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We present results for the nucleon form factors: electric (GE), magnetic (GM), axial (FA), induced
pseudoscalar (FP), and pseudoscalar (GP) form factors, using the second PACS10 ensemble that is one of
three sets of 2þ 1 flavor lattice QCD configurations at physical quark masses in large spatial volumes
[exceeding ð10 fmÞ3]. The second PACS10 gauge configurations are generated by the PACS Collaboration
with the six stout-smeared OðaÞ improved Wilson quark action and Iwasaki gauge action at the second
gauge coupling β ¼ 2.00 corresponding to the lattice spacing of a ¼ 0.063 fm. We determine the isovector
electric, magnetic and axial radii, and magnetic moment from the corresponding form factors, as well as the
axial-vector coupling gA. Combining our previous results for the coarser lattice spacing [E. Shintani et al.,
Phys. Rev. D 99, 014510 (2019); Phys. Rev. D 102, 019902(E) (2020)], the finite lattice spacing effects on
the isovector radii, magnetic moment, and axial-vector coupling are investigated using the difference
between the two results. It was found that the effect on gA is kept smaller than the statistical error of 2%
while the effect on the isovector radii was observed as a possible discretization error of about 10%,
regardless of the channel. We also report the partially conserved axial-vector current relation using a set of
nucleon three-point correlation functions in order to verify the effect by OðaÞ improvement of the axial-
vector current.

DOI: 10.1103/PhysRevD.109.094505

I. INTRODUCTION

In the standard model of the particle physics, the proton
and neutron, in short nucleon, which are the building
blocks of nuclei, are composite particles of quarks and
gluons, and the interaction among them are formulated by
quantum chromodynamics (QCD). This indicates that the

structure of nucleon is itself a nontrivial consequence of
quark-gluon dynamics. The nucleon form factors are very
good probes to investigate the nucleon structure [1].
Although great theoretical and experimental efforts for
the form factors have been devoted to improving our
knowledge of the nucleon structure, there are several
unsolved problems and tensions associated with the fun-
damental properties of nucleons.
The proton radius puzzle [2], which has become well

known as the discrepancy in experimental measurements of
electric root-mean-square (rms) radius of the proton, has
not been solved. In this puzzle, high-precision measure-
ments of the proton’s charge radius using the muonic
hydrogen spectroscopy disagree with its long-established
value measured from both elastic electron-proton scattering
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and hydrogen spectroscopy. In order to solve the puzzle,
recent perspectives have focused primarily on systematic
uncertainties [3]. Furthermore, there is a significant tension
in empirical parametrizations of the proton magnetic form
factor obtained by experiments [4,5]. A percent-level
measurement is needed to resolve these issues and should
be performed in future experiments.
Not only the electric and magnetic form factors, but also

the axial form factor and axial radius are important inputs
for the weak process associated with the neutrino-nucleus
scattering [6–8]. The axial-vector coupling (gA), which
can be determined from the axial form factor at zero-
momentum transfer, is associated with the neutron lifetime
puzzle [9]. Since the discrepancy between the results of
beam experiments and storage experiments remains
unsolved, it is still an open question that deserves further
investigation. Furthermore, the q2 dependence of the axial
form factor can be used as an important input [10–13] for
the current neutrino oscillation experiments such as T2K,
NOvA, and so on [14].
Lattice QCD is the only known way to compute

rigorously the nucleon form factors and their corresponding
radii as the first principles of QCD. Recent developments in
computational technology and a tremendous increase in
computational resources have made it possible to perform
realistic lattice QCD with light quark (degenerate up and
down quarks) and strange quark flavors even in baryon
physics, which has more complex systematic uncertainties
than meson physics. Indeed, lattice QCD successfully
reproduces high accuracy the experimental values of gA
[15–18] that are precisely measured by the current pre-
cision measurements of neutron β decay, and its repro-
duction is an important benchmark study for the structure
of the nucleon based on lattice QCD. This success finally
reveals the major sources of the systematic uncertainty: the
chiral extrapolation to the physical point, the finite volume
effect, the finite lattice spacing effect, and the excited-
state contamination [19]. Furthermore, it motivates the
current efforts to improve precision of theoretical predic-
tions for the nucleon structure and solve related puzzles and
tensions [19–35].
For the sake of the high-precision determination with a

few percentage level, we perform fully dynamical lattice
QCD simulations at the physical point with lattice volume
larger than ð10 fmÞ4, which can eliminate the systematic
uncertainties due to chiral and infinite-volume extrapola-
tions (called as “PACS10” project). In the PACS10 project,
the PACS Collaboration plans to generate three sets of the
PACS10 gauge configurations at three different lattice
spacings. We have reported the first result obtained with
the PACS10 gauge configurations generated at the lattice
spacing of 0.085 fm (denoted as coarse lattice) [35].
This work uses the second ensemble of the PACS10

gauge configurations generated at the lattice spacing of
0.063 fm (denoted as fine lattice) in order to investigate the

finite lattice spacing effects on the nucleon form factors
toward the continuum limit. In a series of our studies,
we have retained some essential features, carried over from
our earlier work: (i) We perform fully dynamical lattice
QCD simulation with the stout-smeared OðaÞ-improved
Wilson-clover quark action and the Iwasaki gauge
action [36]. (ii) The physical spatial volume is kept at
about ð10 fmÞ4 where the finite volume effect is sufficiently
suppressed, and furthermore the nonzero minimum value of
the momentum transfer reaches about q2 ∼ 0.01 GeV2.
(iii) The quark masses are carefully tuned to the physical
point, which indicates that our simulations are free from the
chiral extrapolation. (iv) For high statistics analysis, the
all-mode-averaging (AMA) method [37–40], which is
optimized by the deflation technique [41] and implemented
by multigrid bias correction by the truncated solver
method [37], is utilized to significantly reduce the computa-
tional cost.
These specific features enable us to overcome the

systematic uncertainties due to chiral and infinite-volume
extrapolations and approach the low q2 region, which is
essential to evaluate the nucleon rms radii from the nucleon
form factors. However, since our previous study [35] had
been performed at a single lattice spacing, the uncertainty
associated with the finite lattice spacing still remains.
Therefore, the main objective of this study is to investigate
the remaining uncertainties associated with the finite lattice
spacing with respect to the nucleon form factors and
associated rms radii.
This paper is organized as follows. In Sec. II, we describe

our method to calculate the nucleon form factors and their
rms radii from the nucleon two- and three-point correlation
functions in lattice QCD simulation. Definitions and
notations for the nucleon form factors and their general
properties are also summarized in this section. In addition,
we will explain the methodology to determine the rms radii
and magnetic moment, and the strategy to examine the
systematic uncertainties of the excited-state contamination.
In Sec. III, we present a brief description of our gauge
configurations, which are a partial set of the PACS10 gauge
configurations generated by the PACS Collaboration [42].
The basic results obtained from the nucleon two-point
function including the dispersion relation are also summa-
rized in this section. In Sec. IV, the results for five form
factors, GE, GM, FA, FP, and GP are presented. We then
investigate the source-sink separation dependence of these
form factors and three rms radii (electric, magnetic, and
axial rms radii). Section V is devoted to a discussion of the
results of three form factors, FA, FP, andGP obtained in the
axial vector and pseudoscalar channels, which are related to
the axial Ward-Takahashi identity. Finally, we close with a
summary and outlook in Sec. VII.
In this paper, the matrix elements are given in

the Euclidean metric convention. γ5 is defined by γ5 ≡
γ1γ2γ3γ4 ¼ −γM5 , which has the opposite sign relative to
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that in the Minkowski convention (γ⃗M ¼ iγ⃗ and γM0 ¼ γ4)
adopted in the particle data group. The sign of all the form
factors is chosen to be positive. The Euclidean four-
momentum squared q2 corresponds to the spacelike
momentum squared as q2M ¼ −q2 < 0 in Minkowski space.

II. CALCULATION METHOD

A. General properties of nucleon form factors

In this paper, we would like to focus on five target form
factors: the electric (GE), magnetic (GM), axial (FA),
induced pseudoscalar (FP), and pseudoscalar (GP) form
factors, which appear in the nucleon matrix elements of the
vector, axial vector, and pseudoscalar currents as below.
Let us consider, for example, the nucleon matrix ele-

ments of the weak current that can describe the neutron β
decay. In addition to the standard beta-decay transition,
which is described by the vector and axial-vector currents,
we also include the nonstandard one as the pseudo-
scalar current as below. The nucleon matrix element of a
given quark bilinear operator as JOα ¼ ūΓO

α d with ΓO
α ¼

γα; γαγ5; γ5 for the vector ðVαÞ, axial vector ðAαÞ, and
pseudoscalar (P) currents have the following relativistically
covariant decomposition in terms of the five different form
factors: the vector (FV), induced tensor (FT), axial vector
(FA), induced pseudoscalar (FP), and pseudoscalar (GP) as

hpðp0ÞjVαðxÞjnðpÞi ¼ ūpðp0ÞðγαFVðq2Þ
þ σαβqβFTðq2ÞÞunðpÞeiq·x; ð1Þ

hpðp0ÞjAαðxÞjnðpÞi ¼ ūpðp0Þðγαγ5FAðq2Þ
þ iqαγ5FPðq2ÞÞunðpÞeiq·x; ð2Þ

hpðp0ÞjPðxÞjnðpÞi ¼ ūpðp0Þðγ5GPðq2ÞÞunðpÞeiq·x; ð3Þ

where jpðpÞi and jnðpÞi are the proton (p) and neutron (n)
ground state with the three-dimensional momentum p.
In the above equation, the four-dimensional momentum
transfer q between the proton and neutron is given by
q ¼ P − P0 with P ¼ ðEnðpÞ; pÞ and P0 ¼ ðEpðp0Þ; p0Þ.
The vector part of the weak matrix elements of neutron β

decay described by the FV and FT form factors is related to
the nucleon’s electromagnetic matrix element via an isospin
rotation, as long as the heavy-flavor contributions can be
neglected under the exact isospin symmetry. Suppose that
the electromagnetic current can be expressed in terms of the
up and down quark currents as je:m:

μ ¼ 2
3
ūγαu − 1

3
d̄γαd,

neglecting the strange and heavier quarks. Then the
electromagnetic matrix elements of the proton and neutron
are written by the proton’s matrix elements of the up and
down quark currents as

hpjje:m:
μ jpi ¼ 2

3
hpjūγαujpi −

1

3
hpjd̄γαdjpi; ð4Þ

hnjje:m:
μ jni ¼ −

1

3
hpjūγαujpi þ

2

3
hpjd̄γαdjpi; ð5Þ

which lead to the following relation:

hpjje:m:
μ jpi − hnjje:m:

μ jni ¼ hpjūγαu − d̄γαdjpi ð6Þ

¼ hpjūγαdjni; ð7Þ

where in the second equality an isospin rotation is used to
show a connection to the vector part of the weak matrix
elements of the neutron β decay. Therefore, the FV and FT
form factors in neutron β decay are related to the isovector
part of the electromagnetic Dirac (F1) and Pauli (F2) form
factors

Fv
1ðq2Þ ¼ FVðq2Þ; ð8Þ

Fv
2ðq2Þ ¼ 2MNFTðq2Þ; ð9Þ

where the nucleon massMN is defined by the average of the
proton and neutron masses. The isovector form factor Fv

1

(Fv
2) is given by the difference between the Dirac (Pauli)

form factors of the proton and neutron as

Fv
l ðq2Þ ¼ Fp

l ðq2Þ − Fn
l ðq2Þ; l ¼ f1; 2g; ð10Þ

where the individual form factors FN
l (N ¼ p, n) are

defined by

hNðp0Þjje:m:
α ðxÞjNðpÞi

¼ ūNðp0Þ
�
γαFN

1 ðq2Þ þ σαβ
qβ

2MN
FN
2 ðq2Þ

�
uNðpÞeiq·x;

ð11Þ

where q ¼ P − P0 with P ¼ ðENðpÞ; pÞ and P0 ¼
ðENðp0Þ; p0Þ.
The electric (GE) and magnetic (GM) Sachs form factors

are related to the Dirac (F1) and Pauli (F2) form factors of
the proton and neutron, individually as below:

GN
E ðq2Þ ¼ FN

1 ðq2Þ −
q2

4MN
FN
2 ðq2Þ; ð12Þ

GN
Mðq2Þ ¼ FN

1 ðq2Þ þ FN
2 ðq2Þ; ð13Þ

where N ¼ p, n. GEðq2Þ, and GMðq2Þ are relevant quan-
tities to describe experimental data obtained from elastic
electron-nucleon scattering experiments. Even for the
electric GEðq2Þ and magnetic GMðq2Þ Sachs form factors,
the isovector part is also given as
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Gv
l ðq2Þ ¼ Gp

l ðq2Þ − Gn
l ðq2Þ; l ¼ fE;Mg: ð14Þ

In this study, we primarily calculate Gv
Eðq2Þ and Gv

Mðq2Þ
which can be evaluated only by the connected-type con-
tribution as explained previously and hence can be used for
comparison with experiments, while the electromagnetic
form factors of the proton and neutron are also evaluated
separately without the disconnected-type contribution.
The normalization of the electromagnetic form factors

of the proton and neutron is given by the electric charge
and the magnetic moment, which are defined as the
electromagnetic form factors at the zero momentum
transfer, q2 ¼ 0. The electric charge and the magnetic
moment are given as Gp

Eð0Þ ¼ 1 and Gp
Mð0Þ ¼ μp ¼

þ2.7928473446ð8Þ for the proton and Gn
Eð0Þ ¼ 0 and

Gn
Mð0Þ ¼ μn ¼ −1.9130427ð5Þ for the neutron [43].
The axial-vector form factor FAðq2Þ and the induced

pseudoscalar form factor FPðq2Þ can be extracted
from the axial-vector part of the weak matrix elements
of the neutron β decay, which is associated with the nucleon
matrix element with the isovector axial-vector current
Aα ¼ ūγαγ5u − d̄γαγ5d. Especially the axial-vector cou-
pling defined by gA ¼ FAðq2 ¼ 0Þ is experimentally well
determined as gA ¼ 1.2754ð13Þ [43]. Therefore, we can use
this quantity as a good reference for verifying the accuracy
and reliability of our calculations. The q2 dependence of the
axial form factor can be directly compared with phenom-
enological values provided by the neutron β decay. This
indicates that first-principles calculations of the nucleon
form factors provide useful information to understand the
neutrino-nucleus interactions [8,44,45]. On the other hand,
the induced pseudoscalar form factor has much less
information in experiments [46,47].
In addition to the two form factors FAðq2Þ and FPðq2Þ,

we also calculate the pseudoscalar form factor GPðq2Þ,
which is also associated with the nucleon matrix element
with the isovector pseudoscalar current P ¼ ūγ5u − d̄γ5d.
Recall that the q2 dependence of these three form factors,
FAðq2Þ, FPðq2Þ, and GPðq2Þ, should be constrained by the
generalized Goldberger–Treiman (GGT) relation [48,49]

2MNFAðq2Þ − q2FPðq2Þ ¼ 2mGPðq2Þ ð15Þ

with a degenerate up and down quark mass m ¼ mu ¼ md,
since the GGT relation can be derived as a consequence of
the axial Ward–Takahashi identity (AWTI):

∂αAαðxÞ ¼ 2mPðxÞ; ð16Þ

which is phenomenologically referred to as the partial
conservation of the axial-vector current (PCAC). Therefore,
it is important to evaluate each of the three form factors
individually and then verify whether the GGT relation is
satisfied among them. This is really a nontrivial check of
the PCAC relation in terms of the nucleon form factors.

