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The continued development of models that propose the existence of fractional topological objects in the
Yang-Mills vacuum has called for a quantitative method to study the topological structure of SUðNÞ gauge
theory. We present an original numerical algorithm that can identify distinct topological objects in the
nontrivial ground-state fields and approximate the net charge contained within them. This analysis is
performed for SU(3) color at a range of temperatures crossing the deconfinement phase transition, allowing
for an assessment of how the topological structure evolves with temperature. We find a promising
consistency with the instanton-dyon model for the structure of the QCD vacuum at finite temperature.
Several other quantities, such as object density and radial size, are also analyzed to elicit a further
understanding of the fundamental structure of ground-state gluon fields.
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I. INTRODUCTION

The nonperturbative nature of quantum chromodynamics
(QCD) precludes the analytic study of many of its most
important phenomena, such as quark confinement. In SUðNÞ
gauge theory, an area-law behavior of large Wilson loops,

hWðCÞi ∼ exp ð−σAðCÞÞ; ð1Þ

is often taken as an indicator of confinement in the context of
static heavy quarks [1]. This picture is complicated by the
presence of light quarks, which results in string breaking at
large separations [2]. One can instead analyze the Schwinger
function of the gluon propagator, where a transition to
negative values at large Euclidean times implies the spectral
density is not positive definite [3]. It follows that there is no
Källen-Lehmann representation of the gluon propagator, a
manifestation that the corresponding physical states are
confined.
This is found in theories with or without dynamical

quarks [4,5], suggesting it is the behavior of the gluon fields
that underpins confinement, though no complete theoretical
mechanism is currently known. Pure SUðNÞ Yang-Mills
theory is known to experience a phase transition at a critical
temperature Tc above which confinement breaks down.
This motivates exploring the evolution of the gauge fields

through the phase transition to elicit fundamental properties
that can be attributed to confinement.
Nonperturbative aspects of QCD are primarily studied

through lattice QCD, wherein the theory is formulated on a
discrete lattice in Euclidean spacetime. Modeling SUðNÞ
gauge theory in Euclidean spacetime brought about the
discovery of the instanton [6], a classical topological
configuration which corresponds to the (anti-)self-dual
local minima of the Yang-Mills action functional,

S ¼ 1

2

Z
d4xTrðFμνFμνÞ: ð2Þ

The instanton solution formed the basis of the instanton
liquid model [7], which sought to model the QCD vacuum
in terms of an ensemble of interacting semiclassical
instantons, with fluctuations around the classical solution.
The model was able to explain chiral symmetry breaking,
though did not account for confinement [7–12].
Models subsequently emerged that proposed the exist-

ence of fractional topological configurations. Analytic
self-dual solutions to the Yang-Mills equations with frac-
tional charge ∼1=N have been known to exist on the
twisted torus T 4 since the early 1980s [13]. Cooling
methods with twisted boundary conditions have isolated
such “fractional instantons” [14,15], and the solutions have
been studied numerically in SU(2) [16,17] and general
SUðNÞ [18,19] gauge theory. Unlike the regular instanton,
fractional instantons possess ZN flux and have thus been
put forth as a possible microscopic mechanism for con-
finement [14,15,20]. The original twisted T 4 solution
has since been extended to a vastly broader class of
configurations [21,22].
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However, the breakthrough came with the discovery of
calorons [23–26], a finite-temperature generalization of the
instanton on R3 × T 1. The caloron profile can be viewed as
composed of N monopole constituents, known as dyons,
each possessing fractional charge depending on the
Polyakov loop at spatial infinity. This naturally led to
modeling the finite-temperature Yang-Mills vacuum in
terms of semiclassical instanton-dyons [27–30], which
has successfully reproduced the second-order phase tran-
sition of SU(2) [31–33] and first-order phase transition of
SU(3) [34] in numerical simulations.
By additionally varying the periods of the torus in each

dimension, classical fractional solutions have been con-
structed on Rn × T 4−n for different n. For instance, while
the caloron solution has n ¼ 3, Refs. [35–37] considered
“doubly-periodic” vortex-like solutions on R2 × T 2

(n ¼ 2) and Refs. [16,17,38] explored the “Hamiltonian
geometry” R × T 3 (n ¼ 1). Although specific periodicities
and twists are necessary to isolate these fractional sol-
utions, they are certainly not required for their existence
[20]. More recently, there have also been constructions of
fractional topological objects with charges ∼1=N in the
confining phase through quantum fluctuations of an effec-
tive action [39].
Working in SU(3) pure gauge theory, we present a

numerical algorithm that can identify distinct topological
objects within an arbitrary distribution and approximate the
net topological charge contained within each such object.
This analysis is performed at a range of temperatures either
side of Tc, providing a direct evaluation of the underlying
structure in the gluon fields and how this evolves with
temperature. The conclusions are subsequently compared
against the instanton-dyon model to test the validity of its
main predictions.
This paper is structured as follows. In Sec. II, our

algorithm is presented in detail and tested. Section III
covers the smoothing applied to the gauge fields. The
continuum limit is explored in Sec. IV, and our main results
are subsequently presented in Sec. V. Thereafter, the
significance of the results is discussed in Sec. VI, along
with an investigation into several other statistics available
through our methods. Finally, we conclude our main
findings in Sec. VII.

II. CALCULATING CHARGES

The core of our analysis involves a novel method to
approximate the net charge of distinct topological objects
within an arbitrary topological charge distribution. This is
fundamentally a very complicated task, as we desire a
technique that avoids any references to a specific topo-
logical configuration. A previous approach to studying
topological structure, presented throughout Refs. [40–46],
proceeds by implementing a threshold that divides the
distribution up into disconnected clusters. Though

interesting properties can be studied through this method,
it is unsuitable for our primary goal of providing an
unbiased estimate of the charge within each distinct object.
This is due to two primary reasons. First, points below the
threshold that are not assigned to a cluster are disregarded,
even though these may be an important contribution to the
charge of some objects. Second, distinct objects can be
connected by a path above the threshold and identified as
part of the same cluster, which is a clear hindrance to our
objective.
To overcome these, we have devised a more fundamental

strategy presented below. Instead, we utilize an iterative
procedure where objects are first identified by peaks in the
topological charge density and then allowed to grow
outwards one step at a time. Subject to a few assumptions,
we can be confident the set of points ultimately assigned to
an object is a reasonable representation of its distribution.
The algorithm is described in detail below.

A. Algorithm

We start by presenting the full algorithm and discuss the
motivation for each step in the following subsections. The
algorithm is to be applied to a UV-smoothed configuration,
as covered in detail in Sec. III. For a topological charge
distribution qðxÞ:
(1) Identify the peaks of objects through local maxima

[for qðxÞ > 0] and minima [for qðxÞ < 0] within a
34 hypercube. Label each one with an identifying
“object number.”

(2) Proceeding in order of smallest to largest peak, take
all points currently assigned to the corresponding
object number, fxg, and assign the same object
number to neighboring points, fx0g, in the 34

hypercube centred at x which:
(a) have not yet been assigned an object number,
(b) have the same sign density (qðx0ÞqðxÞ > 0), and
(c) have a smaller absolute value jqðx0Þj ≤ jqðxÞj.

(3) Repeat Step 2 until no more valid points can be
assigned as part of an object (i.e. no remaining lattice
sites satisfy the above criteria).

(4) Filter out the peaks that fail to assign all points
within the surrounding hypercube. Reinstate Step 3
for the surviving peaks to reallocate the newly
available points.

(5) Calculate the net charge of each object by summing
qðxÞ over each set of points having the same object
number.

This procedure is demonstrated visually in Fig. 1.

1. Peak identification

Treating each object as a localized region of dense
topological charge density, qðxÞ, it follows that each
will have some distribution which decays away from
a peak value. This structure has been seen before in
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FIG. 1. A graphic demonstrating our algorithm, proceeding from left to right then top to bottom. The order in which objects grow is
red → blue → purple → green (in grayscale, from darkest to lightest shade of gray). First, the peaks are identified and neighboring
hypercubes assigned (top row). The objects are then allowed to grow until all possible points have been assigned (middle row). Finally,
we discard the peaks that fail to assign all points within the 34 hypercube. In this case, these are the green (lightest gray) points, and the
remaining objects grow until no more points satisfy the required criteria (bottom row).
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visualizations [47,48], and allows one to identify the
approximate centers of distinct objects through local
extrema. To determine whether a point qualifies as a local
maximum or minimum, we consider the 34 hypercube
centered at that point, which is to say one point in every
direction (including diagonals).

2. Allocating points

The substance of our algorithm consists of iteratively
allocating points to one of the objects. In a specified order
(see below), all points fxg currently assigned a given object
number assign the same object number to neighboring
points fx0g within the 34 hypercube surrounding x that pass
the below constraints.
(1) x0 has not previously been assigned an object

number. This simply ensures we do not overwrite
information already associated with another object.

(2) qðx0Þ has the same sign as qðxÞ. This requirement
treats positively and negatively charged topological
excitations as entirely distinct.

(3) x0 has a lower absolute topological charge density
value. In essence, this condition implements a
natural boundary between objects, keeping them
contained to a region of the lattice within which the
topological charge is solely decreasing. A two-
dimensional illustration of this idea is shown in
Fig. 2, a hypothetical scenario wherein a narrow
object and a broader object are situated near each
other. Each has a circle drawn near its base to show
that one object is unable to grow within the circle
associated with the other when it is restricted to grow
downhill. In this way, we guarantee the sites as-
signed to each object reflect their distributions. This
concept readily extends to four dimensions.

3. Growing order

The order in which the objects assign their neighboring
points is observed to be important, encompassing “in-
between points” where it is ambiguous to which specific
object they should be assigned. As mentioned in Step 2,
our choice is to perform this process in order of ascending
peak value. This is based on the below observations and
assumptions:
(1) Points farther away from lower-peaked objects still

have a greater relative weight compared to sharply
peaked objects.

