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We present results for the nucleon form factors: electric (Gg), magnetic (G,), axial (F,), induced
pseudoscalar (Fp), and pseudoscalar (Gp) form factors, using the second PACS10 ensemble that is one of
three sets of 2 + 1 flavor lattice QCD configurations at physical quark masses in large spatial volumes
[exceeding (10 fm)?]. The second PACS10 gauge configurations are generated by the PACS Collaboration
with the six stout-smeared O(a) improved Wilson quark action and Iwasaki gauge action at the second
gauge coupling f = 2.00 corresponding to the lattice spacing of ¢ = 0.063 fm. We determine the isovector
electric, magnetic and axial radii, and magnetic moment from the corresponding form factors, as well as the
axial-vector coupling g,. Combining our previous results for the coarser lattice spacing [E. Shintani et al.,
Phys. Rev. D 99, 014510 (2019); Phys. Rev. D 102, 019902(E) (2020)], the finite lattice spacing effects on
the isovector radii, magnetic moment, and axial-vector coupling are investigated using the difference
between the two results. It was found that the effect on g, is kept smaller than the statistical error of 2%
while the effect on the isovector radii was observed as a possible discretization error of about 10%,
regardless of the channel. We also report the partially conserved axial-vector current relation using a set of
nucleon three-point correlation functions in order to verify the effect by O(a) improvement of the axial-

vector current.

DOI: 10.1103/PhysRevD.109.094505

I. INTRODUCTION

In the standard model of the particle physics, the proton
and neutron, in short nucleon, which are the building
blocks of nuclei, are composite particles of quarks and
gluons, and the interaction among them are formulated by
quantum chromodynamics (QCD). This indicates that the
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structure of nucleon is itself a nontrivial consequence of
quark-gluon dynamics. The nucleon form factors are very
good probes to investigate the nucleon structure [1].
Although great theoretical and experimental efforts for
the form factors have been devoted to improving our
knowledge of the nucleon structure, there are several
unsolved problems and tensions associated with the fun-
damental properties of nucleons.

The proton radius puzzle [2], which has become well
known as the discrepancy in experimental measurements of
electric root-mean-square (rms) radius of the proton, has
not been solved. In this puzzle, high-precision measure-
ments of the proton’s charge radius using the muonic
hydrogen spectroscopy disagree with its long-established
value measured from both elastic electron-proton scattering
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and hydrogen spectroscopy. In order to solve the puzzle,
recent perspectives have focused primarily on systematic
uncertainties [3]. Furthermore, there is a significant tension
in empirical parametrizations of the proton magnetic form
factor obtained by experiments [4,5]. A percent-level
measurement is needed to resolve these issues and should
be performed in future experiments.

Not only the electric and magnetic form factors, but also
the axial form factor and axial radius are important inputs
for the weak process associated with the neutrino-nucleus
scattering [6—8]. The axial-vector coupling (g4), which
can be determined from the axial form factor at zero-
momentum transfer, is associated with the neutron lifetime
puzzle [9]. Since the discrepancy between the results of
beam experiments and storage experiments remains
unsolved, it is still an open question that deserves further
investigation. Furthermore, the ¢> dependence of the axial
form factor can be used as an important input [10-13] for
the current neutrino oscillation experiments such as T2K,
NOVA, and so on [14].

Lattice QCD 1is the only known way to compute
rigorously the nucleon form factors and their corresponding
radii as the first principles of QCD. Recent developments in
computational technology and a tremendous increase in
computational resources have made it possible to perform
realistic lattice QCD with light quark (degenerate up and
down quarks) and strange quark flavors even in baryon
physics, which has more complex systematic uncertainties
than meson physics. Indeed, lattice QCD successfully
reproduces high accuracy the experimental values of g,
[15-18] that are precisely measured by the current pre-
cision measurements of neutron f decay, and its repro-
duction is an important benchmark study for the structure
of the nucleon based on lattice QCD. This success finally
reveals the major sources of the systematic uncertainty: the
chiral extrapolation to the physical point, the finite volume
effect, the finite lattice spacing effect, and the excited-
state contamination [19]. Furthermore, it motivates the
current efforts to improve precision of theoretical predic-
tions for the nucleon structure and solve related puzzles and
tensions [19-35].

For the sake of the high-precision determination with a
few percentage level, we perform fully dynamical lattice
QCD simulations at the physical point with lattice volume
larger than (10 fm)*, which can eliminate the systematic
uncertainties due to chiral and infinite-volume extrapola-
tions (called as “PACS10” project). In the PACS10 project,
the PACS Collaboration plans to generate three sets of the
PACS10 gauge configurations at three different lattice
spacings. We have reported the first result obtained with
the PACS10 gauge configurations generated at the lattice
spacing of 0.085 fm (denoted as coarse lattice) [35].

This work uses the second ensemble of the PACS10
gauge configurations generated at the lattice spacing of
0.063 fm (denoted as fine lattice) in order to investigate the

finite lattice spacing effects on the nucleon form factors
toward the continuum limit. In a series of our studies,
we have retained some essential features, carried over from
our earlier work: (i) We perform fully dynamical lattice
QCD simulation with the stout-smeared O(a)-improved
Wilson-clover quark action and the Iwasaki gauge
action [36]. (ii) The physical spatial volume is kept at
about (10 fm)* where the finite volume effect is sufficiently
suppressed, and furthermore the nonzero minimum value of
the momentum transfer reaches about g> ~0.01 GeV2.
(iii) The quark masses are carefully tuned to the physical
point, which indicates that our simulations are free from the
chiral extrapolation. (iv) For high statistics analysis, the
all-mode-averaging (AMA) method [37-40], which is
optimized by the deflation technique [41] and implemented
by multigrid bias correction by the truncated solver
method [37], is utilized to significantly reduce the computa-
tional cost.

These specific features enable us to overcome the
systematic uncertainties due to chiral and infinite-volume
extrapolations and approach the low ¢” region, which is
essential to evaluate the nucleon rms radii from the nucleon
form factors. However, since our previous study [35] had
been performed at a single lattice spacing, the uncertainty
associated with the finite lattice spacing still remains.
Therefore, the main objective of this study is to investigate
the remaining uncertainties associated with the finite lattice
spacing with respect to the nucleon form factors and
associated rms radii.

This paper is organized as follows. In Sec. II, we describe
our method to calculate the nucleon form factors and their
rms radii from the nucleon two- and three-point correlation
functions in lattice QCD simulation. Definitions and
notations for the nucleon form factors and their general
properties are also summarized in this section. In addition,
we will explain the methodology to determine the rms radii
and magnetic moment, and the strategy to examine the
systematic uncertainties of the excited-state contamination.
In Sec. III, we present a brief description of our gauge
configurations, which are a partial set of the PACS10 gauge
configurations generated by the PACS Collaboration [42].
The basic results obtained from the nucleon two-point
function including the dispersion relation are also summa-
rized in this section. In Sec. IV, the results for five form
factors, Gg, Gy, Fa, Fp, and Gp are presented. We then
investigate the source-sink separation dependence of these
form factors and three rms radii (electric, magnetic, and
axial rms radii). Section V is devoted to a discussion of the
results of three form factors, F4, Fp, and Gp obtained in the
axial vector and pseudoscalar channels, which are related to
the axial Ward-Takahashi identity. Finally, we close with a
summary and outlook in Sec. VII.

In this paper, the matrix elements are given in
the Euclidean metric convention. ys is defined by ys =
Y1V2Y3Vs = —yg-” , which has the opposite sign relative to
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that in the Minkowski convention (¥ = i7 and y} = y,)
adopted in the particle data group. The sign of all the form
factors is chosen to be positive. The Euclidean four-
momentum squared ¢’ corresponds to the spacelike
momentum squared as g3, = —g* < 0 in Minkowski space.

II. CALCULATION METHOD

A. General properties of nucleon form factors

In this paper, we would like to focus on five target form
factors: the electric (Gg), magnetic (Gy,), axial (F,),
induced pseudoscalar (Fp), and pseudoscalar (Gp) form
factors, which appear in the nucleon matrix elements of the
vector, axial vector, and pseudoscalar currents as below.

Let us consider, for example, the nucleon matrix ele-
ments of the weak current that can describe the neutron f
decay. In addition to the standard beta-decay transition,
which is described by the vector and axial-vector currents,
we also include the nonstandard one as the pseudo-
scalar current as below. The nucleon matrix element of a
given quark bilinear operator as J§ = aI'{d with I =
Ya»YaYs» Vs for the vector (V,), axial vector (A,), and
pseudoscalar (P) currents have the following relativistically
covariant decomposition in terms of the five different form
factors: the vector (Fy), induced tensor (F7), axial vector
(F4), induced pseudoscalar (Fp), and pseudoscalar (Gp) as

(p@)|Va(x)|n(p)) = it,(p") (raFv(q®)
+ 04pa5F7(q))u, (p) e, (1)

(P(®")Ac(x)In(p)) = @, (') (VarsFa(q?)
+ iQaySFP(qz))un(p)eiq.x’ (2)

(PIP)In(p)) = i, (p") (rsGp(q®)Jus(p)e'™.  (3)

where |p(p)) and |n(p)) are the proton (p) and neutron (1)
ground state with the three-dimensional momentum p.
In the above equation, the four-dimensional momentum
transfer g between the proton and neutron is given by
g =P —P with P = (E,(p),p) and P' = (E,(p').p’).

The vector part of the weak matrix elements of neutron f
decay described by the F'y, and F'r form factors is related to
the nucleon’s electromagnetic matrix element via an isospin
rotation, as long as the heavy-flavor contributions can be
neglected under the exact isospin symmetry. Suppose that
the electromagnetic current can be expressed in terms of the
up and down quark currents as j™ = Ziy,u —idy,d,
neglecting the strange and heavier quarks. Then the
electromagnetic matrix elements of the proton and neutron
are written by the proton’s matrix elements of the up and
down quark currents as

(Pli5™ 1P = 5 (plivaalp) ~ 5 (pldvadlp). ()

[SSI )

) 1, 2, -
{nlju™In) = =3 (plireulp) +3 (pldyedlp).  (5)
which lead to the following relation:
(pl7E™Ip) = (nlji™|n) = (playau — dy.dlp)  (6)

= (pliayqd|n). (7)

where in the second equality an isospin rotation is used to
show a connection to the vector part of the weak matrix
elements of the neutron f decay. Therefore, the F'y, and Fr
form factors in neutron f decay are related to the isovector
part of the electromagnetic Dirac (F) and Pauli (F,) form
factors

Fi(q*) = Fv(q?). (8)

F3(q*) = 2MyF1(q?). )

where the nucleon mass M, is defined by the average of the
proton and neutron masses. The isovector form factor F{
(F%) is given by the difference between the Dirac (Pauli)
form factors of the proton and neutron as

Fi(¢?) = F](¢®) - Fi(¢®).  1={1.2}, (10)
where the individual form factors FY (N = p, n) are
defined by

(NP')lja™ (x)IN(P))
= iy (") (M’V (%) + oup sz—’NFN <q2>) uy(p)eit*,
(11)
where ¢=P—P with P=(Ey(p),p) and P =

(Ex(p').P').

The electric (G) and magnetic (G,,) Sachs form factors
are related to the Dirac (F;) and Pauli (F,) form factors of
the proton and neutron, individually as below:

q2
U = FY(@) - 3 FY @) (12
Gl(a?) = FY(¢?) + FY (") (13)

where N = p, n. Gg(g?), and Gy;(q?) are relevant quan-
tities to describe experimental data obtained from elastic
electron-nucleon scattering experiments. Even for the
electric Gi(g?) and magnetic G,;(g*) Sachs form factors,
the isovector part is also given as
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G/(¢*) =Gl (¢*) - Gl(¢*). I={E.M}. (14)
In this study, we primarily calculate G%(4?) and G%,(g?)
which can be evaluated only by the connected-type con-
tribution as explained previously and hence can be used for
comparison with experiments, while the electromagnetic
form factors of the proton and neutron are also evaluated
separately without the disconnected-type contribution.

The normalization of the electromagnetic form factors
of the proton and neutron is given by the electric charge
and the magnetic moment, which are defined as the
electromagnetic form factors at the zero momentum
transfer, g> = 0. The electric charge and the magnetic
moment are given as G3(0) =1 and G},(0) =pu, =
+2.7928473446(8) for the proton and G%(0) =0 and
G4, (0) = p, = —1.9130427(5) for the neutron [43].

The axial-vector form factor F,(g?) and the induced
pseudoscalar form factor Fp(g?) can be extracted
from the axial-vector part of the weak matrix elements
of the neutron f decay, which is associated with the nucleon
matrix element with the isovector axial-vector current
A, = ity,ysu — dy,ysd. Especially the axial-vector cou-
pling defined by g, = F,(q*> = 0) is experimentally well
determined as g, = 1.2754(13) [43]. Therefore, we can use
this quantity as a good reference for verifying the accuracy
and reliability of our calculations. The g*> dependence of the
axial form factor can be directly compared with phenom-
enological values provided by the neutron f# decay. This
indicates that first-principles calculations of the nucleon
form factors provide useful information to understand the
neutrino-nucleus interactions [8,44,45]. On the other hand,
the induced pseudoscalar form factor has much less
information in experiments [46,47].

In addition to the two form factors F,(g?) and Fp(q?),
we also calculate the pseudoscalar form factor Gp(q?),
which is also associated with the nucleon matrix element
with the isovector pseudoscalar current P = fiysu — dysd.
Recall that the ¢ dependence of these three form factors,
F4(4?), Fp(4q?), and Gp(g?), should be constrained by the
generalized Goldberger—Treiman (GGT) relation [48,49]

2MNFA(‘]2) - quP(qz) = szP(q2> (15)

with a degenerate up and down quark mass m = m, = my,
since the GGT relation can be derived as a consequence of
the axial Ward-Takahashi identity (AWTI):

0,A,(x) =2mP(x), (16)

which is phenomenologically referred to as the partial
conservation of the axial-vector current (PCAC). Therefore,
it is important to evaluate each of the three form factors
individually and then verify whether the GGT relation is
satisfied among them. This is really a nontrivial check of
the PCAC relation in terms of the nucleon form factors.

B. Root-mean-square radius of the nucleon
The root-mean-square (rms) radius R; = 4/ (r?), which
measures a typical size in the coordinate space is defined

from the expansion of the normalized form factor G,(q?)
for [ = {E, M, A} in the powers of g°:

1 1
Gia?) = Gi0) (1= g D)+ 135 (i) ). (17
where the first coefficient determines the mean

squared radius (r?) that can be read off the slope of
G(¢%) at ¢*> =0 as

<r2> _ _LdGl(‘f)
! G(0) dg*

(18)

7*=0

Here we use the notation of G, = F, for the axial-vector
form factor.

