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The hadron mass can be obtained through the calculation of the trace of the energy-momentum tensor in
the hadron which includes the trace anomaly and sigma terms. The anomaly due to conformal symmetry
breaking is believed to be an important ingredient for hadron mass generation and confinement. In this
work, we will present the calculation of the glue part of the trace anomaly form factors of the pion up to
Q2 ∼ 4.3 GeV2 and the nucleon up to Q2 ∼ 1 GeV2. The calculations are performed on a domain wall
fermion ensemble with overlap valence quarks at seven valence pion masses varying from ∼250 to
∼540 MeV, including the unitary point ∼340 MeV. We calculate the radius of the glue trace anomaly for
the pion and the nucleon from the z expansion. By performing a two-dimensional Fourier transform on the
glue trace anomaly form factors in the infinite momentum frame with no energy transfer, we also obtain
their spatial distributions for several valence quark masses. The results are qualitatively extrapolated to the
physical valence pion mass with systematic errors from the unphysical sea quark mass, discretization
effects in the renormalization sum rule, and finite-volume effects to be addressed in the future. We find the
pion’s form factor changes sign, as does its spatial distribution, for light quark masses. This explains how
the trace anomaly contribution to the pion mass approaches zero toward the chiral limit.

DOI: 10.1103/PhysRevD.109.094504

I. INTRODUCTION

In classical physics, scale symmetry is broken by the
mass term. However, when quantum effects are considered,
this scale symmetry can be further broken, leading to the

scale anomaly, corresponding to the anomaly which
appears in the trace of energy-momentum tensor (EMT).
The quantum chromodynamics (QCD) trace anomaly is
very important in understanding confinement since it
supplies a constant negative pressure which cancels the
positive pressure from the quarks and glue for the confined
hadron in equilibrium [1,2]. Also, the trace anomaly plays
an important role in hadron mass generation in a QCD
system. The hadron mass can be obtained through the trace
term of the EMT [3–6] and the sigma terms,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 094504 (2024)

2470-0010=2024=109(9)=094504(14) 094504-1 Published by the American Physical Society

https://orcid.org/0000-0001-9953-742X
https://orcid.org/0009-0004-5048-8435
https://orcid.org/0000-0003-3104-1211
https://orcid.org/0000-0002-8562-8918
https://orcid.org/0000-0002-8943-8011
https://orcid.org/0000-0002-5231-4795
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.094504&domain=pdf&date_stamp=2024-05-09
https://doi.org/10.1103/PhysRevD.109.094504
https://doi.org/10.1103/PhysRevD.109.094504
https://doi.org/10.1103/PhysRevD.109.094504
https://doi.org/10.1103/PhysRevD.109.094504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


mH ¼
�
β

2g
F2þ

X
f

γmmfψ̄fψf

�
H
þ
X
f

mfhψ̄fψfiH; ð1Þ

where hOiH ≡ hHj R d3xγOðxÞjHi=hHjHi is the normal-
ized matrix element of the operator O in the rest frame,
where H denotes the hadron of interest and mf is the quark
mass for the f flavor. The bracketed first term on the right-
hand side is the trace anomaly term, and the second is the
sigma term. They are separately renormalization group
invariant. One can obtain their contributions to the mass of
the different hadron states using the above equation [7]. For
the nucleon, the sigma term is small (i.e., ∼8.5% of the
nucleon mass [1,2]), and thus the glue part of the trace
anomaly dominates. For the pion, the trace anomaly term
contributes about half of the pion mass and, since γm ∼ 0.2
is not large, the glue part dominates the trace anomaly term.
Since these are nonperturbative quantities, lattice QCD
calculation is indispensable for obtaining results with
controlled statistical and systematic errors.
The measurement of the trace anomaly form factor and

understanding its role in the hadron mass are of great
interest and are considered to be one of the major scientific
goals of the Electron-Ion Collider [8].
In addition to the nucleon trace anomaly form factor,

that of the pion might be more interesting and intriguing.
It is pointed out that, in view of the fact that the pion
sigma term in Eq. (1) gives half of the pion mass from
the Gellmann-Oakes-Renner relation and the Feynman-
Hellman theorem, the trace anomaly takes the other half
of the pion mass and, therefore, the glue part of the pion
trace anomaly will also be proportional to

ffiffiffiffi
m

p
, just as are

the pion mass and its sigma term [2]. This poses a puzzle
as to why the trace anomaly, which is from the conformal
symmetry breaking, should have such a chiral-symmetry-
related behavior and what kind of structure change
can facilitate this attribute when approaching the chiral
limit [2]. In light of this puzzle, a lattice calculation has
been carried out to examine a spatial distribution in the
nucleon, the ρ, and the pion [9], where the spatial
coordinate is between the glue part of the trace anomaly
operator and the sink position of the interpolation field of
the hadron. It was found that the density distributions for
the nucleon and the ρ are monotonic as are the electric
and axial charge distributions. However, the distribution
for the pion is unusual. When the quark mass is small,
the distribution changes sign such that the integral of the
distribution vanishes at the chiral limit. This is achieved
by making the glue trace anomaly more negative than
that in the vacuum in the inner core of the pion and more
positive than that of the vacuum in the outer shell so that
it takes no energy to create a pion with massless quarks.
This finding has motivated the present work to study the
glue part of the trace anomaly form factor for the nucleon
and particularly the pion. It is predicted that the pion

trace anomaly form factor will change sign [2] as does
the spatial distribution in Ref. [9].
This paper is organized as follows: In Sec. II, we present

the numerical details of this calculation and a brief
description of grid source propagators and the low-mode
substitution method which enables us to obtain a fairly
large number of momentum transfer cases. Fits for the form
factors, z-expansion fits, and the corresponding glue trace
anomaly spatial distributions and mass radii for the hadrons
are discussed in Sec. III. A summary and outlook are given
in Sec. IV.