(2) If two objects have similar net charges (not neces-
sarily identical), the lower-peaked one must have a
broader distribution.

This order therefore introduces a bias towards smaller-
peaked objects such that we conform to the above obser-
vations. In Sec. II B, we present test results for both our
chosen ordering and the reverse order (decreasing peak
value), emphasizing the difference between the two
extremes and demonstrating that our selection produces
the more accurate results.

4. Dislocation filtering

A nonzero lattice spacing a gives rise to dislocations,
fluctuations in the action and topological charge density on
the scale of the lattice spacing. We stress that these are
distinct from the “genuine” topological features we are
interested in, and thus desire a method to distinguish
between the two to prevent our results from being skewed
by the presence of lattice artifacts.
For this reason, we implement a cutoff such that any

identified peak that fails to assign all points within a
defined size is discarded. The objective is to filter out the
dislocations with size ∼OðaÞ. Accordingly, we investigate
two different choices for the filter in terms of the lattice
spacing:
(A) Nearest-neighbor filter: the peakmust attain all points

1 unit away in each Cartesian direction (i.e. the peak
must be resolved by the lattice spacing).

(B) Hypercube filter: the peak must attain all neighbor-
ing points, covering the full 34 hypercube in addition
to the points 1 unit away.

Note that based on the conditions outlined in Step 2, a size
cutoff enforces, as a minimum, that:
(1) no two peaks overlap within the cutoff,
(2) the topological charge density qðxÞ has the same sign

at every point within the cutoff of each peak, and
(3) jqðxÞj exclusively decreases up to the cutoff away

from each peak.
These constraints make intuitive sense on defining a
topological object to have a minimum size. The remaining
objects that survive the filter are then allowed to grow until
no more points satisfy the criteria in Step 2.
A natural question that arises from introducing a scale-

dependent filter is whether this dependence carries through

FIG. 2. A graphic illustrating the topological charge density as
a function of two coordinates, highlighting a potential scenario
our algorithm must deal with where two objects of differing sizes
are located near each other. In order to stop the narrow object
incorrectly obtaining points associated with the broader object,
we enforce that each object can only grow downwards in
topological charge value.
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to our final results. However, an appropriate cutoff will
achieve the opposite, precisely because dislocations scale
with the lattice spacing. Therefore, with no filter or an
especially weak filter, our results would be sensitive to the
size of the dislocations and would change if the lattice
spacing is varied. Conversely, provided the filter is suffi-
ciently strong to separate out a majority of the dislocations,
the remaining topological features should be the same
irrespective of the lattice spacing. Using this logic, we
deduce that the simple nearest-neighbor filter is too weak,
producing results that diminish with the lattice spacing. In
contrast, the hypercube filter is found to ensure the desired
scale independence. The details are provided in Sec. V.
Hence, we specifically mention in Step 4 to consider the
hypercube for dislocation filtering, as an “objective” choice
of a correct filtering method.

B. Classical limit

Having developed an algorithm, we next require to test it
on a configuration with an expected outcome. To achieve
this we employ gauge cooling [49–51], which seeks to
minimize the local action at each lattice site through a
sequential update of the link variables UμðxÞ. Zero-temper-
ature gauge configurations under extended cooling are
known to approach the classical limit consisting entirely
of (anti-)instantons with integer topological charge [50,51].
Following the procedure outlined in the Appendix, 4000

sweeps of Oða4Þ-improved cooling is performed on five
323 × 64 pure gauge configurations with a ¼ 0.1 fm. The
simulation details for these configurations are provided in
Sec. VA. Their properties after cooling, including the
action S, integrated topological charge Q and number of
identified objects are summarized in Table I. Based on the
filtering detailed in Sec. II A, we find there are no
dislocations present under extended cooling as defined
by either filter. Therefore, the number of objects in this
instance is precisely the number of local extrema.
The action is normalized by the single-instanton action

S0 ¼ 8π2=g2 such that it can be directly compared to Q.
Our observation is that the net topological charge consis-
tently converges to within 1% of an integer in <75 sweeps
through the lattice and remains stable thereafter for the

duration of the cooling, which is in agreement with
previous work [52]. The large number of cooling sweeps
is to ensure the configurations satisfy self-duality, which is
seen to be reached with the values of S=S0 and jQj for each
configuration agreeing to at least one part in one thousand.
The number of extremaN tends to be less than S=S0 in each
case, though the fact they are nevertheless similar indicates
these features are instanton-like. Analytic self-dual solu-
tions to the Yang-Mills equations are known to exist for
arbitrary topological index [53,54], which we refer to as
“multi-instanton” objects. Additionally, the profile of over-
lapping instantons is known to result in “hiding” instantons
in extreme circumstances [55,56]. Both of these could be
the source of the slight discrepancy between N and S=S0.

TABLE I. S=S0, Q and the number of objects identified by our
algorithm on five 323 × 64 configurations, after 4000 sweeps of
cooling. They are seen to be self-dual within an extremely small
margin of error.

Configuration number S=S0 Q No. objects

011 18.0004 −18.0011 17
015 8.0001 8.0002 7
016 11.0004 11.0007 10
017 17.0009 17.0007 16
022 9.0015 9.0003 5

FIG. 3. Histograms showing the results of our algorithm to five
323 × 64 configurations after 4000 sweeps of Oða4Þ-improved
cooling, for growing in order of ascending peak value (top) and
the reverse order (bottom). Our choice of ascending peak order
justified in Sec. II A is seen to produce substantially more
accurate results, with sharper peaks in the histogram near integer
values and a visibly smaller spread.
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FIG. 4. Visualizations of the topological charge density in the self-dual limit obtained by slicing along the temporal dimension and
visualizing the remaining three-dimensional spatial structure. These are six consecutive frames, displayed from left to right then top to
bottom. The topological charge density is colored (shaded) according to the object number in the algorithm, allowing insight into how it
divides topological objects in four dimensions. We only visualize the topological charge density above some minimum threshold value
to observe the behavior of the algorithm on the most significant topological charge density; this also enables one to see into the three-
dimensional space. The overlapping nature of the instantons, even in this “classical limit,” is apparent. The challenging four-dimensional
nature of the problem is also revealed. For instance, the red object grows on top of the purple object as we advance in the temporal
dimension, and subsequently merges with the yellow object. The algorithm is seen to implement an effective and reasonable boundary
between each of the topological features.
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The collated results of applying the algorithm to the
cooled configurations, for both ascending and descending
peak order, are shown in Fig. 3. In these histograms, the
horizontal axis shows the absolute value of the charges we
calculate for each identified object, while the vertical axis
gives the number of identified objects for a given interval of
values.
As mentioned, even this self-dual limit is not com-

prised of ideal well-separated instantons, and this has
ramifications for accurately capturing the single-instanton
properties. To highlight this complication, we visualize
the topological charge density on a cooled self-dual
configuration in Fig. 4. The overlapping nature of
individual topological features is clear, and by coloring
the topological charge based on object number we can
observe the effective boundary created by the algorithm
between these objects. Consequently, we expect to find a
distribution of charge values, representing fluctuations
around the exact jQj ¼ 1 solution that arise from over-
lapping distributions.
For growing in ascending peak order, the majority of

charge values we calculate lie very near jQj ¼ 1, with a
small spread of values slightly farther away. The same
pattern is seen for the reverse ordering although to a visibly
lesser extent, corroborating our choice. On occasion,
integer values of larger magnitude are observed, as several
objects have a calculated charge near jQj ¼ 2. As previ-
ously surmised, these could arise due to extreme cases of
overlapping instantons which only have a single peak in
their topological charge density, or signal the presence of
multi-instanton objects after extended cooling.
These results provide strong evidence that we can take

the mode of the distribution for a general configuration as a
reliable indicator for the topological charge values which
tend to comprise the gluon-field objects. Their distribution
reflects both quantum fluctuations around those solutions
and inherent uncertainties in assigning topological charge
density to objects in four dimensions. The upshot is we
have developed a means by which we can explore the
nature of objects in ground-state fields and their evolution
with increasing temperature.

III. SMOOTHING

It is well known that lattice operators for the action and
topological charge densities encounter renormalization
factors that differ significantly from 1 and are poorly
controlled. For example, different Oða4Þ-improved lattice
operators will produce significantly different topological
charge densities, which is elaborated on in Sec. III B. To
ensure reliable results, we accordingly seek to minimize
these discretization effects through the application of
smoothing.
In addition to cooling, there are various smoothing algori-

thms in common use, including APE smearing [57,58],
stout-link smearing [59], gradient flow [60,61] and their

over-improved variants [62,63]. Over-improvement pro-
ceeds by defining a one-parameter family of actions SðεÞ,
with ε tuned to preserve instantons in the smoothing process
with a size above some minimum dislocation threshold
ρ ≥ ρ0. We specifically avoid such methods in our work
so as to not bias our results towards a particular topological
configuration. Instead, our dislocation filtering additionally
serves to remove any topological features that shrink below
the lattice spacing during the smoothing process. For this
reason, the size cutoff remains important regardless of the
level of smoothing.
At this stage we are no longer interested in the classical

limit, and instead desire to minimize the amount of
smoothing required to accurately resolve the topological
objects of a typical vacuum configuration. Cooling is
unsuitable for such a gradual process, and thus we imple-
ment gradient flow, described below.