The z-expansion method, which is known as a model
independent analysis and has been widely used in the
analyses of the form factors in both experiments and lattice
calculations [50-52], is mainly employed in this study.1 In
the z-expansion method, the given form factor G(g?) is
fitted by the following functional form:

k max

Gg®) =)
k=0

CkZ(‘Iz)k

= co+ 12(q%) + 22(¢*)* + c32(¢?)* + ..., (19)

where a new variable z is defined by a conformal mapping
from ¢° as

V't 2 — Ve — 1
Z(qz) _ cut + q cut 0 (20)
V Teut =+ q2 =+ vV tcut - tO

with ¢, = 4m? for G = G and G, or with t,, = 9m2 for
G = F 4. Since respective values of 7, are associated with
the two-pion continuum or the three-pion continuum, the
value of m, is set to be the simulated pion mass. A
parameter f, can be taken arbitrarily within the range of
teut > to. For simplicity, 7y = 0 is chosen in this study.” The
transformation (20) maps the analytic domain inside a unit
circle |z| < 1 in the z plane so that Eq. (19) is supposed to
be a convergent Taylor series in terms of z. To achieve a
model independent fit, k,,, that truncates an infinite series

'In Appendix C, we additionally present results obtained
from the model dependent analyses with the dipole form and
the polynomial (linear or quadratic) forms, for comparisons.

’The optimal choice of 7, is given by 0P = ry(1—
V1 + GEax/tew) for minimizing the maximum size of |z|> when
the value of ¢*> ranges from O to g2, [12]. However, the
maximum of the momentum transfer g2, ~ 0.1 GeV? used in
this study is so small that the fit result is insensitive to the choice

of either ty = 0 or 1y = £,
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expansion in z should be chosen to ensure that terms cz*
become numerically negligible for k > k.-

To check the stability of the fit results with a given k,,,
we use the singular value decomposition algorithm to solve
the least squares problem for high degree polynomials. We
determine the optimal value of k,,,, in each channel so that
the fitting is stable against the variation of k., with a
reasonable y2/d.o.f. and does not change the value of the

rms radius, which is given by R; = \/=6(c1/cq)/ (4tew)-
Recall that the normalization of the neutron electric form
factor is G'.(0) = 0 and (r%) is negative. Therefore, the
constant term in Eq. (19) is fixed to zero as ¢, = 0 during
the fitting, and the neutron’s mean-square radius is deter-
mined as {(r%)%) = —6(c;)/ (4.

C. Correlation functions with momentum

In this study, the exponentially smeared quark operator
gs(t,x) with the Coulomb gauge fixing is used for the
construction of the nucleon interpolating operator as well as
a local quark operator ¢(#,x). The smeared quark operator
is given by a convolution of the local quark operator with a
smearing function ¢(x,y) as

xX) = px.y)q(ty), (21)

where the color and Dirac indices are omitted.

A smearing function ¢(x,y) is given by an isotropic
function of r = |x — y| in a linear spatial extent of L as the
following form:

1 (r=0)
P(x.y) = d(r) = { Ac™" (r<L/2), (22)
0 (r>L/2)

with two smearing parameters A and B. This procedure does
not preserve the full gauge invariance of the hadron two-point
correlation functions consisting of the spatially smeared
quark operators, so that the Coulomb gauge fixing is
necessary. Let us define the nucleon two-point function with
the local nucleon sink operator N; (¢,p) located at ¢ = f4y
and the nucleon source operator Ny (,p) located at ¢ = t
for either smeared (X = §) or local (X = L) cases as

= —TI{P+ Nx(tbmkvp)NS( srcs P)>}
with X = {S.L}, (23)

CXS (tsink src vp

where the nucleon operator with a three-dimensional
momentum p is given for the proton state by
|

Nu(1p)= Y e e [u(1.2) Crsdy (1) uc(16) - (24)

X

with the charge conjugation matrix, C = y4y,. The super-
script T denotes a transposition, while the indices a, b, ¢ and
u, d label the color and the flavor, respectively. The smeared
source operator N (7, p) is the same as the local one Ny (,p),
but all the quark operators u, d are replaced by the smeared
ones defined in Eq. (21). The lattice momentum is defined as
p = 2x/(La) x n with a vector of integers n € Z3 and L the
number of the spatial lattice sites. A projection operator
P, = (1 +y4)/2 can eliminate the unwanted contributions
from the opposite-parity state for |p| = 0 [53,54].

In order to calculate the isovector nucleon form factors,
we evaluate the nucleon three-point functions, which are
constructed with the spatially smeared sources and sink
operators of the nucleon as

Co,(1:p'.p)

= T PUNs (b IS (6p =P (i)} (25)

with a given isovector bilinear current operator J¢ defined
at Egs. (1)-(3). In the above equation, P, denotes the
projection operator to extract the form factors for the
unpolarized case P, = P, = Py, and polarized case (in
z direction) P, = Ps, = P, ysv,.

Recall that in the case of the exact SU(2) isospin
symmetry (m, = m,), the nucleon three-point functions
with the isovector currents do not receive any contributions
from the disconnected diagrams of all quark flavors thanks
to their mutual cancellations. In this paper, we present
results for the isovector nucleon form factors that can be
determined solely by the connected-type contribution in
2 41 flavor QCD, while the isoscalar ones require com-
putation of both connected and disconnected-type contri-
butions. Since the connected parts are in general precisely
computed rather than the disconnected parts, we still have a
good opportunity for accurate prediction of the nucleon-
neutrino elastic scattering, which is governed by the
isovector interaction.

D. Extraction of nucleon form factors

In a conventional way to extract the nucleon form
factors, we introduce the following ratio constructed by
an appropriate combination of two-point functions (23) and
three-point functions (25) [55,56] with a fixed source-sink
separation (foep = Lgjnk — fgre) aS

t.p>CSS< B src;pl)CLS(tsink =1

SIc 7p ) , (26)

RE, (1:p'.p) =

Css(tgnk = tsreiP")

Cléa(t;pl’p) CLS(tsmk
CLS( sink

t:p")Css(t = t4e;P) Crs(tsink = tsrciP)
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which is a function of the current operator insertion time ¢ at
the given values of momenta p and p’ for the initial and final
states of the nucleon. In this work, we consider only the rest
frame of the final state with p’ = 0, which leads to the
condition of ¢ = p —p’ = p. Therefore, the squared four-
momentum transfer is given by ¢> = 2My(Ey(q) — My)
where My and Ey(q) represent the nucleon mass and
energy with the momentum ¢. In this kinematics,
R, (t:p',p) is rewritten by a simple notation R¢, (1 ¢).

The ratio R](‘Q (t; q) with appropriate combinations of the
projection operator P, (k = 1, 5z) and the a component of
the isovector bilinear bare current J§ gives the following
asymptotic values including the respective form factors in
the asymptotic region (ty,/a > (t —ty.)/a > 1)

[Ex + My -
Ry 150) =\ [= 5, — G, (27)

—i€;j3q;
2En(Ey + My)

Ey+ My - qi93 =
5z t; N N F 2 Sa — i 2 )
R’A,-( q) = “—2EN 4(q7)di3 Ex + My MNPP(CI )

RV (1:q) = Giu(a®). (28)

(29)
Ry (1:q) = 'a:
! V2EN(Ey + My)
x [FA(qz) —(Ey — MN>FP(‘I2)]7 (30)
Tl iq3 ~
R (1:q) = TR Grl(q®). (31)

where the nucleon energy Ey(q) is simply abbreviated as
Ey, and the indices i and j run the three spatial directions. If
the condition t,/a > (t — ty.)/a > 1 is satisfied, the five
target quantities, the electric (Gg), magnetic (Gy,), axial
(F4), induced pseudoscalar (Fp), and pseudoscalar (Gp)
form factors, can be read off from an asymptotic plateau of
the ratio R’éa (t;q), being independent of the choice of .

This approach is hereafter referred to as the standard
plateau method. Following our previous work [35], we
simply use the uncorrelated constant fit to evaluate the
plateau values from the ratio, since a fixed fit range can be
maintained for all seven momentum transfers.

Finally, we recall that the quark local currents on the
lattice receive finite renormalizations relative to their
continuum counterparts in general. The renormalized
values of the form factors require the renormalization
factors Z, (O =V, A, P):

Gy(q?) = ZyGi(q?), (32)

Gy(a*) = ZvGiy(4*), (33)
Fa(q®) = ZsFA(q), (34)
Fp(q®) = ZaFp(q%), (35)
Gp(q*) = ZpGr(q?), (36)

where the renormalization factors are defined through the
renormalization of the quark currents J = Z 07(?.3 The
renormalization factors Zy and Z, are scale independent,
while Zp depends on the renormalization scale. In order to
compare the experimental values, four form factors, G¢, Gy,
F,, and Fp, will be properly renormalized with Zy, and Z,,
which are determined by the Schrodinger functional method
as given in Appendix E, while the pseudoscalar form factor
presented in this study is only the bare quantity as indicated
by Gp.

E. Test for the PCAC relation using the nucleon

As described in Sec. IT A, the three form factors, F4(g?),
Fp(q?), and Gp(q?), are related to each other through the
GQT relation (15) and are not independent. Therefore, if
the GGT relation is well satisfied in our simulations, it
offers a way to define a bare quark mass’ by the following
specific ratio:

mnucl _ 2MNFA<q~2) - quP(q2>
oot 2Gp(q?)

, (37)

which may have no apparent g dependence [49]. As reported
in our previous studies at the coarse lattice spacing [35,57],
the quark mass mX<;. defined by Eq. (37) is roughly 3 times
larger than a (bare) quark mass (hereafter denoted as mbcy
obtained from the pion two-point correlation functions with
the PCAC relation. We concluded that both Fp(g?) and
Gp(q?) significantly suffer from the excited-state contami-
nation, which induces the distortion of their pion-pole
structures [35,57].

To verify the PCAC relation using the nucleon, we may
directly use the nucleon three-point correlation functions
instead of the three form factors, following Ref. [58]:

_ 1 <NS(tsink)aaAa<t)NS(tsrc)>

a 2 <NS(tsink)P(t)NS(tsrc)>

Z,0,C3: (1:9)
265 (1:9)

nucl
PCAC —

’

(38)

3Hereafter, the form factors and currents with and without tilde
indicate bare and renormalized ones.

“The axial Ward-Takahashi identity on the lattice may be
represented by d,A,(x) = 2mP(x) with the renormalized cur-
rents A, = Z4A, and P = ZpP. Thus, m represents the bare
value unless P is renormalized.
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TABLE 1. Parameters of the second PACS10 ensemble. See Ref. [42] for further details.
p L3xT a”! [GeV] Kud Ky Csw m, [GeV]
2.00 1603 x 160 3.1108(70) 0.125814 0.124925 1.02 0.138

which does not require the spectral decomposition. In other
words, the value of mB} - can be evaluated at the level of
the nucleon three-point correlation function without iso-
lating the ground-state contribution from the excited-state
contributions, similar to the determination of mb,c from
the pion two-point correlation functions.

In Eq. (38), the derivatives of the nucleon three-
point function with respect to the coordinate are
evaluated by

. 1
0:C5i (1:9) = 5 ACK (1 + a:9) — Cii (1 - as;@)} (39)
for the time component and
0kCY(1:q) = iqrC5 (1:q) (40)

for the spatial components (k = 1, 2, 3). Here, we adopt the
naive discrete momentum ¢, = S—an (n, =0,1,2, ...,
(L—1)), while the lattice discrete momentum ¢, =
Lsin[2% ;] is adopted in the original proposal [58]. This
is simply because we would like to treat the momentum in a
manner equivalent to the analysis for the nucleon form
factors which are extracted from the common three-point
functions. Indeed, there is no difference in either case at low
momenta.’

Both m2¢ and mi<l - can be regarded as a bare quark
mass defined through the axial Ward-Takahashi identity as
long as they exhibit ¢ independent behavior as a function of
g*. Therefore, it is worth comparing the quark masses by
these two definitions. If a difference is observed between
mggy and mp¢s ¢, it would confirm that the main reason why
miel. is overestimated compared to mpoyc is due to the
excited-state contamination. On the other hand, if mB&i .
coincides with mbosc, we justify that O(a) improve-
ment of the axial-vector current A,* = A, + c4ad,P
does not help to solve the discrepancy between m%lng and
mBe! . This is simply because the second term of 9, P causes
amomentum dependence on m%<, -, though it is not the case
for mpac determined by the zero-momentum projected
two-point functions of the pion.

The momentum region used in the study is a significantly
lower region thanks to the large spatial extent of La ~ 10 fm.

III. SIMULATION DETAILS

A. PACS10 configurations on a 160* lattice

In this paper, we use the second PACS10 ensemble,
which is a set of gauge configurations generated by the
PACS Collaboration with L? x T = 1603 x 160 lattice and
physical light quark masses at the second gauge coupling
p =2.00 corresponding to the lattice spacing of a =
0.06343(14) fm [a~! = 3.1108(70) GeV] [42,59] using
the six stout-smeared O(a)-improved Wilson quark action
and the Iwasaki gauge action [36]. The stout-smearing
parameter is set to p = 0.1 [60]. The improved coefficient,
csw = 1.02, is nonperturbatively determined using the
Schrodinger functional (SF) scheme [61]. The hopping
parameters of (k,4, k) = (0.125814,0.124925) are care-
fully chosen to be almost at the physical point. The scale is
determined from the = baryon mass input Mgz =
1.3148 GeV [42]. A brief summary of the simulation
parameters is given in Table L.

The previous works by the PACS Collaboration showed
that the finite-size effects on both the nucleon mass [62] and
the nucleon matrix elements [63] are negligible on two
lattice volumes (linear spatial extents of 10.9 fm and 5.5 fm)
at the coarse lattice spacing of a = 0.08520(16) fm.
Therefore, lattice QCD simulations with a spatial size more
than 10 fm using the PACSI10 configurations provide us
with a very unique opportunity to explore the nucleon
structure without any serious finite-size effect. Especially,
the large spatial volume of (10 fm)? allows us to investigate
the form factors in the small momentum transfer region. The
lowest nonzero momentum transfer reaches the value of
g*> = 0.015 (GeV)?, which is smaller than m2 even at an
almost physical pion mass (m, ~ 138 MeV).

We use 19 gauge configurations separated by five
molecular dynamics trajectories. Since there are four
choices for a temporal direction on a 160* lattice, we
rotate the temporal direction using hypercubic symmetry of
each gauge configuration and then increase the total
number of measurements by a factor of 4 to treat them
as 76 gauge configurations in total.® The statistical
errors are estimated by the single elimination jackknife
method.”