II. NUMERICAL SETUP

We use overlap fermions on one ensemble of (2þ 1)-
flavor domain-wall fermion configurations with Iwasaki
gauge action (labeled with letter I) [10] as listed in Table I.
The effective quark propagator of the massive overlap

fermions is the inverse of the operator ðDc þmÞ [12,13],
where Dc is chiral, i.e., fDc; γ5g ¼ 0 [14]. It can be
expressed in terms of the overlap Dirac operator Dov as
Dc ¼ ρDov=ð1 −Dov=2Þ, with ρ ¼ −ð1=ð2κÞ − 4Þ and
κ ¼ 0.2. A multimass inverter is used to calculate the
propagators with seven valence pion masses varying from
∼250 to ∼540 MeV, including the unitary point
∼340 MeV. On the 24I ensemble, hypercubic smearing
is applied to the gauge links in the overlap fermion and
Gaussian smearing [15] is applied with root mean square
(rms) radius 0.49 fm [16], respectively, for both the source
and sink.
Based on the normalization convention shown in the

Appendix, we define a dimensionless mass form factor
Fm;HðQ2Þ, where Q2 ¼ −ðp0 − pÞ2. For a spin-1

2
particle

like the nucleon, we have

hp0; s0jTμ
μjp; si ¼ mNFm;NðQ2Þūðp0; s0Þuðp; sÞ; ð2Þ

where Tμ
μ is the trace operator of the EMT

Tμ
μ ¼ β

2g
F2 þ

X
f

ð1þ γmÞmfψ̄fψf; ð3Þ

and s (s0) is the canonical polarization of the initial (final)
nucleon.
For a spin-0 particle like the pion, we have

hp0jTμ
μjpi ¼ mπFm;πðQ2Þ: ð4Þ

TABLE I. Details of the 24I ensemble used in this calculation.
We use the grid source with two sets of the Z3 noise [11] for 64
smeared grids on each time slice.

Ensemble L3 × T a (fm) LðfmÞ mπ (MeV) Nconf Nsrc

24I 243 × 64 0.1105(3) 2.65 340 788 64 × 2
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The trace anomaly operator Tμ
μ is composed of two parts

Tμ
μ ¼ ðTμ

μÞσ þ ðTμ
μÞa; ð5Þ

where ðTμ
μÞσ ¼

P
f mfψ̄fψf and ðTμ

μÞa ¼ ½Pf mfγm ×

ðgÞψ̄fψf þ βðgÞ
2g F2�. And correspondingly the form factor

of the EMT trace of the hadron H, i.e., the mass form factor
Fm;HðQ2Þ, is made up of two parts:

Fm;HðQ2Þ ¼ F ta;HðQ2Þ þ F σ;HðQ2Þ; ð6Þ

whereF σ;H is the form factor of the sigma term and F ta;H is
the form factor of the trace anomaly. In the forward limit
where Q2 ¼ 0, Fm;HðQ2 ¼ 0Þ ¼ 1. In this work, we
calculate the form factor of the glue part of the trace
anomaly i.e., GH ≡ βðgÞ

2g hF2iH=mH for the nucleon and
the pion.
To extract matrix elements and form factors, the three-

point function (3pt) C3ðq⃗; tf; τ; t0Þ is computed from the
contraction of the two-point hadron propagator and the
glue operator F2, which is built from the “cloverleaf”
link operators with the hypercubic [17] smeared gauge
links [18]. Using the nucleon as an example, the contraction
is shown in Fig. 1.
We use the low-mode substitution method [16,18–23]

with grid-source propagators with Z3 noises [11]. The sink
momentum p⃗f is applied after the contraction, and the
source momentum p⃗i is applied by multiplying phase
factors to the grid points together with the low modes in
the low-mode substitution and corrected with a point source
propagator for the high modes [18]. Compared to the
traditional method where the momentum projection for the
source is implemented before the inversion for propagators,
in this construction, the momentum projection for the
source and sink can both be implemented at the correlation
function level and can reduce the inversion cost by a factor
proportional to the number of source momenta. Therefore
we can enhance our data with various momentum transfers
in the above-mentioned scenarios, without a significant
increase in the computational cost.

While we would like to get results with the magnitude of
momentum transferQ2 ¼ −ðpf − piÞ2 as large as possible,
larger p⃗i and p⃗f usually lead to worse signals and larger
finite lattice spacing errors. Therefore following the choices
in Ref. [18], we choose three momentum transfer scenarios
where for a given Q2 we can use as small jp⃗ij and jp⃗f j as
possible. The three momentum transfer scenarios are as
follows: (1) The source-at-rest case: jp⃗ij ¼ 0 with q⃗ ¼ p⃗f .
This will cover the smallest Q2 values where a sign change
of the form factor may be found. (2) The back-to-back case:
p⃗f ¼ −p⃗i with q⃗ ¼ 2p⃗f , which will cover largestQ2 values
and show the asymptotic behavior of the form factors.
(3) The near-back-to-back case: for a given q⃗, p⃗f , and −p⃗i
are close to q⃗=2, which serves as a supplement to the data
obtained in the above-mentioned two cases.
As shown in Fig. 1, the diagram for the glue trace

anomaly form factors is disconnected and we also need to
subtract the vacuum expectation values from the 3pt. The
subtracted 3pt with various momentum transfers can be
written as

hC3ðq⃗; tf; τ; t0Þi ¼ hC2ðp⃗i; p⃗f; tÞ ×Oðq⃗; τÞi
− hC2ðp⃗i; p⃗f; tÞi × hOðq⃗; τÞi;