A. Gradient flow

The evolution of the link variables UμðxÞ under gradient
flow is defined by the differential equation [60]

d
dτ

Uμðx; τÞ ¼ iQμðxÞUμðx; τÞ; ð3Þ

Uμðx; 0Þ ¼ UμðxÞ; ð4Þ

for dimensionless “flow time” τ, and where QμðxÞ∈ suð3Þ
generates the infinitesimal field transformation U → U þ
iϵQðUÞU. An explicit choice for QμðxÞ is given in terms of
the staple sum,

QμðxÞ ¼
i
2
ðΩμðxÞ −Ω†

μðxÞÞ − i
6
TrðΩμðxÞ − Ω†

μðxÞÞ; ð5Þ

ΩμðxÞ ¼ UμðxÞ
X
ν≠μ

ΣμνðxÞ; ð6Þ

where ΣμνðxÞ is the staple product of links connecting
UμðxÞ in the μ-ν plane. QμðxÞ is seen to be traceless
Hermitian by construction.
In the interest of preserving locality during the smooth-

ing process, we calculate a staple sum which includes the
contributions of the plaquette, 1 × 2 and 2 × 1 rectangles.
This is given pictorially by

ð7Þ
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where the coefficients correspond to a standard Symanzik

Oða2Þ-improved lattice action. Defining Pðm×nÞ
μν ðxÞ≡

1
3
ReTr (m × n Wilson loop at x), this is

S ¼ β
X
x;μ>ν

�
5

3
ð1 − Pð1×1Þ

μν ðxÞÞ − 1

12
ð1 − Pð2×1Þ

μν ðxÞÞ

−
1

12
ð1 − Pð1×2Þ

μν ðxÞÞ
�
: ð8Þ

Numerical integration of the Wilson flow is performed
using an Euler integration scheme in which the link
variables are updated successively in time steps of ϵ via

Uμðx; τ þ ϵÞ ¼ expðiϵQμðxÞÞUμðx; τÞ: ð9Þ

One can see that with the given choice of QμðxÞ, gradient
flow corresponds to an annealed version of stout-link
smearing with an extremely small isotropic smearing
parameter. Indeed, for sufficiently small ϵ the finite trans-
formation generated by Euler integration of the gradient
flow is equivalent to stout-smeared links [59–61,64–66].
Previous work has shown that taking ϵ≲ 0.02 is suffi-
ciently small to accurately solve the differential equation
and ensure the independence of ϵ [64,66]. That said, we
desire to perform enough smoothing to guarantee discre-
tization errors are negligible, while at the same time
retaining as many genuine topological features as possible.
Based on this, we choose a comparatively small value of
ϵ ¼ 0.005. This provides a greater degree of control over
the level of smoothing, which is highly beneficial to
our cause.
In addition to removing UV fluctuations, the gradient

flow is understood to distort the distribution of topological
objects such as through instanton and anti-instanton pair
annihilation. One might be concerned about the potential
effect this has on our results. To understand this, we draw
on previous work comparing the effects of smoothing on
the gluonic definition of the topological charge density
to that obtained via the overlap Dirac operator with an
ultraviolet cutoff, λcut [67]. At low levels of stout-link
smearing, the structure of the gluonic density is found to
strongly coincide with the overlap definition for a specific
λcut. Given that the UV-filtered overlap topological charge
density has no distortion effects, we can be assured, at the
comparable amount of gradient flow performed in this
work, that this issue is negligible.
An intuitive picture for this is realized by recalling that at

leading order, the gradient flow corresponds to a simple
convolution of the gauge field with a Gaussian of rms
radius

ffiffiffiffiffi
8τ

p
[61]. This obviously results in a smoothing

effect at short flow times τ. It takes extended cooling for
instanton and anti-instanton pairs to walk across the lattice
and begin to annihilate with each other, as revealed through
visualizations [48].

B. Comparison of improvement schemes

The suppression of action and UV fluctuations induced
by gradient flow can cause substantial changes to the
topological charge density over a relatively small number
of updates. This makes selecting the flow time at which to
analyze the topological charge a nontrivial matter. Some
inroads have formerly been made towards solving this
problem by comparing different action lattice operators.
Besides the “standard” action, such as Eq. (8), one can
define an alternate “reconstructed action” via a lattice field-
strength tensor which can be substituted directly into the
definition of the continuum action [52],

SR ¼ 1

2

X
x

TrðFμνðxÞFμνðxÞÞ: ð10Þ

These discretizations will experience different renormali-
zation effects, allowing the two actions to be compared
when smoothing to gauge the size of the remaining
discretization artifacts. Nevertheless, it is still unclear
exactly how similar the operators should be before one
can be confident errors have been amply suppressed.
Furthermore, it is not obvious whether comparing two
discretizations of the action translates directly to the
topological charge density, which is our primary interest.
Still, motivated by this idea we instead utilize two

different Oða4Þ-improved topological charge operators to
assess the magnitude of the discretization errors. The first
of these is an “Improved Fμν” scheme calculated by
substituting an Oða4Þ-improved field-strength tensor into
the definition of the topological charge,

qðxÞ ¼ g2

32π2
εμνρσTrðFμνðxÞFρσðxÞÞ: ð11Þ

The improvement of Fμν proceeds as follows [52]. First, the

m × n clover term Cðm×nÞ
μν ðxÞ is defined as the sum of the

m × nþ n ×m Wilson loops in the μ-ν plane touching
the point x, depicted as

ð12Þ

Each clover term gives an estimate of the field-strength
tensor as

Fðm×nÞ
μν ðxÞ ¼ 1

8
ImðCðm×nÞ

μν ðxÞÞ: ð13Þ

The improved operator is then constructed by an appro-
priate linear combination of the above terms,
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ga2FμνðxÞ ¼
X
m;n

kðm×nÞFðm×nÞ
μν ðxÞ: ð14Þ

To eliminate the Oða2Þ and Oða4Þ errors, it is sufficient to
consider ðm; nÞ ¼ ð1; 1Þ, (2,2), (1,2), (1,3), and (3,3). The
desired coefficients are

kð1×1Þ ¼ 19

9
− 55kð3×3Þ;

kð2×2Þ ¼ 1

36
− 16kð3×3Þ;

kð1×2Þ ¼ −
32

45
þ 64kð3×3Þ;

kð1×3Þ ¼ 1

15
− 6kð3×3Þ; ð15Þ

where kð3×3Þ, the coefficient of the 3 × 3 clover term, is a
free parameter.
Alternatively, one can proceed by defining a series of

discretized topological charge operators qðm×nÞðxÞ for each
clover term [68],

qðm×nÞ ¼ 1

32π2
1

m2n2
εμνρσTrðFðm×nÞ

μν Fðm×nÞ
ρσ Þ: ð16Þ

Here, Fðm×nÞ
μν ðxÞ is as defined in Eq. (13), and the factor of

1=ðm2n2Þ is included in the definition for convenience.
These terms can subsequently be combined to produce a
different improved topological charge operator,

qðxÞ ¼
X
m;n

cðm×nÞqðm×nÞðxÞ: ð17Þ

We refer to this as the “Improved TopQ” scheme. Since
qðxÞ is nonlinear in Fμν, an Oða4Þ-improved operator via
this method will have different renormalization effects than
the Improved Fμν scheme. The same five clover terms can
be used to eliminate theOða2Þ andOða4Þ corrections, with
the coefficients in this case turning out as

cð1×1Þ ¼ 1

9
ð19 − 55cð3×3ÞÞ;

cð2×2Þ ¼ 1

9
ð1 − 64cð3×3ÞÞ;

cð1×2Þ ¼ 1

45
ð−64þ 640cð3×3ÞÞ;

cð1×3Þ ¼ 1

5
− 2cð3×3Þ: ð18Þ

In fact, these coefficients are identical to those used in
constructing an improved action from the same five planar
m × n loops.
To compare the two improvement schemes, we con-

sider three-loop and five-loop versions of both operators.

The three-loop variants are unique, obtained by setting
kð3×3Þ ¼ 1=90 for Improved Fμν and cð3×3Þ ¼ 1=10 for
Improved TopQ.We examine five-loop versions correspond-
ing to kð3×3Þ ¼ 1=180 [52] and cð3×3Þ ¼ 1=20 [68,69].
With these choices, we now present comparisons

between various improved topological charge operators:
(1) three-loop vs five-loop Improved Fμν,
(2) three-loop vs five-loop Improved TopQ,
(3) three-loop Improved Fμν vs Improved TopQ, and
(4) five-loop Improved Fμν vs Improved TopQ.

For each possibility we sum the absolute value of the
topological charge Q ¼ P jqðxÞj, and compute the below
“pseudo-” relative error between the two forms in question:

RE ¼ jQ1 −Q2j
1
2
ðQ1 þQ2Þ

: ð19Þ

We normalize the difference by the average of the two
values to provide a common base for comparison. Figure 5
shows the evolution of the relative error for each of the
listed comparisons over a flow time τ ¼ 2. From this, we
conclude there is a greater disparity in the operators defined
in the contrasting improvement schemes as opposed to
using a different combination of loops within one of the
improvement schemes. Hence, this allows us to proceed
referring exclusively to the three-loop combination for the
two improvement schemes as the most reliable indicator for
when discretization effects have been suppressed.