SAlternatively, the averages of the four datasets can be
combined into one and analyzed as 19 statistics. We have
confirmed that there is no significant difference between the
two analyses.

There is no significant difference in bin size ranging from 1 to
5 in the jackknife analysis of the nucleon two-point functions.
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B. Computational and technical details

In this study, we compute the correlation functions
multiple times with respect to the geometrical symmetries
of the lattice at a given configuration. The computational
cost is significantly reduced by adopting the AMA method
[37-40] with the deflated Schwarz alternating procedure
(SAP) [64] and generalized conjugate residual (GCR) [41]
for the measurements as shown in our previous works
[35,63]. We compute the combination of the correlation
function with high-precision O°'®) and low-precision
O@pprox) ¢

Nore N,
1 org 1 G
OWBMA) — (O(Org)f — Olapprox)f ) N O(apprOX)g’
Norgj;; NG qez;;

(41)

where the superscripts f, g denote the transformation under
the lattice symmetry G. In our calculations, it is transla-
tional symmetry, e.g., changing the position of the source
operator as in Refs. [57,62,65,66]. N, and N are the

numbers for O(°'2) and O@P%) respectively. The numbers
and the stopping conditions of the quark propagator for the
high- and low-precision measurements are summarized in
Table II.

In calculation of the nucleon two- and three-point
functions, we use the same quark action as in the gauge
configuration generation with the hopping parameter
Kk = k,q = 0.125814 for the degenerated up-down quarks,
the improved coefficient, cqw = 1.02, and six steps of
stout-smearing to the link variables. The periodic boundary
condition in all the temporal and spatial directions is
adopted in the quark propagator calculation.

TABLE II.

The quark propagator is calculated using the exponential
smeared source (sink) with the Coulomb gauge fixing. The
smearing parameters for the quark propagator defined in
Eq. (22) are chosen as (A, B) = (1.2,0.11), which optimize
the effective mass plateau for the smear-local case.

The nucleon three-point functions are calculated using
the sequential source method with a fixed source-sink
separation [67,68]. This method requires the sequential
quark propagator for each choice of a projection operator
P, regardless of the types of current J¢.

As for the source-sink separation of 7, (denoted as
fsep = Lsink — Lsre), W€ use three variations of fy,/a =
{13,16, 19} as summarized in Table II. We investigate
the effects of the excited-state contamination by varying 7,
from 0.82 to 1.20 fm in the standard plateau method that
was explained in Sec. II D. In this study, for nonzero spatial
momentum, we choose the seven variations of q2 #0 as
listed in Table III.

The renormalization constants for vector and axial-
vector currents, Z,(O = V,A) are obtained with the SF
scheme at vanishing quark mass, which is described
in Appendix E. The resultant values are Z, =
0.96677(41)(316) and Z, = 0.9783(21)(81), where the
first error represents the statistical one and the second error
represents the systematic one that is evaluated from the
difference between the results given by two volumes, 123
and 16°. However, the second errors are simply ignored in
the later analysis, since we choose the larger volume to set
the physical scale.

C. Nucleon spectra and the dispersion relation

Figure 1 shows the nucleon effective mass plot with
Ip| = 0. We compute two types of nucleon two-point

Details of the measurements: the spatial extent (L), time separation (f,,), the stopping condition of quark propagator in the

high- and low-precision calculations (e and €y, ), the number of measurements for the high- and low-precision calculations (N, and
N¢), the number of configurations (N.yr), and the total number of the measurements (N eas = NG X Neong), respectively.

L tsep ehigh €low N org N G N conf N meas Fit range

160 13 1078 o 1 64 76 4,864 [4:8]
16 108 T 3 192 76 14,592 [6:10]
19 108 o 4 768 76 58,368 [7:11]

“The low-precision calculations use a fixed number of iterations for the stopping condition as six GCR iterations using 10* SAP

domain size with 40 deflation fields.

TABLEIII. Choices for the nonzero spatial momenta: ¢ = 1%& x n. The bottom row shows the degeneracy of n due to the permutation
symmetry between *x, £y, £z directions.

Label QO Ql Q2 Q3 Q4 Q5 Q6 Q7

n 0, 0,0 (1,0, 0) (1, 1, 0) (1, 1, 1) (2,0,0) 2, 1,0 2, 1D (2,2,0)
n|? 0 1 2 4 5 6 8
Degeneracy 1 6 12 6 24 24 12
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FIG. 1. Nucleon effective mass plot for Nucleon effective mass

plot for the smear-smear (circle symbols) and the smear-local
(diamond symbols) operators in the nucleon two-point functions.
The three red lines represent the fit result of the smear-local
operators in the range of t/a = 16-22 with one-standard error
band.

functions. The smear-smear denotes that both of the source
and sink operators in the nucleon two-point function are
exponentially smeared. On the other hand, the smear-local
means that only the source operator is smeared, while the
local one is used for the sink operator. We observe the good
plateau for #/a > 16 in the smear-local effective mass plot
with our choice of smearing parameters. Thus, the corre-
lated single-exponential fit with the range of t/a = 16-22
is used for the smear-local nucleon two-point function in
order to measure the nucleon rest mass M. The nucleon
mass is obtained as
aMy = 0.3045(8), My = 0.9472(34) GeV, (42)
where the error is statistical only. This value is slightly
heavier but very close to the experimental value of
My =0.938918754(5) GeV, which is given by the aver-
age of the proton and neutron masses.

We also measure the nucleon energies, Ey(p), from the
smear-local nucleon two-point functions for all finite
momenta p. In Fig. 2, we show the effective energy plot
for the momentum projected nucleon two-point function in
the smear-local case. Since the smearing parameters are
optimized for the zero-momentum case, the suppression of
the excited-state contamination near the source operator
gets worse with higher momentum. However, the plateau
behaviors are commonly shown at least in the region of
t/a > 16 as well as the zero momentum. Therefore, the
nucleon energies Ey(p) are evaluated in the same way as
the rest mass of the nucleon.

Next, the fitted values of Ey(p) are used to verify the
nucleon dispersion relation as shown in Fig. 3. To discuss
the O(ap) lattice discretization artifacts on the dispersion

0.35[7 T
[ A (22,0
- @1,1)
L < (21,0
0.34r A A (2,0,0)
Foa A, o (1,1,1)
r Amm o (1,1,0)
. 033 & o (.00 |
o r < < g N
= L A
uF r @Aﬁﬁzﬁmﬁ ééé% %¥
S gaof TRevegiEmyay } s
- T ¢¢¢m£§%%
i m, &
[ 2889000, 70 02565
031 ¢ @ mm$@@
[ = 29
03’\ @ P I P R N
0 5 10 15 20
t/a

FIG. 2. Nucleon effective energy plot for the momentum
projected two-point function with the smear-local operators.

relation, we plot the results obtained from the present and
previous calculations carried out on the 160* lattice
(denoted as the fine lattice) and the 128* lattice (denoted
as the coarse lattice), respectively. The horizontal axis
shows the momentum squared given by lattice momentum
as pp, = (35)? x |n|?, while the vertical axis represents the
momentum squared obtained from p2,, = E%(p) — M% in
physical units. As can be seen in Fig. 3, both fine and
coarse lattice results satisfy the relativistic continuum
dispersion relation at least up to |n|> = 8 within statistical
precision. Since there is no clear systematic difference
between the two results, the size of possible O(a?)
corrections is not evident.

For a more accurate check of the dispersion relation, we
evaluate the energy splittings, AEy(p) = Ey(p) — My,

0.15

(GeV?)
5L

0.05 ¢ Coarse lattice

O Fine lattice

2
pcon
P
. \

o) s . . . | . . . . | . . . .
0 0.05 0.1 0.15

p;\t (GeVZ)

FIG. 3. Check of the dispersion relation for the nucleon by
using the measured values of Ey(p). The variables pZ,, and p3,
appearing on the x axis and y axis are defined in the text. For
comparison, the relativistic continuum dispersion relation is
denoted as a dashed line.
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FIG. 4. Effective energy plot for the energy splittings AEy (p)
calculated by the ratio correlator R*P'(t; p).

from the ratio of the nonzero and zero momentum two point
functions of the nucleon

Cs(t;p)
Crs(1:0)°

where the smear-local combination is used for both nonzero
and zero-momentum nucleon two-point functions.

As shown in Fig. 4, large statistical fluctuations at
large ¢ region are suppressed, while the excited-state
contamination at small ¢ region is significantly reduced.
It is observed that the energy splittings provide more
convincing plateaus than the cases of the nucleon
energies. This is because the statistical fluctuations
in R?'(t;p) are eliminated by the strong correlation
between zero and nonzero momentum two-point func-
tions. Furthermore, the excited-state contributions at small
t region seem to be canceled out from the denominator and
numerator of the ratio.

The values of AEy (p) are evaluated by the correlated fit
with the same fit range of #/a = 16-20 with high accuracy,
though the long plateau starts at much earlier ¢ than the case
of nucleon energy. The fitted values of AEy(p) are
summarized in Table IV. These values of AEy(p) are
useful to verify the nucleon dispersion relation more
accurately, since the values of p2, can be alternatively
evaluated as p%, = AEy(p)(AEy(p) +2My). In Fig. 5,
the checks of the nucleon dispersion relation for the fine
(160%) and coarse (128*) lattices are displayed by using
AEy(p) instead of Ey(p).

Figure 5 reveals a slight deviation from the continuum
dispersion relation thanks to the accurate estimations of
AEy(p). This new way to evaluate p2,, exposes each size
of the lattice discretization uncertainties at the fine (160*)
and coarse (128%) lattices through the check of the
dispersion relation. A linear fit applied to the data points
results in a deviation of 0.53(3)% for the fine lattice and

R*(1:p) = (43)

TABLE IV. Fitted nucleon energy splitting AEy(g) obtained
from the smear-local nucleon two-point function in lattice units.
Results for AEy(g) with nonzero momentum g = 2% x n_ are
averaged over all possible permutations of n = (n,, n_ n.). In
addition, two types of the corresponding momentum transfers,
Taisp = 2My (/M3 +q* = My) and o = 2MyAEy(g), With
and without the assumption of the continuum dispersion relation
for Ey(q) are also summarized for each momentum gq.

Label — aAEy(q)  Fitrange qg, [GeV?]  ghey [GeV?
Q1 0.00263(10)  [16:20] 0.0149 0.0157(6)

Q2 0.00528(19)  [16:20] 0.0296 0.0311(11)
Q3 0.00801(38)  [16:20] 0.0442 0.0472(22)
Q4 0.01039(32)  [16:20] 0.0587 0.0612(19)
Q5 0.01291(37)  [16:20] 0.0731 0.0760(22)
Q6 0.01546(42)  [16:20] 0.0874 0.0911(25)
Q7 0.02111(54)  [16:20] 0.1157 0.1245(32)

1.1(2)% for the coarse lattice from the dashed line whose
slope corresponds to the continuum dispersion relation.
These sizes are roughly consistent with the O(a?)
corrections on the speed of light, which are expected from
our usage of nonperturbatively O(a) improved Wilson
fermions. The observed O(a?) correction to the continuum
dispersion relation at each lattice spacing does not affect the
analysis to evaluate the nucleon form factors from
Egs. (27)-(31). Therefore, we simply use the continuum
dispersion relation to evaluate the values of Ey(q),
which appears in Egs. (27)—(31), with the measured value

0.15
_ 01
o
>
(0]
O}
o N
0.05 < Coarse lattice N
L O Fine lattice
<<<<< 1.1% deviation
0.53% deviation
| L L L L
0 0.1 0.15

P, (GeV?)

FIG. 5. Check of the dispersion relation for the nucleon in an
improved method, where the values of p2Z, are precisely
evaluated with the values of AEy(g?) instead of Ey(g?). A
dashed line represents the relativistic continuum dispersion
relation, while red and blue dotted lines are given by the linear
fit of each dataset. The discrepancies from the relativistic
continuum dispersion relation become visible, but each is very
tiny as a deviation of 1.1% for the coarse lattice and 0.53% for the
fine lattice from a slope of the continuum one.
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of M. However, the values of g are slightly influenced by
choosing one of two methods to evaluate the momentum
transfer. One is to use the continuum dispersion
relation similar to the analysis for the nucleon form factors
as g, = 2My(\/M3, + (27n/(La))* — My), while the
other is to use the measured values of AEy(g?) as
Gmeas = 2MyAEy(q). Both values of gpe,s and g, are

tabulated in Table IV. The discrepancy between g2,
and gg, should be taken into account in examining ¢°
dependence of the nucleon form factors. We primarily use
the definition of gg, for studying ¢* dependence of the
nucleon form factors and then evaluate the systematic
uncertainties by a difference associated with the choice

2 2
Of Qdisp or Gmeas-

IV. NUMERICAL RESULTS I:
ELECTROMAGNETIC FORM FACTORS AND
AXTAL FORM FACTOR

A. Electric form factor and electric charge radius

1. Isovector sector

The electric form factor is extracted from the ratio
Ry, (t;p) defined in Eq. (27). In Fig. 6, ¢ dependence of
the isovector (bare) electric form factor Giy(g?) for all
eight variations of ¢* including ¢*> =0 with t,/a =
{13, 16, 19} is displayed. Since the excited-state contami-
nation could not be completely eliminated even by fine-
tuning of the smearing parameters in practice, one should
calculate G%(g?) with several choices of fsep and confirm
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FIG. 6. Isovector electric form factor G%(g?) obtained from the ratio of Eq. (27) as a function of the current operator insertion time ¢
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FIG. 7. The source-sink separation (f,) dependence of the
isovector electric form factor G%(g?) with all eight momentum
transfers.

that the evaluated values do not show distinct 7y, depend-
ence during the variations of 7, with a certain statistical
precision for every ¢°. Indeed, we observe the good

plateaus for all choices of 7, and all variation of q°%.

The values of G £(g?) are extracted by the standard plateau
method using the uncorrelated constant fit. In Fig. 6, the
solid lines represent the fit results and the gray-shaded
bands display their statistical uncertainties and fit ranges.
Figure 7 shows the 7., dependence of the extracted values
of G%(g%), which are summarized in Appendix B. The
results given with the different choices of 7y, are mutually
consistent with each other within the statistical uncertain-
ties for all eight variations of ¢.