¼ hC2;subðp⃗i; p⃗f; tÞ ×Osubðq⃗; τÞi; ð7Þ

where we have the hadron propagator with vacuum expect-
ation value subtracted C2;subðp⃗i; p⃗f; tÞ ¼ C2ðp⃗i; p⃗f; tÞ−
hC2ðp⃗i; p⃗f; tÞi, and the glue operatorO ¼ F2 with momen-
tum q⃗ ¼ p⃗f − p⃗i is defined as Oðq⃗; τÞ ¼ P

z⃗ e
þiq⃗·z⃗Oðz⃗; τÞ,

and we use the glue operator with vacuum expectation
value subtracted Osubðq⃗; τÞ ¼ ½Oðq⃗; τÞ − hOðq⃗; τÞi�.

III. ANALYSIS AND RESULTS

A. Renormalization

On the lattice, it is shown that the trace anomaly emerges
with the lattice regulation after renormalization [24–26].
The usual renormalization procedure entails renormalizing
the F2 operator on the lattice with the RI/MOM scheme,
mixing with other dimension-four and dimension-three
operators [24] and matching it to the MS scheme at a
certain scale. The β=2g and γm factors would then be
calculated on this lattice.
Instead of performing this renormalization procedure, we

shall take advantage of the mass sum rule and combine the
lattice β=2g and the renormalization constant of F2 as an
effective β=2g factor for the trace anomaly. Since the
effective β=2g and γm are independent of the quark mass
and the hadron state for the lattice we work on, we shall fit
them to several quark masses and hadron states as has been
done in Ref. [9]. The only complication in the lattice
calculation is that the trace anomaly operators mentioned
above can mix with the lower-dimensional operator ψ̄ψ
with a 1=a power divergence. Several quark masses are

FIG. 1. The contraction of three-point function from two-point
hadron propagators and glue operators. The different colors
represent different contributions from the grid points of the
source.
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needed to fit the 1=a term to see if the term is important.
In Ref. [9] on the same lattice ensemble, the effective β=2g
and γm are calculated with the pseudoscalar and vector
meson mass relations based on the sum rule for a valence
quark mass. Note that the 1=a term has been implicitly
included in the sum rule equations. The fact that the sum
rule is also satisfied within errors at several valence quark
masses indicates that the signal from the 1=a term is too
weak to be isolated in this calculation [9].
In this work, on the same lattice ensemble used in

Ref. [9], we only calculate glue contributions. However, we
can still obtain β

2g from the nucleon mass at one valence
mass and it can be used at other valence masses on the same
lattice. Based on the fact that the sigma term in the nucleon
is small, we can ignore the γm-related term in the trace
anomaly

MNjmva ¼ ð1þ γmÞhHmiN þ βðgÞ
2g

hF2iNjmva;

≈ hHmiN þ βðgÞ
2g

hF2iNjmva: ð8Þ

By using the RG invariant sigma term hHmiN which was
previously calculated [27], we can obtain the bare β

2g on the
24I ensemble

βðgÞ
2g

����
mva

¼ MN − hHmiN
hF2iN

����
mva

: ð9Þ

Using the data at mva ¼ 0.016, we obtained the bare

value of βðgÞ
2g to be −0.129ð6Þ and we use this value in all

our plots of the glue part of the trace anomaly form factors.
The value here is more negative than −0.08ð1Þ obtained in
Ref. [9] which uses the pseudoscalar and vector meson
masses with mq ∼ 500 MeV to determine both βðgÞ

2g and γm.

The tension here could be an Oðm2
qa2Þ discretization error

and further investigation on the systematic uncertainty of
βðgÞ
2g will be conducted in the future.

B. Three-point function fit

By including the first excited states, the functional form
we used for fitting 3pt is

CH;3ptðp⃗i; p⃗f; t; τÞ ¼ mHGHðQ2Þ
×KH;3ptðpi; pfÞZp⃗i

Zp⃗f
e−Eiτ−Efðt−τÞ

þ C1e−E
1
i τ−Efðt−τÞ þ C2e

−Eiτ−E1
fðt−τÞ

þ C3e
−E1

i τ−E
1
fðt−τÞ; ð10Þ

where t is the source-sink time separation and τ is the
current-source time separation. KH;3ptðpi; pfÞ is the kin-
ematic factor which is listed in Table II.