B. Root-mean-square radius of the nucleon

The root-mean-square (rms) radius Rl ¼
ffiffiffiffiffiffiffiffi
hr2l i

q
, which

measures a typical size in the coordinate space is defined
from the expansion of the normalized form factor Glðq2Þ
for l ¼ fE;M; Ag in the powers of q2:

Glðq2Þ ¼ Glð0Þ
�
1 −

1

6
hr2l iq2 þ

1

120
hr4l iq4 þ � � �

�
; ð17Þ

where the first coefficient determines the mean
squared radius hr2l i that can be read off the slope of
Glðq2Þ at q2 ¼ 0 as

hr2l i ¼ −
6

Glð0Þ
dGlðq2Þ
dq2

����
q2¼0

: ð18Þ

Here we use the notation of GA ≡ FA for the axial-vector
form factor.
The z-expansion method, which is known as a model

independent analysis and has been widely used in the
analyses of the form factors in both experiments and lattice
calculations [50–52], is mainly employed in this study.1 In
the z-expansion method, the given form factor Gðq2Þ is
fitted by the following functional form:

Gðq2Þ ¼
Xkmax

k¼0

ckzðq2Þk

¼ c0 þ c1zðq2Þ þ c2zðq2Þ2 þ c3zðq2Þ3 þ…; ð19Þ
where a new variable z is defined by a conformal mapping
from q2 as

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p ð20Þ

with tcut ¼ 4m2
π forG ¼ GE andGM, or with tcut ¼ 9m2

π for
G ¼ FA. Since respective values of tcut are associated with
the two-pion continuum or the three-pion continuum, the
value of mπ is set to be the simulated pion mass. A
parameter t0 can be taken arbitrarily within the range of
tcut > t0. For simplicity, t0 ¼ 0 is chosen in this study.2 The
transformation (20) maps the analytic domain inside a unit
circle jzj < 1 in the z plane so that Eq. (19) is supposed to
be a convergent Taylor series in terms of z. To achieve a
model independent fit, kmax that truncates an infinite series

1In Appendix C, we additionally present results obtained
from the model dependent analyses with the dipole form and
the polynomial (linear or quadratic) forms, for comparisons.

2The optimal choice of t0 is given by topt0 ¼ tcutð1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2max=tcut

p
Þ for minimizing the maximum size of jzj2 when

the value of q2 ranges from 0 to q2max [12]. However, the
maximum of the momentum transfer q2max ≈ 0.1 GeV2 used in
this study is so small that the fit result is insensitive to the choice
of either t0 ¼ 0 or t0 ¼ topt0 .
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expansion in z should be chosen to ensure that terms ckzk

become numerically negligible for k > kmax.
To check the stability of the fit results with a given kmax,

we use the singular value decomposition algorithm to solve
the least squares problem for high degree polynomials. We
determine the optimal value of kmax in each channel so that
the fitting is stable against the variation of kmax with a
reasonable χ2=d.o.f. and does not change the value of the
rms radius, which is given by Rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6ðc1=c0Þ=ð4tcutÞ

p
.

Recall that the normalization of the neutron electric form
factor is Gn

Eð0Þ ¼ 0 and hr2Ei is negative. Therefore, the
constant term in Eq. (19) is fixed to zero as c0 ¼ 0 during
the fitting, and the neutron’s mean-square radius is deter-
mined as hðrnEÞ2i ¼ −6ðc1Þ=ð4tcutÞ.

C. Correlation functions with momentum

In this study, the exponentially smeared quark operator
qSðt; xÞ with the Coulomb gauge fixing is used for the
construction of the nucleon interpolating operator as well as
a local quark operator qðt; xÞ. The smeared quark operator
is given by a convolution of the local quark operator with a
smearing function ϕðx; yÞ as

qSðt; xÞ ¼
X
y

ϕðx; yÞqðt; yÞ; ð21Þ

where the color and Dirac indices are omitted.
A smearing function ϕðx; yÞ is given by an isotropic

function of r ¼ jx − yj in a linear spatial extent of L as the
following form:

ϕðx; yÞ ¼ ϕðrÞ ¼

8><
>:

1 ðr ¼ 0Þ
Ae−Br ðr < L=2Þ;
0 ðr ≥ L=2Þ

ð22Þ

with two smearing parameters A and B. This procedure does
not preserve the full gauge invariance of thehadron two-point
correlation functions consisting of the spatially smeared
quark operators, so that the Coulomb gauge fixing is
necessary. Let us define the nucleon two-point function with
the local nucleon sink operator NLðt; pÞ located at t ¼ tsink
and the nucleon source operator N̄Xðt; pÞ located at t ¼ tsrc
for either smeared (X ¼ S) or local (X ¼ L) cases as

CXSðtsink − tsrc; pÞ ¼
1

4
Tr
�
PþhNXðtsink; pÞN̄Sðtsrc;−pÞi

�
with X ¼ fS; Lg; ð23Þ

where the nucleon operator with a three-dimensional
momentum p is given for the proton state by

NLðt;pÞ¼
X
x

e−ip·xεabc
�
uTaðt;xÞCγ5dbðt;xÞ

	
ucðt;xÞ ð24Þ

with the charge conjugation matrix, C ¼ γ4γ2. The super-
script T denotes a transposition, while the indices a, b, c and
u, d label the color and the flavor, respectively. The smeared
source operatorNSðt; pÞ is the same as the local oneNLðt; pÞ,
but all the quark operators u, d are replaced by the smeared
ones defined in Eq. (21). The lattice momentum is defined as
p ¼ 2π=ðLaÞ × n with a vector of integers n∈Z3 and L the
number of the spatial lattice sites. A projection operator
Pþ ¼ ð1þ γ4Þ=2 can eliminate the unwanted contributions
from the opposite-parity state for jpj ¼ 0 [53,54].
In order to calculate the isovector nucleon form factors,

we evaluate the nucleon three-point functions, which are
constructed with the spatially smeared sources and sink
operators of the nucleon as

Ck
Oα
ðt;p0;pÞ

¼1

4
Tr
�
PkhNSðtsink;p0ÞJOα ðt;p−p0ÞN̄Sðtsrc;−pÞi

� ð25Þ

with a given isovector bilinear current operator JOα defined
at Eqs. (1)–(3). In the above equation, Pk denotes the
projection operator to extract the form factors for the
unpolarized case Pk ¼ Pt ≡ Pþγ4 and polarized case (in
z direction) Pk ¼ P5z ≡ Pþγ5γz.
Recall that in the case of the exact SU(2) isospin

symmetry (mu ¼ md), the nucleon three-point functions
with the isovector currents do not receive any contributions
from the disconnected diagrams of all quark flavors thanks
to their mutual cancellations. In this paper, we present
results for the isovector nucleon form factors that can be
determined solely by the connected-type contribution in
2þ 1 flavor QCD, while the isoscalar ones require com-
putation of both connected and disconnected-type contri-
butions. Since the connected parts are in general precisely
computed rather than the disconnected parts, we still have a
good opportunity for accurate prediction of the nucleon-
neutrino elastic scattering, which is governed by the
isovector interaction.

D. Extraction of nucleon form factors

In a conventional way to extract the nucleon form
factors, we introduce the following ratio constructed by
an appropriate combination of two-point functions (23) and
three-point functions (25) [55,56] with a fixed source-sink
separation (tsep ≡ tsink − tsrc) as

Rk
Oα
ðt; p0; pÞ ¼ Ck

Oα
ðt; p0; pÞ

CSSðtsink − tsrc; p0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CLSðtsink − t; pÞCSSðt − tsrc; p0ÞCLSðtsink − tsrc; p0Þ
CLSðtsink − t; p0ÞCSSðt − tsrc; pÞCLSðtsink − tsrc; pÞ

s
; ð26Þ
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which is a function of the current operator insertion time t at
the given values of momenta p and p0 for the initial and final
states of the nucleon. In this work, we consider only the rest
frame of the final state with p0 ¼ 0, which leads to the
condition of q ¼ p − p0 ¼ p. Therefore, the squared four-
momentum transfer is given by q2 ¼ 2MNðENðqÞ −MNÞ
where MN and ENðqÞ represent the nucleon mass and
energy with the momentum q. In this kinematics,
Rk

Oα
ðt; p0; pÞ is rewritten by a simple notation Rk

Oα
ðt; qÞ.

The ratioRk
Oα
ðt; qÞwith appropriate combinations of the

projection operator Pk (k ¼ t, 5z) and the α component of
the isovector bilinear bare current J̃Oα gives the following
asymptotic values including the respective form factors in
the asymptotic region (tsep=a ≫ ðt − tsrcÞ=a ≫ 1):

Rt
V4
ðt; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þMN

2EN

s
G̃v

Eðq2Þ; ð27Þ

R5z
Vi
ðt; qÞ ¼ −iεij3qjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ENðEN þMNÞ
p G̃v

Mðq2Þ; ð28Þ

R5z
Ai
ðt; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þMN

2EN

s 

F̃Aðq2Þδi3 −

qiq3
EN þMN

F̃Pðq2Þ
�
;

ð29Þ

R5z
A4
ðt; qÞ ¼ iq3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ENðEN þMNÞ
p
×
�
F̃Aðq2Þ − ðEN −MNÞF̃Pðq2Þ

	
; ð30Þ

R5z
P ðt; qÞ ¼

iq3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ENðEN þMNÞ

p G̃Pðq2Þ; ð31Þ

where the nucleon energy ENðqÞ is simply abbreviated as
EN , and the indices i and j run the three spatial directions. If
the condition tsep=a ≫ ðt − tsrcÞ=a ≫ 1 is satisfied, the five
target quantities, the electric (GE), magnetic (GM), axial
(FA), induced pseudoscalar (FP), and pseudoscalar (GP)
form factors, can be read off from an asymptotic plateau of
the ratio Rk

Oα
ðt; qÞ, being independent of the choice of tsep.

This approach is hereafter referred to as the standard
plateau method. Following our previous work [35], we
simply use the uncorrelated constant fit to evaluate the
plateau values from the ratio, since a fixed fit range can be
maintained for all seven momentum transfers.
Finally, we recall that the quark local currents on the

lattice receive finite renormalizations relative to their
continuum counterparts in general. The renormalized
values of the form factors require the renormalization
factors ZO ðO ¼ V; A; PÞ:

Gv
Eðq2Þ ¼ ZVG̃

v
Eðq2Þ; ð32Þ

Gv
Mðq2Þ ¼ ZVG̃

v
Mðq2Þ; ð33Þ

FAðq2Þ ¼ ZAF̃Aðq2Þ; ð34Þ

FPðq2Þ ¼ ZAF̃Pðq2Þ; ð35Þ

GPðq2Þ ¼ ZPG̃Pðq2Þ; ð36Þ

where the renormalization factors are defined through the
renormalization of the quark currents JOα ¼ ZOJ̃Oα .

3 The
renormalization factors ZV and ZA are scale independent,
while ZP depends on the renormalization scale. In order to
compare the experimental values, four form factors,GE,GM,
FA, and FP, will be properly renormalized with ZV and ZA,
which are determined by the Schrödinger functional method
as given in Appendix E, while the pseudoscalar form factor
presented in this study is only the bare quantity as indicated
by G̃P.

E. Test for the PCAC relation using the nucleon

As described in Sec. II A, the three form factors, FAðq2Þ,
FPðq2Þ, and GPðq2Þ, are related to each other through the
GGT relation (15) and are not independent. Therefore, if
the GGT relation is well satisfied in our simulations, it
offers a way to define a bare quark mass4 by the following
specific ratio:

mnucl
GGT ¼ 2MNFAðq2Þ − q2FPðq2Þ

2G̃Pðq2Þ
; ð37Þ

whichmay have no apparentq2 dependence [49]. As reported
in our previous studies at the coarse lattice spacing [35,57],
the quark mass mnucl

GGT defined by Eq. (37) is roughly 3 times
larger than a (bare) quark mass (hereafter denoted asmpion

PCAC)
obtained from the pion two-point correlation functions with
the PCAC relation. We concluded that both FPðq2Þ and
G̃Pðq2Þ significantly suffer from the excited-state contami-
nation, which induces the distortion of their pion-pole
structures [35,57].
To verify the PCAC relation using the nucleon, we may

directly use the nucleon three-point correlation functions
instead of the three form factors, following Ref. [58]:

mnucl
PCAC ¼ ZA∂αC

5z
Aα
ðt; qÞ

2C5z
P ðt; qÞ

¼ 1

2

hNSðtsinkÞ∂αAαðtÞN̄SðtsrcÞi
hNSðtsinkÞP̃ðtÞN̄SðtsrcÞi

;

ð38Þ

3Hereafter, the form factors and currents with and without tilde
indicate bare and renormalized ones.

4The axial Ward-Takahashi identity on the lattice may be
represented by ∂αAαðxÞ ¼ 2mPðxÞ with the renormalized cur-
rents Aα ¼ ZAÃα and P ¼ ZPP̃. Thus, m represents the bare
value unless P is renormalized.
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which does not require the spectral decomposition. In other
words, the value of mnucl

PCAC can be evaluated at the level of
the nucleon three-point correlation function without iso-
lating the ground-state contribution from the excited-state
contributions, similar to the determination of mpion

PCAC from
the pion two-point correlation functions.
In Eq. (38), the derivatives of the nucleon three-

point function with respect to the coordinate are
evaluated by

∂4C
5z
A4
ðt; qÞ ¼ 1

2a
fC5z

A4
ðtþ a; qÞ − C5z

A4
ðt − a; qÞg ð39Þ

for the time component and

∂kC
5z
Ak
ðt; qÞ ¼ iqkC

5z
Ak
ðt; qÞ ð40Þ

for the spatial components (k ¼ 1, 2, 3). Here, we adopt the
naive discrete momentum qk ¼ 2π

aL nk (nk ¼ 0; 1; 2;…;
ðL − 1Þ), while the lattice discrete momentum qk ¼
1
a sin½2πL nk� is adopted in the original proposal [58]. This
is simply because we would like to treat the momentum in a
manner equivalent to the analysis for the nucleon form
factors which are extracted from the common three-point
functions. Indeed, there is no difference in either case at low
momenta.5

Both mnucl
GGT and mnucl

PCAC can be regarded as a bare quark
mass defined through the axial Ward-Takahashi identity as
long as they exhibit q2 independent behavior as a function of
q2. Therefore, it is worth comparing the quark masses by
these two definitions. If a difference is observed between
mnucl

GGT andm
nucl
PCAC, it would confirm that themain reasonwhy

mnucl
GGT is overestimated compared to mpion

PCAC is due to the
excited-state contamination. On the other hand, if mnucl

PCAC

coincides with mpion
PCAC, we justify that OðaÞ improve-

ment of the axial-vector current Ãimp
α ¼ Ãα þ cAa∂αP̃

does not help to solve the discrepancy between mnucl
GGT and

mnucl
PCAC. This is simply because the second termof ∂αP̃ causes

amomentumdependence onmnucl
PCAC, though it is not the case

for mpion
PCAC determined by the zero-momentum projected

two-point functions of the pion.

