
would not be gauge-invariant. Instead we define appro-
priate holonomies. In this case we have two

h1 ≡ g4g3g−12 g−11 ; h2 ≡ g1g2g7g−16 g−15 g−11 : ð18Þ

Importantly, we chose the two holonomies to have the same
base point x0. Each holonomy goes through precisely one
link which is not in the maximal tree; h1 is associated with
link 3 and h2 with link 7. Now we define holonomy states,

jh1; h2i≡ 1ffiffiffiffiffiffiffijGjp
5

X
fgg∈ ½h1;h2�

jfggi; ð19Þ

by equally superimposing all configurations with the same
holonomies. Again it is tedious but not hard to check that
the states jh1; h2i are orthonormal. In particular, they again
all have the same normalization, which is the same as
saying that all classes of states with the same holonomies
contain an equal number of states. We will show that this
statement is true in general in Sec. III B.
The holonomy states jh1; h2i are invariant by construc-

tion under all gauge transformations except the one at the
base point x0. Under this gauge transformation, they
transform by simultaneous conjugation, i.e., as jh1; h2i →
jgx0h1g−1x0 ; gx0h2g−1x0 i. Unlike the previous case with only

one holonomy, this condition admits no simple mathematical
characterization.1 One could still form gauge-equivalence
states by superimposing holonomy states related by simul-
taneous conjugation, but it is not clear how (apart from
brute force) to compute the size of the simultaneous
conjugation classes and therefore the normalization of the
gauge-equivalence states.
Nonetheless, we can simply describe the gauge-invariant

Hilbert space as the space of states of the form,

jψi ¼
X

h1;h2 ∈G

ψðh1; h2Þjh1; h2i; ð20Þ

where the wave function ψ satisfies ψðgh1g−1; gh2g−1Þ ¼
ψðh1; h2Þ for all g∈G. Unfortunately, again, functions
which are invariant under simultaneous conjugation admit
no simple characterization. Given a character χ of G, all the
traced Wilson loops χðh1Þ, χðh2Þ, χðh1h2Þ [or more
generally χðhÞ where h is an arbitrary product of h1 and
h2] are gauge-invariant, but there is no guarantee that they
span the space of gauge-invariant functions. In fact, as we
will see in Sec. III C, this is not true in general.
In the next section, we generalize the construction of this

chapter to the case where space is discretized as an arbitrary
graph. In particular, we construct holonomy states in full
generality. In Sec. III C we discuss under what conditions
Wilson loops are sufficient to describe the gauge-invariant
functions. Then in Sec. III D we show how to construct
matrix elements of the Hamiltonian in the holonomy basis.

B. The holonomy basis

In this section, we generalize the construction exempli-
fied in the previous section to arbitrary graph geometries.
We describe a basis of “holonomy states” which can be
implemented without requiring knowledge of any coeffi-
cients or normalizations. They satisfy all Gauss law
constraints except one, which is then treated separately.
In what follows, we use the word “path” in a loose sense.

In particular, we say that a path γ between two sites x and y
in a graph Λ is a sequence of sites x0; x1;…; xn ∈Λ such
that hxi; xiþ1i is a link in Λ for each i and x0 ¼ x, xn ¼ y.
The links can be traversed in either the positive or negative
orientations indifferently. Then a path γ is also naturally
associated with an ordered set of links in the graph, i.e., the
links hxi; xiþ1i.
Given a gauge field configuration, we can associate to

each path γ given by links l1; l2;…; ln a Wilson line hγ ∈G
defined as

hγ ¼
Yn
i¼1

gσðli;γÞli
; ð21Þ

1In particular, it is not conjugation in the group G × G, which
would allow the two holonomies to be conjugated by different
group elements.
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where σðli; γÞ ¼ �1 depending on whether γ traverses li in
the positive or negative orientation. Note that, importantly,
no trace is taken. If the path γ starts and ends at the same
point, we refer to hγ as a “holonomy”. Since the holon-
omies are defined without a trace, the base point is
important.
Now we follow closely the procedure described in [15].

Starting from the graph Λ which discretizes space, pick a
maximal spanning tree T, i.e., a subgraph of Λ which
includes all vertices of Λ but has no closed loops. (A
connected graph always has a spanning tree [29].) Pick an
arbitrary special site x0, which we call the root. Examples
of spanning trees are shown in Figs. 1 and 2. By
construction T has V vertices (the same as Λ) and, by
the general properties of tree graphs, V − 1 links [29].
Therefore Λ has L links in total, of which V − 1 are in T
and M ≡ L − V þ 1 outside T. Note also that between any
two sites x and y in Λ there is a unique path (i.e., a unique
set of links) lying entirely within T [29]. The construction is
illustrated in Fig. 2. Given a gauge field configuration,
construct a specific set of holonomies associated to it,
which we call the fundamental holonomies, as follows:
(1) For each link l̃ ¼ hxyi∈ΛnT, i.e., outside T, con-

struct the closed path γ which starts from the root x0,
follows the unique path in T from x0 to x, follows l̃
to reach y and then follows the unique path in T from
y back to x0.

(2) Construct the holonomy associated to γ.
(3) Note that with this procedure we have constructed

M ¼ L − V þ 1 independent holonomies, each as-
sociated to a link outside the tree. We call these the
fundamental holonomies. Any other holonomy can
be obtained by a finite product of fundamental
holonomies.

In particular, note that the fundamental holonomies are
invariant under all gauge transformations which equal the
identity at the root, i.e., gx0 ¼ 1. They are not invariant
under gauge transformations at the root. For ease of
reference we call internal gauge transformations those
which equal identity at the root, i.e., gx0 ¼ 1. We call
the remaining gauge transformation, the one based at the
root x0, the external gauge transformation. Then we say
that the fundamental holonomies are invariant under the

internal gauge transformations, which form a group Gint; on
the other hand, under the external gauge transformation all
holonomies transform in the same way, i.e., hγ → gx0hγg

−1
x0 .

The external gauge transformations also form a group
which we call Gext.
Among all gauge field configurations with the same set

of M holonomies fhg, there is one which is particularly
simple. It is the one where all links in the maximal tree T
are set to the identity, and we refer to it as the “gauge-fixed”
configuration. Formally we denote it as

jfhgGFi≡ ⊗
l∈ links

jgli gl ¼
�
hl l∈ΛnT
1 l∈T

; ð22Þ

where here hl is the holonomy associated to link l outside
the tree. It is clear that the gauge field configuration
jfhgGFi has fundamental holonomies fhg.
As is clear from the construction, knowledge of the

fundamental holonomies and of the gauge field on the tree
is sufficient to reconstruct the gauge field configuration.
Since also general (nonfundamental) holonomies are
invariant under internal gauge transformations, this also
implies that the fundamental holonomies with root x0 are
sufficient to reconstruct all holonomies with the same root
x0. In fact, since they can be equivalently evaluated on the
gauge-fixed configuration, all holonomies with root x0 are
given by products of the fundamental holonomies.
Moreover, any holonomy with arbitrary base point is given,
up to conjugation, by a product of fundamental holono-
mies; if γ is a closed path with base point x ≠ x0 and ω is
the path from x0 → x in the spanning tree, then ω∘γ∘ω−1 is
another closed path, but with base point x. An example of
this occurs in Fig. 2. In what follows, we will often refer to
the fundamental holonomies simply as the “holonomies”.
Now we show an important result for what follows:
Proposition 1. Let jfggi be a gauge field configuration

with fundamental holonomies fhg. Then jfggi is internally
gauge-equivalent to the gauge-fixed configuration; i.e.,
there is an internal gauge transformation G such that
jfggi ¼ GjfhgGFi.
Variations on this result have certainly appeared before

in the literature; see for example [30] for a similar statement
and proof.