We fit the 2pt with zero momentum and use the
dispersion relation to calculate the energies. Zp⃗i

and Zp⃗f

are overlap factors between the hadron states and the
interpolating operators. The E and E1 are the ground state
and first excited state energies, respectively. In the 3pt–2pt
joint fit, the parameters Zp⃗i

Zp⃗f
Ei, Ef, E1

i , and E1
f are

constrained by the joint fit with the corresponding 2pt.
The associated 2pt is fitted with the functional form

Cπ;2ptðp⃗i; p⃗f; t; τÞ ¼Kπ;2ptðEÞZp⃗i
Zp⃗f

½e−Et þ e−EðT−tÞ�
þA1e−E

1t;

CN;2ptðp⃗i; p⃗f; t; τÞ ¼KN;2ptðEÞZp⃗i
Zp⃗f

e−Et þA1e−E
1t; ð11Þ

where T is the lattice size of the time dimension and A1 is a
free fitting parameter for the excited-state contributions.
In addition to the 3pt–2pt joint fit method, we can also

obtain the glue trace anomaly form factor by calculating the
ratio of the 3pt and 2pt functions,

Rsqrt;Hðt; τ; p⃗i; p⃗fÞ

¼ CH;3ptðt; τ; p⃗i; p⃗fÞ
CH;2ptðt; p⃗fÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CH;2ptðt − τ; p⃗iÞCH;2ptðt; p⃗fÞCH;2ptðτ; p⃗fÞ
CH;2ptðt − τ; p⃗fÞCH;2ptðt; p⃗iÞCH;2ptðτ; p⃗iÞ

s �
�

mHKH;3ptðpi; pfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH;2ptðpiÞKH;2ptðpfÞ

p �
; ð12Þ

and performing fitting with multiple source-sink separation
t with the following functional form of the ratio Rsqrt;H,

Rsqrt;H ∼ GHðQ2Þ þ C00
1e

−ΔE1
i τ þ C00

2e
−ΔE1

fðt−τÞ

þ C00
3e

−ΔE1
i τ−ΔE

1
fðt−τÞ

⟶
t≫τ≫0

GHðQ2Þ; ð13Þ

where the terms with C00
1 , C

00
2 , and C00

3 are the contributions
from the excited-state contamination and ΔEα ¼ E1ðp⃗αÞ −
Eðp⃗αÞ is the energy difference between the nucleon or pion
energy Eðp⃗αÞ and that of the first excited state E1ðp⃗αÞ for
either the source (α ¼ i) or the sink (α ¼ f). These two

TABLE II. The kinematic factors of the two- and three-point
functions for the pion and nucleon used in this work. Note the 3pt
kinematic factor for the nucleon is only valid for the case where
the source is at rest.

KH π N

2pt mπ=Eπ;p⃗ ðmN þ EN;p⃗Þ=EN;p⃗

3pt m2
π=ðEπ;p⃗i

Eπ;p⃗f
Þ ðmN þ EN;p⃗f

Þ=EN;p⃗f
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methods should yield consistent results. We fit our results
with both methods and they are consistent with each other
and our fits can describe the data well with χ2=d:o:f ∼ 1.
We show the pion results with three types of momentum

transfers in Fig. 2 (back to back), Fig. 3 (source at rest), and
Fig. 4 (near back to back). For illustrative purposes, the data
points on the panels are shown with ratio Rsqrt;H and the
reconstructed ratios based on the functional form described
in Eqs. (10), (11), and (13) are shown with colored bands.
The data points are fitted well (χ2=d:o:f: ∼ 1) and the

reconstructed ratios are consistent with the data. For the
back-to-back case, we find that the data points are sym-
metric about τ ¼ t=2within uncertainty. In addition, for the
near-back-to-back case, the data points are symmetrical
within uncertainty upon the exchange of source-sink
momentum. We can therefore confirm that the source
smearing with momentum applied by phase factors for
grid sources and sink smearing with momentum have the
same overlap with the pion states.
By combining the data from all the momentum transfer

scenarios, we obtain the final results for the form factors.
For the pion, we plot GπðQ2Þ for the unitary quark mass
in Fig. 5 and plot the results at all seven valence quark
masses in Fig. 6. Here are several important features we
find from the results. First, in the forward limit (i.e., at
Q2 ¼ 0 GeV2), we get a positive value, which is consistent
with the glue contribution to the hadron mass [9]. We plot
the forward matrix element β

2g hF2iðQ2 ¼ 0Þ with respect toffiffiffiffiffiffi
ml

p
in Fig. 7 and find that the glue part of the pion trace

FIG. 2. Examples of the ratios of the pion for the special case
where jp⃗ij ¼ jp⃗fj on 24I with various values of source-sink
separation tf and current position τ at the valence pion mass
mπ;v ¼ 340 MeV. The data points agree well with the colored
bands predicted from the fit, and the gray band is for the ground
state form factor GπðQ2Þ.

FIG. 3. Examples of the ratios of the pion on 24I with various
values of source-sink separation tf and current position τ at
the valence pion mass mπ;v ¼ 340 MeV. The plots show the
jp⃗ij ≠ jp⃗fj case with p⃗i ¼ 0, q⃗ ¼ p⃗f. The data points agree well
with the colored bands predicted from the fit, and the gray band is
for the ground state form factor GπðQ2Þ.