III. SIMULATION DETAILS

A. PACS10 configurations on a 1604 lattice

In this paper, we use the second PACS10 ensemble,
which is a set of gauge configurations generated by the
PACS Collaboration with L3 × T ¼ 1603 × 160 lattice and
physical light quark masses at the second gauge coupling
β ¼ 2.00 corresponding to the lattice spacing of a ¼
0.06343ð14Þ fm [a−1 ¼ 3.1108ð70Þ GeV] [42,59] using
the six stout-smeared OðaÞ-improved Wilson quark action
and the Iwasaki gauge action [36]. The stout-smearing
parameter is set to ρ ¼ 0.1 [60]. The improved coefficient,
cSW ¼ 1.02, is nonperturbatively determined using the
Schrödinger functional (SF) scheme [61]. The hopping
parameters of ðκud; κsÞ ¼ ð0.125814; 0.124925Þ are care-
fully chosen to be almost at the physical point. The scale is
determined from the Ξ baryon mass input MΞ ¼
1.3148 GeV [42]. A brief summary of the simulation
parameters is given in Table I.
The previous works by the PACS Collaboration showed

that the finite-size effects on both the nucleon mass [62] and
the nucleon matrix elements [63] are negligible on two
lattice volumes (linear spatial extents of 10.9 fm and 5.5 fm)
at the coarse lattice spacing of a ¼ 0.08520ð16Þ fm.
Therefore, lattice QCD simulations with a spatial size more
than 10 fm using the PACS10 configurations provide us
with a very unique opportunity to explore the nucleon
structure without any serious finite-size effect. Especially,
the large spatial volume of ð10 fmÞ3 allows us to investigate
the form factors in the small momentum transfer region. The
lowest nonzero momentum transfer reaches the value of
q2 ¼ 0.015 ðGeVÞ2, which is smaller than m2

π even at an
almost physical pion mass (mπ ≈ 138 MeV).
We use 19 gauge configurations separated by five

molecular dynamics trajectories. Since there are four
choices for a temporal direction on a 1604 lattice, we
rotate the temporal direction using hypercubic symmetry of
each gauge configuration and then increase the total
number of measurements by a factor of 4 to treat them
as 76 gauge configurations in total.6 The statistical
errors are estimated by the single elimination jackknife
method.7

TABLE I. Parameters of the second PACS10 ensemble. See Ref. [42] for further details.

β L3 × T a−1 [GeV] κud κs cSW mπ [GeV]

2.00 1603 × 160 3.1108(70) 0.125814 0.124925 1.02 0.138

5The momentum region used in the study is a significantly
lower region thanks to the large spatial extent of La ∼ 10 fm.

6Alternatively, the averages of the four datasets can be
combined into one and analyzed as 19 statistics. We have
confirmed that there is no significant difference between the
two analyses.

7There is no significant difference in bin size ranging from 1 to
5 in the jackknife analysis of the nucleon two-point functions.
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B. Computational and technical details

In this study, we compute the correlation functions
multiple times with respect to the geometrical symmetries
of the lattice at a given configuration. The computational
cost is significantly reduced by adopting the AMA method
[37–40] with the deflated Schwarz alternating procedure
(SAP) [64] and generalized conjugate residual (GCR) [41]
for the measurements as shown in our previous works
[35,63]. We compute the combination of the correlation
function with high-precision OðorgÞ and low-precision
OðapproxÞ as

OðAMAÞ ¼ 1

Norg

XNorg

f∈G

ðOðorgÞf−OðapproxÞfÞþ 1

NG

XNG

g∈G

OðapproxÞg;

ð41Þ

where the superscripts f, g denote the transformation under
the lattice symmetry G. In our calculations, it is transla-
tional symmetry, e.g., changing the position of the source
operator as in Refs. [57,62,65,66]. Norg and NG are the
numbers for OðorgÞ and OðapproxÞ, respectively. The numbers
and the stopping conditions of the quark propagator for the
high- and low-precision measurements are summarized in
Table II.
In calculation of the nucleon two- and three-point

functions, we use the same quark action as in the gauge
configuration generation with the hopping parameter
κ ¼ κud ¼ 0.125814 for the degenerated up-down quarks,
the improved coefficient, cSW ¼ 1.02, and six steps of
stout-smearing to the link variables. The periodic boundary
condition in all the temporal and spatial directions is
adopted in the quark propagator calculation.

The quark propagator is calculated using the exponential
smeared source (sink) with the Coulomb gauge fixing. The
smearing parameters for the quark propagator defined in
Eq. (22) are chosen as ðA;BÞ ¼ ð1.2; 0.11Þ, which optimize
the effective mass plateau for the smear-local case.
The nucleon three-point functions are calculated using

the sequential source method with a fixed source-sink
separation [67,68]. This method requires the sequential
quark propagator for each choice of a projection operator
Pk regardless of the types of current JOα .
As for the source-sink separation of tsep (denoted as

tsep ¼ tsink − tsrc), we use three variations of tsep=a ¼
f13; 16; 19g as summarized in Table II. We investigate
the effects of the excited-state contamination by varying tsep
from 0.82 to 1.20 fm in the standard plateau method that
was explained in Sec. II D. In this study, for nonzero spatial
momentum, we choose the seven variations of q2 ≠ 0 as
listed in Table III.
The renormalization constants for vector and axial-

vector currents, ZOðO ¼ V; AÞ are obtained with the SF
scheme at vanishing quark mass, which is described
in Appendix E. The resultant values are ZV ¼
0.96677ð41Þð316Þ and ZA ¼ 0.9783ð21Þð81Þ, where the
first error represents the statistical one and the second error
represents the systematic one that is evaluated from the
difference between the results given by two volumes, 123

and 163. However, the second errors are simply ignored in
the later analysis, since we choose the larger volume to set
the physical scale.

C. Nucleon spectra and the dispersion relation

Figure 1 shows the nucleon effective mass plot with
jpj ¼ 0. We compute two types of nucleon two-point

TABLE II. Details of the measurements: the spatial extent (L), time separation (tsep), the stopping condition of quark propagator in the
high- and low-precision calculations (ϵhigh and ϵlow), the number of measurements for the high- and low-precision calculations (Norg and
NG), the number of configurations (Nconf ), and the total number of the measurements (Nmeas ¼ NG × Nconf ), respectively.

L tsep ϵhigh ϵlow Norg NG Nconf Nmeas Fit range

160 13 10−8 � � �a 1 64 76 4,864 ½4∶8�
16 10−8 � � �a 3 192 76 14,592 ½6∶10�
19 10−8 � � �a 4 768 76 58,368 ½7∶11�

aThe low-precision calculations use a fixed number of iterations for the stopping condition as six GCR iterations using 104 SAP
domain size with 40 deflation fields.

TABLE III. Choices for the nonzero spatial momenta: q ¼ 2π
160a × n. The bottom row shows the degeneracy of n due to the permutation

symmetry between �x, �y, �z directions.

Label Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0) (2, 1, 0) (2, 1, 1) (2, 2, 0)
jnj2 0 1 2 3 4 5 6 8
Degeneracy 1 6 12 8 6 24 24 12
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functions. The smear-smear denotes that both of the source
and sink operators in the nucleon two-point function are
exponentially smeared. On the other hand, the smear-local
means that only the source operator is smeared, while the
local one is used for the sink operator. We observe the good
plateau for t=a ≥ 16 in the smear-local effective mass plot
with our choice of smearing parameters. Thus, the corre-
lated single-exponential fit with the range of t=a ¼ 16–22
is used for the smear-local nucleon two-point function in
order to measure the nucleon rest mass MN . The nucleon
mass is obtained as

aMN ¼ 0.3045ð8Þ; MN ¼ 0.9472ð34Þ GeV; ð42Þ

where the error is statistical only. This value is slightly
heavier but very close to the experimental value of
Mexp

N ¼ 0.938918754ð5Þ GeV, which is given by the aver-
age of the proton and neutron masses.
We also measure the nucleon energies, ENðpÞ, from the

smear-local nucleon two-point functions for all finite
momenta p. In Fig. 2, we show the effective energy plot
for the momentum projected nucleon two-point function in
the smear-local case. Since the smearing parameters are
optimized for the zero-momentum case, the suppression of
the excited-state contamination near the source operator
gets worse with higher momentum. However, the plateau
behaviors are commonly shown at least in the region of
t=a ≥ 16 as well as the zero momentum. Therefore, the
nucleon energies ENðpÞ are evaluated in the same way as
the rest mass of the nucleon.
Next, the fitted values of ENðpÞ are used to verify the

nucleon dispersion relation as shown in Fig. 3. To discuss
the OðapÞ lattice discretization artifacts on the dispersion

relation, we plot the results obtained from the present and
previous calculations carried out on the 1604 lattice
(denoted as the fine lattice) and the 1284 lattice (denoted
as the coarse lattice), respectively. The horizontal axis
shows the momentum squared given by lattice momentum
as p2

lat ¼ ð2πaLÞ2 × jnj2, while the vertical axis represents the
momentum squared obtained from p2

con ¼ E2
NðpÞ −M2

N in
physical units. As can be seen in Fig. 3, both fine and
coarse lattice results satisfy the relativistic continuum
dispersion relation at least up to jnj2 ¼ 8 within statistical
precision. Since there is no clear systematic difference
between the two results, the size of possible Oða2Þ
corrections is not evident.
For a more accurate check of the dispersion relation, we

evaluate the energy splittings, ΔENðpÞ≡ ENðpÞ −MN ,
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FIG. 2. Nucleon effective energy plot for the momentum
projected two-point function with the smear-local operators.
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FIG. 3. Check of the dispersion relation for the nucleon by
using the measured values of ENðpÞ. The variables p2

con and p2
lat

appearing on the x axis and y axis are defined in the text. For
comparison, the relativistic continuum dispersion relation is
denoted as a dashed line.
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FIG. 1. Nucleon effective mass plot for Nucleon effective mass
plot for the smear-smear (circle symbols) and the smear-local
(diamond symbols) operators in the nucleon two-point functions.
The three red lines represent the fit result of the smear-local
operators in the range of t=a ¼ 16–22 with one-standard error
band.
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from the ratio of the nonzero and zero momentum two point
functions of the nucleon

R2ptðt; pÞ ¼ CLSðt; pÞ
CLSðt; 0Þ

; ð43Þ

where the smear-local combination is used for both nonzero
and zero-momentum nucleon two-point functions.
As shown in Fig. 4, large statistical fluctuations at

large t region are suppressed, while the excited-state
contamination at small t region is significantly reduced.
It is observed that the energy splittings provide more
convincing plateaus than the cases of the nucleon
energies. This is because the statistical fluctuations
in R2ptðt; pÞ are eliminated by the strong correlation
between zero and nonzero momentum two-point func-
tions. Furthermore, the excited-state contributions at small
t region seem to be canceled out from the denominator and
numerator of the ratio.
The values of ΔENðpÞ are evaluated by the correlated fit

with the same fit range of t=a ¼ 16–20 with high accuracy,
though the long plateau starts at much earlier t than the case
of nucleon energy. The fitted values of ΔENðpÞ are
summarized in Table IV. These values of ΔENðpÞ are
useful to verify the nucleon dispersion relation more
accurately, since the values of p2

con can be alternatively
evaluated as p2

con ¼ ΔENðpÞðΔENðpÞ þ 2MNÞ. In Fig. 5,
the checks of the nucleon dispersion relation for the fine
(1604) and coarse (1284) lattices are displayed by using
ΔENðpÞ instead of ENðpÞ.
Figure 5 reveals a slight deviation from the continuum

dispersion relation thanks to the accurate estimations of
ΔENðpÞ. This new way to evaluate p2

con exposes each size
of the lattice discretization uncertainties at the fine (1604)
and coarse (1284) lattices through the check of the
dispersion relation. A linear fit applied to the data points
results in a deviation of 0.53(3)% for the fine lattice and

1.1(2)% for the coarse lattice from the dashed line whose
slope corresponds to the continuum dispersion relation.
These sizes are roughly consistent with the Oða2Þ

corrections on the speed of light, which are expected from
our usage of nonperturbatively OðaÞ improved Wilson
fermions. The observed Oða2Þ correction to the continuum
dispersion relation at each lattice spacing does not affect the
analysis to evaluate the nucleon form factors from
Eqs. (27)–(31). Therefore, we simply use the continuum
dispersion relation to evaluate the values of ENðqÞ,
which appears in Eqs. (27)–(31), with the measured value
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FIG. 4. Effective energy plot for the energy splittings ΔENðpÞ
calculated by the ratio correlator R2ptðt; pÞ.

TABLE IV. Fitted nucleon energy splitting ΔENðqÞ obtained
from the smear-local nucleon two-point function in lattice units.
Results for ΔENðqÞ with nonzero momentum q ¼ 2π

aL × n are
averaged over all possible permutations of n ¼ ðnx; ny; nzÞ. In
addition, two types of the corresponding momentum transfers,
q2disp ¼ 2MNð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ q2
p

−MNÞ and q2meas ¼ 2MNΔENðqÞ, with
and without the assumption of the continuum dispersion relation
for ENðqÞ are also summarized for each momentum q.

Label aΔENðqÞ Fit range q2disp ½GeV2� q2meas ½GeV2�
Q1 0.00263(10) ½16∶20� 0.0149 0.0157(6)
Q2 0.00528(19) ½16∶20� 0.0296 0.0311(11)
Q3 0.00801(38) ½16∶20� 0.0442 0.0472(22)
Q4 0.01039(32) ½16∶20� 0.0587 0.0612(19)
Q5 0.01291(37) ½16∶20� 0.0731 0.0760(22)
Q6 0.01546(42) ½16∶20� 0.0874 0.0911(25)
Q7 0.02111(54) ½16∶20� 0.1157 0.1245(32)
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FIG. 5. Check of the dispersion relation for the nucleon in an
improved method, where the values of p2

con are precisely
evaluated with the values of ΔENðq2Þ instead of ENðq2Þ. A
dashed line represents the relativistic continuum dispersion
relation, while red and blue dotted lines are given by the linear
fit of each dataset. The discrepancies from the relativistic
continuum dispersion relation become visible, but each is very
tiny as a deviation of 1.1% for the coarse lattice and 0.53% for the
fine lattice from a slope of the continuum one.
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ofMN . However, the values of q2 are slightly influenced by
choosing one of two methods to evaluate the momentum
transfer. One is to use the continuum dispersion
relation similar to the analysis for the nucleon form factors
as q2disp ¼ 2MNð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ð2πn=ðLaÞÞ2
p

−MNÞ, while the
other is to use the measured values of ΔENðq2Þ as
q2meas ¼ 2MNΔENðqÞ. Both values of q2meas and q2disp are
tabulated in Table IV. The discrepancy between q2meas

and q2disp should be taken into account in examining q2

dependence of the nucleon form factors. We primarily use
the definition of q2disp for studying q2 dependence of the
nucleon form factors and then evaluate the systematic
uncertainties by a difference associated with the choice
of q2disp or q2meas.