C. Selecting the optimal smoothing level

Even though we now have a technique for analyzing the
discretization errors in the topological charge density, this

FIG. 5. The evolution of the relative error between the summed
absolute topological charge density for several different Oða4Þ-
improved lattice topological charge operators under gradient
flow. The difference produced by the two improvement schemes
is much greater than varying the number of loops within the same
improvement scheme.
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is yet to single out the precise ideal smoothing level. A
natural solution to this problem is provided by our methods.
If we apply our algorithm in Sec. II A to the topological
charge densities obtained through both improvement
schemes, then provided renormalization factors are signifi-
cant the net charges obtained will in general be different.
This emerges from three compounding effects: differences
in the topological charge density value at lattice points we
identify as part of topological objects, inherent distinctions
in the number and locations of local extrema, and variations
in how the lattice points are distributed between the objects.
As a consequence, the histograms of the charge assigned

to each object reveal divergent modes, inhibiting our ability
to draw the same conclusion from both improved topo-
logical charge operators. An example of this is presented in
Fig. 6. The distribution produced by the Improved TopQ
scheme is visibly shifted to the left from the Improved Fμν

scheme, with the modes clearly incompatible at this
smoothing level. Recall that the modes (and fluctuations
thereabout) provide an indicator of the underlying topo-
logical structure. It follows that the conclusions we would
infer on the net charge of distinct topological objects would
differ from each other.
This motivates our criterion for the optimal smoothing

level as the minimum number of updates required for the
modes of the two histograms to agree. This is a necessary
condition to ensure that discretization errors have been
adequately suppressed, with the two improvement schemes
providing consistent conclusions. At a foundational level,
this requirement is justified from both improvement def-
initions being valid ways to calculate the topological charge

density on the lattice. Therefore, either should be able to be
used to the same effect. At the same time, we do not desire
to perform any more smoothing than what is necessary as it
risks distorting or destroying genuine topological features.
Throughout our results in Sec. V we will continue to
display both histograms to emphasize that this criterion has
been satisfied and to illustrate any remaining systematic
uncertainties.
Before proceeding, we establish that this criterion is

allowed to depend on both the lattice spacing and the filter
used. The former of these will be considered in greater
detail in the next section. The latter is because the size and
number of lattice sites associated with the topological
objects differs greatly between the two dislocation cutoffs
under investigation. This could induce a greater discrep-
ancy between the improved operators when the hypercube
filter is applied compared to the nearest-neighbor filter.
Nevertheless, as discussed at the end of Sec. II A 4 and
detailed in the following section, our best results corre-
spond to the hypercube dislocation criterion.

IV. CONTINUUM LIMIT

Before proceeding to present our finite-temperature find-
ings, it is important to establish that our results scale properly
in the continuum limit; that is, they are independent of the
lattice spacing a. To achieve this, we utilize two ensembles
with equal physical volumes: a 323 × 64 ensemble with
a ≈ 0.10 fm, and a 483 × 96 ensemble with a ≈ 0.067 fm.
For simplicity, we refer to these as the “coarse” and “fine”
ensembles respectively throughout this section.
We consider two different possibilities for taking the

continuum limit. The first of these is a “fixed lattice
dislocation filter” method in which the dislocation filter
is applied identically on both ensembles. This allows for
physically smaller topological objects to be considered as
a → 0. The second is a “fixed scale” method, for which
care is taken to fix the physical scale for resolving the
topological objects as the continuum limit is approached.

A. Fixed lattice dislocation filter

In this approach, we apply a consistent dislocation filter
across the two ensembles. In Sec. II A 4, the intention to
investigate “nearest-neighbor” and “hypercube” filters was
discussed. These are both expressed in terms of the lattice
spacing, and thus have the prospect to admit physically
smaller topological features on the finer lattice. This allows
us to take advantage of the improved resolution provided
by the finer lattice spacing to probe vacuum structure at a
smaller scale. We are interested in determining whether the
charge contained within each such objects nonetheless
remains invariant, for instance because their topological
charge profiles are sharper. In this case, it is crucial to allow
for the possibility that less smoothing is required on the
finer lattice (as per the criterion from Sec. III C).

FIG. 6. Histograms of the net object charges obtained with the
hypercube dislocation filter for bothOða4Þ-improved topological
charge operators. This example is taken from our 323 × 64
ensemble at τ ¼ 1. The modes are marked by a darker color
and are visibly shifted from each other by ≈0.15, which is
certainly not an insignificant difference. This implies the level of
smoothing is insufficient.
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We start by comparing the results obtained with the
nearest-neighbor filter between the two ensembles. The
histograms are shown in Fig. 7. We can see that both
distributions have been sufficiently smoothed such that
the two topological charge definitions produce con-
sistent results. For the coarse ensemble, this is achieved
after a flow time τ ¼ 0.625, while for the fine ensemble
it is slightly less at τ ¼ 0.525. This is the expected
outcome.
The modes occur at jQj ¼ 0.111ð6Þ and jQj ¼ 0.064ð5Þ,

which are inconsistent with each other. This embodies a
considerable relative difference, with an ≈40% decrease in
value moving to the finer lattice. Given the precision with
which the modes have been resolved, we can be assured
this is a statistically significant discrepancy arising from the
smaller lattice spacing. Indeed, one can observe the extent
to which the histogram for the fine ensemble has fallen off

from the mode by jQj ≈ 0.11. From this, we deduce that
the topological structure revealed by the simple nearest-
neighbor cutoff is scale dependent. This provides evidence
that this filter is insufficient to minimize the effects of
dislocations on the lattice, with the results being sensitive to
their size ∼OðaÞ.
Next, we repeat the above process by applying the

hypercube filter to the definition of a topological object.
The results are presented in Fig. 8. The hypercube filter is
observed to be substantially stronger than the nearest-
neighbor cutoff, preserving fewer than 10% of all objects
accepted by the nearest-neighbor filter. This is especially
pronounced on the finer lattice. The size of the objects and
necessary degree of smoothing accordingly increase,
achieved with τ ¼ 1.45 on the coarse ensemble and τ ¼
1.25 on the fine ensemble.

FIG. 7. The results of our algorithm with the nearest-neighbor
dislocation filter applied to the coarse (top) and fine (bottom)
ensembles. The mode for the former is 0.11, but this shifts to
0.064 for the latter, suggesting that a nearest-neighbor cutoff is
insufficient to ensure scale independence.

FIG. 8. The results of our algorithm with the hypercube
dislocation filter applied to the coarse (top) and fine (bottom)
ensembles. The mode is 0.336 for the former and 0.324 for the
latter. These are consistent with each other, suggesting that a
hypercube cutoff is sufficient to ensure proper scaling in the
continuum limit.
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The corresponding modes are now located at jQj ¼
0.336ð15Þ and jQj ¼ 0.324ð15Þ. Although there is still a
slight discrepancy in central value, the difference here is
insignificant compared to the larger charge values calcu-
lated and broader bin width required to maintain a smooth
distribution. The two modes are observed to overlap within
the uncertainty provided by the bin width, meaning we can
draw the same conclusions in both cases: the topological
charge is predominantly comprised of individual objects
with net charges near jQj ≈ 0.33, far from the instanton
charge of 1.
Based on this we are confident, up to statistical fluctua-

tions, that the hypercube filter is sufficient to render our
results insensitive to the size of dislocations and therefore
independent of the lattice spacing. Hence, implementing a
fixed hypercube cutoff and allowing for less gradient flow
provides a valid procedure for taking the continuum limit in
the usual manner where the scale of short-distance physics
included in the calculation reduces with the lattice spacing.
This is what we sought to achieve.
In Sec. V B, we will consequently present the finite-

temperature analysis exclusively for the hypercube filter, as
our preferred definition for what is considered a “genuine”
topological object.
Before proceeding, it is insightful to examine the radial

size of the topological objects under the hypercube filter,
having now established that their charges are scale indepen-
dent. An rms estimate of their radii is calculated by summing
the squared distance between each point assigned to a
given object and its center x0 (approximated by the local
extremum), weighted by the ratio of the topological charge
density to the net chargeQ of the object. These weights sum
to unity over the entire object and discriminate between
broad and sharply peaked features. Mathematically, this
normalized topological charge density radius is

ρrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q

X
x∈ obj

qðxÞðx − x0Þ2
s

: ð20Þ

The calculations are performed at the same flow time as for
the charges, and we find that the modes of the rms radii
distributions from our two different topological charge
definitions also match. We contrast the ρrms results between
the two ensembles in Fig. 9.
This reveals a decrease in the typical radial size of

objects with the lattice spacing. Although this may seem
curious given the consistency between the net charge
values, upon further investigation one finds that this is
to be anticipated. The lattice spacing introduces a cutoff
such that any topological features smaller than the lattice
spacing fail to be resolved. As previously surmised, by
utilizing a filter that scales with the lattice spacing, one
would therefore expect the resulting distribution to be
comprised of topological objects with a smaller radial size.
In a similar vein to the instanton solution, one could
propose that the topological objects have a free size

parameter which can be varied while keeping their net
charge constant. The combination of Figs. 8 and 9 strongly
suggests this is the pattern underlying changes to the gauge
field as the lattice spacing is decreased.

B. Fixed scale method

Besides probing the topological structure at the
improved resolution provided by a finer lattice, the other
continuum limit we turn our attention towards is a fixed
scale method. This entails maintaining a fixed physical
scale for resolving the topological objects under consid-
eration. There are two different aspects at play to ensure
this occurs.
First, there is the matter of the smearing scale,

rsm=a ¼ ffiffiffiffiffi
8τ

p
, induced by gradient flow. To set a fixed

size, this smoothing radius rsm must remain unchanged
(in physical units) between the two lattice spacings.