FIG. 4. Examples of the ratios of the pion on 24I with various
values of source-sink separation tf and current position τ at the
valence pion mass mπ;v ¼ 340 MeV. The plots show the general
jp⃗ij ≠ jp⃗fj case with near-back-to-back momentum transfer. The
data points agree well with the colored bands predicted from the
fit, and the gray band is for the ground state form factor GπðQ2Þ.
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anomaly is proportional to
ffiffiffiffi
m

p
for quark mass above and at

the unitary mass, just as are the pion mass and its sigma
term [2]. Second, as the Q2 gets larger, the form factor
becomes negative and there is a sign change which is
predicted [2] based on the sign change observed in the
spatial distribution of the trace anomaly [9].
At small Q2, chiral perturbation theory (ChPT) is useful

in terms of predicting the trace anomaly form factors. The
derivation in Ref. [28] using the soft-pion theorem, the
chiral perturbation calculation of the trace anomaly matrix
element at tree level [29], and the calculation of the trace
anomaly form factor of pion using the gravitational form
factors [30] all yield

FChPT
ta;π ðQ2Þ ∼ 1

2
−

1

2m2
π
Q2: ð14Þ

On the one hand, from Eq. (14), the form factor is
positive at Q2 ¼ 0 with FChPT

ta;π ðQ2 ¼ 0Þ ¼ 1
2
and on the

other hand, Eq. (14) predicts a sign change in the trace
anomaly form factor of the pion. Therefore our results are

consistent with the predictions from the chiral perturbation
theory at the small Q2 region.
We also calculate GNðQ2Þ for the nucleon. We show the

nucleon results with the source at rest in Fig. 8 and the
results for the seven valence pion masses are plotted in
Fig. 9. In contrast to the pion case, GNðQ2Þ decreases
monotonically as Q2 increases and there is no sign change.
This is consistent with the expectation from the trace
anomaly density of the nucleon where no sign change is
found [9]. A recent perturbative QCD calculation of the
trace anomaly form factors at large Q2 predicted the
asymptotic signs for the pion and nucleon [31]. Their
results agree with this work for the case of the pion but
disagree with this work for the case of the nucleon.

FIG. 6. The glue trace anomaly form factor GπðQ2Þ at seven
valence pion masses.

FIG. 7. The glue trace anomaly matrix element of the pion,
β
2g hF2iðQ2 ¼ 0Þ, in the forward limit (i.e., at Q2 ¼ 0 GeV2). The
data points agree well with the colored bands predicted from the
fit with the functional form β

2ghF2i¼aþb
ffiffiffiffiffiffi
ml

p þc
ffiffiffiffiffiffi
ml

p
lnð ffiffiffiffiffiffi

ml
p Þ.

FIG. 5. The glue trace anomaly form factor GπðQ2Þ with
mla ¼ 0.016, which corresponds to mπ;v ¼ 340 MeV. Different
momentum transfer scenarios are plotted with different colors.

FIG. 8. Examples of the ratios of the nucleon on 24I with
various values of source-sink separation tf and current position τ
at the valence pion mass mπ;v ¼ 340 MeV. The plots show the
jp⃗ij ≠ jp⃗fj case with p⃗i ¼ 0, q⃗ ¼ p⃗f. The data points agree well
with the colored bands predicted from the fit, and the gray band is
for the ground state form factor GNðQ2Þ.
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C. z-expansion fit of pion and nucleon form factors

In order to obtain the trace anomaly radius and spatial
distribution, we perform a model-independent z-expansion
fit [32] with the ratio G̃HðQ2Þ ¼ GHðQ2Þ=GHðQ2 ¼ 0Þ for
pion and nucleon separately using the following equation

G̃HðQ2Þ ¼ G̃HðzÞ ¼
Xkmax

k¼0

akzk; ð15Þ

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð16Þ

where t ¼ −Q2, and tcut is set to be at the two-pion
threshold, i.e., tcut ¼ 4m2

π;mix, with mπ;mix being the mass
of the mixed valence and sea pseudoscalar meson on this
ensemble as calculated in Ref. [33]; and t0 is chosen to be
its “optimal” value topt0 ðQmaxÞ ¼ tcutð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p

Þ
to minimize the maximum value of jzj, with Q2

max the
maximum Q2 under consideration.

The model dependence of the fit can be significantly
suppressed by reaching to higher kmax where the fitting
results are insensitive to the values of the choice of kmax. In
order to achieve a higher kmax, we add constraints to the
parameters based on the asymptotic behaviors of the form
factors in the limit Q2 → ∞.
Using Eq. (16), in the limitQ2 → ∞, we have z → 1 and

1 − z ¼ 1
Q and the form factor

G̃ðzÞ ¼ G̃ð1Þ þ
X
n

dnG̃
dzn

����
z¼1

ð1 − zÞn

∼ G̃ð1Þ þ
X
n

dnG̃
dzn

����
z¼1

	
1

Qn



: ð17Þ

If we assume the form factors fall as powers of 1
Q at large

Q2, then we can write G̃ðz → 1Þ ∝ 1=Ql, where l is an
integer. Combining this with Eq. (17), we obtain the
constraints for the coefficients ak

G̃ð1Þ ¼
X∞
k¼0

ak ¼ 0; ð18Þ

dnG̃
dzn

����
z¼1

¼
X∞
k¼n

k!
ðk − nÞ! ak ¼ 0; n∈ f1;…; l − 1g: ð19Þ

In this work we take l ¼ 4 and set kmax ¼ 7 and kmax ¼ 6
for the pion and the nucleon, respectively, by using
fa0; a1; a2g as the free parameters and having the rest of
the coefficients fa3; ...; a6=a7g constrained according to
Eq. (18) and (19).
The z-expansion fitted pion form factors up to Q2 ∼

4.3 GeV2 for the seven valence quark masses on the 24I
ensemble, are shown in Fig. 10 with χ2=d:o:f: ∼ 1. We also
fit the nucleon form factors and the fit results are shown in
Fig. 11 with χ2=d:o:f: ∼ 1.