FIG. 2. Illustration of the construction of the holonomies on a 3 × 4 square lattice with open boundaries. The reference orientation of
the links is shown in the center figure. On the left, the lattice together with a maximal tree (the bold links) and root x0. On the right, a path
making up an holonomy according to the construction described in the text. We chose to illustrate this case for simplicity, but our
construction works for the general case where space is discretized as an arbitrary graph.
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Proof. We will exhibit a sequence of internal gauge
transformations which gauge-fixes to the identity the
gauge field in the tree. Note that a product of internal
gauge transformations is also an internal gauge trans-
formation, and that internal gauge transformations preserve
the holonomies. Therefore the end result of this procedure
is the gauge-fixed configuration.
Consider the spanning tree T. Call active the sites at

which we have not yet fixed the gauge transformation, and
inactive otherwise. If the gauge field gl at link l has been set
to the identity by a gauge transformation, we mark it as
frozen. Initially, the root site is inactive and all other sites
are active. A leaf of the tree T is a site which is connected
only to one other site. Every tree has at least one leaf [29].
Then pick a leaf x and consider the path from the root
x0 to x (this is unique [29]), which takes the form
x0; x1; x2;…; xk with xk ¼ x. Then use the gauge freedom
at x1 to set the gauge field on link l ¼ hx0x1i to the identity;
then mark x1 as inactive and l as frozen. Note that since
both sites connected to l are inactive, its value cannot be
changed by the following gauge transformations. Then
continue to use the gauge freedom at site xi to fix the gauge
field on link hxi−1xii. Thus all the links in the path between
x0 and xk are frozen and all the sites in the path are inactive.
Now among inactive sites, choose one (say y0) which is
connected to a link which is not frozen. If it does not exist,
then all links are frozen and the algorithm terminates.
Otherwise, consider the subgraph formed by y0 and all sites
and edges reachable via nonfrozen links. Since this is a
subgraph of T, it is again a tree and therefore will have a
leaf. Thus we can repeat the previous algorithm whereby
we consider the path from y0 to the leaf and fix the gauge
field along the path. Then one again picks another inactive
site recursively until all links in the tree are frozen. ▪
Using the previous proposition, we can show the

following:
Proposition 2. Two gauge field configuration states

jfggi and jfg0gi have the same fundamental holonomies
if and only if they are related by an internal gauge
transformation.
Proof. One direction is obvious. We know that internal

gauge transformations do not change the holonomies;
therefore if jfggi and jfg0gi are related by an internal
gauge transformation, then they have the same holonomies.
For the other direction, we make use of Proposition 1
according to which both jfggi and jfg0gi are related to the
gauge-fixed configuration via an internal gauge transfor-
mation. The result then follows because internal gauge
transformations form a group. ▪
All the results until now deal with gauge field configu-

rations and are therefore well-known. Now we deal more
specifically with the consequences for the physical
Hilbert space.
We define a holonomy class to be the equivalence class

of gauge field configurations with the same fundamental

holonomies. We have said before that gauge equivalence
classes do not all have the same number of elements. The
remarkable fact about holonomy classes is that they do all
have the same number of elements. Before proving this
fact, we show a refinement of the previous propositions,
Proposition 3. Within each holonomy class, configura-

tion states are in one-to-one correspondence with internal
gauge transformations.
Proof.Given a configuration state jfggiwith holonomies

fhg, from Proposition 1 we know that there is an internal
gauge transformation G such that jfggi ¼ GjfhgGFi. Then
we define a map from configurations to internal gauge
transformations by jfggi → G, and we have to show that it
is bijective.
First of all, we have to show that the map is well-defined.

In particular, we have to show that if we have two gauge
transformations G and G0 such that

jfggi ¼ GjfhgGFi; ð23Þ

jfggi ¼ G0jfhgGFi; ð24Þ

then G ¼ G0. In fact uniqueness follows from the proof of
Prop. 1 because gauge transformations on different sites
commute and paths in a tree are unique. But we prove this
result again here in a simpler manner. Since internal gauge
transformations form a group, they have inverses.
Therefore from Eq. (23) we have

jfhgGFi ¼ G−1G0jfhgGFi: ð25Þ

Therefore the gauge-fixed configuration is fixed by the
internal gauge transformation G0G−1. But in the gauge-fixed
configuration, each link in the tree is set to the identity. For
a link l ¼ hxyi in the tree, G0G−1 acts as j1i → jgxg−1y i ¼
j1i for some group elements gx; gy ∈G. Therefore gx ¼ gy.
But since the tree is maximal, i.e., it includes all vertices,
this then implies that G0G−1 is given by the same group
element on all sites. But since it is an internal gauge
transformation, it is equal to the identity on the root x0;
therefore it must be given by the identity on all sites, i.e., it
is the identity transformation. Therefore G0 ¼ G.
It remains to show that the map is bijective. But this can

be done by exhibiting an explicit inverse, which is simply
given by the map G → jfggi≡ GjfhgGFi (note that the
inverse is defined on the whole codomain). ▪
Incidentally, this proves that the group Gint of internal

gauge transformations is really isomorphic to GV−1. On the
other hand, the group of external gauge transformations
Gext is not isomorphic to G. In fact it is clear that if g is in
the center ZðGÞ of G, then the corresponding external
gauge transformation GðgÞ is simply the identity. Therefore
Gext ≅ G=ZðGÞ. Similarly, the full group of gauge trans-
formations is isomorphic to GV=ZðGÞ where ZðGÞ is the
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“diagonal” subgroup of constant transformations equal to a
central element (which act as the identity).
We can now show that all holonomy classes have the

same number of states:
Proposition 4. Each holonomy class contains jGjV−1

configurations.
Proof. Suppose that we want to construct a configuration

with prescribed fundamental holonomies. These are always
defined with respect to a spanning tree, say T. Following
Propositions 1 and 2, we are free to set the gauge field
configuration on each link in the tree arbitrarily. Then for
each link not in T, we assign to it the unique group element
which fixes its fundamental holonomy to the prescribed
one. Hence are free to set all and only the links on the tree
T. Since there are V − 1 such links, we can construct jGjV−1
states with the same fundamental holonomies. ▪
This statement can also be proved from an alternative

point of view:
Proof. From Proposition 3 within each holonomy class

configurations are in one-to-one correspondence with
internal gauge transformations. Therefore it suffices to
count the number of internal gauge transformations.
Since we are free to choose jGj elements for V − 1 sites
(i.e., all sites except the root), then we have jGjV−1 internal
gauge transformations and therefore the same number of
configurations in each holonomy class. ▪
This means, in particular, that we can define the

“holonomy class states”,

jfhgi≡ jh1; h2;…; hMi≡ 1ffiffiffiffiffiffiffijGjp
V−1

X
fgg∈ ½h�

jfggi; ð26Þ

by an equal superposition of all configuration states with
the same holonomies. Here [h] denotes an holonomy class,
i.e., a definite choice of h1; h2;…; hM ∈G. Since all
holonomy classes have the same size, the normalization
for these states is known and in fact the states jfhgi are
orthonormal,

hfh0gjfhgi ¼
YM
i¼1

δðh0i; hiÞ: ð27Þ

We call the Hilbert space spanned by the holonomy states
Hhol. Since each holonomy can take jGj values and we have
M ¼ L − V þ 1 holonomies, then dimHhol ¼ jGjL−Vþ1. In
particular,Hhol admits a remarkably simple description as a
tensor product space,