We hereafter make the best estimates of the rms radius,
which includes the statistical error and two systematic
errors in the following way. First, we perform the
simultaneous fit with two datasets of t,,/a = {16,19}
as our final estimate for the central value with 1 standard
deviation given by the jackknife analysis. We also use a
single dataset of f,,/a = 19 for comparison and quote a
difference between two results as the first systematic error.
In addition, another possible source of the systematic
uncertainties for determination of the rms radius is the
slight deviation from the continuum dispersion relation
observed in the measured nucleon energies as previously
discussed in Sec. III C. Therefore, the second systematic
error associated to the choice of g> definitions is also
quoted as the difference between the results obtained from
either qcziisp or q%leas-

Figure 8 shows the ¢> dependence of G%(q?) =
ZyGiy(q?) with a choice of g, for the horizontal axis
together with the Kelly’s fit [69] as the experimental data.
In addition, the coarse lattice results are also plotted for
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X tegpfa={16,19} , fine
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FIG. 8. Results of the isovector (renormalized) electric form

factor G%(g?) as a function of four-momentum squared ¢* for
each dataset of #.,/a =13 (diamond symbols), f.,/a =16
(square symbols), and fe,/a =19 (circle symbols), and a
combined data of t,/a = {16, 19} (cross symbols). The orange
band represents Kelly’s fit [69] as the experimental data. Triangle
symbols, which are obtained from the coarse (128*) lattice, are
also plotted for comparison.

comparison.® One can easily see that the results obtained
from the fine lattice are located slightly above the Kelly’s
fit, but appear systematically lower than the coarse lattice
results.

Next, let us evaluate the isovector electric rms radius by
the z-expansion method. The analyses with other model-
dependent functional forms are performed in Appendix C.
Here it should be recalled that the size of the linear spatial
extent L limits the nonzero minimum value of ¢ that can
be accessed on the lattice. This situation causes the
uncertainty in estimating the rms radius, which is deter-
mined from the slope of the corresponding form factors at
g*> = 0. In this sense, the large spatial volume (L = 160)
used in our study is an advantage to considerably reduce
this particular uncertainty. In fact, we can access g> =
0.015 (GeV)? for the nonzero momentum transfer, by
using the PACS10 configurations at the lattice spacing
of 0.063 fm.

Figure 9 shows G%(4?) as a function of z(g?) together
with the z-expansion fitting results. The circle symbols are
plotted for t,/a = 19 data, while the cross symbols are
plotted for combined data of t,/a = {16,19}. On each
dataset, the inner curve of the band represents the central
value obtained from the z-expansion fit, while the outer

¥The coarse lattice results presented in this paper are obtained
with our slightly improved analyses compared to those used in
Ref. [35]. The present results are statistically consistent with
those of Ref. [35], but is more stable with respect to the fitting
performed in the analysis of the ¢ dependence of each form
factor.
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curves represent the 1 standard deviation. In Fig. 10, we
show stability of the variation of k., in extracting

((rg)?) for each f, data and a combined data of
tsep/a = {16,19}. Itis clearly seen that the resultant values
given by the z expansion are stable under the variation of

knax for all cases if k., > 3. Therefore, in this study, we
choose k,,,, = 4 for the evaluation of the rms radius in the
z-expansion analysis and then quote the fit result with
kmax =4 as our best estimate. The obtained values of

((r%)?) are summarized in Table V.

Next, let us discuss 7., dependence of /((ry)?). It is
observed that the results obtained from #y,/a = 13 and 16
are in good agreement with each other within their
statistical errors, while they are relatively underestimated
in comparison to the corresponding experimental values.
On the other hand, the result of #,,/a = 19 seems to be
consistent with the experimental values.

In this situation, one might consider that the discrepancy
between f.,/a = {13,16} and t,,/a = 19 is associated
with the systematic uncertainties stemming from the
excited-state contamination. Although there is no signifi-
cant /., dependence of Gy(q?) at every ¢ as shown in
Fig. 7, a more careful look at the data reveals that the result
of t.p/a = 19 at zero momentum transfer is slightly larger
than the other two data of #.,/a = {13,16}, while the
results at nonzero momentum transfers show an opposite
trend. This slight difference between f,,/a =19 and
tsep/a = {13, 16} sensitively affects the determination of
the rms radius that is determined as the slope of the form
factor with respect to g* at the zero momentum transfer
using the z-expansion method.

What we observe here may suggest that there is some
strong correlation among the values of G(¢?) evaluated at
different ¢ in the dataset of tep/@ = 19. In general, such
data correlation can be addressed by performing the corre-
lated fit using a covariance matrix. However, there is no
significant change in fit results obtained from the z-expan-
sion method, regardless of correlated or uncorrelated fits. In
that sense, we do not have a firm conclusion on this point.
We simply use the uncorrelated fits to examine the ¢°
dependence of the form factors in the z-expansion method,
hereafter.

Comparing with our previous results obtained with the
128* (coarse) lattice, the statistical precision achieved in this
study is slightly better due to the increased number of
measurements. Therefore, it can be clearly seen that the
central value of our best estimate of the electric rms radius
obtained from the fine lattice deviates from that of the coarse
lattice by about 8.3%, which is beyond the statistical
uncertainty. Contrary to expectations from checking the

nucleon dispersion relation, the quantity of +/{(r%)?) is
subject to fairly large systematic uncertainties associated with
the finite lattice spacing. To remove this lattice discretization
artifact, it is necessary to take the continuum limit.

2. Proton and neutron sector

We also calculate the electric form factors, G%(g?) and
G7.(q?), separately from the ratio Ry, (t; q) for each proton
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TABLE V. Results for the electric rms charge radius

{(rg)?) in the isovector, proton, and neutron channels. In the row of “This

work” we present our best estimates. The first error is statistical error, while the second and third errors are systematic ones explained in
the text. Our previous results obtained from the 128* (coarse) lattice [35] are also included. Results for the proton and neutron are

obtained without the disconnected diagram.

Isovector Proton Neutron
Fit type  ¢* [GeV?] lsep/a V() [fm]  y%/dodf. /{(r5)?) [fm]  x?/d.o.f. ((r)?) [fm?]  y*/d.o.f.
160* (fine) lattice
kpax = 4 qﬁisp <0.116 {16,19} 0.832(19) 1.5 0.804(14) 1.4 —0.054(23) 0.84
19 0.902(27) 0.04 0.853(20) 0.04 —0.100(40) 0.12
kmax =3 Gheas <0.091  {16,19} 0.810(19) 1.6 0.786(14) 1.5 —0.050(32) 0.89
19 0.874(26) 0.07 0.832(19) 0.05 —0.091(43) 0.12
This work 0.832(19)(70)(22) 0.804(14)(49)(18) —0.054(23)(46)(4)
128* (coarse) lattice
kpax = 4 qﬁisp <0.102 {12,14,16} 0.768(43) 0.9 0.767(14) 0.6 —-0.027(22) 0.9
{14,16} 0.813(48) 1.0 0.802(40) 0.6 —0.060(29) 1.1
kpax =4 ghess <0.112 {12,14,16} 0.734(42) 0.8 0.734(31) 0.6 —0.026(20) 0.9
{14,16} 0.780(47) 1.0 0.768(39) 0.6 —0.056(27) 1.1
PACS10 128* lattice 0.768(43)(45)(34) 0.767(14)(35)(33) —0.027(23)(33)(1)
Experimental value [43,70]
ep scattering 0.943(19) 0.880(20) —0.1155(17)
uH atom 0.907(1) 0.8409(4) e

and neutron, where we omit the disconnected contributions.
Similar to the isovector case, Fig. 11 for the proton and
Fig. 12 for the neutron show the good plateaus that can be
observed in each case of f#y,. The 7., dependence of
G7(¢*) and G}(g*) are also examined in Fig. 13. The f,
dependence of the proton’s electric form factor reveals the
similar tendency found in the isovector case as shown in
Fig. 7. Although there is no significant 7., dependence
observed within the statistical errors, the results of #.,/a =
19 at nonzero momentum transfers seem to be slightly
smaller than the other two data of t.,/a = {13, 16} with a
closer look at the data. On the other hand, there is no z,
dependence observed in the electric form factor of the
neutron within the statistical errors. The whole results of
Gh(q*) and G%(g?) obtained by the standard plateau
method are displayed in Fig. 14, and their values are
summarized in Appendix B together with the results
of Gi(q?).

The proton’s and neutron’s electric charge radii are
determined by the z-expansion method, though the analy-
ses with other model-dependent functional forms are
discussed in Appendix C. Figures 15 and 16 show the
results obtained from the z-expansion fit. The former
represents z(g?) dependence of G%(g?), while the latter
shows the stability of the variation of k,,,, in extracting the

radii. In Fig. 10, The results of \/((rk)?) and {(r%)?)
obtained from the z-expansion method are summarized in

Table V, where the two systematic errors are quoted in the
similar manner to the isovector case.

It is observed that the differences between the fine and
coarse lattice results are not as large as the isovector case.
However, more accurate calculations including the discon-
nected-type contributions are need to make a firm conclusion.

B. Magnetic form factor and magnetic rms radius

1. Isovector sector

The magnetic form factor is extracted from the ratio
Rf,z (t;p) defined in Eq. (28). In Fig. 17, the ¢ dependencies

of the isovector (bare) magnetic form factor G4, (g?) for all
seven variations of ¢* # 0 with t,/a = {13,16,19} are
displayed.

As is in the case of the electric form factors, we observe
the good plateaus in datasets of #,/a = 13 and 16 for all
variations of ¢>. On the other hand, in the case of
tep/a =19, t dependence of Gi(¢*) for the lower ¢
shows a slight wiggle, which seems to break time reversal
between the source and sink points. However, the time-
reversal feature becomes restored for the higher ¢°. Indeed,
the difference between the top and bottom of the wiggle are
at most within the statistical errors and does not affect the
analysis with the constant fit. Therefore, in all cases of 7,
we extract the values of G%(¢*) by the standard plateau
method with the same fit range for all ¢ as summarized in
Table II.

In Fig. 18, we show the t, dependence of the G4 (%),
whose data are summarized in Appendix B. Although the
values of G%¥(q*) have the larger statistical errors than
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FIG. 11. Same as Fig. 6 for the proton.

those of G%(g?), the resultant values of G4(g*) show no
significant 7, dependence. Therefore, we perform the
simultaneous fit with two datasets of #,/a = {16,19}
to evaluate the rms radius and the magnetic moment as our
final estimates. We also use a single dataset of t,/a = 19
for comparison and quote the difference between two
results as the first systematic error.

Figure 19 shows the ¢* dependence of G%(g°) =
ZyGiy(q*) with a choice of g3, for the horizontal axis
together with the Kelly’s fit [69]. One can see that all our data
reproduce the Kelly’s fit within their large errors at relatively
larger g2, while they are located slightly below the Kelly’s
fit, regardless of their values of 7., and lattice spacing a.

Next, we evaluate the isovector magnetic rms radius and
magnetic moment by the z-expansion method. Figure 20
shows the z(¢*) dependence of GY,(¢?) with the fit result
from the z-expansion method for f.,/a =19 (circle

symbols) and a combined data of t,/a = {16, 19} (cross
symbols). In Fig. 21 we show stability of the variation of
knax 10 extracting both the isovector magnetic rms radius

((r%)?) and the magnetic moment y, for each tiep data
and a combined data of #.,/a = {16, 19}. The results of
both quantities obtained from the analysis with the
z-expansion method are stable under the variation of
kmax- Furthermore, in contrast to the electric one, the
resultant values for all cases of #.,/a = {13,16,19} are
mutually consistent within their statistical errors.

We finally choose the result obtained by the simulta-
neous fit of a combined data ty,/a = {16,19} with
kmax = 4 for our best estimate, and the systematic errors
are quoted in the same way as the electric one. The analyses
with other model-dependent functional forms are discussed

in Appendix C. All results of \/((r})?) and u, are
summarized in Table VI
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The statistical uncertainty on the magnetic rms radius is
about 3 times larger than the electric rms radius. Our best
estimate of +/((r%,)?) reproduces the experimental value
within the statistical error. Furthermore, although our result
is consistent with our previous result calculated at the
coarse lattice albeit with a relatively large error, a

discrepancy between their central values is observed to
be about 9.0%. This difference is comparable in the size of
the discretization error observed in the electric rms radius.

On the other hand, the central value of y, is a few standard
deviations away from the corresponding experimental value,
and is slightly underestimated. However our best estimate of
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1, 1s consistent with the one obtained from the coarse lattice
and then does not indicate the presence of discretization
errors, which may resolve the above discrepancy observed in
the magnetic moment. This issue could be related to the fact
that u, = G},(0) is not directly measurable, but can be
accessed by extrapolation of data from regions where g7 is
nonzero. In other words, the determination of the magnetic
moment u, = G},(0) potentially suffers from the systematic
uncertainty due to the ¢ extrapolation. In order to avoid
such uncertainty, Ref. [63] advocates a direct calculation
method without the g? extrapolation, which will be per-
formed in our future works.

2. Proton and neutron sector

We evaluate the magnetic form factors, G4, (¢?) and
G%(¢%), separately from the ratio R%,Z‘ (t; q) for each proton
and neutron, where we omit the disconnected contributions.
Similar to the isovector case, Figs. 22 and 23 show the good
plateaus in each case of 7, except for the lower g% in
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FIG. 21.

dataset of t.,/a =19, where the ¢ dependence is not
symmetric between the source and sink points. As sum-
marized in Table II, for all g%, we simply extract G},(¢?)
and G},(¢?) by the standard plateau method with the same
fit range as for the isovector case.

In Fig. 24, we display the f,, dependence of the
extracted G4 (g*) and G%,(g?). It is obvious that there is
no significant ., dependence for both the proton and
neutron. After employing the simultaneous fit using a
combined data of t,/a = {16,19}, the resultant values
of Gy(¢*) =2yGly(q*) and Gi(q*) = ZyGly(q®) at
every ¢* are presented in Fig. 25.

We obtain both the magnetic rms radii of the proton

(/{(r},)?)) and neutron (1/((r%)?)), and the magnetic

moments of the proton (u,) and neutron (u,) by the
z-expansion method. Figure 26 shows G%,(¢?) and
G?,(¢?) as a function of z(¢?) together with the fit results
obtained from the z-expansion method. The z-expansion
fitting results are summarized in Table VI. The analyses
with other model-dependent functional forms are discussed
in Appendix C. Figure 27 shows stability of the variation of
knax 1N extracting both the rms radii and the magnetic
moments for each proton and neutron. For both quantities
of the proton and neutron, we confirm that all results show
good stability with respect to the variation of k,,,, which is
similar to the isovector case. We employ the simultaneous
fit results with k., =4 to get our best estimate of
the central value and the statistical error. Both results of

((rh))?) and /((r%)?) reproduce our previous results
from the coarse lattice and the corresponding experimental

values within their large statistical errors. However, it
should be too early to conclude that the systematic
uncertainties are well under control at this moment. We
thus quote two types of the systematic uncertainties, which
are similar to those of other rms radii.