FIG. 9. The glue trace anomaly form factor GNðQ2Þ at seven
valence pion masses.

FIG. 10. G̃πðQ2Þ at seven valence pion masses. The results
from z-expansion fits are plotted in colored bands.

FIG. 11. G̃NðQ2Þ at seven valence pion masses. The results
from z-expansion fits are plotted in colored bands.
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D. Chiral extrapolation of the glue trace anomaly radii
of the pion and nucleon

The average squared mass radius of a hadron can be
defined as

hr2imðHÞ ¼ −6
dFm;HðQ2Þ

dQ2

����
Q2→0

: ð20Þ

Since the sigma term is small in the nucleon and its
derivative with respect to Q2 is expected to be negligible
in the pion as compared to the contribution from the glue
part of the trace anomaly, hr2gitaðHÞ ¼ −6dGHðQ2Þ=
dQ2jQ2→0 should be good approximations to the nucleon
and pion mass radii and we can use the fitted form factors to
obtain hr2gitaðHÞ. Based on the ChPT prediction shown in
Eq. (14), the pion mass radius is

hr2iChPTm ðπÞ ¼ 3

m2
π
: ð21Þ

This suggests that the radius of the pion diverges at the
chiral limit quadratically in the pion mass and at the
physical pion mass, hr2iChPTm ðπÞ ≃ 6 fm2. This also sug-
gests that the radius of the pion should incorporate a term
inversely proportional to m2

π in the chiral extrapolations.
Inspired by this observation, we adopt the following ansatz
to extrapolate the pion radius to the physical point,

hr2gitaðπÞ ¼ aπ=m2
π þ bπ þ cπ log

	
m2

π

m2
π;phy



þ dπm2

π; ð22Þ

where the chiral-log term is from the prediction of a
ChPT calculation [29]. Our result for the square radius
of the pion at the physical point obtained from the fit
Ansatz is around 21.5(5.2) fm2 with χ2=d:o:f: about 1.2.
Alternatively, dropping the dπm2

π term results in a radius at
the physical point of 9.8ð2.1Þ fm2 with χ2=d:o:f: about 2. If
we take the difference of results obtained using the different
fit Ansatz as the systematic error, then our final result is
hr2giphyta ðπÞ ¼ 21.5ð5.2Þð11.7Þ fm2. In addition to the sys-
tematic error from different Ansätze, please note there are
three sources of systematic error which we need to take into
account and investigate in the future: (1) the unphysical sea
quark mass of the lattice ensemble: a direct calculation at
the physical point is necessary; (2) the finite-lattice-spacing
effects in the renormalization: the mixing with the lower-
dimensional operator and the validity of the sum rule
equation upon extrapolation to the continuum limit must be
examined; and (3) the finite-volume effects. These system-
atic errors should also be included in the results for the
nucleon in the following passages.
On the other hand, the square radius of the nucleon

increases with decreasing pion mass, as inferred from the
slope at smallQ2 region depicted in Fig. 11. To estimate the

results at the physical pion mass, we use the following
Ansätze for chiral extrapolation

hr2gitaðNÞ ¼ aN þ bNm2
π;

hr2gitaðNÞ ¼ aN þ bNm2
π þ cNm2

π log

	
m2

π

m2
π;phy



: ð23Þ

The pion mass dependence of the radius is shown in the
bottom panel of Fig. 12. The extrapolated results for the
z-expansion fit are hr2gi1=2ta ðNÞ ¼ 0.89ð10Þ and 0.82(05) fm
with and without the chiral log term, respectively. Our final
result is 0.89(10)(07) fm if the difference of results obtained
using different fit Ansätze is taken as the systematic error.
The radius of the pion being larger than that of the nucleon
is consistent with the observation in a recent lattice
calculation performed by some of the authors within this
study [9].
The glue trace anomaly form factors can be extracted

from the differential cross sections of the J=Ψ photo-
production [34–37] and leptoproduction at large photon
virtualities [38]. A recent direct dipole fit to the recent
GlueX collaboration data [39] results in a root-mean-square
radius of the nucleon of about 0.55(3) fm [40], which is

FIG. 12. The valence pion mass dependence of the radius of the
glue trace anomaly in the pion (top panel) and nucleon (bottom
panel). The band in the top panel for the pion case represents the
result constructed using Eq. (22). The bands in the bottom panel
for the nucleon case are constructed using Eq. (23).
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substantially smaller than the present lattice result of 0.89
(10)(07) fm. Since the nucleon sigma term is neglected, this
radius is the mass radius of the nucleon.1

Another way to access the trace anomaly form factor is
through the gravitational form factors (GFFs) which are the
moments of generalized parton distribution [2,41]. As shown
in Eq. (6), the EMT trace form factor Fm is made up of two
parts. It is shown that the EMT trace form factor is related to
the GFF [2,41], and for the nucleon, one can write