IV. NUMERICAL RESULTS I:
ELECTROMAGNETIC FORM FACTORS AND

AXIAL FORM FACTOR

A. Electric form factor and electric charge radius

1. Isovector sector

The electric form factor is extracted from the ratio
Rt
V4
ðt; pÞ defined in Eq. (27). In Fig. 6, t dependence of

the isovector (bare) electric form factor G̃v
Eðq2Þ for all

eight variations of q2 including q2 ¼ 0 with tsep=a ¼
f13; 16; 19g is displayed. Since the excited-state contami-
nation could not be completely eliminated even by fine-
tuning of the smearing parameters in practice, one should
calculate G̃v

Eðq2Þ with several choices of tsep and confirm

FIG. 6. Isovector electric form factor G̃v
Eðq2Þ obtained from the ratio of Eq. (27) as a function of the current operator insertion time t

for tsep=a ¼ 13 (purple symbols), 16 (green symbols), 19 (blue symbols) with all eight momentum transfers labeled from Q0 to Q7. The
gray bands display the fit range and 1 standard deviation in each panel.
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that the evaluated values do not show distinct tsep depend-
ence during the variations of tsep with a certain statistical
precision for every q2. Indeed, we observe the good
plateaus for all choices of tsep and all variation of q2.
The values of G̃Eðq2Þ are extracted by the standard plateau
method using the uncorrelated constant fit. In Fig. 6, the
solid lines represent the fit results and the gray-shaded
bands display their statistical uncertainties and fit ranges.
Figure 7 shows the tsep dependence of the extracted values
of G̃v

Eðq2Þ, which are summarized in Appendix B. The
results given with the different choices of tsep are mutually
consistent with each other within the statistical uncertain-
ties for all eight variations of q2.
We hereafter make the best estimates of the rms radius,

which includes the statistical error and two systematic
errors in the following way. First, we perform the
simultaneous fit with two datasets of tsep=a ¼ f16; 19g
as our final estimate for the central value with 1 standard
deviation given by the jackknife analysis. We also use a
single dataset of tsep=a ¼ 19 for comparison and quote a
difference between two results as the first systematic error.
In addition, another possible source of the systematic
uncertainties for determination of the rms radius is the
slight deviation from the continuum dispersion relation
observed in the measured nucleon energies as previously
discussed in Sec. III C. Therefore, the second systematic
error associated to the choice of q2 definitions is also
quoted as the difference between the results obtained from
either q2disp or q2meas.
Figure 8 shows the q2 dependence of Gv

Eðq2Þ ¼
ZVG̃

v
Eðq2Þ with a choice of q2disp for the horizontal axis

together with the Kelly’s fit [69] as the experimental data.
In addition, the coarse lattice results are also plotted for

comparison.8 One can easily see that the results obtained
from the fine lattice are located slightly above the Kelly’s
fit, but appear systematically lower than the coarse lattice
results.
Next, let us evaluate the isovector electric rms radius by

the z-expansion method. The analyses with other model-
dependent functional forms are performed in Appendix C.
Here it should be recalled that the size of the linear spatial
extent L limits the nonzero minimum value of q2 that can
be accessed on the lattice. This situation causes the
uncertainty in estimating the rms radius, which is deter-
mined from the slope of the corresponding form factors at
q2 ¼ 0. In this sense, the large spatial volume (L ¼ 160)
used in our study is an advantage to considerably reduce
this particular uncertainty. In fact, we can access q2 ¼
0.015 ðGeVÞ2 for the nonzero momentum transfer, by
using the PACS10 configurations at the lattice spacing
of 0.063 fm.
Figure 9 shows Gv

Eðq2Þ as a function of zðq2Þ together
with the z-expansion fitting results. The circle symbols are
plotted for tsep=a ¼ 19 data, while the cross symbols are
plotted for combined data of tsep=a ¼ f16; 19g. On each
dataset, the inner curve of the band represents the central
value obtained from the z-expansion fit, while the outer
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FIG. 7. The source-sink separation (tsep) dependence of the
isovector electric form factor G̃v

Eðq2Þ with all eight momentum
transfers.
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FIG. 8. Results of the isovector (renormalized) electric form
factor Gv

Eðq2Þ as a function of four-momentum squared q2 for
each dataset of tsep=a ¼ 13 (diamond symbols), tsep=a ¼ 16

(square symbols), and tsep=a ¼ 19 (circle symbols), and a
combined data of tsep=a ¼ f16; 19g (cross symbols). The orange
band represents Kelly’s fit [69] as the experimental data. Triangle
symbols, which are obtained from the coarse (1284) lattice, are
also plotted for comparison.

8The coarse lattice results presented in this paper are obtained
with our slightly improved analyses compared to those used in
Ref. [35]. The present results are statistically consistent with
those of Ref. [35], but is more stable with respect to the fitting
performed in the analysis of the q2 dependence of each form
factor.
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curves represent the 1 standard deviation. In Fig. 10, we
show stability of the variation of kmax in extractingffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
for each tsep data and a combined data of

tsep=a ¼ f16; 19g. It is clearly seen that the resultant values
given by the z expansion are stable under the variation of

kmax for all cases if kmax ≥ 3. Therefore, in this study, we
choose kmax ¼ 4 for the evaluation of the rms radius in the
z-expansion analysis and then quote the fit result with
kmax ¼ 4 as our best estimate. The obtained values offfiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
are summarized in Table V.

Next, let us discuss tsep dependence of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
. It is

observed that the results obtained from tsep=a ¼ 13 and 16
are in good agreement with each other within their
statistical errors, while they are relatively underestimated
in comparison to the corresponding experimental values.
On the other hand, the result of tsep=a ¼ 19 seems to be
consistent with the experimental values.
In this situation, one might consider that the discrepancy

between tsep=a ¼ f13; 16g and tsep=a ¼ 19 is associated
with the systematic uncertainties stemming from the
excited-state contamination. Although there is no signifi-
cant tsep dependence of G̃v

Eðq2Þ at every q2 as shown in
Fig. 7, a more careful look at the data reveals that the result
of tsep=a ¼ 19 at zero momentum transfer is slightly larger
than the other two data of tsep=a ¼ f13; 16g, while the
results at nonzero momentum transfers show an opposite
trend. This slight difference between tsep=a ¼ 19 and
tsep=a ¼ f13; 16g sensitively affects the determination of
the rms radius that is determined as the slope of the form
factor with respect to q2 at the zero momentum transfer
using the z-expansion method.
What we observe here may suggest that there is some

strong correlation among the values of G̃v
Eðq2Þ evaluated at

different q2 in the dataset of tsep=a ¼ 19. In general, such
data correlation can be addressed by performing the corre-
lated fit using a covariance matrix. However, there is no
significant change in fit results obtained from the z-expan-
sion method, regardless of correlated or uncorrelated fits. In
that sense, we do not have a firm conclusion on this point.
We simply use the uncorrelated fits to examine the q2

dependence of the form factors in the z-expansion method,
hereafter.
Comparing with our previous results obtained with the

1284 (coarse) lattice, the statistical precision achieved in this
study is slightly better due to the increased number of
measurements. Therefore, it can be clearly seen that the
central value of our best estimate of the electric rms radius
obtained from the fine lattice deviates from that of the coarse
lattice by about 8.3%, which is beyond the statistical
uncertainty. Contrary to expectations from checking the
nucleon dispersion relation, the quantity of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
is

subject to fairly large systematic uncertainties associatedwith
the finite lattice spacing. To remove this lattice discretization
artifact, it is necessary to take the continuum limit.

2. Proton and neutron sector

We also calculate the electric form factors, G̃p
Eðq2Þ and

G̃n
Eðq2Þ, separately from the ratioRt

V4
ðt; qÞ for each proton
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FIG. 9. Results of the isovector electric form factor Gv
Eðq2Þ as a

function of zðq2Þ for tsep=a ¼ 19 data (circle symbols) and a
combined data of tsep=a ¼ f16; 19g (cross symbols). On each
dataset, the inner curve of the band represents the central value
obtained from the z-expansion analyses, while the outer curves
represent the 1 standard deviation.
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and neutron, where we omit the disconnected contributions.
Similar to the isovector case, Fig. 11 for the proton and
Fig. 12 for the neutron show the good plateaus that can be
observed in each case of tsep. The tsep dependence of
G̃p

Eðq2Þ and G̃n
Eðq2Þ are also examined in Fig. 13. The tsep

dependence of the proton’s electric form factor reveals the
similar tendency found in the isovector case as shown in
Fig. 7. Although there is no significant tsep dependence
observed within the statistical errors, the results of tsep=a ¼
19 at nonzero momentum transfers seem to be slightly
smaller than the other two data of tsep=a ¼ f13; 16g with a
closer look at the data. On the other hand, there is no tsep
dependence observed in the electric form factor of the
neutron within the statistical errors. The whole results of
Gp

Eðq2Þ and Gn
Eðq2Þ obtained by the standard plateau

method are displayed in Fig. 14, and their values are
summarized in Appendix B together with the results
of Gv

Eðq2Þ.
The proton’s and neutron’s electric charge radii are

determined by the z-expansion method, though the analy-
ses with other model-dependent functional forms are
discussed in Appendix C. Figures 15 and 16 show the
results obtained from the z-expansion fit. The former
represents zðq2Þ dependence of Gv

Eðq2Þ, while the latter
shows the stability of the variation of kmax in extracting the
radii. In Fig. 10, The results of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrpEÞ2i

p
and hðrnEÞ2i

obtained from the z-expansion method are summarized in
Table V, where the two systematic errors are quoted in the
similar manner to the isovector case.

It is observed that the differences between the fine and
coarse lattice results are not as large as the isovector case.
However, more accurate calculations including the discon-
nected-type contributions are need tomake a firm conclusion.

B. Magnetic form factor and magnetic rms radius

1. Isovector sector

The magnetic form factor is extracted from the ratio
R5z

Vi
ðt; pÞ defined in Eq. (28). In Fig. 17, the t dependencies

of the isovector (bare) magnetic form factor G̃v
Mðq2Þ for all

seven variations of q2 ≠ 0 with tsep=a ¼ f13; 16; 19g are
displayed.
As is in the case of the electric form factors, we observe

the good plateaus in datasets of tsep=a ¼ 13 and 16 for all
variations of q2. On the other hand, in the case of
tsep=a ¼ 19, t dependence of G̃v

Mðq2Þ for the lower q2

shows a slight wiggle, which seems to break time reversal
between the source and sink points. However, the time-
reversal feature becomes restored for the higher q2. Indeed,
the difference between the top and bottom of the wiggle are
at most within the statistical errors and does not affect the
analysis with the constant fit. Therefore, in all cases of tsep,
we extract the values of G̃v

Mðq2Þ by the standard plateau
method with the same fit range for all q2 as summarized in
Table II.
In Fig. 18, we show the tsep dependence of the G̃

v
Mðq2Þ,

whose data are summarized in Appendix B. Although the
values of G̃v

Mðq2Þ have the larger statistical errors than

TABLE V. Results for the electric rms charge radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrEÞ2i

p
in the isovector, proton, and neutron channels. In the row of “This

work” we present our best estimates. The first error is statistical error, while the second and third errors are systematic ones explained in
the text. Our previous results obtained from the 1284 (coarse) lattice [35] are also included. Results for the proton and neutron are
obtained without the disconnected diagram.

Isovector Proton Neutron

Fit type q2 [GeV2] tsep=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
[fm] χ2=d.o.f.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrpEÞ2i

p
[fm] χ2=d.o.f. hðrnEÞ2i [fm2] χ2=d.o.f.

1604 (fine) lattice
kmax ¼ 4 q2disp ≤ 0.116 f16; 19g 0.832(19) 1.5 0.804(14) 1.4 −0.054ð23Þ 0.84

19 0.902(27) 0.04 0.853(20) 0.04 −0.100ð40Þ 0.12
kmax ¼ 3 q2meas ≤ 0.091 f16; 19g 0.810(19) 1.6 0.786(14) 1.5 −0.050ð32Þ 0.89

19 0.874(26) 0.07 0.832(19) 0.05 −0.091ð43Þ 0.12

This work 0.832(19)(70)(22) 0.804(14)(49)(18) −0.054ð23Þð46Þð4Þ
1284 (coarse) lattice

kmax ¼ 4 q2disp ≤ 0.102 f12; 14; 16g 0.768(43) 0.9 0.767(14) 0.6 −0.027ð22Þ 0.9
f14; 16g 0.813(48) 1.0 0.802(40) 0.6 −0.060ð29Þ 1.1

kmax ¼ 4 q2meas ≤ 0.112 f12; 14; 16g 0.734(42) 0.8 0.734(31) 0.6 −0.026ð20Þ 0.9
f14; 16g 0.780(47) 1.0 0.768(39) 0.6 −0.056ð27Þ 1.1

PACS10 1284 lattice 0.768(43)(45)(34) 0.767(14)(35)(33) −0.027ð23Þð33Þð1Þ
Experimental value [43,70]

ep scattering 0.943(19) 0.880(20) −0.1155ð17Þ
μH atom 0.907(1) 0.8409(4) � � �
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those of G̃v
Eðq2Þ, the resultant values of G̃v

Mðq2Þ show no
significant tsep dependence. Therefore, we perform the
simultaneous fit with two datasets of tsep=a ¼ f16; 19g
to evaluate the rms radius and the magnetic moment as our
final estimates. We also use a single dataset of tsep=a ¼ 19

for comparison and quote the difference between two
results as the first systematic error.
Figure 19 shows the q2 dependence of Gv

Mðq2Þ ¼
ZVG̃

v
Mðq2Þ with a choice of q2disp for the horizontal axis

togetherwith theKelly’s fit [69].One can see that all our data
reproduce theKelly’s fit within their large errors at relatively
larger q2, while they are located slightly below the Kelly’s
fit, regardless of their values of tsep and lattice spacing a.
Next, we evaluate the isovector magnetic rms radius and

magnetic moment by the z-expansion method. Figure 20
shows the zðq2Þ dependence of Gv

Mðq2Þ with the fit result
from the z-expansion method for tsep=a ¼ 19 (circle

symbols) and a combined data of tsep=a ¼ f16; 19g (cross
symbols). In Fig. 21 we show stability of the variation of
kmax in extracting both the isovector magnetic rms radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
and the magnetic moment μv for each tsep data

and a combined data of tsep=a ¼ f16; 19g. The results of
both quantities obtained from the analysis with the
z-expansion method are stable under the variation of
kmax. Furthermore, in contrast to the electric one, the
resultant values for all cases of tsep=a ¼ f13; 16; 19g are
mutually consistent within their statistical errors.
We finally choose the result obtained by the simulta-

neous fit of a combined data tsep=a ¼ f16; 19g with
kmax ¼ 4 for our best estimate, and the systematic errors
are quoted in the same way as the electric one. The analyses
with other model-dependent functional forms are discussed
in Appendix C. All results of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
and μv are

summarized in Table VI.

FIG. 11. Same as Fig. 6 for the proton.
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FIG. 12. Same as Fig. 6 for the neutron.
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FIG. 13. Same as Fig. 7 for the proton (left) and neutron (right).
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The statistical uncertainty on the magnetic rms radius is
about 3 times larger than the electric rms radius. Our best
estimate of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
reproduces the experimental value

within the statistical error. Furthermore, although our result
is consistent with our previous result calculated at the
coarse lattice albeit with a relatively large error, a

discrepancy between their central values is observed to
be about 9.0%. This difference is comparable in the size of
the discretization error observed in the electric rms radius.
On the other hand, the central value of μv is a few standard

deviations away from the corresponding experimental value,
and is slightly underestimated. However our best estimate of
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FIG. 14. Same as Fig. 8 for the proton (left) and neutron (right).
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FIG. 15. Same as Fig. 9 for the proton (left) and neutron (right).
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FIG. 16. Same as Fig. 10 for the proton (left) and neutron (right).
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FIG. 17. Same as Fig. 6 for the isovector magnetic form factor.
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FIG. 18. Same as Fig. 7 for the isovector magnetic form factor.
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FIG. 19. Same as Fig. 8 for the isovector magnetic form factor.
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μv is consistent with the one obtained from the coarse lattice
and then does not indicate the presence of discretization
errors,whichmay resolve the abovediscrepancy observed in
the magnetic moment. This issue could be related to the fact
that μv ¼ Gv

Mð0Þ is not directly measurable, but can be
accessed by extrapolation of data from regions where q2 is
nonzero. In other words, the determination of the magnetic
moment μv ¼ Gv

Mð0Þ potentially suffers from the systematic
uncertainty due to the q2 extrapolation. In order to avoid
such uncertainty, Ref. [63] advocates a direct calculation
method without the q2 extrapolation, which will be per-
formed in our future works.