As for the magnetic moments, y,, and yu, are consistent
with the results obtained from the coarse lattice, while they
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The k., stability of the isovector magnetic rms radius (left) and the magnetic moment (right) obtained by z expansion. The

horizontal axis represents the kp,, for each z expansion, but we slightly shift them for visibility. Results of #,/a = 13 data (violet
diamond), #.,/a = 16 data (green square), t.,/a = 19 data (blue circle), and also the result obtained from the simultaneous fit of

tsep/@ = {16,19} (red cross mark) are plotted.
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TABLE VI. Results for the magnetic moments x and magnetic rms radius 1/ (r3,) for the isovector, proton, and neutron channels. In
the row of “This work” we present our best estimates; the first error is a statistical one, and the second and third are the systematic errors
described in the text. Results for the proton and neutron are obtained without the disconnected diagram.

Isovector
Fit type q* [GeV?] lyep/a@ Uy VA(F5)?) [fm] y?/d.o.f.
160* (fine) lattice
kpax = 4 qﬁisp <0.116 {16, 19} 4.436(89) 0.771(64) 0.21
19 4.544(133) 0.855(70) 0.16
Kmax = 3 Geas < 0.091 {16,19} 4.454(85) 0.781(49) 0.28
19 4.565(130) 0.864(47) 0.20
This work 4.436(89)(108)(18) 0.771(64)(84)(10)
128* (coarse) lattice
ko = 4 Qisp < 0.102 {12,14, 16} 4.478(218) 0.848(70) 0.9
{14,16} 4.670(253) 0.900(65) 0.9
K = 4 Groas < 0.112 {12, 14,16} 4.480(221) 0.817(76) 0.9
{14, 16} 4.677(255) 0.874(65) 0.9
PACS10 128* result 4.478(218)(192)(2) 0.848(70)(52)(31)
Experimental value [43]
4.70589 0.856(16)
Proton Neutron
((ri)?) ((r})?)
Fit type  ¢° [GeV?] lep/ Hy [fm] y*/d.of. Uy [fm] y?/d.o.f.
160* (fine) lattice
kpax = 4 qﬁisp <o0.116 {16,19} 2.702(60) 0.775(74) 0.23 —1.695(41) 0.692(93) 0.32
19 2.723(92) 0.845(109) 0.14 —1.722(69) 0.705(157)  0.20
kmax =3 Gheass <0.091  {16,19} 2.697(56) 0.732(89) 0.23 —1.693(40) 0.652(114)  0.36
19 2.728(87) 0.831(85) 0.15 —1.722(68) 0.671(157) 0.22
This work 2.702(60)(21)(5)  0.775(74)(70)(43) —1.695(41)(27)(2)  0.692(93)
(13)(40)
128* (coarse) lattice
kpax = 4 qﬁisp <0.102 {12,14,16} 2.741(129) 0.812(98) 1.0 —1.718(99) 0.969(134) 0.08
{14, 16} 2.834(163) 0.879(89) 1.6 —1.842(114) 0.969(134)  0.08
max =4 2o <0.112 {12.14,16}  2.742(131) 0.780(104) 1.0 —1.718(100)  0.938(140)  0.08
{14,16} 2.840(165) 0.859(95) 1.6 —1.845(117) 0.938(140) 0.08
PACS10 128* result 2.741(129)(93)(1) 0.812(98) —1.718(99)(124)(0) 0.818(134)
(67)(32) (151)(33)
Experimental value [43]
2.79285 0.851(26) —1.91304 0.864(9)

do not reproduce the experimental values. The situation is
similar to the isovector case, which indicates that these
quantities also suffer from the systematic uncertainties due
to the ¢> extrapolation to ¢> = 0.

C. Axial-vector coupling

The bare value of the nucleon axial-vector coupling §, =
F4(g* = 0) is obtained with the ratio R}(z,¢) of Eq. (29)
with ¢ = 0. Figure 28 shows the 7 dependence of the
axial-vector coupling §,. The good plateau behaviors are
equally observed for all choices of 7. This indicates that the
excited-state contamination is negligible within our statistical

precision due to the optimal choice of the smearing param-
eters for the nucleon interpolating operator. Therefore, the
bare value of the axial-vector coupling g, can be evaluated by
a simple constant fit in the standard plateau method.

The uncorrelated constant fits are employed for
extracting the electric and magnetic form factors, Gg(g?)
and Gy (q?), to keep the same fit range for all ¢ as
described in Secs. IV A and IV B. Here as for the analysis of
34, we use both uncorrelated and correlated constant fits
and compare the results carefully. This is simply because a
closer look at the ¢ dependence can find a slight undulation
appearing in the central region of the data only when
tep/a@=16. In fact, this undulation causes slight
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FIG. 22. Same as Fig. 17 for the proton.

systematic difference in the fit results of #,/a =16
depending on whether one chooses the uncorrelated or
correlated method as shown in Fig. 28. The gray shaded
bands and violet boxes in Fig. 28 represent the results
obtained by the correlated and uncorrelated constant fits
and their fit ranges. All fit results are summarized in
Table II.

As for the results of fi,/a =13 and 19, there is no
difference between the correlated and uncorrelated constant
fits. On the other hand, the difference between the two fits is
certainly observed in the case of #y,/a = 16. The central
value given by the correlated constant fit appears slightly
higher than the uncorrelated result, and its statistical error is
also slightly larger. As the fit range is extended, the fit results
from uncorrelated fits tend to be larger since the larger values
on the near side of the source and sink are incorporated into
the fit. As a result, the difference between the two types of
fits becomes smaller. Therefore, the slight upward shift due

to the correlated fit is caused by the strong data correlation
among the high precision datasets of §, measured at various
time slices of the current operator insertion.

This particular discrepancy between the correlated and
uncorrelated fits is only observed in the determination of g,
since no other physical quantity is accurate enough to
distinguish the difference. Therefore, we choose the corre-
lated constant fit only to extract g, taking into account the
data correlation, while the analyses of the form factors use
the uncorrelated constant fit in line with our previous
analyses on the coarse lattice [35].

Figure 29 shows the ., dependence of the extracted
values for the renormalized axial-vector coupling
ga = Z43s, comparing with our previous results obtained
from the coarse lattice together with the experimental
value. As can be easily seen, the results of g, obtained
from both the fine and coarse lattices, do not show any
significant 7, dependence. This observation indicates that
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FIG. 26. Same as Fig. 20 for the proton (left) and neutron (right).

the systematic uncertainties stemming from the excited-state
contamination are well under control at the level of the
statistical precision of about 2% in our calculations.
Combining our previous study [16] that reveals the finite
size effect on the axial-vector coupling is less than 2% of the
statistical precision, our calculations achieve that all major
sources of systematic uncertainties from the chiral extrapo-
lation, finite size effect, excited-state contamination, and
discretization effect are under control by our statistical
precision of 2% in fully dynamical lattice QCD simulations.

D. Axial form factor, axial radius, and induced
pseudoscalar form factor

Since we are only interested in the isovector quantities for
the axial form factor and induced pseudoscalar form factor in
this study, we simply denote F,(q?) and Fp(q?) for these
(renormalized) form factors, hereafter. In the axial-vector
channel, the two independent (bare) form factors, namely
F4(q?) and Fp(g?) can be extracted only from the ratio
Rff (1, q) defined in Eq. (29) with help of different momen-
tum configurations ¢ = (¢, ¢», ¢3) depending on the direc-
tion of polarization following Ref. [49].

In this study, z direction is chosen as the polarized
direction through the definition of the projection operator

P>, Indeed, the ratio Rif(t, q) possesses the following part:

qi43

Ci(q) = FA<92)51'3 - mFP(qz)v (44)

which explicitly depends on the longitudinal momentum ¢
and then makes the difference between the transverse
components (i = 1 or 2) and the longitudinal (i = 3) com-
ponent. Furthermore, the dependence of the momentum
configuration ¢ = (¢, ¢», q3) is induced in C;(q) at fixed
g?, since the second term in the rhs of Eq. (44) also depends on
the value of ¢;. The value of C;(g) can be read off from the
plateau behavior of the ratio Rff(t q) by multiplying the

2Ey
ExtMy

Taking into account the dependence of the momentum
configurations, F4(g?) and Fp(g?) can be constructed by
the following combinations of C;(g) with the specific
momentum configurations of g. We first determine F’ NCa
from C;(q) for either g3 # 0 or g3 = 0 in the following way:

appropriate factor of in the standard plateau method.
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CS—%[%+%} (g1 #0and g, #0)
Fulq?)= C3_%Cl (91#0and g, =0), (45)
C-BC (g1 ~Oandgy#0)

which depend only on the values of ¢, and g,. Next Fp(g?)
is determined from C;(q) only for the case of g3 # 0 as

—M [L_,_&} (¢1 #0and ¢, #0)

493491 939>
c _
Folq?) = —(Ex+My) (¢1#0and g, =0)
_<EN+MN)% (q1=0and g, #0),
—EN—;—%(Q—FA(CIZ» (g1 =0and g, =0

)
(46)

where the last case requires the value of F,(g>) which
should be evaluated in advance. Although the above
procedure is a bit complicated, it can avoid the usage of
the ratio Rfé (t,q), which is not applicable in the standard
plateau method since the time-reversal odd contributions
from the multiparticle states such as the lowest zN and zzN
states are inevitable.

1. Axial form factor and axial radius

We evaluate the axial form factor F,(g?) as previously
described using Eq. (45). As for the ¢ dependence of
F4(¢?), Fig. 30 shows the t dependence of the appropriate
combinations of Rf\f(t, q), which provides F4(g?) as the
asymptotic behavior. The value of F,(g?) can be read
off from the good plateaus appearing in Fig. 30. Next,
Fig. 31 shows the results of F,(g?) which are evaluated
by the uncorrelated constant fits in all cases of
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FIG. 30. Same as Fig. 6 for the axial form factor.
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FIG. 31. Same as Fig. 7 for the axial form factor.

tep/a = {13,16,19} for all ¢, while Fig. 32 shows the ¢
dependence of F,(q?) = Z4F 4+(¢%). As can be seen, there
is no significant 7., dependence at every g®> within the
statistical errors as well as the electric and magnetic form
factors. This indicates that the systematic uncertainties
stemming from the excited-state contamination are negli-
gible within the present statistical precision and well under
control by the optimal choice of the smearing parameter for
the nucleon interpolating operator.

Similar to the electric and magnetic radii, the nucleon
axial radius +/((r4)?) is evaluated by examining the g¢?
dependence of F4(g?) in the model-independent way using
the z-expansion method. The analyses with other model-
dependent functional forms are discussed in Appendix C.
In Fig. 33, we show z(¢?) dependence of F,(g*) together
with the fit results obtained from the z-expansion method.
The z-expansion fitting results of +/((r4)?) are summa-
rized in Table VII. Figure 34 shows the stability of the
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1151 é % i
1.1 g g .
1.05 B

q* [GeV?]

FIG. 32. Same as Fig. 8 for the axial form factor.
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—
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FIG. 33. Same as Fig. 9 for the axial form factor.

variation of ky,y in extracting \/((r})?) for each 7y, data
and a combined data of t.,/a = {16,19}. The simulta-
neous fit to the combined data of #.,/a = {16, 19} yields
the consistent result with the results for each 7.
Considering this observation, the result from the com-
bined data of #.,/a = {16, 19} with k,,x = 4 is quoted for
the central value and the statistical error as our final
estimate. Although the final result is consistent with our
previous result obtained on the coarse lattice within their
statistical errors, the discretization error can be estimated as
11.1% by a difference between the central values of both
the coarse and fine lattices. The size of the discretization
error is comparable to those of the two other rms radii. We

will continue discussions on the discretization uncertainties
in Sec. VL

2. Induced pseudoscalar form factor

We evaluate the induced pseudoscalar form factor
Fp(g?) as previously described using Eq. (46). As the ¢
dependence of Fp(g?), Fig. 35 shows the ¢ dependence of
the appropriate combinations of Rf{l(t q), which provides

Fp(g?) as the asymptotic behavior. In contrast to 4 (g?) as
well as G(q?) and Gy;(g?), the t dependence of Fp(g?)
has a slight convex shape in all cases of fy,/a=
{13,16, 19} for all g*>. As reported in our previous works
[35,57], this convex shape is associated with the excited-
state contamination. Although in addition to the standard
plateau method, we also examine a two-state fitting
analysis in this channel, we can manage to read the value
of Fp(q?) by the constant fitting in a suitable fit range
where the data points overlap within 1 standard deviation.

We plot the 7, dependence of Fp(q?) in Fig. 36. The
relatively large excited-state contamination in Fp(g?) is
found compared to F4(g?), since the values of Fp(g?)
systematically increase as 7, increases. The magnitude of
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TABLE VII.  Results for the axial-vector coupling g4, = F4(0) and axial-vector rms radius \/{(r4)?). In the row of “This work” we

present our best estimates, where the first error is statistical.

Fit type q*> GeV? lsep/a Ja FA(0) \/(r}) [fm] y?/d.o.f.
160* (fine) lattice

kpax = 4 q<2iisp <0.116 {16,19} 1.252(15) 0.562(31) 0.40
19 1.267(22) 0.598(67) 0.04
ko = 3 Preas < 0.091 (16,19} 1.251(16) 0.515(41) 0.37
19 1.265(22) 0.554(75) 0.03
Correlated {16,19} 1.264(14) 1.1
19 1.265(21) 0.03
Uncorrelated {16, 19} 1.250(14) 0.4
19 1.264(22) 0.01

This work 1.264(14)(1) 1.252(15)(15)(1) 0.562(31)(36)(47)

128* (coarse) lattice

kpax = 4 qgisp <0.077 {12,14, 16} 1.279(28) 0.505(53) 0.7
{14, 16} 1.284(42) 0.546(80) 1.3
Ko = 3 P <0091 {12.14,16} 1.277(30) 0.445(71) 0.7
(14,16} 1.279(42) 0.416(131) 13

PACS10 128* result 1.280(24)(4) 0.505(53)(41)(60)

Experimental value [43,71]
1.2756(13) 0.67(1)

Fp(g?) at the lowest g* for fy,/a =19 becomes about
20% larger than that of f,,/a = 13 at most. This obser-
vation strongly suggests that the excited-state contributions
are not fully eliminated in F»(g?), even though there is no
significant difference in the evaluation of excited-state
contamination based on the two-state analysis as discussed
in Appendix A.

Figure 37 shows that the g*> dependence of the renor-
malized induced pseudoscalar form factor Fp(q?) =
Z4F p(g?) for all three cases of tsep compared to the previous
results, which are obtained from the coarse lattice [35].

o
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0.2

o H

FIG. 34. Same as Fig. 10 for the axial form factor. The orange
line indicates the phenomenological results using v-Deutron
experiments; the black line is obtained from wv-Nucleon
experiments.