F taðQ2Þ ¼
�
ðAðQ2Þ − BðQ2Þ Q2

4m2
N
þ 3DðQ2Þ Q

2

m2
N

�
− F σðQ2Þ; ð24Þ

where AðQ2Þ; BðQ2Þ, and DðQ2Þ are the sum of the quark
and glue GFF. This relation is due to the conservation of the
EMT, i.e., ∂μTμν ¼ 0 [2]. The square mass radius of the trace
anomaly can then be defined [41] as

hr2ita ¼ −6
	
dAðQ2Þ
dQ2

þ 3Dð0Þ
M2

−
dF σðQ2Þ

dQ2



; ð25Þ

where Bð0Þ ¼ 0 has been used. For the nucleon, the
contribution from the sigma term is negligible and the last
term may be dropped in the calculations of the mass radius.
A lattice calculation has been carried out recently to calculate
the quark and glue GFF [42] of the nucleon. The mass rms
radius from Eq. (25) is obtained as 1.038(98) fm [43]. This is
consistentwith our direct calculation of 0.89(10)(07) fm. The
holographic calculation [44] with lattice input results in
0.926� 0.008 fm which is also consistent with our result.
Using some lattice input for the quark contributions in
Eq. (25) and the glue GFF from fitting the near-threshold
J=Ψ production at ξ > 0, it is found the scalar radius to be
1.20(13) fm [45], which is slightly larger than the present
work. Attempts have also been made to extract it from the
gravitational form factors A and D from J=Ψ photoproduc-
tion near the threshold [37]. So far, only the glue part of theA
and D are included. As we can see from Eq. (24), both the
glue and quark GFF are needed.

E. Spatial distributions of the glue trace anomaly
in the pion and nucleon

After obtaining the fitted form factors, we can calculate
the spatial distribution in the instant form of the mass,
especially the glue part of the trace anomaly, in a specific
frame where the energy transferred to the system Δ0 ¼ 0.

Traditionally, the spatial distributions are defined in the
Breit frame where there is no energy transfer, i.e., Δ0 ¼ 0

and P ¼ ðp⃗þ p⃗0Þ=2 ¼ 0 and therefore Q2 ¼ jΔj2. For
example, the charge densities in the Breit frame can be
obtained from the electromagnetic form factors with
Fourier transforms. However, it has been pointed out that
such a Fourier transform relationship between form factors
and spatial distributions of the expectation values of local
operators is only valid for nonrelativistic systems and is not
accurate for systems whose size is of the order of its
Compton wavelength [46–48].
Alternatively, in the infinite momentum frame (IMF),

an elastic frame where Pz → ∞ and P · Δ ¼ 0, a two-
dimensional (2D) Fourier transform of the trace anomaly
form factor in the transverse plane can be interpreted as the
spatial distribution [46,47] and such a Fourier transform
has been worked out for the EMT [49–51]. The spatial
distribution of the glue trace anomaly in the IMF is
obtained as

ρIMF
H ðr⊥Þ ¼

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·r⊥G̃HðQ2ÞjPz→∞
P·Δ¼0; ð26Þ

FIG. 13. Top panel: the extrapolation of form factors of the pion
to the large Q2 region. Bottom panel: the glue trace anomaly
spatial distribution 2πrρIMF

π ðrÞ at seven valence pion masses.

1The forward matrix element of the trace Tμ
μ and that of T00

give the same result and yet their radii differ. Since the forward
trace matrix element corresponds to the mass of the hadron and
that of T00 corresponds to the energy, it is appropriate to call the
radius from the trace of the GFF the mass radius and that from the
GFF of T00 the energy radius.
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where r⊥ and Δ⊥ are defined on the two-dimensional
transverse space. In this work, for the pion and nucleon, we
use the 2D Fourier transform in the IMF to obtain the
spatial distributions.
To perform the Fourier transform, we extrapolate the

z-expansion fit for pion glue trace anomaly form factor to
largeQ2 where the form factors are suppressed as 1=Q4 due
to the constraints in Eq. (19). The 2D spatial distributions of
the glue trace anomaly in the IMF with different quark
masses are shown in the bottom panel in Fig. 13. The sign
change of the spatial distribution is observed and the
intersection with the zero axis shifts to a smaller r region
with increasing quark mass. This is consistent with the
finding in Ref. [9].
The results for form factors and spatial distributions

of the glue trace anomaly in the nucleon are shown in
Fig. 14. In contrast to the pion case, the spatial distribution
of the trace anomaly in the nucleon is always positive and
the maximum value is larger with larger quark mass. The
spatial distribution for the pion has a longer tail than that for
the nucleon, which explains why the mass radius of the
pion is larger than that of the nucleon.

IV. CONCLUSION AND OUTLOOK

We have presented a calculation of the glue trace
anomaly form factors of EMT and mass spatial distribu-
tions for the pion and the nucleon using overlap fermions
with a range of valence pion masses on a RBC-UKQCD
domain-wall ensemble.
We find that for the pion the glue trace anomaly form

factor shows a sign change in the small Q2 region, which
is consistent with predictions from chiral perturbation
theory [28–30], while for the nucleon the glue trace
anomaly form factor shows no sign change. The predictions
of asymptotic signs of the trace anomaly form factors from
a recent perturbative QCD calculation at large Q2 [31]
agree with this work for the pion case but disagree for the
nucleon case. We perform Fourier transforms to the form
factors and obtain the spatial distribution of the glue trace
anomaly in the pion and nucleon. On the one hand, we find
that the spatial distribution in the pion is negative at short
distance and positive at long distance. This explains how
the trace anomaly contribution to the pion mass approaches
zero in the chiral limit [2] and reflects the sign change in the
form factor. Such a behavior in the form factor deserves to
be further investigated both experimentally and theoreti-
cally. On the other hand, the spatial distribution in the
nucleon is always positive and is suppressed in the large r
region. We also calculate the radius of the trace anomaly
form factor; the radius of the pion is much larger than that
of the nucleon. This observation aligns with our spatial
distribution findings, as the spatial distribution within the
pion exhibits an extended tail when compared to the
nucleon’s spatial distribution.
Thus this work shows that the glue trace anomaly form

factor can be studied accurately and efficiently with overlap
fermion which preserves chiral symmetry and reveals the
mass distribution within hadrons. In the future, we will
include the quark contribution and extend the calculation to
ensembles with physical quark masses and smaller lattice
spacings for the extrapolation to the continuum limit.
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APPENDIX: NORMALIZATION CONVENTION OF THE SINGLE-PARTICLE STATES