Hhol ¼ C½G�⊗M: ð28Þ

In other words,Hhol is simply the Hilbert space spanned by
states of the form jh1; h2;…hMi where each holonomy
hi ∈G can take any value in G without restrictions.
Therefore the holonomy states satisfy almost all gauge
constraints, thus reducing the size of the Hilbert space by an

exponential factor, without requiring the computation of
normalizations or Clebsch-Gordan coefficients. One is
simply left with one overall global constraint, i.e., the
external gauge transformation. Note in particular that the
description of the holonomy space is entirely independent
of the embedding of the holonomies into any particular
graph, only operators depend on the embedding.
The holonomy states are generally not gauge-invariant

because of the external gauge transformations Gext. In fact a
transformation GðgÞ∈Gext acts in holonomy space as

GðgÞjh1;h2;…;hMi ¼ jgh1g−1; gh2g−1;…; ghMg−1i: ð29Þ

In holonomy space, the external gauge transformation takes
the role of a global symmetry which acts by simultaneous
conjugation of all holonomies. Therefore the Hilbert space
of holonomies is an intermediate space between the total
Hilbert space, and the physical Hilbert space,

Htot⟶
Gint Hhol⟶

Gext Hphys: ð30Þ

Here the arrows denote projection onto the states invariant
under Gint and Gext respectively. The projector from Hhol to
Hphys is then constructed by averaging over external gauge
transformations; i.e., it is given by the operator,

Pjh1;…; hMi ¼
1

jGj
X
g∈G

jgh1g−1;…; ghMg−1i: ð31Þ

In terms of the L and R operators defined in Sec. II (now
acting on the Hilbert space of each holonomy), it is given
by

P ¼ 1

jGj
X
g∈G

ðLgRgÞ⊗M: ð32Þ

It is not hard to show that P is indeed a projector. We can
then use it to rederive a formula for the dimension of the
physical subspace first obtained in [14]:
Theorem 1. If C are the conjugacy classes of G, and jCj

their sizes, then on a graph with V vertices and L edges one
has dimHphys ¼

P
C ðjGjjCjÞL−V .

Proof. As we have seen, P projects onto the gauge-
invariant sector. As usual, the dimension of the image of the
projector (in this case, the gauge-invariant subspace) equals
the trace of the projector. Therefore,

dimHphys ¼ trP ¼ 1

jGj
X
g∈G

½trðLgRgÞ�M: ð33Þ

By the Peter-Weyl decomposition [21,31], we find

LgRg ¼ ⨁
j
ρjðgÞ� ⊗ ρjðgÞ; ð34Þ
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where ρj are the irreps of G. Then taking traces, one finds

trðLgRgÞ ¼
X
j

χjðgÞ�χjðgÞ ¼
jGj

jCðgÞj ; ð35Þ

where we used one of the orthogonality relations of
characters [20] and CðgÞ is the conjugacy class of g.
Therefore we find

dimHphys ¼ trP ¼ 1

jGj
X
g∈G

jGjL−Vþ1

jCðgÞjL−Vþ1
ð36Þ

¼
X
C

X
g∈C

jGjL−V
jCjL−Vþ1

¼
X
C

jGjL−V
jCjL−V ; ð37Þ

which proves the result. ▪
In fact this statement could also have been proven by

computing the trace of the projector from the total Hilbert
space, Eq. (12), by combining the argument presented here
with the one in [14].
Note that in an Abelian group, all elements commute

and therefore ghig−1 ¼ hi so that the external gauge
transformation does nothing. In this case, therefore the
space of holonomies coincides with the physical Hilbert
space, Hhol ≅ Hphys.
The statement that all holonomy classes have the same

size may also be understood as the statement that the
transformation from configurations to holonomies has
constant Jacobian. Consider in fact a gauge-invariant
function of configurations fðfggÞ, i.e., f∶GL → C. This
may also be thought of as the wave function of a gauge-
invariant state. Since f is gauge-invariant, it depends only
on the holonomies of fgg. Therefore we can define a
function of the holonomies F∶ GM → C via FðfhgÞ≡
fðfhgGFÞ. Then we have the change of variable formula,

1

jGjL
X
fgg

fðfggÞ ¼ 1

jGjM
X
fhg

FðfhgÞ: ð38Þ

Here 1
jGj

P
g∈G should be thought of as the normalized Haar

measure on the finite group; the same formula also holds
for compact Lie groups by replacing this with their Haar
measure.
It is also interesting to compare the dimension of the two

spaces. One has

dimHphys

dimHhol
¼ 1

jGj
X
C

1

jCjL−V ≥
1

jGj : ð39Þ

Therefore, in going to the physical subspace one gains at
most a factor of ≈jGj in terms of “memory” compared to
the holonomy space, paying a price in terms of having to

store the Clebsch-Gordan coefficients which express the
gauge-invariant states in terms of the holonomy states.

C. Wilson loops as a basis

For SUðNÞ gauge theories, it is standard to expand
gauge-invariant functions in terms of traced Wilson loops.
These are generally overcomplete, but at least for SU(2) it
was possible to find a subset of loops which form a proper
basis [32]. As anticipated in Sec. III A, in general the
traced Wilson loops do not even span the space of gauge-
invariant functions.
In this section, we review the issue of whether a basis of

gauge-invariant states may be found in terms of traced
Wilson loops for a general finite or compact Lie gauge
group G. This issue is closely related to the discussion of
this section, and the results discussed here have been
obtained by several authors [15,30,33,34]. From the pre-
vious discussion, in terms of the holonomy basis, gauge-
invariant states take the form,

jψi ¼
X
fhg

ψðh1; h2;…; hMÞjh1; h2;…; hMi; ð40Þ

where the wave function in the holonomy basis satisfies

ψðgh1g−1; gh2g−1;…; ghMg−1Þ ¼ ψðh1; h2;…; hMÞ; ð41Þ

for all g∈G. As we saw in Sec. III A, for M ¼ 1 this is
simply a class function on G (a basis of which is given by
the characters ofG), but forM > 1 this condition admits no
such simple mathematical description. One may nonethe-
less attempt to construct a basis of such scalar functions,
which would then also provide a basis of gauge-invariant
states. A simple observation is that a set of functions which
satisfies Eq. (41) are of the form fðhÞ where f is a class
function on G and h is a product of fundamental holon-
omies, i.e.,

h ¼ hi1hi2hi3 � � � ; ð42Þ

where each fundamental holonomy appears an arbitrary
number of times. But since the irreducible group characters
form a basis of class functions, it is equivalent to consider a
basis of scalar functions of the form χðhÞ, where χ is an
irreducible character and h a product of holonomies. These
are precisely all the possible traced Wilson loops in all the
irreducible representations of G.
One might then attempt to prove that all functions

satisfying Eq. (41) may be expanded in a basis of traced
Wilson loops; but this turns out not to be possible. This is
not only because such a basis would be overcomplete, but
more importantly because the traced Wilson loops do not
necessarily span the space of functions satisfying Eq. (41).
In fact for some gauge groups G it is possible to construct
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orthogonal gauge-invariant states with the same Wilson
loops [30].
Nonetheless, the traced Wilson loops do span the space

of gauge-invariant functions in some cases of interest
(while still being overcomplete). For example if the group
G is Abelian, then the condition Eq. (41) is trivial. For ZN
and U(1) therefore we obtain the even stronger result that
Wilson loops in any one faithful irreducible representation
are sufficient to determine the gauge-invariant content of
configurations. But this result is in a sense not very
interesting, as the above description in terms of holonomy
states is already fully sufficient to describe the gauge-
invariant states.
More generally, note that if G is either finite or compact