Two experimental results of the muon capture and the pion
electroproduction are marked as blue diamonds and a brown
asterisk. Both of our results from the fine and coarse lattices
are significantly underestimated in comparison with both
experiments. The induced pseudoscalar form factor Fp(g?)
is expected to have a pion pole that dominates the behavior
near zero momentum transfer. The colored curves are given
by the pion-pole dominance (PPD) model [72], where the
induced pseudoscalar form factor is given as

_ 2MNFA(q2)

FPPD 2
P (C]) q2+m725

(47)

with the measured values of m,, My, and F,(g*). The
predictions provided by the PPD model with two datasets
obtained from the fine and coarse lattices, successfully
describe two experimental results of the muon capture and
the pion electroproduction, while they do not agree with our
results of Fp(g?).

Recall that in contrast to Fp(g?), F4(¢?) has no large t,
dependence. Therefore, this discrepancy indicates that in
the case of Fp(g?), the largest choice of tsep/a =19 is not
large enough to eliminate the excited-state contributions.

It should be noted that according to baryon chiral
perturbation theory, the nucleon matrix element of the
axial vector current inevitably has a strong effect due to the
contamination of zN excited states [73-75]. In order to
eliminate such a strong excited-state contamination, several
ways of analysis are suggested, such as the utilization
of the temporal A, current [30] and proper projections
determined by the variational analysis with the explicit zN
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operators [76]. Further investigation with more sophisti-
cated analyses should be conducted in the future work.

3. Pseudoscalar form factor

The pseudoscalar form factor Gp(g?) is extracted from
the ratio R3(t;q) defined in Eq. (31). In Fig. 38, the ¢
dependencies of Gp(g?) for all seven variations of ¢> # 0
with #,/a = {13,16,19} are displayed. As is in the case
of Fp(q?), the slight convex shape, which is associated
with the excited-state contributions is observed in all cases
of tep/a = {13,16,19} for all ¢*. The data points within
the fit range shown as the gray shaded band in each panel of
Fig. 38, overlap within 1 standard deviation. Therefore it is
adequate to employ a constant fit to estimate the value
of Gp(q?).

Figure 39 shows the 7., dependence of G (g?) for all ¢°.
It is clearly observed that Gp(g®) shows a large fsep

dependence. The values of Gp(g?) systematically increase
as ty, increases similar to F »(g?). From tsep/a =13 to
tep/@ = 19, the maximum increase observed in the mag-
nitude of Gp(g?) at lowest g reaches about 20%. This
indicates that G p(g?) involves the significant contributions
from the excited states as well as Fp(q?). However, as
discussed in Appendix A, there is no significant difference
in the evaluation of excited-state contamination based on
the two-state analysis in a direct comparison to the standard
plateau analysis. Thus we mainly use the constant fit on the
ratio R3(1;q) to estimate the values of Gp(g?) within the
standard plateau method in this study.

We plot the ¢> dependence of Gp(g?) for all three cases
of 7, in Fig. 40. It is obvious that the stronger curvature
appears at lower ¢> as fp increases. This particular
behavior is shared by both of Fp(g?) and Gp(g?). The
relatively strong ¢> dependence appearing in the lower ¢°
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region can be described by a naive pion-pole dominance
form of GYP(g?), which is defined through the GGT
relation with FEPP(4?) as

2
2mGIP () = DMy Fu(¢?) or . (48)
q° +my
This indicates that the ratio of the PPD forms

GPPP(4%)/FPPP(g?) yields no dependence on the value
of ¢ and gives the low-energy constant B as
GPPD (2
ﬁm—(qz) = By (49)
FpP(q%)

with the help of the Gell-Mann—Oakes—Renner relation for
the pion mass: m2 = 2Bym.

35
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FIG. 41. Ratio of the pseusoscalar form factor Gp(g?) to the
induced pseudoscalar form factor F(g?) as a function of ¢*. The
green band represents the low-energy constant B, given by

mz/ (ZmEIé)ZC :

As shown in Fig. 41, the corresponding ratio evaluated
with our measured values of the Gp(g?) and Fp(g?), indeed
exhibits a flat g*> dependence for each case of fsep-
Furthermore, without using knowledge of the PPD model,
all ratios are in good agreement with the bare value of the
low-energy constant, which is evaluated by m2/(2mpcac)
with the simulated pion mass m,, and the PCAC quark mass
mbcac. Here, the PCAC quark mass is determined by the
two-point correlators of the pseudoscalar meson.

These observations strongly suggest that although our
results of Gp(g?) and Fp(g?) suffer from the excited-state
contamination, both quantities correctly inherit the low-
energy physics associated with the pion-nucleon (zN)
system. Therefore, once the large excited-state contamina-
tion is hindered in a certain way, the low-energy constants
of the zN system, e.g., g,y, could be correctly evaluated.
We do not evaluate the zN coupling g,y in this paper,
since there is no known reasonable way to eliminate the
excited-state contributions from our results of Gp(g?)

and Fp(q?).

V. NUMERICAL RESULTS II: TEST FOR THE
AXTAL WARD-TAKAHASHI IDENTITY

A. Quark mass from nucleon correlation functions

As discussed in Sec. IV D, both Fp(g?) and G p(g?) form
factors significantly suffer from the excited-state contami-
nation in contrast to F4(g*) where the systematic uncer-
tainties stemming from the excited-state contamination are
negligible within the present statistical precision. However,
the ratio of Fp(g?) and Gp(g?) implies that both quantities
correctly inherit the low-energy physics which is related to
the AWTL
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As described in Sec. II E, three kinds of the bare quark
mass, Mmhoac, Mt -, and mh, are introduced. Let us first
consider m¥¢l -, which can verify the PCAC relation using
the nucleon three-point correlation functions, in order to be
compared to the value of mbo,. given by the pion two-
point correlation function. In Fig. 42, the ratios defined in
Eq. (38) are displayed for all g> with all three variations of
tsep/a = {13,16,19}. All data show good plateaus, which

are fairly consistent with mgigzc, regardless of the momen-
tum transfer and 7., Thus, the ratio defined in Eq. (38) can
provide an alternative bare quark mass definition as mi<, .

For each ¢* and t,, we evaluate the value of mp; . by
weighted average using five data points in the central range
of t/a. Figure 43 shows a direct comparison of mbhi,
(denoted as horizontal line) and mp&i. (denoted as dia-
mond symbols) in the case of f,,/a =13 (top panel),

Ot la=13
Oty fa=16
Ot a=19

0-005||||||||||||||||||

0.004 [—

0.003 |—

Q1

0.002 |— —]

0_001IIII|IIII|IIII|IIII

0-005|||||||||||||||||||

0.004 [—

0.003 |—

Q2

0.002 |— —

0_001IIII|IIII|II

0.005 —

0.004 [—

Q3
|

(t-tgep/2)/a

16 (middle panel), 19 (lower panel). As can be easily seen,
all data points in mp&i .~ do not show strong g* dependence
and reproduce the value of mbcac. The agreement between
mbiac and mbl . observed with each finite momentum
transfer is highly nontrivial as discussed in Sec. ILE.

It is worth noting that the definition of mi<} - defined in
Eq. (38) does not take into account O(a) improvement of
the axial-vector current Ay * = A, + ac,0,P. The second
term in O(a) improvement of the axial-vector current

provides the O(a) correction on the value of mboh . as

pion
Mpcac

)im ___pion aZACA 2

= Mpcpc + B mz (50)

for the ground state contribution since the point sink of the
pion two-point correlation function is projected onto zero
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FIG. 42. The values of m%‘)\C computed with f.,/a = 13 (diamonds), 16 (squares), and 19 (circles) for all momentum transfers as
functions of the current insertion time slice z. In each panel, the value of mb_,c is presented as a horizontal band.
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FIG. 43.
are plotted from top to bottom.

three momentum. On the other hand, mi<l . does not
receive the O(a) correction at zero momentum transfer,
though Eq. (38) can be used only when the momentum
transfer is finite. The quark mass is modified by the
presence of the improvement term as

aa(cfli(t; q) + acAdaCif(t; q))
26 (1:q)

_mnucl _aZACA 2
= Mpcac ) q-,

(mpeac)™ = Zy X

(51)

where the O(a) correction is proportional to the square of
momentum transfer ¢ and then vanishes in the limit of

¢* = 0. Recall that m2<! . and mB2h . are supposed to be
identical in the continuum limit. In other words, a differ-
ence observed on the lattice can be attributed to lattice

discretization errors. However as shown in Fig. 43,

nucl . . pion g . . .. .
mp&ac coincides mpe, - Within statistical precision without

the O(a) improvement over a wide range of g¢?
(0.78 < q*/m% < 6.08). Therefore, our finding indicates
that the value of ¢, is likely to be nearly zero at the O(1072)
level in lattice units. This suggests that the effect of O(a)
improvement of the axial-vector current is negligibly small
in our calculations performed at very low g, and does not
change the result of the axial radius.

The second check is made by comparing mX<, defined
in Eq. (37) with either mpos or mbel . Recall that mX<
requires isolating the ground-state contribution from the
excited-state contributions in determining the three form
factors F4(q?), Fp(q?), and Gp(q?). Therefore, if mich
coincides with the bare quark mass associated with the

Comparison between mpcyc (horizontal band) and mpA (open symbols) in each panel. Results for #.,/a = {13,16, 19}

PCAC relation, the ground state dominance is successfully
achieved in determination of F,(g?), Fp(q?) and Gp(g?).
This is simply because the GGT relation is derived from the
axial Ward-Takahashi identity in terms of the nucleon
matrix elements, not the nucleon three-point functions.
Figure 44 shows the results of m&g). in comparison with
the others as a function of ¢> for each choice of
tep/a = {13,16,19}. Although the values of m&S do
not show strong ¢ dependence, it is obvious that the data
points for m&cl. are deviated from both mpy . and misi ..

In detail, the deviation gradually disappears as 7,

: nucl pion
increases, but the values of m¢S do not reach mpq, or

ms\ « even when ., /a = 19. This indicates that the form
factors used for the construction of m&,. suffer from the
excited-state contamination, since though mb&, - does not
require the ground-state dominance, mR<, surely does.
In other words, the maximum 7, used in our study does
not reach the conditions required in the standard plateau
method, where only the ground state is dominant. This
observation is consistent with the strong dependence of 7,

observed in the analyses of Fp(g?) and Gp(g?).

VI. NUMERICAL RESULTS III:
DISCRETIZATION ERROR

Combining our two results from large volume simula-
tions at the fine and coarse lattice spacings, we can discuss
the discretization uncertainties appearing in the isovector
rms radii, magnetic moment, and also axial-vector cou-
pling. Recall that the continuum limit results are not yet
known in our study; we only evaluate the differences
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(horizontal band), m¥i~ (open diamonds), and m&g}. (open

circles) in each panel. Results for t,/a = {13, 16, 19} are plotted from top to bottom.

between two results from different lattice spacing as the
lattice discretization uncertainties. The error budget for the
five quantities, g. . v/{(r5)%). v/((rag) ) and v/{(r5))
are summarized in Table VIII.

Figure 45 shows the lattice spacing a dependence for
these five quantities. The inner error bars represent the
statistical uncertainties, while the outer error bars represent
the total uncertainties given by adding the statistical errors
and systematic errors in quadrature. The systematic errors
take into account uncertainties stemming from the excited-
state contamination and the lattice discretization effects on
the dispersion relation.

Let us first discuss the size of the discretization error on
the axial-vector coupling g4, that is precisely measured
by the experiments. The axial-vector coupling g, =
F4(g*> = 0) is directly determined from the ratio (29) at
zero momentum transfer without the g>-extrapolation to the
zero momentum point. In the top-left panel of Fig. 45, the

two results obtained at different lattice spacing can repro-
duce the experimental values within statistical precision of
at most 2%. This implies that the discretization error on the
axial-vector coupling is less than 2%, which is well
controlled in our calculations.

The small discretization error, which is less than 1%, is
also observed for the magnetic moment y, in the top-right
panel of Fig. 45, though the two results for the magnetic
moment are both 5%—6% smaller than the experimental
value. However, recall that the magnetic moment is not
accessible without the ¢> extrapolation to the zero momen-
tum point in contrast to the axial-vector coupling.
Therefore, the current discrepancy between our lattice
result and the experimental value would be caused by
the ¢> extrapolation, since our data points at the finite
momentum transfer are barely consistent with the Kelly’s
curve, albeit slightly lower. The obvious disadvantage for
magnetic form factor in the standard approach can be

TABLE VIIL.  The error budgets for g4, u,, \/{((rx)?), \/{(r})?), and \/{(r})?) obtained at the fine lattice
spacing. The discretization errors quoted here are evaluated by differences between the central values of two results
from two sets of the PACS10 ensemble at the fine and coarse lattice spacings.

9a (%) po (%) VA(rg)?) (%) VA(ri)?) (%) VA{(rh)?) (%)
Statistical: 1.9 3.1 3.6 14 11
Discretization: 1.6 0.9 8.3 9.0 11.3
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Summary plot for our best estimates and the experimental values of the axial-vector coupling (top, left), isovector magnetic

moment (top, right) and three kinds of the isovector rms radius: electric (bottom, left), magnetic (bottom, center) and axial (bottom,
right). The inner error bars represent the statistical error, while the outer error bars are the total error evaluated by both statistical and
systematic errors added in quadrature. Uncertainties associated with the excited-state contamination, the violation of the dispersion
relation, and other effects are taken into account as the systematic errors.

overcome by the new method called the derivative of form
factor (DFF) method [63]. In order to fully resolve the
current discrepancy, more comprehensive investigations
with the DFF method are necessary in this particular
quantity.

Apart from the question of whether the results are
consistent with the experimental values, both quantities,
g4 and u,, do not seem to be subject to large discretization
errors. However, the rms radii, which are determined from
the form-factor slope at the zero momentum point, may
suffer from the O(qa) discretization effects that do not
appear in g, and y,. Indeed, as shown in three bottom
panels of Fig. 45, the presence of the discretization errors is
clearly visible for the isovector rms radii. Their sizes can be

estimated as 8.1%, 9.0%, and 11.3% for /((r%)?),

((r2))?), and \/((r4)?), respectively. These errors are
much lager than that of g,.

Especially, in this study, /((r%)?) can be evaluated
with a statistical error of less than 5% accuracy, while the
magnitude of the discretization uncertainty is much larger
than the statistical one. Therefore, as shown in the bottom-
left panel of Fig. 45, the large discretization uncertainties

are clearly observed in \/{(r%)?), which are unexpectedly
large. However, this observation may bridge the gap
between the lattice results and the two experimental
values.