FIG. 9. Histograms showing the normalized rms topological
charge density radius results on the coarse (top) and fine (bottom)
ensembles. The radial size of the objects tends to be smaller for
the smaller lattice spacing.
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Using primed symbols for the finer lattice, this clearly
requires ffiffiffiffi

τ0

τ

r
¼ a

a0
⇒ τ0 ≈ 2.25τ; ð21Þ

where we have substituted the values a ¼ 0.10 fm
and a0 ¼ 0.067 fm.
The second factor concerns the filter applied in the

algorithm. To ensure an equal footing between the ensem-
bles, it is vital to implement a dislocation filter of fixed
physical size for each ensemble. Instead of the hypercube
filter examined in the previous section, which scaled with
the lattice spacing, we choose here a radial cutoff rcut in
physical units which is applied on both ensembles.
Motivated by the success of the hypercube filter in

eliminating dislocations, however, we choose the minimum
physical radius needed to cover the hypercube on the
coarse ensemble. This is a radius of two lattice units,
dictating rcut ¼ 0.2 fm. On the fine ensemble, this is three
lattice units.
As for the flow time τ, we note that a radial cutoff of two

lattice units on the coarse ensemble is stronger than the
hypercube filter previously applied. Thus, a mild increase
in smoothing level is necessary to match the charge values.
This is satisfied by τ ¼ 1.65, implying τ0 ¼ 3.71 on the fine
ensemble as per Eq. (21). With this setup, the charge
histograms in the fixed scale method are shown in Fig. 10.
Remarkably, we once again find consistent histogram

modes, indicating we have successfully uncovered similar
topological structures between the two lattice spacings.
Therefore, setting a fixed physical scale provides an

FIG. 10. The results ofour algorithmwith a fixed scale, realizedby
a physical radial cutoff rcut ¼ 0.2 fm, applied to the coarse ensemble
at a flow time τ ¼ 1.65 (top) and the fine ensemble at τ0 ¼ 3.71
(bottom). The histogrammodes againmatch, implying that this is an
equally valid procedure for taking the continuum limit.

FIG. 11. Histograms showing the normalized rms topological
charge density radius results for the fixed physical scale con-
tinuum limit on the coarse (top) and fine (bottom) ensembles. The
typical radial sizes of the objects are indistinguishable between
the lattice spacings.
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alternative continuum limit. As with the fixed cutoff limit,
we also investigate the radial size of the topological objects
within this framework to ascertain whether their physical
sizes are indeed coincident, as one might expect. These ρrms
histograms are given in Fig. 11.
The modes are observed to be consistent with each other

within uncertainty, indicating we have successfully held
the typical radial size for resolving topology constant while
decreasing the lattice spacing. The center of the modal
bin for the fine ensemble is marginally to the right of that
for the coarse ensemble, though one can easily imagine
this might be due to statistical deficiencies or a slightly
inaccurate setting of the smoothing scale.
To summarize, we have considered two possibilities for

taking the continuum limit. In one, a consistent hypercubic
dislocation filter was applied to analyze physically smaller
topological features as a → 0, while in the second method a
fixed physical scale for resolving topology was utilized.
Both provide topological charge distributions insensitive to
the lattice spacing, as illustrated in Figs. 8 and 10. Thus
either can be used in the subsequent analysis.
Our preferred method is the fixed hypercube cutoff, due

to its ability to probe vacuum structure at the improved
resolution provided by a smaller lattice spacing. This
approach is more in accord with traditional continuum
limits where short-distance physics is allowed to enter the
calculations as a → 0. This makes such a limit more
interesting, and it is notable that the object charge values
remain well defined.

V. RESULTS

Having established the behavior of the continuum limit,
we now present our findings on the evolution of the
topological structure with temperature. This is performed
by applying the hypercube filter for distinguishing topo-
logical objects over dislocations. We ensure the flow time is
independent of temperature such that the results on each
ensemble can be easily compared, set to τ ¼ 1.45 as per the
323 × 64 ensemble in Sec. IVA.

A. Simulation details

To explore the evolution of the topological structure with
temperature, we generate ensembles consisting of 100
configurations at three temperatures below the critical
temperature Tc, and three temperatures above Tc. Each
has a spatial volume of 323 and fixed isotropic lattice
spacing a ¼ 0.1 fm, with the temporal extent of the lattice
varied to change the temperature. The details are provided
in Table II, where we take Tc ¼ 270 MeV [70].
The ensembles are generated using Hybrid Monte Carlo

[71,72] with an Iwasaki action [73,74] given by

S ¼ β
X
x;μ>ν

h
c0P

ð1×1Þ
μν ðxÞ þ c1P

ð1×2Þ
μν ðxÞ

i
; ð22Þ

with c1 ¼ −0.331 and c0 ¼ 1 − 8c1 ¼ 3.648. A coupling
β ¼ 2.58 gives the desired lattice spacing of a ¼ 0.1 fm. A
unit trajectory length is used for the Hamiltonian dynamics
evolution, with 50 accepted trajectories between sampling a
configuration following thermalization.
For each histogram, we analyze 100 gauge field con-

figurations. We obtain 100 bootstrap resamples on the set of
calculated charge values and extract the bin counts for each
such resample. This allows an error to be placed on the
histogram bins, which we display in our results. The precise
location of the mode is ascertained by shifting the bins to
maximize the height of the modal bin, and is singled out by
a darker color so the associated charge value is visually
clear. We find that the position of the mode shows no
variation in the bootstrap resamples such that its uncer-
tainty is governed by the bin width.

B. Finite temperature

We present the charge histograms for each finite-temper-
ature ensemble in Fig. 12. The quantitative value of the
mode for each temperature is provided in Table II. We find
that below the critical temperature, the topological charge
tends to be comprised of objects with net charges near
jQj ≈ 1=3, with the modes for each of these ensembles
situated very near each other. Being the ensemble closest to
the critical temperature, the marginally smaller value for
Nt ¼ 8 could arise from finite-volume effects resulting in a
smooth crossover around Tc instead of a discontinuous
phase transition. That being said, given that the Nt ¼ 8
mode sits directly adjacent to the other modes below Tc, it
could also be attributed to simple statistical fluctuations in
the calculated charge values; this is more likely near Tc due
to challenges in the Markov chain around the phase
transition.
Nevertheless, as the temperature increases into the

deconfined phase, there is an undeniable shift in the
calculated charges towards smaller values, with the modes

TABLE II. The statistics for each of our 323 × Nt ensembles,
including the number of sites Nt in the temporal dimension, the
corresponding temperatures, histogram modes, Polyakov loop
values hPi ¼ 1

3
hTrPi and respective holonomy parameters. The

histogram mode is determined by the center of the corresponding
bin, with uncertainties quoted as half the bin width. The trend
displayed by the holonomy parameter matches with the modes of
our histograms.

Nt T (MeV) T=Tc Histogram mode hPi ν

64 30.8 0.114 0.336(15) 0.0047(2) 0.3321(1)
12 164.4 0.609 0.338(19) 0.0208(11) 0.3277(3)
8 246.6 0.913 0.312(19) 0.0355(20) 0.3237(5)
6 328.8 1.218 0.202(16) 0.562(16) 0.1944(40)
5 394.6 1.461 0.156(15) 0.677(19) 0.1639(54)
4 493.3 1.827 0.102(10) 0.8634(6) 0.1037(2)
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FIG. 12. Histograms showing the results of our algorithm with the hypercube dislocation filter applied to each of our finite-
temperature ensembles:Nt ¼ 64 (top left), 12 (top right), 8 (middle left), 6 (middle right), 5 (bottom left) and 4 (bottom right). Below the
critical temperature, the mode is roughly constant at just above 0.3, but this shifts towards smaller values as T increases above Tc. This
behavior is consistent with the free holonomy parameter in SU(3) (Sec. VI B), shown with the dashed vertical line. The results are
calculated with a hypercube dislocation filter after a flow time τ ¼ 1.45, the amount required to ensure consistency between the two
improvement schemes considered.
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visibly separated from each other. The largest decrease
occurs in our first ensemble above Tc, where we find
jQj ≈ 0.2, and this steadily continues to decline down to
jQj ≈ 0.1 for the largest temperature considered here.

VI. DISCUSSION

Having presented our key results, we now proceed to
compare with the instanton-dyon model for the topological
structure of the gluon fields at finite temperature. We also
investigate the temperature dependence of additional quan-
tities such as object density and radial size, which are in
general distinct from the charge contained within each such
object. Throughout this section, all statistics are obtained
using 100 bootstrap ensembles, with errors calculated
through the standard deviation of the bootstrap estimates.

A. Polyakov loop and holonomy

The Polyakov loop is an order parameter for confinement
in SUðNÞ Yang-Mills theory defined for each spatial
position x as

PðxÞ ¼ P exp

�
ig
Z

1=T

0

dx4A4ðxÞ
�
∈SUðNÞ; ð23Þ

where P is the path-ordering operator. It exhibits a simple
relation with the free energy of a single quark [75],

hTrPi ∼ exp

�
−
Fq

T

�
: ð24Þ

From this one concludes hTrPi ¼ 0 below Tc where
confinement implies Fq → ∞, while it jumps to a nonzero
value above Tc.
The Polyakov loop at spatial infinity, also known as

the holonomy, is a topological invariant and (up to gauge
symmetry) can be written as [25]

P∞ ¼ lim
jxj→∞

PðxÞ ¼ exp½2πidiagðμ1;…;μNÞ�;

μ1 < � � �< μN < μNþ1 ≡ μ1 þ 1;
XN
i¼1

μi ¼ 0: ð25Þ

Simply put, Eq. (25) says that the eigenvalues of P∞ lie on
the unit circle within one rotation of 2π, with the summa-
tion condition enforcing detP∞ ¼ 1. While at extremely
high temperatures the holonomy is trivial, near and below
Tc it develops a nontrivial value, P∞ ≠ I. In particular, the
maximally nontrivial holonomy corresponds to TrP∞ ¼ 0,
which occurs in the confined phase; it is also known as the
“confining holonomy.”
For convenience, one defines N so-called “holonomy

parameters” as νi ¼ μiþ1 − μi. Following the definition of
μNþ1 ¼ μ1 þ 1, the holonomy parameters are constrained
to sum to unity, leaving naively (N − 1) free parameters

in SUðNÞ gauge theory. However, as per Eq. (24), hTrPi
is a physical quantity and must accordingly be real.
This imposes an additional constraint on the set of
holonomy parameters, which in the case of SU(3) leaves
just a single parameter ν to uniquely specify each νi. The
relationship is summarized as [34]