Lie and χðgÞ ¼ χðg0Þ for all irreducible characters χ, then g
and g0 are conjugate [20,21]. Suppose that one has two
states with holonomies fhg and fh0g. Then one can
consider all possible independent products of holonomies,
which we call h̃α and h̃0α indexed by α. If the Wilson loops
form a basis of gauge-invariant states then they must agree
on fhg and fh0g if and only if the two are gauge-equivalent.
From the previous result we know that if χðh̃αÞ ¼ χðh̃0αÞ for
all χ (i.e., the Wilson loops agree), then h̃α and h̃0α are
conjugate. But fhg and fh0g are gauge-equivalent if and
only if h0i ¼ ghig−1 for some g, which must be the same for
all holonomies; therefore it is not sufficient that h̃α and h̃0α
are conjugate for all α, but they must be conjugate by the
same group element for all α. In order to guarantee this, one
must exclude the presence of certain group homomor-
phisms. In fact suppose that ϕ is a class-preserving outer
automorphism [15,30,35,36], i.e., ϕ∶G → G is an invert-
ible group homomorphism such that g and ϕðgÞ are always
in the same conjugacy class, but ϕðgÞ is not of the form
ϕðgÞ ¼ kgk−1 for some fixed k∈G and all g∈G. Then the
configurations fgg and fϕðgÞg have holonomies fhg and
fϕðhÞg and identical Wilson loops, χðhÞ ¼ χðϕðhÞÞ on
account of ϕ preserving conjugacy classes. Yet the con-
figurations fgg and fϕðgÞg are not gauge-equivalent, since
ϕðgÞ=≡kgk−1 for fixed k∈G, and therefore their holono-
mies are not related by an external gauge transformation.
But note that it is not sufficient to exclude automorphisms
ϕ∶G → G, because one may consider gauge field configu-
rations lying entirely within a subgroup of G. More
generally, one must prove that for any two (closed)
subgroups H1 and H2 of G, an isomorphism ϕ∶ H1 →
H2 such that g and ϕðgÞ are conjugate in G, must be of the
form ϕðgÞ≡ kgk−1 for all g∈H1 and some k∈G [15].
Putting together the results of several authors [15,33,34],

one finds that Wilson loops determine gauge-invariant
states if the gauge group G is a finite direct product of
Abelian groups together with any finite number of copies of
the groups UðNÞ, SUðNÞ, OðNÞ, SOðNÞ, SpðNÞ (i.e., the
subgroup of GLð2NÞ). This property is in fact preserved by
taking direct products, but not by subgroups, and not even

by quotients or central extensions [34]. Thus the question in
general needs to be re-examined for every gauge group. In
particular, these results do not cover the general case of Lie
groups (for example it is known to be false for some
noncompact Lie groups [33]) or even compact Lie groups;
for example, one could construct counterexample gauge
groups of the form G ⋉ H, whereG is a finite group andH
a compact Lie group. In fact groups of this form have
attracted interest recently [37,38]. Among finite groups of
interest, Wilson loops determine gauge-invariant states for
the symmetric group SN [15], as well as for the dihedral
group D4 and the quaternion group Q which we consider
in Sec. IV.
As is clear from the above discussion, when we say that

Wilson loops determine gauge-invariant states, we must in
general consider Wilson loops in all irreducible represen-
tations. Whether it is sufficient to consider Wilson loops in
any one (faithful) irrep is a separate question. In particular,
Wilson loops in the fundamental representation are suffi-
cient for the usual cases of UðNÞ and SUðNÞ, but not (for
example) for SOð2NÞ [15].

D. Matrix elements of the Hamiltonian

The only remaining piece in order to be able to use the
holonomy basis is to compute the matrix elements of
relevant operators. All operators which are gauge-invariant
can be expressed in the holonomy basis. In particular, we
compute the matrix elements of the Hamiltonian, which
will be useful in Sec. IV. In this section, we restrict to the
case of interest where the gauge group is finite. The
Hamiltonian for this case was discussed in Sec. II.
Moreover, as already remarked, in order to define the
magnetic Hamiltonian a graph structure is not sufficient;
therefore in this section we restrict ourselves to hypercubic
lattices with either open or periodic boundaries. Of course
one could also define the magnetic Hamiltonian on other
lattices with a notion of minimal cycle (for example
triangular lattices, etc.). On the other hand, the results
for the electric Hamiltonian apply to general graphs.
The magnetic Hamiltonian is diagonal in the group-

element basis and is therefore also diagonal in the hol-
onomy basis. Each (untraced) plaquette can be expressed
(up to conjugation) as a product of the fundamental
holonomies. Once this is done, it is easy to compute the
value of the magnetic Hamiltonian on each holonomy state.
On the other hand, the electric Hamiltonian is not

diagonal. Yet its matrix elements are not hard to compute.
On each link, the electric Hamiltonian is given by

hE ¼ jΓj1 − A; A≡X
k∈Γ

Lk; ð43Þ

where we have removed the constant for ease of compu-
tation. Since hE is gauge-invariant, so is A (this is also not
hard to check explicitly using the properties of Γ given in
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Sec. II). Now consider the action of A on an arbitrary
holonomy state, Ajfhgi. As we have seen from Proposition
3, configurations with given holonomies are in one-to-one
correspondence with internal gauge transformations.
Therefore we can express the holonomy state as

jfhgi ¼ 1ffiffiffiffiffiffiffijGjp
V−1

X
fgg∈ ½h�

jfggi ¼ 1ffiffiffiffiffiffiffijGjp
V−1

X
G∈Gint

GjfhgGFi:

ð44Þ

Since A is gauge-invariant it commutes with G, and we then
see that

Ajfhgi ¼ 1ffiffiffiffiffiffiffijGjp
V−1

X
G∈Gint

GAjfhgGFi: ð45Þ

Since applying Lk to a configuration state produces another
configuration state, applying A to the gauge-fixed state
jfhgGFi produces jΓj configuration states jfg0gi; jfg00gi;…
with holonomies fh0g; fh00g;…. But then acting with all
internal gauge transformations on a configuration state jfg0gi
with holonomies fh0g, produces precisely the holonomy state
jfh0gi, i.e.,

jfh0gi ¼ 1ffiffiffiffiffiffiffijGjp
V−1

X
G∈Gint

Gjfg0gi: ð46Þ

As such, the action of A on holonomy states takes the form,

Ajfhgi ¼ jfh0gi þ jfh00gi þ � � � : ð47Þ

Therefore the matrix elements of A can be computed as
follows:
(1) For each holonomy state jfhgi produce the gauge-

fixed configuration jfhgGFi.
(2) For each k∈Γ, consider the configuration jfg0gi ¼

LkjfhgGFi and compute its holonomies fh0g.
(3) For each of these, set the matrix element

hfh0gjAjfhgi ¼ 1.
All matrix elements which are not set to one are equal to zero.
This is repeated to constructA (and thereforehE) for each link,
and then the electric Hamiltonian is obtained by addition,
HE ¼ P

links hE. Note that all operators, including HB and
HE, are expressed in the holonomy basis as jGjM × jGjM
matrices.
Since the holonomies are defined as products of the

gauge field on up to OðVÞ links, one might have naively
expected that, even on one link, the electric Hamiltonian hE
would have involved up toOðVÞ terms. Instead, as we have
seen, hE involves only OðjΓjÞ terms (independent of V),
which is favorable.
From this description, we see that the electric