Similarly, the discretization uncertainties observed in

((r%)?) as shown in the bottom-right panel of Fig. 45
tend to fill the difference between lattice QCD results and
experimental values. It is important to emphasize here that
the total errors in the axial radius obtained at two lattice
spacings are much smaller than the two estimations
obtained from the model-independent z-expansion analysis
for both vN and vD scattering data.

As for 1/((r%,)?), although the difference between two
results obtained for different lattice spacing is comparable
to the size of the individual statistical uncertainties, lattice
results agree with the experimental value within fairly large
total errors. As mentioned earlier, the ¢ extrapolation
without the value of Gy,(0) generally leads to large hidden
systematic uncertainties, which can be avoided in the DFF
method.

Finally, it is worth reminding that the discretization
error evaluated here depends on the evaluation method
and is merely an estimate. Although the coarse and fine
lattice result agree when considering the systematic
uncertainties, it cannot be excluded that it is due to the
finite lattice spacing, as long as systematic shifts larger
than 1 standard deviation of the statistical error are
actually observed. A detailed discussion should take place
only after the continuum limit is properly taken in our
future studies.
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VII. SUMMARY

We have calculated the nucleon form factors in the vector,
axial-vector, and pseudoscalar channels using the second
PACS10 ensemble (lattice spacing of a = 0.063 fm) that is
one of three sets of 2 + 1 flavor lattice QCD configurations
generated at the physical point on a (10 fm)* volume. The
PACS10 gauge configurations are generated by the PACS
Collaboration with the stout-smeared O(a) improved
Wilson quark action and Iwasaki gauge action [36]. In order
to achieve the high-precision calculation, the AMA tech-
nique that can significantly reduce the statistical error is
employed.

The axial vector (F,(g*)), induced pseudoscalar
(Fp(g?)), and pseudoscalar (Gp(q?)) form factors, are
calculated for the isovector channel, while the electric
(Gg(g?)) and magnetic (G,,(¢*)) form factors are calcu-
lated not only for the isovector ones, but also for the
individual ones of proton and neutron without the dis-
connected diagram. Before analyzing the nucleon form
factors at finite momentum transfer, we have first examined
the nucleon dispersion relation and nucleon axial-vector
coupling to demonstrate the validity and reliability of our
lattice QCD calculations. The on shell O(a) improvement
turns out to be effective enough for the momentum range
we used, since the relativistic continuum dispersion relation
is found to be satisfied less than 1% for the ground state of
the nucleon. Furthermore, the values of the axial-vector
coupling calculated on the fine and coarse lattice reproduce
the experimental value with a statistical accuracy of less
than 2%.

In the analyses of the form factors, we have investigated
the major systematic uncertainty stemming from the effects
of the excited-state contamination in the standard plateau
method. For this purpose, we have calculated appropriate
ratios of the nucleon three-point function to the two-point
functions by varying f., from 0.8 to 1.2 fm with
tsep/a@ = {13,16,19}. In the standard plateau method we
employed, the form factors can be extracted from the
asymptotic plateau of the ratios between the source and
sink points. It was found that the condition of 7, > 0.8 fm
is large enough to eliminate the excited-state contamination
for Gp(q?), Guy(q?), and F,(q*) within the present
statistical precision, thanks to the elaborated tuning of
the sink and source functions.

For our best estimate, we perform the simultaneous fit
with two datasets of t.,/a = {16, 19}, while we also use a
single dataset of f,,/a = 19 for comparison and quote a
difference between two results as the first systematic error.
In addition, the effect of the lattice discretization error
on the dispersion relation is quoted for the second sys-
tematic error as follows. Each form factor is described as a

function of ¢*, which can be primary evaluated by gg, =

2My(\/M3, + (22n/(La))? — My) on the relativistic con-
tinuum dispersion relation with the naive lattice discrete

momenta ¢ = 2zn/(La). Alternatively the values of ¢* are
also evaluated by g2,.,. = 2MyAE with measured AE. The
difference caused by the choice of either qﬁisp OF Gens 1S

quoted as the systematic error induced in the dispersion
relation by the effects of lattice discretization.

To evaluate the rms radii and the magnetic moment, we
have to introduce some parametrization of the ¢> depend-
ence of the form factors. For this purpose, the model-
independent z-expansion method is adopted in this study.
In general, the results of the z-expansion method are subject
to larger errors than the results of the dipole fit, unless the
model dependence of the dipole fit is taken into account.
However, since the results from the z-expansion method
are model independent, the size of their errors is reason-
ably small.

Taking account of the systematic uncertainties associated
with the excited-state contamination, lattice discretization
effects on the dispersion relation, and the uncertainty in
the determination of the renormalization factors, our best
estimates for the axial-vector coupling and magnetic
moments are obtained on the 160* (fine) lattice as follows:

ga = 1.264(14)(1)(-)(3), (52)
p, = 4.436(89)(108)(18)(2) (isovector),
u, = 2.702(60)(21)(5)(1)  (proton),
u, = —1.695(41)(27)(2)(1) (neutron), (53)

where the first error is a statistical one, while the others
are systematic ones. The second error is evaluated by the
difference between two analyses using either a single
dataset of #,/a = 19 or a combined dataset of t,/a =
{16,19}. The third error is associated with a choice of ¢>
definitions. The fourth error is associated with the uncer-
tainty in the determination of the renormalization factors.
For g,, there is no third error, since the value of g, is
directly measurable at ¢g*> = 0 without g> extrapolation. As
for the rms radii, we obtain

((r2)?) = 0.832(19)(70)(22) [fm] (isovector),
\/((r5)?) = 0.804(14)(49)(18) [fm] (proton),

((r1)?) = —0.054(23)(46)(4) [fm?] (neutron), (54)

((r8)?) = 0.771(64)(84)(10) [fm] (isovector),

((rh)?) = 0.775(74)(70)(43) [fm] (proton),

((r)?) = 0.692(93)(13)(40) [fm] (neutron),  (55)

\/(r3) = 0.562(31)(36)(47) [fm], (56)
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where the first error is statistical, while the second and third
ones are systematic as explained earlier. There is no fourth
error for the rms radii.

Since the continuum-limit extrapolation requires results
from at least three lattice spacings, we have investigated the
systematic uncertainties associated with the finite lattice
spacing for g, and isovector rms radii from the difference
between the current results obtained at two lattice spacings.
It was found that the finite lattice spacing effect on g4 is
kept below the statistical error of less than 2%, which is
currently achieved in our calculations, while both results of
g4 obtained at two lattice spacings reproduce the exper-
imental value within their statistical precisions. Therefore,
the lattice discretization effect on g, is negligibly small in
our calculations.

On the other hand, the systematic errors associated with
the finite lattice spacing on the isovector rms radii are rather
large as much as 8%—11% and cannot be ignored regardless
of channel. In particular, in the cases of the electric and
axial rms radii, the systematic uncertainties associated with
the finite lattice spacing tend to reproduce the experimental
values.

One might think that the unexpectedly large systematic
errors in the rms radii are due to not using the O(a)
improvement of the vector and axial-vector currents in this
study. For the improvement of the axial-vector current,
Ay = A, + ac,0,P, we have examined the size of ¢, by
comparing mul - and mhs - based on the PCAC relation,
and found that the value of ¢, is likely to be nearly zero at
the O(1072) level in lattice units. This indicates that the
effect of O(a) improvement of the axial-vector current is
not large enough to resolve the large systematic uncertain-
ties observed at very low ¢? in our calculations.

Needless to say, additional lattice simulations using the
third PACS10 ensemble are required for achieving a
comprehensive study of the discretization uncertainties
and then taking the continuum limit of our target quantities.
Such planning is now underway.
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APPENDIX A: TWO-STATE FIT ANALYSIS

For an assessment of excited-state contamination, the
two-state fit analysis is often used in calculation of the
nucleon matrix elements.

The ratio defined in Eq. (26) can be described by the
following functional form, which includes the forward and
backward contributions of the leading excited state from
source and sink explicitly as below:

R(t tiep) = bo + e~ 4 hie=b4! (Al)
where b is the matrix element of the ground state. The
parameter b, (bs3) is the amplitude of the overlap between
the ground state and the leading excited state, while the
parameter b, (by) is the energy gap between the excited
state and the ground state. The leading exponential terms
with four additional parameters b; through b, are respon-
sible for the curvature appearing in the ratio as a function
of t.

For the simplest case if by = b3 and b, = b4,9 the

curvature is represented by A cosh (by( —%")) with

A= 2ble‘bz%. The excited-state contribution remains at
most as the size of A at the center of the source and sink

operators t = t’% The value of A corresponds to a typical

“This is the case if the kinematics is chosen to be p = p’ = 0.
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size of the systematic uncertainty associated with the
excited-state contamination in the standard plateau
method.

We evaluate the amplitude A of Fp(g?) and Gp(g?) at
the lowest ¢°> (Q1) for the dataset of tep/a=13. As

shown in Fig. 35 for Fp(g?) and Fig. 38 for Gp(g?), the
t dependence of each form factor has a slight convex shape
which is associated with the excited-state contamination.
The observed shape is approximately symmetric with

respect to 1 = I% within the statistical uncertainties at the

lowest ¢°. Therefore, for simplicity, we may use the two-
state analysis with the symmetric Ansitz (b; = b3z and
b, = bs). We then found that the size of A is much smaller
than that of by, and the resultant b, is statistically
consistent with the result obtained with the standard
plateau method. Indeed, the systematic uncertainty in
the standard plateau analysis is at most 1% even in the
most severe case of the excited-state contamination. This
indicates that the two-state fitting analysis is not useful for
resolving relatively large excited-state contamination in
our data.

APPENDIX B: TABLE OF NUCLEON FORM
FACTORS

The results for the three isovector form factors G%(g?),
G%(q*), and F,(q*) obtained with a combined data of
tsep/a ={16,19} and a single data of f.,/a =19 are
summarized in Table IX. The electric and magnetic form
factors for the proton and neutron, Gr(q?), Gy (q%),
G%(q?), and G%,(¢*) are compiled in Table X.

APPENDIX C: MODEL-DEPENDENT ANALYSES
OF rms RADIUS

In this appendix, a summary of the results obtained in
several model-dependent ¢> analyses is presented, though
the results obtained by the z-expansion method are
employed in the main text as a model-independent analysis.

For model-dependent analyses, we employ three
typical models to parametrize the ¢> dependence of
the form factor G; in this study: the linear functional
form G;(¢*) =dy +d,q*>, the quadratic functional
form G,(q?) = dy + d,q* + d»q*, and the dipole form

TABLEIX. Results of the three isovector form factors obtained by the standard plateau method using the uncorrelated constant fit with
a combined data of #.,/a = {16, 19} and a single data of t,/a = 19. All form factors are renormalized.

tep/a = {16,19} tsep/a =19

q* [GeV?] Gy(q?) Gi(q?) Fy(q?) Gy(q?) G(q?) Fu(q?)

0.000 0.997(1) . 1.250(15) 0.998(3) o 1.264(22)
0.015 0.954(2) 4.245(73) 1.229(14) 0.949(4) 4.318(115) 1.241(20)
0.030 0.915(3) 4.150(64) 1.205(13) 0.908(6) 4.189(94) 1.216(19)
0.044 0.879(4) 3.999(60) 1.118(13) 0.869(7) 4.026(87) 1.189(19)
0.059 0.843(4) 3.821(60) 1.158(13) 0.834(7) 3.839(91) 1.166(19)
0.073 0.812(5) 3.709(51) 1.140(12) 0.805(7) 3.759(76) 1.150(18)
0.087 0.783(5) 3.620(49) 1.118(12) 0.775(8) 3.613(72) 1.129(18)
0.116 0.730(6) 3.412(49) 1.083(12) 0.724(8) 3.405(72) 1.099(19)

TABLE X. Results of the electric and magnetic form factors for the proton and neutron obtained by the standard plateau method using
the uncorrelated constant fit with a combined data of ty,/a = {16,19} and a single data of tep/a =19. All form factors are
renormalized. Our results are determined without the disconnected-type contributions.