ν1 ¼ ν2 ¼ ν; ν3 ¼ 1 − 2ν;

hPi≡ 1

3
hTrPi ¼ 1

3
þ 2

3
cosð2πνÞ: ð26Þ

It is thus immediately clear that one finds ν ¼ 1=3 in the
confined phase, while above Tc the holonomy parameter
decreases towards zero as the Polyakov loop becomes
trivial. We note immediately that this quantitatively agrees
with the mode of our charge histograms below Tc, and also
displays initial qualitative agreement above Tc. This hints
at a connection between the holonomy and charge of
topological objects, which motivates calculating ν on each
finite-temperature ensemble.
The Polyakov loop on the lattice is calculated as a

product of temporal link variables over all sites in the
temporal dimension,

PðxÞ ¼
YNt

x4¼1

U4ðx; x4Þ: ð27Þ

We exploit translational symmetry to calculate hTrP∞i as
the expectation of the spatially averaged Polyakov loop,

hTrPi ¼
�
1

V

X
x

TrPðxÞ
�
: ð28Þ

The pure gauge theory carries an additional complication in
the form of a center symmetry which does not exist in full
QCD. The pure gauge action is invariant under center
transformations,

U4ðx; x4Þ→ zU4ðx; x4Þ for fixedx4;

z∈Z3 ¼
	
exp

�
2πi
3

m

�
I





m¼ −1;0;1
�
; ð29Þ

though the Polyakov loop transforms nontrivially under
such transformations as

PðxÞ → zPðxÞ: ð30Þ

Thus if center symmetry is preserved we must have
hTrPðxÞi ¼ 0, and deconfinement corresponds to the
spontaneous breaking of the center symmetry.
Consequently, the Polyakov loop below Tc is observed

to exhibit a symmetry between the three center phases of
SU(3) [76,77]. Above Tc, this symmetry is spontaneously
broken with one of the three phases becoming dominant.
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In full QCD, the fermion determinant singles out m ¼ 0 as
the preferred phase [77], ensuring the Polyakov loop
remains real. On the other hand, in the pure gauge
theory the dominant phase can vary on a configuration-
to-configuration basis, meaning one would find hTrPi ¼ 0
even above Tc.
This is often overcome by taking the modulus of the

Polyakov loop as the order parameter, though we take an
alternative approach to remove the remaining symmetry by
performing center transformations [78]. This can be inter-
preted as rotating the phase of TrP by �2πi=3 to bring the
dominant phase of each configuration to a phase of zero.
Finally, we take the real part to discard any remnant
imaginary part that should vanish in the ensemble average.
This is subsequently taken to estimate hTrPi. Substituting
the result into Eq. (26) gives a corresponding estimate of
the free holonomy parameter. The final values are given in
Table II and illustrated in Fig. 12.
We find that for each temperature considered here, the

calculated values of the holonomy coincide remarkably
well with the histogram modes for the charge contained
within each distinct topological object. For each ensemble
in the confined phase, we find hPi ≈ 0 as expected, and the
associated holonomy parameter is ν ¼ 1=3. This is con-
sistent with our findings below Tc, with the modes located
near 1=3. In the deconfined phase, where the holonomy
parameter decreases away from 1=3, we continue to find a
strong agreement between its value and the histogrammode
for each ensemble above Tc. This reveals an intrinsic
connection between the holonomy of the field configura-
tions and the distinct topological charges comprising their
structure. Such a relationship is built into the instanton-
dyon model, discussed in the following section.

B. Instanton-dyons

Given the link between confinement and holonomy, it is
natural to seek analytic solutions of the Yang-Mills
equations that possess nontrivial asymptotic holonomy.
This is realized by the caloron [23–26], a finite-temperature
generalization of the instanton. In SUðNÞ gauge theory,
calorons can be viewed as composed of N monopole
constituents known as dyons, whose structure depends on
the value of the holonomy.
To be precise, the caloron is divided up into its

constituent dyons according to the holonomy parameters
νi, such that the action of the ith dyon type is Si ¼ S0νi.
Like the instanton itself, the dyons are self-dual such that
their topological charges satisfy jQij ¼ νi. Since the νi sum
to unity, it is clear that summing the dyons’ individual
actions and topological charges recovers the single-instan-
ton properties.
Thus, one finds a one-to-one relationship between the

temperature of the system (through the Polyakov loop) and
the charges of the dyons (through the free holonomy
parameter). Two of the dyons have charges jQij ¼ ν, while

the third dyon has jQ3j ¼ 1–2ν. This provides a prediction
for the topological structure at finite temperature we can
compare to our numerical findings. The agreement between
the holonomy parameter ν and the charge histogram modes
suggests a consistency with the presence of the first two
dyon types. This can be interpreted as evidence that dyons
form a significant part of the gluon fields’ topological
structure. At each temperature, the mode provides an
indicator for the dominant contribution, with the distribution
around the mode representing quantum fluctuations about
the semiclassical dyon solution and systematic uncertainties
in assigning topological charge density to the objects.
However, the simple decomposition described above

holds exclusively for a single-caloron configuration. The
fact that we observe consistency between the holonomy
parameter and object charges on our configurations, which
in general comprise an ensemble of positive and negative
topological excitations, is a substantially stronger con-
straint. This is nonetheless allowed within the framework
of instanton-dyons. Analytic “multicaloron” configurations
of higher topological charge jQj ¼ k have previously been
constructed [79–83]. These follow the natural expectation
of decomposing into kN constituents in SUðNÞ gauge
theory, with k dyons of each of the N types. All dyons
of the ith type have the same mass [25,26], as determined
by the corresponding holonomy parameter νi of the system.
In addition, the typical procedure for superposing calorons

in modeling vacuum structure requires each distinct caloron
to have the same holonomy [84–86], and therefore their
constituent dyons of the same type have matching charges.
The system resulting from the superposition then features
that same asymptotic holonomy.
These are both in a similar vein to the scenario reflected

by our findings, where we observe a sharply peaked
topological charge distribution located at ν1 ¼ ν2. From
this discussion, we can conclude that our results admit
the presence of the two dyons possessing charge jQ1j ¼
jQ2j ¼ ν, with fluctuations about this value as reflected by
the charge histograms.
One would be prescient to point out the stark lack of

charge values consistent with the third dyon in Fig. 12,
which would be jQ3j ≈ 0.6, 0.7 and 0.8 respectively for
each temperature above Tc. However, this can be under-
stood by considering the number densities of each dyon. In
the SU(3) dyonic partition function each dyon is individu-
ally weighted by [34]

d ∼ e−S0νiν
8νi
3
−1

i ð31Þ

for holonomy parameter νi. The outcome is a compounding
effect where both terms favor small holonomy parameters,
and the third dyon with ν3 ¼ 1–2ν will be exponentially
suppressed. For this reason we would expect our results to
be overwhelmingly skewed towards the two dyons with
charges equal to ν, as we observe
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One might query how this imbalance manifests in the
topological structure, given the topological index is
restricted to integer values on the periodic torus by the
Atiyah-Singer index theorem [87]. We find that the
majority of our Nt ¼ 4 configurations converge to a net
topological charge of zero under smoothing, which over-
comes the problem entirely by representing an equal
quantity of positive and negative topological charge den-
sity. The suppression of the third dyon is irrelevant in that
context, needing only a balance of dyons with Q ¼ �ν.
There are nevertheless a handful of configurations with
small nonzero values for the topological index, which
could be attributed to the presence of the larger third dyon.
In fact, our highest-temperature histogram in Fig. 12 dis-
plays a small clustering of points near jQj ¼ 1 which
originate precisely from this small set of configurations,
supporting this idea. Prior analysis of the topological
content in the confined and deconfined phases substantiates
this discussion [88].

C. Zero-temperature distribution

All considered, we have found the instanton-dyon model
captures the essence of the observed finite-temperature
physics. Even so, the plethora of other fractionally charged
topological configurations ∼1=N [13–15,20–22,35–39]
leave our zero-temperature results open to different inter-
pretations. In fact, if the inverse temperature greatly
exceeds the characteristic separation between their con-
stituent dyons, then calorons simply resemble standard
instantons [25,26].
In this regard, the peaks we observe near ≈1=3 at low

temperatures T < Tc could reflect a significant contribu-
tion from “ordinary” fractional instantons. Although the
current methods do not provide a means to distinguish
between these constructions, we can nonetheless conclude
the confining vacuum is an ensemble of fractionally
charged objects. Many of these configurations are ana-
lytically constructed on tori with different twisted boun-
dary conditions, and it is natural to query whether they can
arise on a torus without twist, as studied here. The
resolution is that these are trivially also solutions on a
torus comprising multiple periods of the original, smaller
torus. It directly follows that fractional instantons can
emerge on the standard periodic torus, with the requirement
that they exist in groups of N to conserve the integer
topological index.
There is also the “ZN dyons” of Ref. [39], which in

contrast to instanton-dyons and fractional instantons are not
predicted to be self-dual in general. This is allowed within
the bounds of our present results. At the level of smoothing
which ensures consistency between our two topological
charge definitions, S=S0 is still approximately a factor of 3
larger than

P jqðxÞj for an average configuration. This
demands the presence of non-self-dual topological objects
comprising the gluon fields.