Hamiltonian in the holonomy basis is guaranteed to be
sparse. In particular, for each hE on each row one has jΓj

non-zero elements. Since we have L links, then HE has at
most jΓjL nonzero elements per row, therefore it will
overall have order ≈jΓjLjGjM nonzero elements, i.e., the
proportion of nonzero elements is an exponentially small
number, ≈jΓjL=jGjM. Notably, HE is also integer-valued.
If the group G is Abelian, the matrix elements can be

described more explicitly. In fact, in the Abelian case the Lk
operator on each link is actually gauge-invariant, and
therefore maps holonomy states to holonomy states. For
clarity, we denote the Lk operator acting on link l as Lkjl.
As we will show in a moment, if a link l occurs in the path
of a fundamental holonomy more than once, then it occurs
exactly twice and with opposite orientation. Therefore,
since the group is Abelian, one in fact has

Lkjljfhgi ¼ jfh̃gi; h̃γ ¼ kσðl;γÞhγ; ð48Þ

where σðl; γÞ ¼ �1 depending on whether the holonomy
path γ crosses l in the positive or negative orientation, and is
zero if γ does not cross l. Therefore the matrix elements
of Lk, from which those of hE can be easily deduced, are
given by

hfh0gjLkjljfhgi ¼
Y
γ=∋l

δðh0γ; hγÞ
Y
γ∋l

δðh0γh−1γ ; kσðl;γÞÞ; ð49Þ

where the first product runs over those fundamental
holonomies which do not go through link l, and the second
product goes over those that do. It remains to prove the
above statement, with which we close this section.
Proof. A path γ defining a fundamental holonomy is of

the form γ ¼ γ1∘l̃∘γ2, where γ1 and γ2 lie entirely inside the
chosen spanning tree and l̃ is a link outside the tree. By
construction, each link appears in γi at most once.
Therefore it can appear at most twice in γ. So we have
to show that if a link l appears in both γ1 and γ2, then it
appears with opposite orientations. Suppose on the contrary
that it appears with the same orientation. If l connects the
sites x and y according to the orientation defined by the
paths (in either the positive or negative orientation), then
there are subpaths γ0i ⊂ γi (therefore lying entirely inside
the maximal tree) such that γ01 connects the root x0 to x and
γ02 connects y to x0. Since x is the source site for l according
to the orientation defined by the path, by construction γ01
does not go through l; similarly, y is the target link of l, so
γ02 also does not go through l. But then the closed path
γ01∘l∘γ02 lies entirely within the tree. Therefore it must be the
trivial closed path. But this is impossible, since neither γ01
nor γ02 contains l. ▪

E. Topology and center symmetry

In this section, we discuss further structure of the Hilbert
space and how it interacts with the holonomy basis.
Similarly to the toric code [39], we discuss two kinds of
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topological operators, those which are diagonal in the
group element basis (i.e., holonomies wrapping around
noncontractible loops on the lattice) and those which are
diagonal in the dual basis where the electric Hamiltonian is
diagonal (these are related to center symmetry). A dis-
cussion of these issues in a similar language was given in
[40] for Abelian gauge theories on a ladder. Here we extend
the discussion to non-Abelian gauge theories on an
arbitrary geometry.
First of all we discuss why in Yang-Mills gauge theories

the electric Hamiltonian does not commute with Wilson
lines or loops. Suppose that we want to fix a certain
holonomy hi, or even a product of holonomies. This is only
possible if two separate conditions are satisfied:
(1) Compatibility with gauge-invariance. As we have

seen, under external gauge transformations the
holonomy hi transforms as hi → ghig−1 for g∈G.
In order to fix this holonomy, it must be invariant
under gauge transformations, i.e., ghig−1 ¼ hi for all
g∈G. In other words, hi must lie in the center of the
gauge group ZðGÞ. The same is true for any product
of holonomies, since it transforms in the same way.

(2) Compatibility with time evolution. An holonomy can
only be consistently fixed if it cannot change value
under time evolution. Since the magnetic Hamilto-
nian is diagonal in the holonomy basis, it does not
cause transitions between states with different hol-
onomies. The electric Hamiltonian, on the other
hand, always causes transitions between different
holonomy states. In particular, since the matrix
elements of the electric Hamiltonian on each link
are either 0 or 1, it suffices to show that this is true at
any one link (in other words, there cannot be
cancellations when summing over all links). But
then consider the electric Hamiltonian on the link
outside the maximal tree which defines the holon-
omy hi; the electric Hamiltonian on that link always
has nonzero matrix elements between states with
different values of hi, while leaving unchanged all
other holonomies. Thus fixing any holonomy, or any
product of holonomies, is incompatible with time-
evolution according to the Hamiltonian Eq. (7).

One may nonetheless consider other topological oper-
ators, which correspond to dual winding. Consider a
unitary operator of the form,

UðfggÞ ¼ ⊗
l∈ links

Lgl ; ð50Þ

where fgg is a configuration, i.e., an assignment of a group
element gl to each lattice link l. Thus in principle UðfggÞ
acts on all lattice links, but we will soon impose further
conditions which will restrict its form. Eq. (50) generalizes
an operator for the Abelian case in [40]. As we will soon
see, it is irrelevant whether one chooses left or right
translations to define U. Again U is only useful if it

is compatible with the gauge symmetry (i.e., it must be
gauge-invariant) and time evolution (i.e., it must be a
symmetry of the Hamiltonian).
Consider an arbitrary gauge transformation G, as defined

in Eq. (5). Then one can check that

GUðfhgÞG−1 ¼ ⊗
l¼hxyi∈ links

LgxRgyLhlRg−1y Lg−1x

¼ ⊗
l¼hxyi∈ links

Lgxhlg−1x : ð51Þ

Therefore gauge-invariance requires gxglg−1x ¼ gl for all gx.
Thus gl must lie in the center of the gauge groupG. In other
words, the operatorUðfggÞ is gauge-invariant if and only if
fgg is a configuration made entirely of central elements.
Note that if g is central, then Rg ¼ Lg−1 so restricting to left
translations does not lead to loss of generality.
Now consider time evolution. Using the invariance of Γ

under conjugation, it is not hard to see that, for arbitrary g
and on any link,

LghE ¼ hELg: ð52Þ

Therefore UðfggÞ always commutes with the electric
Hamiltonian. Note that this is the “dual” statement to
the fact that the magnetic Hamiltonian preserves the
holonomies.
We then need to consider conditions under which

UðfggÞ commutes with the magnetic Hamiltonian. Until
now we could work on an arbitrary graph geometry, but the
magnetic Hamiltonian requires a bit more structure, so we
specialize to a hypercubic lattice. Nonetheless the generic
construction worked out in this section can be used to find
appropriate operators on arbitrary geometries. As we have
seen above, the configuration fgg is required to be central
for gauge-invariance. Then since UðfggÞ is gauge-invari-
ant, it maps holonomy states to holonomy states. Therefore
the fact that the magnetic Hamiltonian commutes with
UðfggÞ is equivalent to stating thatHB takes the same value
on the configuration states jfg0gi and UðfggÞjfg0gi for
arbitrary fg0g. Since the gls are central, plaquettes trans-
form as

g01g
0
2g

0−1
3 g0−14 → g1g2g−13 g−14 g01g

0
2g

0−1
3 g0−14 : ð53Þ

As we show in Appendix A the magnetic Hamiltonian on
each plaquette, hB ¼ −2Reχ has a unique minimum at the
identity, since χ is assumed to be the character of a faithful
representation. Since Eq. (53) must hold for all configu-
rations, it must in particular hold for configurations fg0g
where the plaquette variable g01g