tsep/a ={16,19} tsep/a =19
Proton Neutron Proton Neutron

g’ [GeV’]  Gi(g%) Gy (q) Gi(q?) Gy (q) Gi(4?) G(4?) Gr(q?) Gi(4?)
0.000 0.997(1) e 0.0005(9) e 0.998(2) e 0.0006(17) e
0.015 0.957(1) 2.608(45) 0.0033(11) —1.641(34) 0.954(3) 2.608(70) 0.005(2) —1.678(54)
0.030 0.921(2) 2.536(39) 0.0061(14) —1.613(30) 0.916(4) 2.544(56) 0.008(2) —1.649(45)
0.044 0.887(3) 2.442(37) 0.008(2) —1.557(28) 0.880(5) 2.440(51) 0.011(3) —1.586(42)
0.059 0.854(3) 2.342(35) 0.011(2) —1.479(29) 0.848(5) 2.336(54) 0.014(3) —1.504(43)
0.073 0.825(3) 2.284(31) 0.013(2) —1.456(25) 0.819(5) 2.282(45) 0.015(3) —1.477(36)
0.087 0.797(3) 2.208(30) 0.014(2) —1.411(23) 0.791(6) 2.190(43) 0.015(3) —1.423(34)
0.116 0.747(4) 2.085(29) 0.017(2) —1.326(22) 0.742(6) 2.069(43) 0.018(3) —1.336(33)
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TABLE XI. Results for the electric rms charge radius +/(r%) in the isovector, proton, and neutron channels. Results for the proton
and neutron are obtained without the disconnected diagram.
Isovector Proton Neutron
Fit type q* [GeV?] - V(rE) [fm]  x?/d.olf. V{(rz) [fm]  x?/d.o.f. (rZ) [fm?] y?/d.of.
Linear q(ZHSp <0.015 {16, 19} 0.822(14) 1.3 0.793(9) 1.1
19 0.877(21) e 0.832(16) o
Grreas < 0.015 {16,19} 0.801(14) 1.8 0.770(10) 1.0
19 0.854(21) e 0.810(16) r
Dipole qﬁisp <0.116 {16, 19} 0.827(12) 1.1 0.795(8) 1.1
19 0.847(17) 0.4 0.812(13) 0.5
Greas < 0.091 {16,19} 0.804(14) 1.5 0.774(7) 1.4
19 0.834(18) 0.2 0.799(13) 0.2
Quadrature qﬁisp <0.116 {16, 19} 0.826(14) 1.3 0.797(10) 1.2 —0.050(10) 0.7
19 0.867(22) 0.1 0.828(16) 0.1 —0.067(14) 0.08
Geas < 0.091 {16, 19} 0.856(23) 1.5 0.780(8) 1.3 —0.047(10) 0.9
19 0.853(22) 0.08 0.811(17) 0.09 —0.071(15) 0.04
TABLE XII. Results for the magnetic moments y and magnetic rms radius +/(r3,) for the isovector, proton, and neutron channels.
Results for the proton and neutron are obtained without the disconnected diagram.
Isovector
Fit type g2 [GeV?] teep/ @ My \/(r3,) [fm] y*/d.of.
Linear qfﬁsp <0.030 {16,19} 4.348(90) 0.598(83) 0.4
19 4.448(149) 0.677(115) e
Grreas < 0.030 {16,19} 4.439091) 0.585(81) 0.5
19 4.450(149) 0.662(113) e
Dipole qﬁisp <0.116 {16,19} 4.422(77) 0.748(22) 0.2
19 4.495(121) 0.779(39) 0.06
Geas < 0.091 {16,19} 4.432(80) 0.739(25) 0.2
19 4.513(127) 0.774(43) 0.08
Quadrature qd“p <0.116 {16, 19} 4.427(84) 0.750(40) 0.2
19 4.511(133) 0.792(66) 0.07
Gheas < 0.091 {16, 19} 4.426(85) 0.728(58) 0.2
19 4.503(140) 0.757(95) 0.1
Proton Neutron
Fit type R GV 1p/a “y V) tim] 22/dof. un VA fml 22/dodf.
Linear qﬁisp <0.030 {16, 19} 2.660(60) 0.636(82) 0.05 —1.659(42) 0.504(108) 0.3
19 2.684(97) 0.710(116) —1.685(69) 0.523(177)
Gimeas < 0.030 {16, 19} 2.661(59) 0.622(80) 0.05 —1.660(42) 0.493(106) 0.3
19 2.685(97) 0.694(114) —1.685(70) 0.511(173) e
Dipole qﬁisp <0.116 {16, 19} 2.690(49) 0.636(82) 0.05 —1.702(37) 0.732(26) 0.2
19 2.693(74) 0.768(40) 0.07 —1.731(59) 0.748(47) 0.09
Gheas < 0.091 {16,19} 2.699(51) 0.740(27) 0.2 —1.703(38) 0.716(38) 0.3
19 2.705(78) 0.766(46) 0.07 —1.733(61) 0.733(55) 0.1
Quadrature %nsP <0.116 {16,19} 2.697(54) 0.756(42) 0.2 —1.698(39) 0.713(51) 0.3
19 2.709(85) 0.795(70) 0.07 —1.725(64) 0.724(88) 0.1
GPreas < 0.091 {16, 19} 2.697(56) 0.732(59) 0.2 —1.700(39) 0.699(66) 0.3
19 2.710(90) 0.773(97) 0.1 —1.719(66) 0.676(120) 0.1
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TABLE XIII. Results for the axial-vector coupling g, = F,(0) and axial-vector rms radius +/(r%).
Fit type q*> GeV? lep/a F,(0) V/(r}) [fm] y*/dof.
Linear qﬁisp <0.015 {16, 19} 1.251(15) 0.513(39) 0.6
19 1.264(22) 0.526(80) .
GPreas < 0.015 {16, 19} 1.250(15) 0.499(38) 0.6
19 1.264(22) 0.512(78) cen
Dipole B < 0.116 (16,19} 1.251(15) 0.552(17) 0.3
19 1.262(21) 0.547(28) 0.05
Greas < 0.091 {16,19} 1.252(15) 0.544(17) 0.3
19 1.265(21) 0.549(29) 0.02
Quadrature B < 0.116 {16,19} 1.252(15) 0.559(35) 0.4
19 1.266(22) 0.590(44) 0.02
Grcas < 0.091 {16,19} 1.251(15) 0.536(29) 0.3
19 1.266(22) 0.564(54) 0.01

TABLE XIV. Summary of lattice QCD recent results of the electric, magnetic, and axial rms radii; magnetic moment; and axial-vector
coupling obtained from the respective nucleon form factors. The first and second errors represent the statistical and total systematic
uncertainties. The latter error is evaluated from all measured systematic errors added in quadrature. The symbol “— 0" is used only when
the continuum limit is taken. All data summarized in the table are limited by certain criteria discussed in the text. For the case of g4, see

Ref. [15] and all the relevant references therein.

Publication a [fm] m, [MeV] m,L +/((r%)?) [fm] +/{(ry)?) [fm] Uy VA((r5)?) [fm] 9a
Mainz [19323378] —0 2130 2305 0886(12)(19) 0814DO)  462(10)(12) 0.608(52)53) 1.242(25)(*0,,)
CalLat [79] 0.12 >130 3.90 e e e 1.26421(93)
NME [18] -0 >170  >3.75 0.882(11)(28) 0.801(14)(50) 4.52(5)(10) 0.597(11)(59)  1.270(11)(22)
RQCD [80] -0 >128 >3.5 e XX e 0.670(66)(57)  1.302(86)
ETMC [22-25] 0.08 139 3.62 0.796(16) 0.714(91) 3.97(16) 0.586(36) 1.286(23)
LHPC [81,82] 0.093 135 4 0.780(10) .- e 0.499(12) 1.27(2)
PNDME [26-31] -0 >135 >33 0.769(27)(30)  0.671(48)(76)  3.939(86)(138) 0.74(6) 1.30(6)

PACS [35,57] 0.084 135 >7.6 0.776(28)(20) 0.748(104)(270) 4.468(177)(274) 0.532(28)(72) 1.273(24)(5)

Gi(¢*) = G;(0)/(1 + ¢g*/A?)?. The rms radius R; can
be determined by R; =/—6d,/d, (linear fit), R, =
\/—6d, /dy (quadratic fit), and R, = v/12/A, (dipole fit)."°

All results obtained in these model-dependent analyses
are summarized in Tables XI-XIII. We employ the uncor-
related fits, where the correlations among data points at
different g> are not considered.

APPENDIX D: COMPARISON WITH THE
PREVIOUS LATTICE QCD CALCULATIONS

We discuss a comparison with the results of other recent
lattice QCD calculations, which are summarized in
Table XIV.

The recent calculation reveals the major sources of
uncertainties: (i) statistical noise, (ii) excited-state contami-
nation, (iii) model dependence of the g> parametrization,

"%For the neutron’s electric form factor, the quadratic fit is only
applied to evaluate its mean square radius from R? = —6d,.

and (iv) extrapolation into the physical point, infinite
volume, and continuum limit. Indeed, the Mainz group
[19,32-34] and the NME Collaboration [18] achieved
reducing these uncertainties and reproducing the exper-

imental values of electric radius /((r%)?) and magnetic

radius +/((r%,)?), though they are not precise enough to
discriminate the proton radius puzzle and the tension about
the magnetic form factor.

On the other hand, as for the axial radius \/{((r4)?), the
current lattice QCD computation can reproduce the exper-
imental values given by the z-expansion method, and has
achieved an error accuracy comparable to experiment.
Thus, towards the neutrino oscillation experiment and
the physics beyond the standard model, a comprehensive
analysis of the scattering data would be possible by
combining both the experimental results and the lattice
results of the nucleon form factors [83].

Although we would like to compare our results with
these previous results, it should be noted that meaningful
and quantitative comparisons are not yet feasible, so no
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FIG. 46. Summary plot for the lattice QCD results and the experimental values of the axial-vector coupling (top, left), isovector
magnetic moment (top, right) and three kinds of the isovector rms radius: electric (bottom, left), magnetic (bottom, center), and axial
(bottom, right). The (inner) error bars represent the statistical error, while the outer error bars are the total error evaluated by both the
statistical and systematic errors added in quadrature. Blue labels indicate that the analysis uses the data from lattice QCD simulation near
the physical point, while green labels indicate that the continuum extrapolation is achieved. In the top-left panel, yellow and gray bands
display 1% and 2% deviations from the experimental value. In addition, violet lines and brown bands appearing in each panel represent

the experimental values.

firm conclusions can be drawn at present. This is simply
because the continuum limit was not yet taken in this study.
However, one point we would comment on is the following.
The accuracy of the lattice QCD results for g4 has improved
significantly, and all results obtained from each lattice
study converge within a few percent of the experimental
value, while the lattice QCD results for the rms radii are not
sufficiently consistent with either each other or experiment
as shown in Fig. 46. This situation may be attributed
to the large discretization uncertainties in the rms radii we
observed in this study.

APPENDIX E: VECTOR AND AXJAL CURRENT
RENORMALIZATION IN THE SCHRODINGER
FUNCTIONAL SCHEME AT =2.00

In this appendix, we explain how we compute the
renormalization factors Zy and Z, in the main text. Our

numerical simulation adopts the SF scheme for the RG-
improved Iwasaki gauge action with the stout smeared
O(a)-improved Wilson quark action, which is essentially
the same framework reported in Ref. [84]. See also
Refs. [85-90] that determine the renormalization factors
for the axial, vector, and pseudoscalar operators with the SF
scheme. In order to define the SF scheme, we consider a
finite lattice to temporal and spatial directions, 7 and L.
The Dirichlet boundary condition is imposed in the
temporal direction, and hence, the boundary gauge fields
at t/a = 0 and T are fixed by it. The smeared gauge fields
in the stout smearing steps are also affected by this
boundary condition.

The operators we employ here are the vector and axial
current

Vi(x) = q(x)ysTq(x), (E1)
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Af(x) = q(x)y4rsTq(x), (E2)

and the pseudoscalar density

P4(x) = q(x)rsTq(x), (E3)

where T is the generator of SU(N). In our calculation we
fix Ny =3. We assume that the nonperturbative O(a)
mixing to the axial current is negligible based on our
observation [61], and the unimproved current operator is
sufficient to determine the renormalization factor Z,.

The correlation functions required for the renormaliza-
tion factors are expressed as

Far(t,s) = —m
x St pede (OHXa(x, ()Y (y,5)0°).,  (EA)
Fx(0) = —ﬁ}xjw(x, noY.  (ES)
fi= =gy (070" (E6)
Folt) = M(N;H;ifab%omvi(x, N0, (E7)

where f?¢ is the structure constant of SU(N). The
operators 0“, O are defined on the boundary as

0" =5 S E0 )T ), (E8)
0" = EDTEE, (E9)

where ¢, ' are the boundary quark fields at #/a = 0 and 7,
respectively. We substitute A4 and P into X and Y.

From the correlation functions in (E4)—(E7), we define
the renormalization factors Zy, and Z, as

2y = 2T Dm0 20 = (EIO
and

Zn = \/m itpcac—0’
Zu(t) = L2 [aa (0. T/3) = 2ipenc a0, T/3)] 71, (ELD)

ny

where ny, n, are normalization constants such that both
Zy and Z, become unity at tree level [85,88]. The

TABLE XV. Simulation parameters and number of trajectories
(Traj.) for the calculation of renormalization factors. The accep-
tance rate in hybrid Monte-Carlo (HMC acc.) is also presented.

Run L, T 0 K Traj. HMC acc.
(VAS) 12, 30 1/2 0.125820 10000 0.9179
(VAL) 16, 42 1/2 0.125820 21750 0.9109

dimensionless PCAC mass parameter #ipcac 1S determined
by using the average of three points located at the central
time slice t/a =T/2 as

1 T

MpcAC = 5
t/a=T/2—1

falt+a) = falt—a)
4fp(t) ’

(E12)

which are used to define the bare quark mass mbosc in

lattice units as ambCnc = ZyMpcac that appears in the text.
The massless limit can be taken by adjusting the hopping
parameter k so that ipcac ~ 0.

As in Ref. [84], we take a = 0.1 and ng., = 6 for the
stout link smearing parameters. The action parameters are

set to be f=2.00 and cqw = 1.02 [42], and the SF

Plaquett Rectangul
boundary parameters are ¢, =1, ¢, T =3/2

for the gauge action and ¢, = 1 for the quark action.

The simulation parameters are shown in Table XV for
the two volumes (VAS) and (VAL). The phase angle 0 is
the parameter of the generalized periodic boundary con-
dition for the quark field. The measurements for the
correlation functions are performed at every trajectory,
and the statistical errors are estimated with the jackknife
method. In the jackknife method, we built block data
with a size of 200 trajectories for (VAS) and 150
trajectories for (VAL). The hopping parameter « is chosen
to be 7iipcac ~ 0 by investigating the x dependence of
Mmpcac 1n the smaller volume (VAS). The simulation
results are tabulated in Table XVI, which shows that
the PCAC mass is statistically consistent with zero in the
(VAS) and (VAL) runs.

The time dependence of Z, in (VAS) and (VAL) is
shown in Fig. 47. In both cases, ZV is reasonably
independent of time. As defined in (E10), the value of
Zy is obtained from the fixed time slice of Z, as

Zy = 0.96677(41)(316). (E13)

TABLE XVI. PCAC masses and renormalization factors Zy
and Z,.

Run ﬁlPCAC ZV ZA
(VAS) —0.00029(12) 0.96993(108) 0.9702(26)
(VAL) 0.00028(15) 0.96677(41) 0.9783(21)
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FIG. 47. Time dependence of Z, for the smaller (red circles)
and larger (blue triangles) volumes. The filled data express the
value of Zy,.

where the first and second parentheses represent the
statistical and systematic errors, respectively. The central
value and the statistical error are determined from the
results in the larger volume (VAL), and the systematic error
is evaluated by the difference between the central values in
the two runs.

The time dependence of Z, in (VAS) and (VAL) is
shown in Fig. 48. The data of the full contraction are
calculated with the connected and disconnected contrac-
tions. Around t/a = 2T/3, it is observed that the full
contraction has a plateau, while the data of only the

1.20 : : :
115 full contraction(123 x 30) +—&— i
1.10 | | connected only(12% x 30) —A—i i
1.05 | 5 1
1.00 | E i 1
- 0-95’@®éééé®®@5%®$$é ae :
= 0.90 : — : :
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1.15 || connected only(16% x 42) +—A— i
1.10 | E
1.05 - R
1.00 - ; S % 5 A
345555382 é
0.95 | eeeée@eéé%éé‘@?%@’@%@@é 1
090 1 1 1 L 1 1 1
10 15 20 25 30 35 40
t/a
FIG. 48. Time dependence of Z, for the smaller [(VAS), upper

graph] and larger [(VAL), lower graph] volumes. The circle and
triangle symbols represent the data with and without the
disconnected contraction, respectively. The filled data express
the value of Z,.

connected contraction has a gradual slope. Therefore, we
choose the full contraction result to evaluate Z,, whose
value is given by

Z4 = 0.9783(21)(81), (E14)

where the central value and errors are determined in the
same manner as for Zy.
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