On that account, our low-temperature results could
signal the presence of non-self-dual ZN dyons. In addition,
these configurations carry magnetic charge quantized by
ZN , and consequently are relevant exclusively in the
confined phase and a narrow region above Tc. In the
deconfined phase, the increasing magnetic tension
binds the ZN dyons into dilute instantons at high temper-
atures [39]. The small clustering of points near jQj ¼ 1
found at our highest temperature could also signal a
contribution from these instantons, though the leading
effect remains which aligns with instanton-dyons with a
peak in the charge histogram at jQj ¼ ν.
Further analysis could proceed by summing the action

over each object individually using the partition of the
lattice obtained herein, allowing an investigation into self-
duality on a per-object basis. There is also the possibility
that some topological objects look locally self-dual near
their peak, though experience significant deviations from
self-duality at the tails of their distributions due to inter-
actions with surrounding objects. We leave such inves-
tigations open for future work.

D. Number of objects

In addition to the charge of the topological objects,
another basic statistic available through our methods is the
total number of objects per configuration. We start by
investigating how the number of objects varies as we
smooth the configurations. Performing this analysis is
enlightening as it reflects the effect smoothing has on
the gauge field. This evolution, as defined by the hypercube
filter, is shown for the Nt ¼ 64 ensemble in Fig. 13; a very
similar trend is observed for the other ensembles.

FIG. 13. The evolution of the observed number of topological
objects under gradient flow after hypercubic dislocation filtering,
forNt ¼ 64. We show separate curves for each topological charge
improvement scheme, highlighting a subtle difference between
the two distributions which is reduced as we continue to smooth
the fields.
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We find that initially there are zero topological objects
that pass the hypercube filter. This quantitatively empha-
sizes how “raw” lattice configurations are comprised
entirely of UV fluctuations on the scale of the lattice
spacing which obscure the long-distance topological fea-
tures of the gluon fields. Continuing to smooth gradually
reveals larger-scale features at least the size of a hypercube,
while the short-scale fluctuations are smoothed out.
Eventually, this begins to plateau, with the number of
objects stabilizing as we approach a flow time of τ ¼ 2.
Although we have not explored beyond this point, one
could imagine that the number of objects would eventually
begin to decrease, which is necessary to coincide with the
classical limit. Indeed, topological excitations are under-
stood to undergo pair annihilation under extended smooth-
ing [50–52,89,90], and it has been revealed through
visualizations how the excitations “walk” across the lattice
to annihilate with each other [48]. This provides an intuitive
picture for when one may wish to cease smoothing: after
the majority of the UV fluctuations have been removed, but
before the genuine features we are interested in begin to
annihilate. Our method of matching the object charges
between two topological charge definitions singles out the
precise level required.
The number of objects also gives access to the object

density, which we can compare across each temperature.
For our purposes, we define the number density as

n ¼ N
V
; V ¼ ðaNsÞ3 × ðaNtÞ; ð32Þ

where N is the total number of objects, and V is the
(physical) four-dimensional volume of the lattice. To
resolve the slight ambiguity between the two topological
charge definitions, as seen in Fig. 13, we take the average of
the two values as a unified estimate of the density, and
combine half the difference with the statistical error in
quadrature. The evolution of n with temperature is shown
in Fig. 14.
While the density is found to be constant below the

critical temperature, there is interesting behavior above Tc.
We observe a slight drop in the density as the phase
transition is crossed, but it subsequently increases as the
temperature climbs away from Tc. This points towards an
increase in “activity” in the gauge fields at very high
temperatures.
However, we must note that the scaling of n as a → 0

depends on how one takes the continuum limit. The precise
value of n utilizing the fixed lattice dislocation filter
method is dependent on the lattice spacing. For instance,
calculating n with the hypercubic dislocation filter on
our finer (a ¼ 0.067 fm) ensemble gives n ≈ 17.46ð37Þ,
over a factor of 3 larger than the coarse a ¼ 0.10 fm result
of 5.498(19). Clearly, the topological objects being physi-
cally smaller allows them to be more densely packed.
Alternatively, in the fixed scale continuum limit, the density

remains insensitive to the lattice spacing. This motivates
further investigation into the object density at a broader
range of temperatures and lattice spacings.

E. Root-mean-square radius

Next, we investigate any variation in the radial size of the
topological objects with temperature using the rms radius
defined in Eq. (20). These histograms are displayed in
Fig. 15. In direct contrast with the charges, we find there is
minimal change in the distribution of radial sizes, besides a
plausible shift at the highest temperature where the mode
drops from ≈0.43 fm to ≈0.39 fm. Nevertheless, this
could simply be a consequence of statistical variability,
with the smaller lattice volumes above Tc by default having
less statistics. Either way, the drastic drop in charge values
cannot be primarily accounted for by a corresponding
decrease in radial size. For instance, taking the decrease at
face value, the fractional reduction in volume taken up by a
typical object would be ð0.39=0.43Þ4 ≈ 0.67, which fails to
account for the factor of ≈1=3 cut in charge values by the
highest temperature. Instead, the shift in charge values is
likely due predominantly to a reduction in the height of the
peaks in the topological charge. In other words, vacuum
field fluctuations are suppressed at high temperature.

F. Visualizations

As a final point of discussion, we visualize the topo-
logical charge density for the two different lattice spacings,
allowing further insight into the nature of the algorithm.
The visualizations are produced at the respective levels of
smoothing for the fixed hypercube dislocation filter, under
which there are interesting changes to the vacuum structure.

FIG. 14. The object number density under hypercubic dislo-
cation filtering for each 323 × Nt ensemble, calculated at the
justified flow time τ ¼ 1.45. There appears to be an initial drop in
n as we cross Tc, though it increases thereafter.
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FIG. 15. Histograms showing the normalized rms topological charge density radii for objects resolved on each of our finite-
temperature ensembles: Nt ¼ 64 (top left), 12 (top right), 8 (middle left), 6 (middle right), 5 (bottom left) and 4 (bottom right). There are
very minimal changes to the distribution as temperature is increased. The results are calculated with a hypercube dislocation filter after a
flow time τ ¼ 1.45, the amount required to ensure consistency between the topological charge modes of our two improvement schemes.
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This also qualitatively reveals the changes to the gauge field
as the lattice spacing is decreased identified in Secs. IVA
and VI D. A single temporal slice is presented for each
lattice spacing in Fig. 16. In both cases, the effectiveness of

the algorithm in capturing the behavior around each peak is
evident, with most “lumps” consisting of a single color. The
instances of overlapping objects are also convincingly
managed, with visible boundaries dividing the individual
peaks. From these visualizations, it is clear we can be
confident in the calculated numerical charge values as
reliable estimates of the topological charge distribution.
Additionally, there is a substantial shift in the topological

structure as the lattice spacing is decreased, consistent with
the quantitative findings on object density and radial size.
For one, the number of distinct objects has significantly
increased, which matches the comment on the increase in
object density in Sec. VI D as the lattice spacing is
decreased. Second, the lumps in the bottom visualization
are, on average, unarguably smaller in size than the top
figure, coinciding with the decrease in radial size found in
Sec. IVA by considering an rms estimate of each object’s
radius. Clearly, shrinking the lattice spacing admits the
existence of radially smaller topological features (but with
the same net charges, as illustrated in Fig. 8) which tend to
comprise the volume, producing the increase in abundance
of individual topological objects observed in Fig. 16.

VII. CONCLUSION

In this work we have devised a novel method for
identifying and calculating the net topological charge
contained within topological objects. This was utilized to
explore the evolution of the topological structure of SU(3)
gauge theory with temperature. We obtained a distribution
of charge values which was interpreted as quantum
fluctuations around a semiclassical value, considered as
the mode of the distribution. This was taken as an indicator
of the underlying topological features.
The results exhibit a foundational consistency with the

instanton-dyon model [23–26] for the topological structure
of SUðNÞ gauge theory at finite temperature. They reveal
distributions peaked near ≈1=3 in the confined phase, and
which decrease above the critical temperature in a trend
matching the single free holonomy parameter in SU(3).
The lack of self-duality on the analyzed configurations

leaves our results open to a variety of fractional topological
objects, such as ZN dyons [39] which are predicted to arise
from quantum fluctuations of an effective action. Future
work can explore the action at the individual-object level to
provide a more detailed assessment of the types of objects
present in the ground-state gluon fields.
We intend to extend the work presented here to SUðNÞ

gauge theory for N ≠ 3, with a focus on N ¼ 2 and 4, to
determine whether there is any discernible change between
the various numbers of colors and if it follows the
instanton-dyon prediction for that particular value of N.
Insight into the large-scale topological structure of

the Yang-Mills vacuum can also be obtained through
eigenmodes of the Dirac operator, which can isolate
semiclassical features of the gauge fields as an alternative

FIG. 16. Visualizations of the topological charge density on the
323 × 64 ensemble with a ¼ 0.10 fm (top) and the 483 × 96
ensemble with a ¼ 0.067 fm (bottom), produced at the flow
times used to calculate our results with a hypercubic dislocation
filter. The visualizations are constructed identically to Fig. 4, with
the additional caveat that any points not assigned an object
number (due to dislocation filtering) are not rendered. Even
though the topological charge density is colored by the object
number, due to the high number of objects in the four-dimen-
sional volume the colors (shades of gray) are often very similar.
The topological charge is visually more granular at the smaller
lattice spacing, with a greater density of (radially) smaller objects
despite the similar object charge distributions of Fig. 8.
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to smoothing [67]. Although previously studied in the
fundamental representation, a recent analysis [91] has
provided evidence in favor of eigenmodes in the adjoint
representation, needing only a small number of modes to
reconstruct the (semiclassical) topological charge density.
The “adjoint filtering method” (AFM) [92,93] is used to
filter out the UV fluctuations in the configurations, which
has benefits and drawbacks compared to smoothing. For
instance, the AFM has been shown to capture instanton and
anti-instanton pairs which would otherwise annihilate
under smoothing, though on occasion it also misses objects
that are revealed under smoothing [91]. Looking forward,
an especially quantitative approach could involve applying
the algorithm presented here to the eigenmodes identified
through the AFM. It will be interesting to learn if the
reduced structure seen on individual eigenmodes offers any
quantitative advantage in the process of identifying objects
in the QCD ground-state fields.
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APPENDIX: COOLING PROCEDURE