2. Proton and neutron sector

We evaluate the magnetic form factors, G̃p
Mðq2Þ and

G̃n
Mðq2Þ, separately from the ratioR5z

Vi
ðt; qÞ for each proton

and neutron, where we omit the disconnected contributions.
Similar to the isovector case, Figs. 22 and 23 show the good
plateaus in each case of tsep except for the lower q2 in

dataset of tsep=a ¼ 19, where the t dependence is not
symmetric between the source and sink points. As sum-
marized in Table II, for all q2, we simply extract G̃p

Mðq2Þ
and G̃n

Mðq2Þ by the standard plateau method with the same
fit range as for the isovector case.
In Fig. 24, we display the tsep dependence of the

extracted G̃p
Mðq2Þ and G̃n

Mðq2Þ. It is obvious that there is
no significant tsep dependence for both the proton and
neutron. After employing the simultaneous fit using a
combined data of tsep=a ¼ f16; 19g, the resultant values
of Gp

Mðq2Þ ¼ ZVG̃
p
Mðq2Þ and Gn

Mðq2Þ ¼ ZVG̃
n
Mðq2Þ at

every q2 are presented in Fig. 25.
We obtain both the magnetic rms radii of the proton

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrpMÞ2i

p
) and neutron (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrnMÞ2i

p
), and the magnetic

moments of the proton (μp) and neutron (μn) by the
z-expansion method. Figure 26 shows Gp

Mðq2Þ and
Gn

Mðq2Þ as a function of zðq2Þ together with the fit results
obtained from the z-expansion method. The z-expansion
fitting results are summarized in Table VI. The analyses
with other model-dependent functional forms are discussed
in Appendix C. Figure 27 shows stability of the variation of
kmax in extracting both the rms radii and the magnetic
moments for each proton and neutron. For both quantities
of the proton and neutron, we confirm that all results show
good stability with respect to the variation of kmax, which is
similar to the isovector case. We employ the simultaneous
fit results with kmax ¼ 4 to get our best estimate of
the central value and the statistical error. Both results offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrpMÞ2i

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrnMÞ2i

p
reproduce our previous results

from the coarse lattice and the corresponding experimental
values within their large statistical errors. However, it
should be too early to conclude that the systematic
uncertainties are well under control at this moment. We
thus quote two types of the systematic uncertainties, which
are similar to those of other rms radii.
As for the magnetic moments, μp and μn are consistent

with the results obtained from the coarse lattice, while they
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FIG. 20. Same as Fig. 9 for the isovector magnetic form factor.
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do not reproduce the experimental values. The situation is
similar to the isovector case, which indicates that these
quantities also suffer from the systematic uncertainties due
to the q2 extrapolation to q2 ¼ 0.

C. Axial-vector coupling

The bare value of the nucleon axial-vector coupling g̃A ¼
F̃Aðq2 ¼ 0Þ is obtained with the ratio R5z

Ai
ðt; qÞ of Eq. (29)

with q ¼ 0. Figure 28 shows the t dependence of the
axial-vector coupling g̃A. The good plateau behaviors are
equally observed for all choices of tsep. This indicates that the
excited-state contamination is negligible within our statistical

precision due to the optimal choice of the smearing param-
eters for the nucleon interpolating operator. Therefore, the
bare value of the axial-vector coupling g̃A can be evaluated by
a simple constant fit in the standard plateau method.
The uncorrelated constant fits are employed for

extracting the electric and magnetic form factors, G̃Eðq2Þ
and G̃Mðq2Þ, to keep the same fit range for all q2 as
described in Secs. IVA and IV B. Here as for the analysis of
g̃A, we use both uncorrelated and correlated constant fits
and compare the results carefully. This is simply because a
closer look at the t dependence can find a slight undulation
appearing in the central region of the data only when
tsep=a ¼ 16. In fact, this undulation causes slight

TABLE VI. Results for the magnetic moments μ and magnetic rms radius
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
for the isovector, proton, and neutron channels. In

the row of “This work” we present our best estimates; the first error is a statistical one, and the second and third are the systematic errors
described in the text. Results for the proton and neutron are obtained without the disconnected diagram.

Isovector

Fit type q2 [GeV2] tsep=a μv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
[fm] χ2=d.o.f.

1604 (fine) lattice
kmax ¼ 4 q2disp ≤ 0.116 f16; 19g 4.436(89) 0.771(64) 0.21

19 4.544(133) 0.855(70) 0.16
kmax ¼ 3 q2meas ≤ 0.091 f16; 19g 4.454(85) 0.781(49) 0.28

19 4.565(130) 0.864(47) 0.20

This work 4.436(89)(108)(18) 0.771(64)(84)(10)
1284 (coarse) lattice

kmax ¼ 4 q2disp ≤ 0.102 f12; 14; 16g 4.478(218) 0.848(70) 0.9
f14; 16g 4.670(253) 0.900(65) 0.9

kmax ¼ 4 q2meas ≤ 0.112 f12; 14; 16g 4.480(221) 0.817(76) 0.9
f14; 16g 4.677(255) 0.874(65) 0.9

PACS10 1284 result 4.478(218)(192)(2) 0.848(70)(52)(31)

Experimental value [43]
4.70589 0.856(16)

Proton Neutron

Fit type q2 [GeV2] tsep=a μp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrpMÞ2i

p
[fm] χ2=d.o.f. μn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrnMÞ2i

p
[fm] χ2=d.o.f.

1604 (fine) lattice
kmax ¼ 4 q2disp ≤ 0.116 f16; 19g 2.702(60) 0.775(74) 0.23 −1.695ð41Þ 0.692(93) 0.32

19 2.723(92) 0.845(109) 0.14 −1.722ð69Þ 0.705(157) 0.20
kmax ¼ 3 q2meas ≤ 0.091 f16; 19g 2.697(56) 0.732(89) 0.23 −1.693ð40Þ 0.652(114) 0.36

19 2.728(87) 0.831(85) 0.15 −1.722ð68Þ 0.671(157) 0.22

This work 2.702(60)(21)(5) 0.775(74)(70)(43) −1.695ð41Þð27Þð2Þ 0.692(93)
(13)(40)

1284 (coarse) lattice
kmax ¼ 4 q2disp ≤ 0.102 f12; 14; 16g 2.741(129) 0.812(98) 1.0 −1.718ð99Þ 0.969(134) 0.08

f14; 16g 2.834(163) 0.879(89) 1.6 −1.842ð114Þ 0.969(134) 0.08
kmax ¼ 4 q2meas ≤ 0.112 f12; 14; 16g 2.742(131) 0.780(104) 1.0 −1.718ð100Þ 0.938(140) 0.08

f14; 16g 2.840(165) 0.859(95) 1.6 −1.845ð117Þ 0.938(140) 0.08

PACS10 1284 result 2.741(129)(93)(1) 0.812(98)
(67)(32)

−1.718ð99Þð124Þð0Þ 0.818(134)
(151)(33)

Experimental value [43]
2.79285 0.851(26) −1.91304 0.864(9)
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systematic difference in the fit results of tsep=a ¼ 16

depending on whether one chooses the uncorrelated or
correlated method as shown in Fig. 28. The gray shaded
bands and violet boxes in Fig. 28 represent the results
obtained by the correlated and uncorrelated constant fits
and their fit ranges. All fit results are summarized in
Table II.
As for the results of tsep=a ¼ 13 and 19, there is no

difference between the correlated and uncorrelated constant
fits. On the other hand, the difference between the two fits is
certainly observed in the case of tsep=a ¼ 16. The central
value given by the correlated constant fit appears slightly
higher than the uncorrelated result, and its statistical error is
also slightly larger. As the fit range is extended, the fit results
from uncorrelated fits tend to be larger since the larger values
on the near side of the source and sink are incorporated into
the fit. As a result, the difference between the two types of
fits becomes smaller. Therefore, the slight upward shift due

to the correlated fit is caused by the strong data correlation
among the high precision datasets of g̃A measured at various
time slices of the current operator insertion.
This particular discrepancy between the correlated and

uncorrelated fits is only observed in the determination of g̃A
since no other physical quantity is accurate enough to
distinguish the difference. Therefore, we choose the corre-
lated constant fit only to extract g̃A taking into account the
data correlation, while the analyses of the form factors use
the uncorrelated constant fit in line with our previous
analyses on the coarse lattice [35].
Figure 29 shows the tsep dependence of the extracted

values for the renormalized axial-vector coupling
gA ¼ ZAg̃A, comparing with our previous results obtained
from the coarse lattice together with the experimental
value. As can be easily seen, the results of gA obtained
from both the fine and coarse lattices, do not show any
significant tsep dependence. This observation indicates that

FIG. 22. Same as Fig. 17 for the proton.
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FIG. 23. Same as Fig. 17 for the neutron.
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the systematic uncertainties stemming from the excited-state
contamination are well under control at the level of the
statistical precision of about 2% in our calculations.
Combining our previous study [16] that reveals the finite
size effect on the axial-vector coupling is less than 2% of the
statistical precision, our calculations achieve that all major
sources of systematic uncertainties from the chiral extrapo-
lation, finite size effect, excited-state contamination, and
discretization effect are under control by our statistical
precision of 2% in fully dynamical lattice QCD simulations.

D. Axial form factor, axial radius, and induced
pseudoscalar form factor

Sincewe are only interested in the isovector quantities for
the axial form factor and inducedpseudoscalar form factor in
this study, we simply denote FAðq2Þ and FPðq2Þ for these
(renormalized) form factors, hereafter. In the axial-vector
channel, the two independent (bare) form factors, namely
F̃Aðq2Þ and F̃Pðq2Þ can be extracted only from the ratio
R5z

Ai
ðt; qÞ defined in Eq. (29) with help of different momen-

tum configurations q ¼ ðq1; q2; q3Þ depending on the direc-
tion of polarization following Ref. [49].

In this study, z direction is chosen as the polarized
direction through the definition of the projection operator
P5z. Indeed, the ratioR5z

Ai
ðt; qÞ possesses the following part:

CiðqÞ≡ F̃Aðq2Þδi3 −
qiq3

EN þMN
F̃Pðq2Þ; ð44Þ

which explicitly depends on the longitudinal momentum q3
and then makes the difference between the transverse
components (i ¼ 1 or 2) and the longitudinal (i ¼ 3) com-
ponent. Furthermore, the dependence of the momentum
configuration q ¼ ðq1; q2; q3Þ is induced in CiðqÞ at fixed
q2, since the second term in the rhs ofEq. (44) also dependson
the value of qi. The value of CiðqÞ can be read off from the
plateau behavior of the ratio R5z

Ai
ðt; qÞ by multiplying the

appropriate factor of
ffiffiffiffiffiffiffiffiffiffiffiffi
2EN

ENþMN

q
in the standard plateaumethod.

Taking into account the dependence of the momentum
configurations, F̃Aðq2Þ and F̃Pðq2Þ can be constructed by
the following combinations of CiðqÞ with the specific
momentum configurations of q. We first determine F̃Aðq2Þ
fromCiðqÞ for either q3 ≠ 0 or q3 ¼ 0 in the following way:
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FIG. 25. Same as Fig. 19 for the proton (left) and neutron (right).
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F̃Aðq2Þ¼

8>>><
>>>:
C3−

q3
2

h
C1

q1
þC2

q2

i
ðq1≠0 andq2≠0Þ

C3−
q3
q1
C1 ðq1≠0 andq2¼0Þ;

C3−
q3
q2
C2 ðq1¼0 andq2≠0Þ

ð45Þ

which depend only on the values of q1 and q2. Next F̃Pðq2Þ
is determined from CiðqÞ only for the case of q3 ≠ 0 as

F̃Pðq2Þ¼

8>>>>>><
>>>>>>:

−ðENþMNÞ
2

h
C1

q3q1
þ C2

q3q2

i
ðq1≠0 and q2≠0Þ

−ðENþMNÞ C1

q3q1
ðq1≠0 and q2¼0Þ

−ðENþMNÞ C2

q3q2
ðq1¼0 and q2≠0Þ;

−ENþMN
q2
3

ðC3− F̃Aðq2ÞÞ ðq1¼0 and q2¼0Þ
ð46Þ

where the last case requires the value of F̃Aðq2Þ which
should be evaluated in advance. Although the above
procedure is a bit complicated, it can avoid the usage of
the ratio R5z

A4
ðt; qÞ, which is not applicable in the standard

plateau method since the time-reversal odd contributions
from the multiparticle states such as the lowest πN and ππN
states are inevitable.

1. Axial form factor and axial radius

We evaluate the axial form factor F̃Aðq2Þ as previously
described using Eq. (45). As for the t dependence of
F̃Aðq2Þ, Fig. 30 shows the t dependence of the appropriate
combinations of R5z

Ai
ðt; qÞ, which provides F̃Aðq2Þ as the

asymptotic behavior. The value of F̃Aðq2Þ can be read
off from the good plateaus appearing in Fig. 30. Next,
Fig. 31 shows the results of F̃Aðq2Þ which are evaluated
by the uncorrelated constant fits in all cases of

FIG. 30. Same as Fig. 6 for the axial form factor.
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tsep=a ¼ f13; 16; 19g for all q2, while Fig. 32 shows the q2
dependence of FAðq2Þ ¼ ZAF̃Aðq2Þ. As can be seen, there
is no significant tsep dependence at every q2 within the
statistical errors as well as the electric and magnetic form
factors. This indicates that the systematic uncertainties
stemming from the excited-state contamination are negli-
gible within the present statistical precision and well under
control by the optimal choice of the smearing parameter for
the nucleon interpolating operator.
Similar to the electric and magnetic radii, the nucleon

axial radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
is evaluated by examining the q2

dependence of FAðq2Þ in the model-independent way using
the z-expansion method. The analyses with other model-
dependent functional forms are discussed in Appendix C.
In Fig. 33, we show zðq2Þ dependence of FAðq2Þ together
with the fit results obtained from the z-expansion method.
The z-expansion fitting results of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
are summa-

rized in Table VII. Figure 34 shows the stability of the

variation of kmax in extracting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
for each tsep data

and a combined data of tsep=a ¼ f16; 19g. The simulta-
neous fit to the combined data of tsep=a ¼ f16; 19g yields
the consistent result with the results for each tsep.
Considering this observation, the result from the com-

bined data of tsep=a ¼ f16; 19g with kmax ¼ 4 is quoted for
the central value and the statistical error as our final
estimate. Although the final result is consistent with our
previous result obtained on the coarse lattice within their
statistical errors, the discretization error can be estimated as
11.1% by a difference between the central values of both
the coarse and fine lattices. The size of the discretization
error is comparable to those of the two other rms radii. We
will continue discussions on the discretization uncertainties
in Sec. VI.

2. Induced pseudoscalar form factor

We evaluate the induced pseudoscalar form factor
F̃Pðq2Þ as previously described using Eq. (46). As the t
dependence of F̃Pðq2Þ, Fig. 35 shows the t dependence of
the appropriate combinations of R5z

Ai
ðt; qÞ, which provides

F̃Pðq2Þ as the asymptotic behavior. In contrast to F̃Aðq2Þ as
well as G̃Eðq2Þ and G̃Mðq2Þ, the t dependence of F̃Pðq2Þ
has a slight convex shape in all cases of tsep=a ¼
f13; 16; 19g for all q2. As reported in our previous works
[35,57], this convex shape is associated with the excited-
state contamination. Although in addition to the standard
plateau method, we also examine a two-state fitting
analysis in this channel, we can manage to read the value
of F̃Pðq2Þ by the constant fitting in a suitable fit range
where the data points overlap within 1 standard deviation.
We plot the tsep dependence of F̃Pðq2Þ in Fig. 36. The

relatively large excited-state contamination in F̃Pðq2Þ is
found compared to F̃Aðq2Þ, since the values of F̃Pðq2Þ
systematically increase as tsep increases. The magnitude of
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FIG. 31. Same as Fig. 7 for the axial form factor.
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F̃Pðq2Þ at the lowest q2 for tsep=a ¼ 19 becomes about
20% larger than that of tsep=a ¼ 13 at most. This obser-
vation strongly suggests that the excited-state contributions
are not fully eliminated in F̃Pðq2Þ, even though there is no
significant difference in the evaluation of excited-state
contamination based on the two-state analysis as discussed
in Appendix A.
Figure 37 shows that the q2 dependence of the renor-

malized induced pseudoscalar form factor FPðq2Þ ¼
ZAF̃Pðq2Þ for all three cases of tsep compared to the previous
results, which are obtained from the coarse lattice [35].