0
2g

0−1
3 g0−14 is equal to the

identity. Thus it is a necessary and sufficient condition that
g1g2g−13 g−14 ¼ 1 for all plaquettes. In other words, the
configuration fgg must be a flat configuration living in
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the center of the gauge group G. Note that this does not
mean in general that fgg is gauge-equivalent to the identity.
Up until this point, we have therefore constructed a large

number of gauge-invariant symmetry operators UðfggÞ.
But, as wewill now show, most of these act in the sameway
in the gauge-invariant subspace. Suppose in fact that we
construct another operator Uðfg̃gÞ which is related to
UðfggÞ by a gauge transformation of the gls, i.e., g̃hxyi ¼
kxghxyik−1y for some kx ∈G. Note that a gauge transforma-
tion of gls does not correspond to a gauge transformation of
U. Gauge invariance requires that both fgg and fg̃g are
central; it is not hard to show that one may then choose all
kx to be central also. Then one finds that

Uðfg̃gÞ ¼ GUðfggÞ; ð54Þ

where G is a gauge transformation of the usual form [i.e.,
Eq. (5)] with (central) group elements kx. In other words,
performing a gauge transformation of fgg leads to U
operators which coincide on the physical subspace and
should therefore be viewed as physically equivalent. One
can therefore perform gauge transformations of the fgg to
reduce them to the minimal amount of degrees of freedom.
For example, on a d—dimensional periodic hypercubic

lattice the independent U operators are the ’t Hooft
operators responsible for center symmetry. In this case, a
flat central configuration fgg can be gauge-transformed to
one which is the identity everywhere except on the links
which pierce a d − 1 dimensional hypersurface. On these
links, it is equal to a constant central element. The ’t Hooft
operator then takes the form [12],

USðgÞ ¼⊗
l∈ S

Lg; ð55Þ

where g is central and S is the set of links which pierces a
d − 1 dimensional surface. Since U operators related by a
gauge transformation of the gls are physical equivalent, the
location of the surface S is immaterial. Therefore the U
operators are topological. On a d-dimensional periodic
hypercubic lattice, one therefore has d independent such
operators which cannot be deformed into each other. An
example of such an operator on the square lattice is given in
Fig. 3. Here the surface S is one dimensional; i.e., it is
a line.
In the confining phase of Yang-Mills theory, one expects

center symmetry to be unbroken. One could then further
reduce the size of the relevant subspace by considering only
states which are center-invariant. In fact it is rather simple
to construct such a projector, and one can even compute the
size of the relevant gauge-invariant, center-invariant sub-
space following an argument similar to Theorem 1.
However, this goes against the philosophy of the holonomy
states, whose main advantage is precisely the fact that the
description of their Hilbert space does not require Clebsch-
Gordan coefficients.

IV. GROUND STATE WAVE FUNCTION

The determination of the ground state wave function of
Yang-Mills theory is not only a problem of theoretical
interest, but also relevant in the quantum simulation setting
where some quantum algorithms require a sufficiently good
approximation to the ground state as a starting point.
The ground states for the electric and magnetic

Hamiltonians can be easily described in the holonomy
basis. While the electric Hamiltonian can have ground state
degeneracy [14], we do not consider this case here. On each
link, the ground state of the electric Hamiltonian is then
given by an equal superposition of all group elements.
Tensoring across all links, we find the electric ground state,

j0Ei ¼
1ffiffiffiffiffiffiffijGjp

M

X
fhg

jfhgi: ð56Þ

Since it corresponds to the constant wave function it is
gauge-invariant, and it is the maximal entropy state in the
holonomy basis. On the other hand the magnetic
Hamiltonian generally has several ground states. Usually
one chooses hB ¼ −2Reχ where χ is the character of a
faithful representation, so that it is minimal on the identity
element only (this we prove in Appendix A). Then the
ground states are those with all plaquettes equal to the
identity. The simplest gauge-invariant ground state is rather
easy to write in the holonomy basis, i.e.,

j0Bi ¼ j1; 1;…; 1i: ð57Þ

This is gauge invariant because the identity is a singlet
under conjugation. This is also a state of minimal entropy in
the holonomy basis. Note that the preparation of both j0Ei
and j0Bi on a quantum device is standard.
In the group element basis, it has been argued [16–19]

that the confining ground state of lattice Yang-Mills theory
in 2þ 1 dimensions (here we take a periodic square lattice)
can be approximated by a trial wave function of the form,

ψαðfggÞ ¼ exp

�
−α

X
□

Reχðg□Þ
�
; ð58Þ

FIG. 3. A square lattice. One of the two ’t Hooft operators is
supported on the bold links, i.e., those crossing the dashed line.
This ’t Hooft operator thus multiplies by a central element any
loop winding around the horizontal direction.
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where α is a variational parameter and χ is the group
character which appears in the magnetic Hamiltonian [and,
for relativistic theories, also in hE via Eq. (10)]. The ansatz
Eq. (58) interpolates between the electric ground state
(α ¼ 0) and the magnetic ground state (α ¼ −∞). For each
value of the coupling λ of the Hamiltonian H [recall
Eq. (11)], α is determined by numerically minimizing
the average energy per link,

EðαÞ≡ 1

L
hψαjHjψαi
hψαjψαi

: ð59Þ

Due to the peculiarities of two space dimensions, this
minimization is rather easy and can be performed directly
in infinite volume. The details are described in Appendix B.
The trial wave function in Eq. (58) has been used in

several variational calculations for Lie group gauge theories
both in 2þ 1 and higher dimensions [41–48]. It can also be
systematically improved by adding larger Wilson loops, for
example a 2 × 1 rectangular loop. Other approaches have
been developed towards variational vacuum wave func-
tionals, but they are generally more complicated and often
not easily applicable to finite gauge groups. The wave
function Eq. (58) is particularly appealing due to its
simplicity. Note that our chosen trial wave function is
based on the idea of an expansion in terms of Wilson loops,
and it is possible that it might not be applicable to gauge
theories where Wilson loops do not determine the gauge
invariant states (as discussed in Sec. III C). However the
groups considered here do not suffer from this problem.
In [49–52], Monte Carlo methods were employed to

compare different proposals for ground state wave func-
tions [all closely related to Eq. (58)] on some sets of
configurations for non-Abelian Lie groups. Here we simply
compute the overlap (i.e., the fidelity) between the trial
wave function and the exact finite-volume ground state. Of
course, due to the exponential size of the Hilbert space, we
are limited to small lattices.
In what follows, we consider two different finite gauge

groups of order 8. These are the dihedral group D4 and the
quaternion groupQ, which are subgroups of O(2) and SU(2)
respectively. In both cases, we choose the character of their
unique faithful irrep for the magnetic Hamiltonian, and then
set the electric Hamiltonian according to Eqs. (9) and (10).
Using holonomy states, we construct their Hamiltonian on

two small lattices, 2 × 2 and 2 × 3 with periodic boundary
conditions. Note that, using spin network states, only a 2 × 2
lattice was possible [14]. The relevant parameters for the two
cases are given in Table I. Since D4 and Q (accidentally)
share the same character table, they also share the same
physical subspace dimension (on any graph). Moreover, as
we will soon see, despite the fact that their Hamiltonians are
not equal, the results for the two groups are very similar.
Given each lattice, we construct the Hamiltonian in the