In this appendix, we summarise the cooling used to test
the algorithm. Standard cooling starts with the local Wilson
action [94] corresponding to the link UμðxÞ,

SðxÞ ¼ β
X
ν≠μ

�
1 −

1

3
ReTrðUμðxÞΣμνðxÞÞ

�
; ðA1Þ

ΣμνðxÞ ¼ Uνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ
þU†

νðxþ μ̂ − ν̂ÞU†
μðx − ν̂ÞUνðx − ν̂Þ; ðA2Þ

where Σμν is the sum of the two 1 × 1 staples in the μ-ν
plane touching UμðxÞ. It is clear from Eq. (A1) that the
local action will be minimized when

ReTr

�
UμðxÞ

X
ν≠μ

ΣμνðxÞ
�

ðA3Þ

is maximized, and hence cooling aims to update UμðxÞ
to a new link such that Eq. (A3) is maximized. For our
purposes, we implement improved cooling by including the
contributions of the 1 × 1, 2 × 2 and 3 × 3 loops touching
UμðxÞ in the calculation of the staple sum,

Σμν ¼
3

2

X
ð1× 1 pathsÞ− 3

80

X
ð2× 2 pathsÞ

þ 1

810

X
ð3× 3 pathsÞ: ðA4Þ

This combination corresponds to minimizing an Oða4Þ-
improved discretized action operator [68].
In SU(2), this update is a straightforward projection of

the staple sum onto SU(2),

UμðxÞ → U0
μðxÞ ¼

�
1

k

X
ν≠μ

ΣμνðxÞ
�†

;

k2 ¼ det
X
ν≠μ

ΣμνðxÞ: ðA5Þ

The strategy in SU(3) is more involved, but is achieved
based on the Cabibbo-Marinari pseudo–heat bath algorithm
[95] by iterating over SU(2) subgroups and performing the
above projection step for each one [47]. First, the staples
are closed through multiplication by the link UμðxÞ,

Ω ¼ UμðxÞ
X
ν≠μ

ΣμνðxÞ: ðA6Þ

One then defines the below 2 × 2 submatrix from the
upper-left block of the 3 × 3 matrix Ω,

Ω2×2 ¼
1

2

�Ω11 þΩ�
22 Ω12 −Ω�

21

Ω21 − Ω�
12 Ω�

11 þ Ω22

�
: ðA7Þ

This is cooled Ω2×2 → Ω0
2×2 according to Eq. (A5) and

embedded in the upper-left 2 × 2 block of an SU(3) matrix
Ω0. Finally, the link is updated via

UμðxÞ → U0
μðxÞ ¼ Ω0UμðxÞ: ðA8Þ

This process is subsequently repeated for the other two
diagonal SU(2) subgroups, thereby covering SU(3).
Additionally, it is possible to perform multiple loops over
the three SU(2) subgroups for a single update of UμðxÞ to
provide better convergence to the true link which max-
imises Eq. (A3) [96]. We perform eight such cycles per
update, which has previously been justified as a suitable
choice to optimise the projected link U0

μðxÞ [97].

MICKLEY, KAMLEH, and LEINWEBER PHYS. REV. D 109, 094507 (2024)

094507-22



[1] H. G. Dosch and Y. A. Simonov, The area law of the Wilson
loop and vacuum field correlators, Phys. Lett. B 205, 339
(1988).

[2] G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling
(SESAM Collaboration), Observation of string breaking in
QCD, Phys. Rev. D 71, 114513 (2005).

[3] C. A. Aubin and M. C. Ogilvie, Lattice gauge fixing
and the violation of spectral positivity, Phys. Lett. B 570,
59 (2003).

[4] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B.
Parappilly, A. Sternbeck, L. von Smekal, A. G. Williams,
and J.-b. Zhang, Scaling behavior and positivity violation of
the gluon propagator in full QCD, Phys. Rev. D 76, 094505
(2007).

[5] J. C. Biddle, W. Kamleh, and D. B. Leinweber, Impact of
dynamical fermions on the center vortex gluon propagator,
Phys. Rev. D 106, 014506 (2022).

[6] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Y. S.
Tyupkin, Pseudoparticle solutions of the Yang-Mills equa-
tions, Phys. Lett. 59B, 85 (1975).

[7] E. V. Shuryak, The role of instantons in quantum chromo-
dynamics: (I). Physical vacuum, Nucl. Phys. B203, 93
(1982).

[8] E. V. Shuryak, The role of instantons in quantum chromo-
dynamics: (II). Hadronic structure, Nucl. Phys. B203, 116
(1982).

[9] E. V. Shuryak, The role of instantons in quantum chromo-
dynamics: (III). Quark-gluon plasma, Nucl. Phys. B203,
140 (1982).

[10] E. V. Shuryak, Instantons in QCD: (III). Quark propagators
and mesons containing heavy quarks, Nucl. Phys. B328, 85
(1989).

[11] D. Diakonov, V. Y. Petrov, and P. V. Pobylitsa, The Wilson
loop and heavy-quark potential in the instanton vacuum,
Phys. Lett. B 226, 372 (1989).

[12] T. Schäfer and E. V. Shuryak, Instantons in QCD, Rev. Mod.
Phys. 70, 323 (1998).

[13] G. ’t Hooft, Some twisted self-dual solutions for the Yang-
Mills equations on a hypertorus, Commun. Math. Phys. 81,
267 (1981).

[14] A. Gonzalez-Arroyo, P. Martinez, and A. Montero, Gauge
invariant structures and confinement, Phys. Lett. B 359, 159
(1995).

[15] A. Gonzalez-Arroyo and P. Martinez, Investigating Yang-
Mills theory and confinement as a function of the spatial
volume, Nucl. Phys. B459, 337 (1996).

[16] M. Garcia Perez, A. Gonzalez-Arroyo, and B. Soderberg,
Minimum action solutions for SU(2) gauge theory on the
torus with non-orthogonal twist, Phys. Lett. B 235, 117
(1990).

[17] M. Garcia Perez and A. Gonzalez-Arroyo, Numerical study
of Yang-Mills classical solutions on the twisted torus,
J. Phys. A 26, 2667 (1993).

[18] M. Garcia Perez, A. Gonzalez-Arroyo, A. Montero, and C.
Pena, Yang-Mills classical solutions and fermionic zero
modes from lattice calculations, Nucl. Phys. B, Proc. Suppl.
63, 501 (1998).

[19] A. Montero, Numerical analysis of fractional charge sol-
utions on the torus, J. High Energy Phys. 05 (2000) 022.

[20] A. Gonzalez-Arroyo, On the fractional instanton liquid
picture of the Yang-Mills vacuum and Confinement,
arXiv:2302.12356.

[21] A. González-Arroyo, Constructing SU(N) fractional instan-
tons, J. High Energy Phys. 02 (2020) 137.

[22] M.M. Anber and E. Poppitz, Multi-fractional instantons in
SU(N) Yang-Mills theory on the twisted T4, J. High Energy
Phys. 09 (2023) 095.

[23] K.-M. Lee, Instantons and magnetic monopoles on R3 × S1

with arbitrary simple gauge groups, Phys. Lett. B 426, 323
(1998).

[24] K.-M. Lee and C.-h. Lu, SU(2) calorons and magnetic
monopoles, Phys. Rev. D 58, 025011 (1998).

[25] T. C. Kraan and P. van Baal, Monopole constituents inside
SUðnÞ calorons, Phys. Lett. B 435, 389 (1998).

[26] T. C. Kraan and P. van Baal, Periodic instantons with non-
trivial holonomy, Nucl. Phys. B533, 627 (1998).

[27] D. Diakonov and V. Petrov, Confining ensemble of dyons,
Phys. Rev. D 76, 056001 (2007).

[28] D. Diakonov and V. Petrov, Confinement and deconfine-
ment for any gauge group from dyons viewpoint, AIP Conf.
Proc. 1343, 69 (2011).

[29] Y. Liu, E. Shuryak, and I. Zahed, Confining dyon-
antidyon Coulomb liquid model. I., Phys. Rev. D 92,
085006 (2015).

[30] E. Shuryak and T. Sulejmanpasic, Holonomy potential and
confinement from a simple model of the gauge topology,
Phys. Lett. B 726, 257 (2013).

[31] R. Larsen and E. Shuryak, Interacting ensemble of
the instanton-dyons and the deconfinement phase transi-
tion in the SU(2) gauge theory, Phys. Rev. D 92, 094022
(2015).

[32] M. A. Lopez-Ruiz, Y. Jiang, and J. Liao, Confinement,
holonomy and correlated instanton-dyon ensemble: SU(2)
Yang-Mills theory, Phys. Rev. D 97, 054026 (2018).

[33] M. A. Lopez-Ruiz, Y. Jiang, and J. Liao, Confinement from
correlated instanton-dyon ensemble in SU(2) Yang-Mills
theory, Phys. Rev. D 99, 114013 (2019).

[34] D. DeMartini and E. Shuryak, Deconfinement phase tran-
sition in the SU(3) instanton-dyon ensemble, Phys. Rev. D
104, 054010 (2021).

[35] A. Gonzalez-Arroyo and A. Montero, Self-dual vortex-like
configurations in SU(2) Yang-Mills theory, Phys. Lett. B
442, 273 (1998).

[36] A. Montero, Study of SU(3) vortex-like configurations with
a new maximal center gauge fixing method, Phys. Lett. B
467, 106 (1999).

[37] A. Montero, Vortex configurations in the large N limit,
Phys. Lett. B 483, 309 (2000).

[38] J. Dasilva Golán and M. García Pérez, SU(N) fractional
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