Two experimental results of the muon capture and the pion
electroproduction are marked as blue diamonds and a brown
asterisk. Both of our results from the fine and coarse lattices
are significantly underestimated in comparison with both
experiments. The induced pseudoscalar form factor FPðq2Þ
is expected to have a pion pole that dominates the behavior
near zero momentum transfer. The colored curves are given
by the pion-pole dominance (PPD) model [72], where the
induced pseudoscalar form factor is given as

FPPD
P ðq2Þ ¼ 2MNFAðq2Þ

q2 þm2
π

ð47Þ

with the measured values of mπ , MN , and FAðq2Þ. The
predictions provided by the PPD model with two datasets
obtained from the fine and coarse lattices, successfully
describe two experimental results of the muon capture and
the pion electroproduction, while they do not agree with our
results of FPðq2Þ.
Recall that in contrast to FPðq2Þ, FAðq2Þ has no large tsep

dependence. Therefore, this discrepancy indicates that in
the case of FPðq2Þ, the largest choice of tsep=a ¼ 19 is not
large enough to eliminate the excited-state contributions.
It should be noted that according to baryon chiral

perturbation theory, the nucleon matrix element of the
axial vector current inevitably has a strong effect due to the
contamination of πN excited states [73–75]. In order to
eliminate such a strong excited-state contamination, several
ways of analysis are suggested, such as the utilization
of the temporal A4 current [30] and proper projections
determined by the variational analysis with the explicit πN

TABLE VII. Results for the axial-vector coupling gA ¼ FAð0Þ and axial-vector rms radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
. In the row of “This work” we

present our best estimates, where the first error is statistical.

Fit type q2 GeV2 tsep=a gA FAð0Þ
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
[fm] χ2=d.o.f.

1604 (fine) lattice
kmax ¼ 4 q2disp ≤ 0.116 f16; 19g 1.252(15) 0.562(31) 0.40

19 1.267(22) 0.598(67) 0.04
kmax ¼ 3 q2meas ≤ 0.091 f16; 19g 1.251(16) 0.515(41) 0.37

19 1.265(22) 0.554(75) 0.03
Correlated � � � f16; 19g 1.264(14) 1.1

� � � 19 1.265(21) 0.03
Uncorrelated � � � f16; 19g 1.250(14) 0.4

� � � 19 1.264(22) 0.01

This work 1.264(14)(1) 1.252(15)(15)(1) 0.562(31)(36)(47)
1284 (coarse) lattice

kmax ¼ 4 q2disp ≤ 0.077 f12; 14; 16g 1.279(28) 0.505(53) 0.7
f14; 16g 1.284(42) 0.546(80) 1.3

kmax ¼ 3 q2meas ≤ 0.091 f12; 14; 16g 1.277(30) 0.445(71) 0.7
f14; 16g 1.279(42) 0.416(131) 1.3

PACS10 1284 result 1.280(24)(4) 0.505(53)(41)(60)

Experimental value [43,71]
1.2756(13) 0.67(1)
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FIG. 35. Same as Fig. 6 for the induced pseudoscalar form factor multiplying the factor 2MN.
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FIG. 36. Same as Fig. 7 for the induced pseudoscalar form
factor.

1.050.00

q
2
 [GeV

2
]

0

20

40

60

80

100

120

140

160

2
M

N
F

P
(Q

2
)

2M
N
F

P
PPD(q), coarse

2M
N
F

P
PPD(q), fine

experiment (muon capture)

experiment (pion-electroproduction)

t
sep

/a=16, coarse

t
sep

/a=14, coarse

t
sep

/a=19, fine

t
sep

/a=16, fine

t
sep

/a=13, fine

FIG. 37. Same as Fig. 8 for the induced pseudoscalar form
factor.

RYUTARO TSUJI et al. PHYS. REV. D 109, 094505 (2024)

094505-28



operators [76]. Further investigation with more sophisti-
cated analyses should be conducted in the future work.

3. Pseudoscalar form factor

The pseudoscalar form factor G̃Pðq2Þ is extracted from
the ratio R5z

P ðt; qÞ defined in Eq. (31). In Fig. 38, the t
dependencies of G̃Pðq2Þ for all seven variations of q2 ≠ 0
with tsep=a ¼ f13; 16; 19g are displayed. As is in the case
of FPðq2Þ, the slight convex shape, which is associated
with the excited-state contributions is observed in all cases
of tsep=a ¼ f13; 16; 19g for all q2. The data points within
the fit range shown as the gray shaded band in each panel of
Fig. 38, overlap within 1 standard deviation. Therefore it is
adequate to employ a constant fit to estimate the value
of G̃Pðq2Þ.
Figure 39 shows the tsep dependence of G̃Pðq2Þ for all q2.

It is clearly observed that G̃Pðq2Þ shows a large tsep

dependence. The values of G̃Pðq2Þ systematically increase
as tsep increases similar to FPðq2Þ. From tsep=a ¼ 13 to
tsep=a ¼ 19, the maximum increase observed in the mag-
nitude of G̃Pðq2Þ at lowest q2 reaches about 20%. This
indicates that G̃Pðq2Þ involves the significant contributions
from the excited states as well as FPðq2Þ. However, as
discussed in Appendix A, there is no significant difference
in the evaluation of excited-state contamination based on
the two-state analysis in a direct comparison to the standard
plateau analysis. Thus we mainly use the constant fit on the
ratio R5z

P ðt; qÞ to estimate the values of G̃Pðq2Þ within the
standard plateau method in this study.
We plot the q2 dependence of G̃Pðq2Þ for all three cases

of tsep in Fig. 40. It is obvious that the stronger curvature
appears at lower q2 as tsep increases. This particular
behavior is shared by both of FPðq2Þ and G̃Pðq2Þ. The
relatively strong q2 dependence appearing in the lower q2

FIG. 38. Same as Fig. 6 for the pseudoscalar form factor.
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region can be described by a naive pion-pole dominance
form of G̃PPD

P ðq2Þ, which is defined through the GGT
relation with FPPD

P ðq2Þ as

2mG̃PPD
P ðq2Þ ¼ 2MNFAðq2Þ

m2
π

q2 þm2
π
: ð48Þ

This indicates that the ratio of the PPD forms
G̃PPD

P ðq2Þ=FPPD
P ðq2Þ yields no dependence on the value

of q2 and gives the low-energy constant B0 as

G̃PPD
P ðq2Þ

FPPD
P ðq2Þ ¼ B0 ð49Þ

with the help of the Gell-Mann–Oakes–Renner relation for
the pion mass: m2

π ¼ 2B0m.

As shown in Fig. 41, the corresponding ratio evaluated
with our measured values of the G̃Pðq2Þ and FPðq2Þ, indeed
exhibits a flat q2 dependence for each case of tsep.
Furthermore, without using knowledge of the PPD model,
all ratios are in good agreement with the bare value of the
low-energy constant, which is evaluated by m2

π=ð2mpion
PCACÞ

with the simulated pion massmπ and the PCAC quark mass
mpion

PCAC. Here, the PCAC quark mass is determined by the
two-point correlators of the pseudoscalar meson.
These observations strongly suggest that although our

results of G̃Pðq2Þ and FPðq2Þ suffer from the excited-state
contamination, both quantities correctly inherit the low-
energy physics associated with the pion-nucleon (πN)
system. Therefore, once the large excited-state contamina-
tion is hindered in a certain way, the low-energy constants
of the πN system, e.g., gπN , could be correctly evaluated.
We do not evaluate the πN coupling gπN in this paper,
since there is no known reasonable way to eliminate the
excited-state contributions from our results of G̃Pðq2Þ
and FPðq2Þ.

V. NUMERICAL RESULTS II: TEST FOR THE
AXIAL WARD-TAKAHASHI IDENTITY

A. Quark mass from nucleon correlation functions

As discussed in Sec. IV D, both FPðq2Þ and G̃Pðq2Þ form
factors significantly suffer from the excited-state contami-
nation in contrast to FAðq2Þ where the systematic uncer-
tainties stemming from the excited-state contamination are
negligible within the present statistical precision. However,
the ratio of FPðq2Þ and G̃Pðq2Þ implies that both quantities
correctly inherit the low-energy physics which is related to
the AWTI.
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FIG. 39. Same as Fig. 7 for the pseudoscalar form factor.
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FIG. 41. Ratio of the pseusoscalar form factor G̃Pðq2Þ to the
induced pseudoscalar form factor FPðq2Þ as a function of q2. The
green band represents the low-energy constant B0 given by
m2

π=ð2mpion
PCACÞ.
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As described in Sec. II E, three kinds of the bare quark
mass,mpion

PCAC,m
nucl
PCAC, andm

nucl
GGT, are introduced. Let us first

consider mnucl
PCAC, which can verify the PCAC relation using

the nucleon three-point correlation functions, in order to be
compared to the value of mpion

PCAC given by the pion two-
point correlation function. In Fig. 42, the ratios defined in
Eq. (38) are displayed for all q2 with all three variations of
tsep=a ¼ f13; 16; 19g. All data show good plateaus, which

are fairly consistent with mpion
PCAC, regardless of the momen-

tum transfer and tsep. Thus, the ratio defined in Eq. (38) can
provide an alternative bare quark mass definition asmnucl

PCAC.
For each q2 and tsep, we evaluate the value of mnucl

PCAC by
weighted average using five data points in the central range
of t=a. Figure 43 shows a direct comparison of mpion

PCAC

(denoted as horizontal line) and mnucl
PCAC (denoted as dia-

mond symbols) in the case of tsep=a ¼ 13 (top panel),

16 (middle panel), 19 (lower panel). As can be easily seen,
all data points in mnucl

PCAC do not show strong q2 dependence
and reproduce the value of mpion

PCAC. The agreement between

mpion
PCAC and mnucl

PCAC observed with each finite momentum
transfer is highly nontrivial as discussed in Sec. II E.
It is worth noting that the definition of mnucl

PCAC defined in
Eq. (38) does not take into account OðaÞ improvement of
the axial-vector current Ãimp

α ¼ Ãα þ acA∂αP̃. The second
term in OðaÞ improvement of the axial-vector current
provides the OðaÞ correction on the value of mpion

PCAC as

ðmpion
PCACÞimp ¼ mpion

PCAC þ aZAcA
2

m2
π ð50Þ

for the ground state contribution since the point sink of the
pion two-point correlation function is projected onto zero
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three momentum. On the other hand, mnucl
PCAC does not

receive the OðaÞ correction at zero momentum transfer,
though Eq. (38) can be used only when the momentum
transfer is finite. The quark mass is modified by the
presence of the improvement term as

ðmnucl
PCACÞimp ¼ ZA ×

∂αðC5z
Aα
ðt; qÞ þ acA∂αC

5z
P ðt; qÞÞ

2C5z
P ðt; qÞ

¼ mnucl
PCAC −

aZAcA
2

q2; ð51Þ

where the OðaÞ correction is proportional to the square of
momentum transfer q2 and then vanishes in the limit of
q2 ¼ 0. Recall that mnucl

PCAC and mpion
PCAC are supposed to be

identical in the continuum limit. In other words, a differ-
ence observed on the lattice can be attributed to lattice
discretization errors. However as shown in Fig. 43,
mnucl

PCAC coincides mpion
PCAC within statistical precision without

the OðaÞ improvement over a wide range of q2

ð0.78 < q2=m2
π < 6.08Þ. Therefore, our finding indicates

that the value of cA is likely to be nearly zero at theOð10−2Þ
level in lattice units. This suggests that the effect of OðaÞ
improvement of the axial-vector current is negligibly small
in our calculations performed at very low q2, and does not
change the result of the axial radius.
The second check is made by comparing mnucl

GGT defined
in Eq. (37) with either mpion

PCAC or mnucl
PCAC. Recall that m

nucl
GGT

requires isolating the ground-state contribution from the
excited-state contributions in determining the three form
factors FAðq2Þ, FPðq2Þ, and G̃Pðq2Þ. Therefore, if mnucl

GGT
coincides with the bare quark mass associated with the

PCAC relation, the ground state dominance is successfully
achieved in determination of FAðq2Þ, FPðq2Þ and G̃Pðq2Þ.
This is simply because the GGT relation is derived from the
axial Ward-Takahashi identity in terms of the nucleon
matrix elements, not the nucleon three-point functions.
Figure 44 shows the results of mnucl

GGT in comparison with
the others as a function of q2 for each choice of
tsep=a ¼ f13; 16; 19g. Although the values of mnucl

GGT do
not show strong q2 dependence, it is obvious that the data
points for mnucl

GGT are deviated from both mpion
PCAC and mnucl

PCAC.
In detail, the deviation gradually disappears as tsep
increases, but the values of mnucl

GGT do not reach mpion
PCAC or

mnucl
PCAC even when tsep=a ¼ 19. This indicates that the form

factors used for the construction of mnucl
GGT suffer from the

excited-state contamination, since though mnucl
PCAC does not

require the ground-state dominance, mnucl
GGT surely does.

In other words, the maximum tsep used in our study does
not reach the conditions required in the standard plateau
method, where only the ground state is dominant. This
observation is consistent with the strong dependence of tsep
observed in the analyses of FPðq2Þ and G̃Pðq2Þ.

VI. NUMERICAL RESULTS III:
DISCRETIZATION ERROR

Combining our two results from large volume simula-
tions at the fine and coarse lattice spacings, we can discuss
the discretization uncertainties appearing in the isovector
rms radii, magnetic moment, and also axial-vector cou-
pling. Recall that the continuum limit results are not yet
known in our study; we only evaluate the differences
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between two results from different lattice spacing as the
lattice discretization uncertainties. The error budget for the
five quantities, gA, μv,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
are summarized in Table VIII.
Figure 45 shows the lattice spacing a dependence for

these five quantities. The inner error bars represent the
statistical uncertainties, while the outer error bars represent
the total uncertainties given by adding the statistical errors
and systematic errors in quadrature. The systematic errors
take into account uncertainties stemming from the excited-
state contamination and the lattice discretization effects on
the dispersion relation.
Let us first discuss the size of the discretization error on

the axial-vector coupling gA, that is precisely measured
by the experiments. The axial-vector coupling gA ¼
FAðq2 ¼ 0Þ is directly determined from the ratio (29) at
zero momentum transfer without the q2-extrapolation to the
zero momentum point. In the top-left panel of Fig. 45, the

two results obtained at different lattice spacing can repro-
duce the experimental values within statistical precision of
at most 2%. This implies that the discretization error on the
axial-vector coupling is less than 2%, which is well
controlled in our calculations.
The small discretization error, which is less than 1%, is

also observed for the magnetic moment μv in the top-right
panel of Fig. 45, though the two results for the magnetic
moment are both 5%–6% smaller than the experimental
value. However, recall that the magnetic moment is not
accessible without the q2 extrapolation to the zero momen-
tum point in contrast to the axial-vector coupling.
Therefore, the current discrepancy between our lattice
result and the experimental value would be caused by
the q2 extrapolation, since our data points at the finite
momentum transfer are barely consistent with the Kelly’s
curve, albeit slightly lower. The obvious disadvantage for
magnetic form factor in the standard approach can be
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TABLE VIII. The error budgets for gA, μv,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
obtained at the fine lattice

spacing. The discretization errors quoted here are evaluated by differences between the central values of two results
from two sets of the PACS10 ensemble at the fine and coarse lattice spacings.

gA (%) μv (%)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
(%)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
(%)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
(%)

Statistical: 1.9 3.1 3.6 14 11
Discretization: 1.6 0.9 8.3 9.0 11.3
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overcome by the new method called the derivative of form
factor (DFF) method [63]. In order to fully resolve the
current discrepancy, more comprehensive investigations
with the DFF method are necessary in this particular
quantity.
Apart from the question of whether the results are

consistent with the experimental values, both quantities,
gA and μv, do not seem to be subject to large discretization
errors. However, the rms radii, which are determined from
the form-factor slope at the zero momentum point, may
suffer from the OðqaÞ discretization effects that do not
appear in gA and μv. Indeed, as shown in three bottom
panels of Fig. 45, the presence of the discretization errors is
clearly visible for the isovector rms radii. Their sizes can be
estimated as 8.1%, 9.0%, and 11.3% for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrvMÞ2i
p

, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
, respectively. These errors are

much lager than that of gA.
Especially, in this study,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
can be evaluated

with a statistical error of less than 5% accuracy, while the
magnitude of the discretization uncertainty is much larger
than the statistical one. Therefore, as shown in the bottom-
left panel of Fig. 45, the large discretization uncertainties
are clearly observed in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
, which are unexpectedly

large. However, this observation may bridge the gap
between the lattice results and the two experimental
values.