holonomy basis following the recipe provided in Sec. III D.
We can then determine some of the lowest eigenstates and
compute several quantities of interest. In particular, we can
compute the overlap of the true ground state with the trial
wave function Eq. (58). Our code was implemented in
Python compiled with Numba [53]; the Hamiltonian (and
all other matrices) were implemented in sparse matrix
format with SciPy [54]. In terms of constructing operators,
the electric Hamiltonian was by far the slowest, and we
have reported the time required to construct it (on a
common laptop) in Table I. This is of course not a precise
benchmark but serves to give an idea of how efficient the
code can be in practice. Among the various matrices which
we need to store, HE is by far the largest in terms of
memory use, and again we list its size in Table I.
An important consideration is that one still needs to

impose invariance under the external gauge transformation.
Generally speaking, the holonomy space is a constrained
Hilbert space much like the total Hilbert space. Thus they
should be treated similarly. On a quantum device, one
would map the holonomy Hilbert space Hhol directly onto
the quantum register. On a classical device, a gauge-
invariant basis could be constructed by numerically solving
the equation Pjψi ¼ jψi, where P is the projector onto the
gauge-invariant subspace in the holonomy basis of
Eq. (32). This is already advantageous compared to
performing the same operation in the total Hilbert space,
as the memory requirements for storing the states are
substantially reduced in the holonomy basis.
However, in our case, it is sufficient to diagonalize the

Hamiltonian directly in the holonomy basis. One could
then apply the projector P, which is a cheap operation, and
filter out identical states. But even this is not required in
most cases. In fact suppose that jψi is a nondegenerate
energy eigenstate of the Hamiltonian H; since the electric
and magnetic Hamiltonians do not commute, this is the
typical situation. Since P commutes with H, then if Pjψi is

TABLE I. Parameters for the two lattices used in the simulations for the two gauge groupsD4 andQ. All quantities
happen to be either approximately or exactly the same for both groups. The labels timeðHEÞ, sizeðHEÞ and
sparsityðHEÞ refer respectively to the time taken to construct HE (on a common laptop), its size and the
proportion of its nonzero elements.

Size V L M dimHtot dimHhol dimHphys Time ðHEÞ Size ðHEÞ Sparsity ðHEÞ
2 × 2 4 8 5 224 215 8960 ≈ 213 0.1 s 13 MB 0.15%
2 × 3 6 12 7 236 221 536576 ≈ 219 10 s 1.2 GB 0.0035%
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not zero, it is an energy eigenstate with the same energy and
therefore Pjψi ¼ jψi (since the state is nondegenerate and
the eigenvalues of P are either 0 or 1). In other words, in
this case states are either gauge-invariant or not, and no
superpositions occur. It is therefore quite easy to check for
gauge-invariance. In particular, in all our simulations, the
finite-volume ground state of the Hamiltonian was always
found to be unique and gauge-invariant.
We now discuss the results of our numerical simulations.

In 2þ 1 dimensions, gauge theories with non-Abelian finite
groups generally have a two-phase structure, with a confin-
ing phase for small λ (where the electric Hamiltonian
dominates) and a deconfined phase for large λ (where the
magnetic Hamiltonian dominates), separated by a first-order
transition [55–59].
Figure 4 shows the ground state energy, as well as the

expectation values of the electric and magnetic Hamiltonians
in the ground state. It has been previously shown that the
location of the phase transition may be reasonably identified
with the point of sharpest change of the expectation value of
the electric Hamiltonian [14]. With this prescription, we find

the pseudocritical coupling λð2×2Þc ¼ 0.76ð1Þ for both groups

on the 2 × 2 lattice (for D4, in agreement with [14]). On the
2 × 3 lattice the pseudocritical coupling increases slightly to

λð2×3Þc ¼ 0.77ð1Þ, again for both groups.
On the other hand, Fig. 5 shows the variational energy

EðαÞ defined in Eq. (59) for the group D4 in two cases,
λ ¼ 0.5 and λ ¼ 0.9. In particular, EðαÞ achieves a mini-
mum for small λ, but not for large λ, where the energy
asymptotes to its minimum at α ¼ −∞. Therefore the
minimization procedure is well-defined only for λ suffi-
ciently small. This should not be thought of as a limitation
of the ground state ansatz Eq. (58), but rather as a feature.
Since the trial wave function defines a confining ground
state, it is not expected to be valid in the deconfined phase.
Thus the failure of the minimization should be taken as a
prediction for the location of the phase transition. A similar
situation was encountered in [60]. With this definition, we
locate the phase transition for both groups at λc ¼ 0.79ð1Þ.
Note that this value obtained via the infinite-volume trial
wave function is completely independent from the one
obtained from the exact finite-volume numerical data, yet
quite close.
In the confining phase, we can compare the exact finite-

volume ground state with the ground state ansatz Eq. (58).

FIG. 4. Ground state energy on a 2 × 2 lattice forD4 (left) andQ (right), as well as expectation value ofHE andHB in the ground state.
The two plots are almost indistinguishable.

FIG. 5. Variational energy EðαÞ of Eq. (59) for D4 gauge theory as a function of α for two values of λ, i.e., λ ¼ 0.5 (left) and λ ¼ 0.9
(right). For small λ, EðαÞ achieves a minimum, while for large λ the energy asymptotes to α ¼ −∞.
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Given two normalized states jψ1i and jψ2i, a natural
measure of their similarity is their fidelity, i.e., the absolute
value squared of their overlap jhψ1jψ2ij2. In Fig. 6 we plot
the fidelity between the exact finite-volume ground state
and the trial wavefunction in the confining phase. In
particular, we see that the trial wave function provides
an almost perfect approximation to the exact ground state
for much of the confining phase, but near the phase
transition the approximation is less good. Moreover, the
fidelity decreases more sharply on the larger 2 × 3 volume.
Overall, we find that the ansatz Eq. (58) provides a good

approximation for the ground state of the two theories,
especially in that it is able to predict the existence of the
phase transition, as well as its location with reasonable
accuracy. However, it does not fully capture the correlations
near the phase transition, which is the most interesting
location. Further, extrapolating from the trend in Fig. 6, one
expects the fidelity near the transition to further decrease on
larger volumes. It would be interesting to study the effect of
adding larger loops to the trial wavefunction; we would
expect them to improve its accuracy.
We also examined what happens to the ’t Hooft operators

defined in Sec. III E. Both D4 and Q have center iso-
morphic to Z2. Therefore on a periodic square lattice, one
can construct two independent ’t Hooft operators according
to Eq. (55). Numerically, we found in all cases that the
finite-volume ground state (but not excited states) is
invariant under both operators for all values of λ.
Finally, in Fig. 7 a quench for D4 on the 2 × 2 lattice
where the magnetic ground state is time-evolved using the
full HamiltonianH at λ ¼ 0.4. The results forQ are similar.
Calculations of the kind presented here could be used as

benchmarks for quantum simulators. As is clear from the
trend in Table I, using our current implementation it is not
possible to extend the calculation to a 3 × 3 lattice due to

the large memory requirements. One way to substantially
reduce the size of the Hilbert space, and therefore memory
requirements, is to give up periodicity, which may even be
more appropriate for comparison with quantum simulators.
Nonetheless, with our current implementation it should be
possible to exactly diagonalize non-Abelian groups of
order up to approximately 16 on a 2 × 2 periodic lattice.