Similarly, the discretization uncertainties observed inffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
as shown in the bottom-right panel of Fig. 45

tend to fill the difference between lattice QCD results and
experimental values. It is important to emphasize here that
the total errors in the axial radius obtained at two lattice
spacings are much smaller than the two estimations
obtained from the model-independent z-expansion analysis
for both νN and νD scattering data.
As for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
, although the difference between two

results obtained for different lattice spacing is comparable
to the size of the individual statistical uncertainties, lattice
results agree with the experimental value within fairly large
total errors. As mentioned earlier, the q2 extrapolation
without the value of GMð0Þ generally leads to large hidden
systematic uncertainties, which can be avoided in the DFF
method.
Finally, it is worth reminding that the discretization

error evaluated here depends on the evaluation method
and is merely an estimate. Although the coarse and fine
lattice result agree when considering the systematic
uncertainties, it cannot be excluded that it is due to the
finite lattice spacing, as long as systematic shifts larger
than 1 standard deviation of the statistical error are
actually observed. A detailed discussion should take place
only after the continuum limit is properly taken in our
future studies.
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VII. SUMMARY

We have calculated the nucleon form factors in the vector,
axial-vector, and pseudoscalar channels using the second
PACS10 ensemble (lattice spacing of a ¼ 0.063 fm) that is
one of three sets of 2þ 1 flavor lattice QCD configurations
generated at the physical point on a ð10 fmÞ4 volume. The
PACS10 gauge configurations are generated by the PACS
Collaboration with the stout-smeared OðaÞ improved
Wilson quark action and Iwasaki gauge action [36]. In order
to achieve the high-precision calculation, the AMA tech-
nique that can significantly reduce the statistical error is
employed.
The axial vector (FAðq2Þ), induced pseudoscalar

(FPðq2Þ), and pseudoscalar (GPðq2Þ) form factors, are
calculated for the isovector channel, while the electric
(GEðq2Þ) and magnetic (GMðq2Þ) form factors are calcu-
lated not only for the isovector ones, but also for the
individual ones of proton and neutron without the dis-
connected diagram. Before analyzing the nucleon form
factors at finite momentum transfer, we have first examined
the nucleon dispersion relation and nucleon axial-vector
coupling to demonstrate the validity and reliability of our
lattice QCD calculations. The on shell OðaÞ improvement
turns out to be effective enough for the momentum range
we used, since the relativistic continuum dispersion relation
is found to be satisfied less than 1% for the ground state of
the nucleon. Furthermore, the values of the axial-vector
coupling calculated on the fine and coarse lattice reproduce
the experimental value with a statistical accuracy of less
than 2%.
In the analyses of the form factors, we have investigated

the major systematic uncertainty stemming from the effects
of the excited-state contamination in the standard plateau
method. For this purpose, we have calculated appropriate
ratios of the nucleon three-point function to the two-point
functions by varying tsep from 0.8 to 1.2 fm with
tsep=a ¼ f13; 16; 19g. In the standard plateau method we
employed, the form factors can be extracted from the
asymptotic plateau of the ratios between the source and
sink points. It was found that the condition of tsep ≥ 0.8 fm
is large enough to eliminate the excited-state contamination
for GEðq2Þ, GMðq2Þ, and FAðq2Þ within the present
statistical precision, thanks to the elaborated tuning of
the sink and source functions.
For our best estimate, we perform the simultaneous fit

with two datasets of tsep=a ¼ f16; 19g, while we also use a
single dataset of tsep=a ¼ 19 for comparison and quote a
difference between two results as the first systematic error.
In addition, the effect of the lattice discretization error
on the dispersion relation is quoted for the second sys-
tematic error as follows. Each form factor is described as a
function of q2, which can be primary evaluated by q2disp ¼
2MNð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ð2πn=ðLaÞÞ2
p

−MNÞ on the relativistic con-
tinuum dispersion relation with the naive lattice discrete

momenta q ¼ 2πn=ðLaÞ. Alternatively the values of q2 are
also evaluated by q2meas: ¼ 2MNΔEwith measuredΔE. The
difference caused by the choice of either q2disp or q2meas is
quoted as the systematic error induced in the dispersion
relation by the effects of lattice discretization.
To evaluate the rms radii and the magnetic moment, we

have to introduce some parametrization of the q2 depend-
ence of the form factors. For this purpose, the model-
independent z-expansion method is adopted in this study.
In general, the results of the z-expansion method are subject
to larger errors than the results of the dipole fit, unless the
model dependence of the dipole fit is taken into account.
However, since the results from the z-expansion method
are model independent, the size of their errors is reason-
ably small.
Taking account of the systematic uncertainties associated

with the excited-state contamination, lattice discretization
effects on the dispersion relation, and the uncertainty in
the determination of the renormalization factors, our best
estimates for the axial-vector coupling and magnetic
moments are obtained on the 1604 (fine) lattice as follows:

gA ¼ 1.264ð14Þð1Þð−Þð3Þ; ð52Þ

μv ¼ 4.436ð89Þð108Þð18Þð2Þ ðisovectorÞ;
μp ¼ 2.702ð60Þð21Þð5Þð1Þ ðprotonÞ;
μn ¼ −1.695ð41Þð27Þð2Þð1Þ ðneutronÞ; ð53Þ

where the first error is a statistical one, while the others
are systematic ones. The second error is evaluated by the
difference between two analyses using either a single
dataset of tsep=a ¼ 19 or a combined dataset of tsep=a ¼
f16; 19g. The third error is associated with a choice of q2

definitions. The fourth error is associated with the uncer-
tainty in the determination of the renormalization factors.
For gA, there is no third error, since the value of gA is
directly measurable at q2 ¼ 0 without q2 extrapolation. As
for the rms radii, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

q
¼ 0.832ð19Þð70Þð22Þ ½fm� ðisovectorÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrpEÞ2i
q

¼ 0.804ð14Þð49Þð18Þ ½fm� ðprotonÞ;
hðrnEÞ2i ¼ −0.054ð23Þð46Þð4Þ ½fm2� ðneutronÞ; ð54Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

q
¼ 0.771ð64Þð84Þð10Þ ½fm� ðisovectorÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrpMÞ2i
q

¼ 0.775ð74Þð70Þð43Þ ½fm� ðprotonÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrnMÞ2i

q
¼ 0.692ð93Þð13Þð40Þ ½fm� ðneutronÞ; ð55Þ

ffiffiffiffiffiffiffiffiffi
hr2Ai

q
¼ 0.562ð31Þð36Þð47Þ ½fm�; ð56Þ
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where the first error is statistical, while the second and third
ones are systematic as explained earlier. There is no fourth
error for the rms radii.
Since the continuum-limit extrapolation requires results

from at least three lattice spacings, we have investigated the
systematic uncertainties associated with the finite lattice
spacing for gA and isovector rms radii from the difference
between the current results obtained at two lattice spacings.
It was found that the finite lattice spacing effect on gA is
kept below the statistical error of less than 2%, which is
currently achieved in our calculations, while both results of
gA obtained at two lattice spacings reproduce the exper-
imental value within their statistical precisions. Therefore,
the lattice discretization effect on gA is negligibly small in
our calculations.
On the other hand, the systematic errors associated with

the finite lattice spacing on the isovector rms radii are rather
large as much as 8%–11% and cannot be ignored regardless
of channel. In particular, in the cases of the electric and
axial rms radii, the systematic uncertainties associated with
the finite lattice spacing tend to reproduce the experimental
values.
One might think that the unexpectedly large systematic

errors in the rms radii are due to not using the OðaÞ
improvement of the vector and axial-vector currents in this
study. For the improvement of the axial-vector current,
Ãimp
α ¼ Ãα þ acA∂αP̃, we have examined the size of cA by

comparing mnucl
PCAC and mpion

PCAC based on the PCAC relation,
and found that the value of cA is likely to be nearly zero at
the Oð10−2Þ level in lattice units. This indicates that the
effect of OðaÞ improvement of the axial-vector current is
not large enough to resolve the large systematic uncertain-
ties observed at very low q2 in our calculations.
Needless to say, additional lattice simulations using the

third PACS10 ensemble are required for achieving a
comprehensive study of the discretization uncertainties
and then taking the continuum limit of our target quantities.
Such planning is now underway.
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APPENDIX A: TWO-STATE FIT ANALYSIS

For an assessment of excited-state contamination, the
two-state fit analysis is often used in calculation of the
nucleon matrix elements.
The ratio defined in Eq. (26) can be described by the

following functional form, which includes the forward and
backward contributions of the leading excited state from
source and sink explicitly as below:

Rðt; tsepÞ ¼ b0 þ b1e−b2ðtsep−tÞ þ b3e−b4t; ðA1Þ

where b0 is the matrix element of the ground state. The
parameter b1 (b3) is the amplitude of the overlap between
the ground state and the leading excited state, while the
parameter b2 (b4) is the energy gap between the excited
state and the ground state. The leading exponential terms
with four additional parameters b1 through b4 are respon-
sible for the curvature appearing in the ratio as a function
of t.
For the simplest case if b1 ¼ b3 and b2 ¼ b4,

9 the
curvature is represented by A cosh ðb2ðt − tsep

2
ÞÞ with

A ¼ 2b1e−b2
tsep
2 . The excited-state contribution remains at

most as the size of A at the center of the source and sink
operators t ¼ tsep

2
. The value of A corresponds to a typical

9This is the case if the kinematics is chosen to be p ¼ p0 ¼ 0.
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size of the systematic uncertainty associated with the
excited-state contamination in the standard plateau
method.
We evaluate the amplitude A of F̃Pðq2Þ and G̃Pðq2Þ at

the lowest q2 (Q1) for the dataset of tsep=a ¼ 13. As
shown in Fig. 35 for F̃Pðq2Þ and Fig. 38 for G̃Pðq2Þ, the
t dependence of each form factor has a slight convex shape
which is associated with the excited-state contamination.
The observed shape is approximately symmetric with
respect to t ¼ tsep

2
within the statistical uncertainties at the

lowest q2. Therefore, for simplicity, we may use the two-
state analysis with the symmetric Ansätz (b1 ¼ b3 and
b2 ¼ b4). We then found that the size of A is much smaller
than that of b0, and the resultant b0 is statistically
consistent with the result obtained with the standard
plateau method. Indeed, the systematic uncertainty in
the standard plateau analysis is at most 1% even in the
most severe case of the excited-state contamination. This
indicates that the two-state fitting analysis is not useful for
resolving relatively large excited-state contamination in
our data.

APPENDIX B: TABLE OF NUCLEON FORM
FACTORS

The results for the three isovector form factors Gv
Eðq2Þ,

Gv
Mðq2Þ, and FAðq2Þ obtained with a combined data of

tsep=a ¼ f16; 19g and a single data of tsep=a ¼ 19 are
summarized in Table IX. The electric and magnetic form
factors for the proton and neutron, Gp

Eðq2Þ, Gp
Mðq2Þ,

Gn
Eðq2Þ, and Gn

Mðq2Þ are compiled in Table X.

APPENDIX C: MODEL-DEPENDENT ANALYSES
OF rms RADIUS

In this appendix, a summary of the results obtained in
several model-dependent q2 analyses is presented, though
the results obtained by the z-expansion method are
employed in the main text as a model-independent analysis.
For model-dependent analyses, we employ three

typical models to parametrize the q2 dependence of
the form factor Gl in this study: the linear functional
form Glðq2Þ ¼ d0 þ d1q2, the quadratic functional
form Glðq2Þ ¼ d0 þ d1q2 þ d2q4, and the dipole form

TABLE X. Results of the electric and magnetic form factors for the proton and neutron obtained by the standard plateau method using
the uncorrelated constant fit with a combined data of tsep=a ¼ f16; 19g and a single data of tsep=a ¼ 19. All form factors are
renormalized. Our results are determined without the disconnected-type contributions.

tsep=a ¼ f16; 19g tsep=a ¼ 19

Proton Neutron Proton Neutron

q2 ½GeV2� Gp
Eðq2Þ Gp

Mðq2Þ Gn
Eðq2Þ Gn

Mðq2Þ Gp
Eðq2Þ Gp

Mðq2Þ Gn
Eðq2Þ Gn

Mðq2Þ
0.000 0.997(1) � � � 0.0005(9) � � � 0.998(2) � � � 0.0006(17) � � �
0.015 0.957(1) 2.608(45) 0.0033(11) −1.641ð34Þ 0.954(3) 2.608(70) 0.005(2) −1.678ð54Þ
0.030 0.921(2) 2.536(39) 0.0061(14) −1.613ð30Þ 0.916(4) 2.544(56) 0.008(2) −1.649ð45Þ
0.044 0.887(3) 2.442(37) 0.008(2) −1.557ð28Þ 0.880(5) 2.440(51) 0.011(3) −1.586ð42Þ
0.059 0.854(3) 2.342(35) 0.011(2) −1.479ð29Þ 0.848(5) 2.336(54) 0.014(3) −1.504ð43Þ
0.073 0.825(3) 2.284(31) 0.013(2) −1.456ð25Þ 0.819(5) 2.282(45) 0.015(3) −1.477ð36Þ
0.087 0.797(3) 2.208(30) 0.014(2) −1.411ð23Þ 0.791(6) 2.190(43) 0.015(3) −1.423ð34Þ
0.116 0.747(4) 2.085(29) 0.017(2) −1.326ð22Þ 0.742(6) 2.069(43) 0.018(3) −1.336ð33Þ

TABLE IX. Results of the three isovector form factors obtained by the standard plateau method using the uncorrelated constant fit with
a combined data of tsep=a ¼ f16; 19g and a single data of tsep=a ¼ 19. All form factors are renormalized.

tsep=a ¼ f16; 19g tsep=a ¼ 19

q2 ½GeV2� Gv
Eðq2Þ Gv

Mðq2Þ FAðq2Þ Gv
Eðq2Þ Gv

Mðq2Þ FAðq2Þ
0.000 0.997(1) � � � 1.250(15) 0.998(3) � � � 1.264(22)
0.015 0.954(2) 4.245(73) 1.229(14) 0.949(4) 4.318(115) 1.241(20)
0.030 0.915(3) 4.150(64) 1.205(13) 0.908(6) 4.189(94) 1.216(19)
0.044 0.879(4) 3.999(60) 1.118(13) 0.869(7) 4.026(87) 1.189(19)
0.059 0.843(4) 3.821(60) 1.158(13) 0.834(7) 3.839(91) 1.166(19)
0.073 0.812(5) 3.709(51) 1.140(12) 0.805(7) 3.759(76) 1.150(18)
0.087 0.783(5) 3.620(49) 1.118(12) 0.775(8) 3.613(72) 1.129(18)
0.116 0.730(6) 3.412(49) 1.083(12) 0.724(8) 3.405(72) 1.099(19)
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TABLE XI. Results for the electric rms charge radius
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
in the isovector, proton, and neutron channels. Results for the proton

and neutron are obtained without the disconnected diagram.

Isovector Proton Neutron

Fit type q2 [GeV2] tsep=a
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
[fm] χ2=d.o.f.

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
[fm] χ2=d.o.f. hr2Ei [fm2] χ2=d.o.f.