V. CONCLUSIONS

In this work, we have discussed how to represent the
physical, gauge-invariant Hilbert space of pure lattice
gauge theories in terms of a class of “holonomy states”.
Based on this construction, we discussed the Wilson loop
representation of the gauge-invariant space as well as the
topological structure of the Hilbert space. On small lattices,
we could use this construction to exactly diagonalize the
Hamiltonian. In particular, we computed the exact overlap
between the finite-volume ground state and a conjectured
ansatz and discussed to what extent they agree.
As we have seen, the holonomy basis may be useful to

study small systems in classical simulations, and possibly
also in current-era quantum devices. It would be interesting
to understand whether the holonomy basis can be effi-
ciently implemented on a quantum device. The crucial
difficulty here is the construction of the electric
Hamiltonian. It would also be interesting to study how
to efficiently prepare the ground state wave function
Eq. (58) on a quantum device.
As mentioned in the beginning, whether working in the

total or physical Hilbert space is more advantageous may
depend on what quantum device is used for the simulation.
It is currently unclear what kind of hardware architecture
might prevail in the long term and therefore allow quantum
simulation of gauge theories at scale. It is also possible that
multiple architectures could coexist for different purposes,
much like CPUs and GPUs for classical computing. On an
architecture where qubits are cheap, it is unlikely that

FIG. 7. Expectation value of the time-evolution operator with
the full Hamiltonian H at λ ¼ 0.4 in the magnetic ground state
j0Bi [Eq. (57)], for D4 gauge theory on the 2 × 2 lattice.

FIG. 6. Fidelity between the exact finite volume ground state
and the ground state ansatz Eq. (58) for D4 gauge theory on a
2 × 2 and 2 × 3 lattice, for λ∈ ½0; 0.79�. The picture for Q is quite
similar. The agreement is excellent for small λ but drops
substantially near the phase transition, especially for the larger
lattice.
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working in terms of physical variables is helpful. On the
other hand, on an architecture where qubits are expensive
but, for example, gates can be accurately applied, then it
might be useful to work in a physical basis.
It would be interesting to further explore other properties

of the holonomy basis. For example, it is unclear to what
extent the properties of the holonomy states depend on the
choice of maximal tree. Moreover, one may even think of
applying various truncation methods directly in the hol-
onomy basis, once most of the gauge symmetry has been
removed.
The most natural next step is the inclusion of matter

fields. Developing methods to compute the dimension of
the physical subspace is particularly interesting in this case.
For example, in the presence of a gauge anomaly there are
no gauge invariant states [61].
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APPENDIX A: PROPERTIES
OF FAITHFUL IRREPS

In Sec. II we defined the magnetic Hamiltonian on each
plaquette to be the function hB ≡ −2Reχ, where χ is the
character of a faithful representation of the gauge group.
Several times we have used the result that hB has a unique
minimum at the identity element, a result which we now
prove. The results in this section are valid for finite-
dimensional representations of both finite groups as well
as compact Lie groups. First we show a related result:
Proposition 5. Let ρ be a representation of G and χ its

character. Then for all g∈G, jχðgÞj ≤ χð1Þ with equality if
and only if ρðgÞ is proportional to the identity matrix.
Proof. Since G is either finite or compact Lie its finite-

dimensional representations may be chosen to be unitary
[20,21]. Let χ ¼ trρ, where ρ is a unitary representation.
Then ρðgÞ is a unitary matrix, and as a result, its
eigenvalues λi are all unit-norm, i.e., jλij ¼ 1. Then by
the triangle inequality,

jχðgÞj ¼
����
X
i

λi

���� ≤
X
i

jλij ¼ dim ρ ¼ χð1Þ; ðA1Þ

with equality if and only if all the λi are equal, in which case
ρðgÞ is proportional to the identity matrix. ▪
Now we refine the previous statement of equality:
Proposition 6. If χðgÞ ¼ χð1Þ, then ρðgÞ ¼ 1 is the

identity matrix.
Proof. Since χðgÞ ¼ χð1Þ, then also jχðgÞj ¼ χð1Þ and

therefore by the previous Proposition, ρðgÞ ¼ λ1 for some λ
with jλj ¼ 1. But then

χðgÞ ¼ λtrð1Þ ¼ λ dim ρ ¼ λχð1Þ: ðA2Þ

Therefore by the hypothesis λ ¼ 1 and ρðgÞ is the
identity matrix. ▪
Now we finally prove the required statement:
Proposition 7. If χ is the character of a faithful

representation, then ReχðgÞ has a unique maximum at
the identity element.
Proof. Using Prop. 5, we see that

ReχðgÞ ≤ jχðgÞj ≤ χð1Þ ¼ Reχð1Þ: ðA3Þ

Therefore ReχðgÞ achieves its maximum at the identity
element. Now suppose that ReχðgÞ ¼ Reχð1Þ. By the
above inequality, this implies that ReχðgÞ ¼ jχðgÞj, so
χðgÞ is real and positive. Therefore we also have
χðgÞ ¼ χð1Þ, which, by Prop. 6, implies that ρðgÞ is the
identity matrix (where ρ is the representation with character
χ). But since ρ is faithful by assumption, then g ¼ 1 is the
identity, proving uniqueness. ▪

APPENDIX B: VARIATIONAL MINIMIZATION

As remarked in Sec. IV, in order to determine the
variational parameter α of the ground state wave function
Eq. (58) one numerically minimizes the expectation value
of the Hamiltonian Eq. (59). The minimization can be
performed directly in infinite volume and is quite simple
due to the peculiarities of two space dimensions.
For ease of reference we define the following functions

which will appear in what follows:

F1ðαÞ≡
X
g∈G

expð−2αReχðgÞÞ; ðB1Þ

F2ðαÞ≡
X
g∈G

expð−2αReχðgÞÞReχðgÞ; ðB2Þ

F3ðαÞ≡
X

g1;g2 ∈G

X
k∈Γ

exp½−αReðχðg1Þ þ χðg2Þ

þ χðg1kÞ þ χðg2k−1ÞÞ�: ðB3Þ

The key ingredient on a two-dimensional infinite square
lattice is the change of variables from links to plaquettes,

1

jGjL
X
fgg

⟶
1

jGjK
X
fg□g

; ðB4Þ

where K ¼ L=2 is the number of plaquettes. This is a
classic result; in fact the change of variables from links to
plaquettes is a lattice Bianchi identity [19,62] which is
trivial in two dimensions [48,63]. From a more modern
perspective, this can also be obtained from the more general
change of variable formula for the holonomies Eq. (38) by
choosing an appropriate maximal tree for the infinite square
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lattice and then performing an appropriate change of
variables from holonomies to plaquettes.
We can then compute first of all the normalization of the

trial state,

hψαjψαi ¼
X
fgg

exp

�
−2α

X
□

Reχðg□Þ
�

¼ jGjL
jGjK

X
fg□g

exp

�
−2α

X
□

Reχðg□Þ
�

¼ jGjL
jGjK F1ðαÞK; ðB5Þ

since we can now sum each plaquette independently. Avery
similar calculation leads to

hψαjHBjψαi ¼ −2K
jGjL
jGjK F1ðαÞK−1F2ðαÞ: ðB6Þ

For the electric Hamiltonian, one needs to consider the two
plaquettes hinging on each link, and then one finds

hψαjhEjψαi ¼ jΓjhψ jψi − jGjL
jGjK F1ðαÞK−2F3ðαÞ: ðB7Þ

Therefore overall the target function to minimize is

EðαÞ≡ 1

L
hψαjHjψαi
hψαjψαi

¼ ð1 − λÞ
�
jΓj − F3ðαÞ

F1ðαÞ2
�
− λ

F2ðαÞ
F1ðαÞ

:

ðB8Þ

Since the F functions are rather simple to compute numeri-
cally, for each λ it is easy to minimize E in order to find the
optimal α.
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