Linear q2disp ≤ 0.015 f16; 19g 0.822(14) 1.3 0.793(9) 1.1 � � � � � �
19 0.877(21) � � � 0.832(16) � � � � � � � � �

q2meas ≤ 0.015 f16; 19g 0.801(14) 1.8 0.770(10) 1.0 � � � � � �
19 0.854(21) � � � 0.810(16) � � � � � � � � �

Dipole q2disp ≤ 0.116 f16; 19g 0.827(12) 1.1 0.795(8) 1.1 � � � � � �
19 0.847(17) 0.4 0.812(13) 0.5 � � � � � �

q2meas ≤ 0.091 f16; 19g 0.804(14) 1.5 0.774(7) 1.4 � � � � � �
19 0.834(18) 0.2 0.799(13) 0.2 � � � � � �

Quadrature q2disp ≤ 0.116 f16; 19g 0.826(14) 1.3 0.797(10) 1.2 −0.050ð10Þ 0.7
19 0.867(22) 0.1 0.828(16) 0.1 −0.067ð14Þ 0.08

q2meas ≤ 0.091 f16; 19g 0.856(23) 1.5 0.780(8) 1.3 −0.047ð10Þ 0.9
19 0.853(22) 0.08 0.811(17) 0.09 −0.071ð15Þ 0.04

TABLE XII. Results for the magnetic moments μ and magnetic rms radius
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
for the isovector, proton, and neutron channels.

Results for the proton and neutron are obtained without the disconnected diagram.

Isovector

Fit type q2cut [GeV2] tsep=a μv
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=d.o.f.

Linear q2disp ≤ 0.030 f16; 19g 4.348(90) 0.598(83) 0.4
19 4.448(149) 0.677(115) � � �

q2meas ≤ 0.030 f16; 19g 4.439(91) 0.585(81) 0.5
19 4.450(149) 0.662(113) � � �

Dipole q2disp ≤ 0.116 f16; 19g 4.422(77) 0.748(22) 0.2
19 4.495(121) 0.779(39) 0.06

q2meas ≤ 0.091 f16; 19g 4.432(80) 0.739(25) 0.2
19 4.513(127) 0.774(43) 0.08

Quadrature q2disp ≤ 0.116 f16; 19g 4.427(84) 0.750(40) 0.2
19 4.511(133) 0.792(66) 0.07

q2meas ≤ 0.091 f16; 19g 4.426(85) 0.728(58) 0.2
19 4.503(140) 0.757(95) 0.1

Proton Neutron

Fit type q2cut [GeV2] tsep=a μp
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=d.o.f. μn

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=d.o.f.

Linear q2disp ≤ 0.030 f16; 19g 2.660(60) 0.636(82) 0.05 −1.659ð42Þ 0.504(108) 0.3
19 2.684(97) 0.710(116) � � � −1.685ð69Þ 0.523(177) � � �

q2meas ≤ 0.030 f16; 19g 2.661(59) 0.622(80) 0.05 −1.660ð42Þ 0.493(106) 0.3
19 2.685(97) 0.694(114) � � � −1.685ð70Þ 0.511(173) � � �

Dipole q2disp ≤ 0.116 f16; 19g 2.690(49) 0.636(82) 0.05 −1.702ð37Þ 0.732(26) 0.2
19 2.693(74) 0.768(40) 0.07 −1.731ð59Þ 0.748(47) 0.09

q2meas ≤ 0.091 f16; 19g 2.699(51) 0.740(27) 0.2 −1.703ð38Þ 0.716(38) 0.3
19 2.705(78) 0.766(46) 0.07 −1.733ð61Þ 0.733(55) 0.1

Quadrature q2disp ≤ 0.116 f16; 19g 2.697(54) 0.756(42) 0.2 −1.698ð39Þ 0.713(51) 0.3
19 2.709(85) 0.795(70) 0.07 −1.725ð64Þ 0.724(88) 0.1

q2meas ≤ 0.091 f16; 19g 2.697(56) 0.732(59) 0.2 −1.700ð39Þ 0.699(66) 0.3
19 2.710(90) 0.773(97) 0.1 −1.719ð66Þ 0.676(120) 0.1
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Glðq2Þ ¼ Glð0Þ=ð1þ q2=Λ2
l Þ2. The rms radius Rl can

be determined by Rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6d1=d0

p
(linear fit), Rl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−6d1=d0
p

(quadratic fit), and Rl ¼
ffiffiffiffiffi
12

p
=Λl (dipole fit).

10

All results obtained in these model-dependent analyses
are summarized in Tables XI–XIII. We employ the uncor-
related fits, where the correlations among data points at
different q2 are not considered.

APPENDIX D: COMPARISON WITH THE
PREVIOUS LATTICE QCD CALCULATIONS

We discuss a comparison with the results of other recent
lattice QCD calculations, which are summarized in
Table XIV.
The recent calculation reveals the major sources of

uncertainties: (i) statistical noise, (ii) excited-state contami-
nation, (iii) model dependence of the q2 parametrization,

and (iv) extrapolation into the physical point, infinite
volume, and continuum limit. Indeed, the Mainz group
[19,32–34] and the NME Collaboration [18] achieved
reducing these uncertainties and reproducing the exper-
imental values of electric radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
and magnetic

radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
, though they are not precise enough to

discriminate the proton radius puzzle and the tension about
the magnetic form factor.
On the other hand, as for the axial radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
, the

current lattice QCD computation can reproduce the exper-
imental values given by the z-expansion method, and has
achieved an error accuracy comparable to experiment.
Thus, towards the neutrino oscillation experiment and
the physics beyond the standard model, a comprehensive
analysis of the scattering data would be possible by
combining both the experimental results and the lattice
results of the nucleon form factors [83].
Although we would like to compare our results with

these previous results, it should be noted that meaningful
and quantitative comparisons are not yet feasible, so no

TABLE XIII. Results for the axial-vector coupling gA ¼ FAð0Þ and axial-vector rms radius
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
.

Fit type q2 GeV2 tsep=a FAð0Þ
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
[fm] χ2=d.o.f.

Linear q2disp ≤ 0.015 f16; 19g 1.251(15) 0.513(39) 0.6
19 1.264(22) 0.526(80) � � �

q2meas ≤ 0.015 f16; 19g 1.250(15) 0.499(38) 0.6
19 1.264(22) 0.512(78) � � �

Dipole q2disp ≤ 0.116 f16; 19g 1.251(15) 0.552(17) 0.3
19 1.262(21) 0.547(28) 0.05

q2meas ≤ 0.091 f16; 19g 1.252(15) 0.544(17) 0.3
19 1.265(21) 0.549(29) 0.02

Quadrature q2disp ≤ 0.116 f16; 19g 1.252(15) 0.559(35) 0.4
19 1.266(22) 0.590(44) 0.02

q2meas ≤ 0.091 f16; 19g 1.251(15) 0.536(29) 0.3
19 1.266(22) 0.564(54) 0.01

TABLE XIV. Summary of lattice QCD recent results of the electric, magnetic, and axial rms radii; magnetic moment; and axial-vector
coupling obtained from the respective nucleon form factors. The first and second errors represent the statistical and total systematic
uncertainties. The latter error is evaluated from all measured systematic errors added in quadrature. The symbol “→ 0” is used only when
the continuum limit is taken. All data summarized in the table are limited by certain criteria discussed in the text. For the case of gA, see
Ref. [15] and all the relevant references therein.

Publication a [fm] mπ [MeV] mπL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvEÞ2i

p
[fm]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvMÞ2i

p
[fm] μv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrvAÞ2i

p
[fm] gA

Mainz [19,32,33,78] → 0 ≥130 ≥3.05 0.886(12)(19) 0.814(7)(9) 4.62(10)(12) 0.608(52)(53) 1.242ð25Þð þ0
−031Þ

CalLat [79] 0.12 ≥130 3.90 � � � � � � � � � � � � 1.26421(93)
NME [18] → 0 ≥170 ≥3.75 0.882(11)(28) 0.801(14)(50) 4.52(5)(10) 0.597(11)(59) 1.270(11)(22)
RQCD [80] → 0 ≥128 ≥3.5 � � � � � � � � � 0.670(66)(57) 1.302(86)
ETMC [22–25] 0.08 139 3.62 0.796(16) 0.714(91) 3.97(16) 0.586(36) 1.286(23)
LHPC [81,82] 0.093 135 4 0.780(10) � � � � � � 0.499(12) 1.27(2)
PNDME [26–31] → 0 ≥135 ≥3.3 0.769(27)(30) 0.671(48)(76) 3.939(86)(138) 0.74(6) 1.30(6)
PACS [35,57] 0.084 135 ≥7.6 0.776(28)(20) 0.748(104)(270) 4.468(177)(274) 0.532(28)(72) 1.273(24)(5)

10For the neutron’s electric form factor, the quadratic fit is only
applied to evaluate its mean square radius from R2

l ¼ −6d1.
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firm conclusions can be drawn at present. This is simply
because the continuum limit was not yet taken in this study.
However, one point we would comment on is the following.
The accuracy of the lattice QCD results for gA has improved
significantly, and all results obtained from each lattice
study converge within a few percent of the experimental
value, while the lattice QCD results for the rms radii are not
sufficiently consistent with either each other or experiment
as shown in Fig. 46. This situation may be attributed
to the large discretization uncertainties in the rms radii we
observed in this study.

APPENDIX E: VECTOR AND AXIAL CURRENT
RENORMALIZATION IN THE SCHRÖDINGER

FUNCTIONAL SCHEME AT β = 2.00

In this appendix, we explain how we compute the
renormalization factors ZV and ZA in the main text. Our

numerical simulation adopts the SF scheme for the RG-
improved Iwasaki gauge action with the stout smeared
OðaÞ-improved Wilson quark action, which is essentially
the same framework reported in Ref. [84]. See also
Refs. [85–90] that determine the renormalization factors
for the axial, vector, and pseudoscalar operators with the SF
scheme. In order to define the SF scheme, we consider a
finite lattice to temporal and spatial directions, T and L.
The Dirichlet boundary condition is imposed in the
temporal direction, and hence, the boundary gauge fields
at t=a ¼ 0 and T are fixed by it. The smeared gauge fields
in the stout smearing steps are also affected by this
boundary condition.
The operators we employ here are the vector and axial

current

Va
4ðxÞ ¼ q̄ðxÞγ4TaqðxÞ; ðE1Þ

FIG. 46. Summary plot for the lattice QCD results and the experimental values of the axial-vector coupling (top, left), isovector
magnetic moment (top, right) and three kinds of the isovector rms radius: electric (bottom, left), magnetic (bottom, center), and axial
(bottom, right). The (inner) error bars represent the statistical error, while the outer error bars are the total error evaluated by both the
statistical and systematic errors added in quadrature. Blue labels indicate that the analysis uses the data from lattice QCD simulation near
the physical point, while green labels indicate that the continuum extrapolation is achieved. In the top-left panel, yellow and gray bands
display 1% and 2% deviations from the experimental value. In addition, violet lines and brown bands appearing in each panel represent
the experimental values.
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Aa
4ðxÞ ¼ q̄ðxÞγ4γ5TaqðxÞ; ðE2Þ

and the pseudoscalar density

PaðxÞ ¼ q̄ðxÞγ5TaqðxÞ; ðE3Þ

where Ta is the generator of SUðNfÞ. In our calculation we
fix Nf ¼ 3. We assume that the nonperturbative OðaÞ
mixing to the axial current is negligible based on our
observation [61], and the unimproved current operator is
sufficient to determine the renormalization factor ZA.
The correlation functions required for the renormaliza-

tion factors are expressed as

fXYðt; sÞ ¼ −
2

N2
fðN2

f − 1Þ
×
X
x;y

fabcfcdehO0dXaðx; tÞYbðy; sÞOei; ðE4Þ

fXðtÞ ¼ −
1

N2
f − 1

X
x

hXaðx; tÞOai; ðE5Þ

f1 ¼ −
1

N2
f − 1

hO0aOai; ðE6Þ

fVðtÞ ¼
1

NfðN2
f − 1Þ

X
x

ifabchO0aVb
4ðx; tÞOci; ðE7Þ

where fabc is the structure constant of SUðNfÞ. The
operators Oa, O0a are defined on the boundary as

Oa ¼ 1

L3

X
y;z

ζ̄ðyÞγ5TaζðzÞ; ðE8Þ

O0a ¼ 1

L3

X
y;z

ζ̄0ðyÞγ5Taζ0ðzÞ; ðE9Þ

where ζ, ζ0 are the boundary quark fields at t=a ¼ 0 and T,
respectively. We substitute A4 and P into X and Y.
From the correlation functions in (E4)–(E7), we define

the renormalization factors ZV and ZA as

ZV ¼ Z̃VðT=2Þjm̂PCAC→0; Z̃VðtÞ ¼
f1

nVfVðtÞ
; ðE10Þ

and

ZA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̃Að2T=3Þ

q
j
m̂PCAC→0

;

Z̃AðtÞ ¼
f1
nA

�
fAAðt; T=3Þ − 2m̂PCACfPAðt; T=3Þ

	
−1; ðE11Þ

where nV , nA are normalization constants such that both
ZV and ZA become unity at tree level [85,88]. The

dimensionless PCAC mass parameter m̂PCAC is determined
by using the average of three points located at the central
time slice t=a ¼ T=2 as

m̂PCAC ¼ 1

3

XT=2þ1

t=a¼T=2−1

fAðtþ aÞ − fAðt − aÞ
4fPðtÞ

; ðE12Þ

which are used to define the bare quark mass mpion
PCAC in

lattice units as ampion
PCAC ¼ ZAm̂PCAC that appears in the text.

The massless limit can be taken by adjusting the hopping
parameter κ so that m̂PCAC ∼ 0.
As in Ref. [84], we take α ¼ 0.1 and nstep ¼ 6 for the

stout link smearing parameters. The action parameters are
set to be β ¼ 2.00 and cSW ¼ 1.02 [42], and the SF
boundary parameters are cPlaquettet ¼ 1, cRectangulart ¼ 3=2
for the gauge action and c̃t ¼ 1 for the quark action.
The simulation parameters are shown in Table XV for

the two volumes (VAS) and (VAL). The phase angle θ is
the parameter of the generalized periodic boundary con-
dition for the quark field. The measurements for the
correlation functions are performed at every trajectory,
and the statistical errors are estimated with the jackknife
method. In the jackknife method, we built block data
with a size of 200 trajectories for (VAS) and 150
trajectories for (VAL). The hopping parameter κ is chosen
to be m̂PCAC ∼ 0 by investigating the κ dependence of
m̂PCAC in the smaller volume (VAS). The simulation
results are tabulated in Table XVI, which shows that
the PCAC mass is statistically consistent with zero in the
(VAS) and (VAL) runs.
The time dependence of Z̃V in (VAS) and (VAL) is

shown in Fig. 47. In both cases, Z̃V is reasonably
independent of time. As defined in (E10), the value of
ZV is obtained from the fixed time slice of Z̃V as

ZV ¼ 0.96677ð41Þð316Þ; ðE13Þ

TABLE XV. Simulation parameters and number of trajectories
(Traj.) for the calculation of renormalization factors. The accep-
tance rate in hybrid Monte-Carlo (HMC acc.) is also presented.

Run L, T θ κ Traj. HMC acc.

(VAS) 12, 30 1=2 0.125820 10000 0.9179
(VAL) 16, 42 1=2 0.125820 21750 0.9109

TABLE XVI. PCAC masses and renormalization factors ZV
and ZA.

Run m̂PCAC ZV ZA

(VAS) −0.00029ð12Þ 0.96993(108) 0.9702(26)
(VAL) 0.00028(15) 0.96677(41) 0.9783(21)
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where the first and second parentheses represent the
statistical and systematic errors, respectively. The central
value and the statistical error are determined from the
results in the larger volume (VAL), and the systematic error
is evaluated by the difference between the central values in
the two runs.
The time dependence of Z̃A in (VAS) and (VAL) is

shown in Fig. 48. The data of the full contraction are
calculated with the connected and disconnected contrac-
tions. Around t=a ¼ 2T=3, it is observed that the full
contraction has a plateau, while the data of only the

connected contraction has a gradual slope. Therefore, we
choose the full contraction result to evaluate ZA, whose
value is given by

ZA ¼ 0.9783ð21Þð81Þ; ðE14Þ

where the central value and errors are determined in the
same manner as for ZV.
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