The completeness relation for the χQCD convention is

1 ¼
Z

d3p
ð2πÞ3 jpi

m
Ep

hpj; jpi ¼
ffiffiffiffiffiffi
Ep

m

r
aþp jΩi: ðA1Þ

The one-particle state is defined as

ϕðxÞjΩi ¼
Z

d3p
ð2πÞ3

ffiffiffiffiffiffiffi
2m

p

2Ep
e−ip⃗·x⃗jpi; hΩjϕ†ðxÞ ¼

Z
d3p
ð2πÞ3

ffiffiffiffiffiffiffi
2m

p

2Ep
e−ip⃗·x⃗hpj; ðA2Þ

hΩjϕ†ðpÞjli ¼
Z

d3xe−ip⃗·x⃗hΩjϕ†ðxÞjli ¼ δ3ðp⃗ − ⃗lÞð2πÞ3
ffiffiffiffiffiffiffi
2m

p
: ðA3Þ

In this definition, jpi ¼ ˜jpi= ffiffiffiffiffiffiffi
2m

p
, where ˜jpi is the single-particle state with the conventional normalization where

1 ¼
Z

d3p
ð2πÞ3

˜jpi 1

2Ep

˜hpj; ˜jpi ¼ ffiffiffiffiffiffiffiffi
2Ep

p
aþp jΩi: ðA4Þ

Then we should have the relation between the matrix elements for these two conventions

hpjOgð0Þj0i ¼
1

2mH

˜hpjOgð0Þ ˜j0i: ðA5Þ

Therefore, the dimensionless form factor for pion is defined as

˜hpfjOgðqÞ ˜jpii ¼ 2m2
HGHðtÞ; ðA6Þ

where t ¼ ðpf − piÞ2. The form factor can be extracted from the matrix element under the χQCD normalization convention:

hpfjOgðqÞjpii ¼
1

2mH

˜hpfjOgðqÞ ˜jpii ¼
1

2mH
2m2

HGπðtÞ ¼ mHGHðtÞ: ðA7Þ

1. Two-point correlation functions

The pion two-point correlation function with momentum p⃗ can be written as

Cπ;2ptðt; p⃗Þ ¼
X
x⃗

e−ip⃗·x⃗hχπðx⃗; tÞχ†πð0⃗; 0Þi;

¼
X
x⃗

e−ip⃗·x⃗
X
n0;p⃗2

m

En0
p⃗2

X
n;p⃗1

m
En
p⃗1

hn0; p⃗2jχπðx⃗; tÞjn; p⃗1ihn; p⃗1jχ†πð0⃗; 0Þjn0; p⃗2i

⟶
t≫0 mπ

Eπ;p⃗
ZSi
p⃗ Z

Sf
p⃗ × ðe−Et þ e−EðT−tÞÞ; ðA8Þ

where Si and Sf denote the smearing settings of the source and sink.
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Using the projection operators,

Γ� ¼ 1

2
ð1� γ4Þ; ðA9Þ

the nucleon two-point correlation function with momentum p⃗ and summed spin s can be written as

CN;2ptðt; p⃗Þ ¼ Tr½ΓþGN;2ptðt; p⃗Þ�

⟶
t≫0 mþ

Eþ
p
e−E

þ
p tZSi

p⃗ Z
Sf
p⃗

Tr½1
2
ð1þ γ4Þð−i=pþmþÞ�

2mþ
¼ mN þ EN;p⃗

EN;p⃗
ZSi
p⃗ Z

Sf
p⃗ e−EN;p⃗t: ðA10Þ

The general functional form of the 2pt functions can be written as

CH;2ptðt; p⃗Þ ¼ KH;2ptðpÞZSi
p⃗ Z

Sf
p⃗ T 2ðt; TÞ þ

Xnmax

n¼1

X
αn

An
αT̃

n
2pt;αðt; TÞ; ðA11Þ

where t is the source-sink time separation and τ is the current-source time separation.KH;2ptðpi; pfÞ is the kinematic factor,
which can be derived from Eqs. (A8) and (A10) and are shown in Table III. The energies appearing in these expressions can
be calculated using the dispersion relationship or using fitted parameters Ei and Ef, etc. Zp⃗ is the overlap factor between the
hadron state and the interpolating operator. T 2ptðt; τ; TÞ is the time dependence of the ground state and the second term
includes contributions from the first excited state up to the nmaxth excited state, with αn terms summed up. T̃ n

2pt;αðt; τ; TÞ is
the corresponding time time dependence and An

αs are the corresponding weights.

2. Three-point correlation functions and ratio

The pion three-point correlation function can be written as

Cπ;3ptðt; τ; p⃗i; p⃗fÞ ¼
X
x⃗f ;z⃗

e−ip⃗f ·x⃗f eiq⃗·z⃗hχπðx⃗f; tÞOðz⃗; τÞχ†πð0⃗; 0Þi

⟶
t≫τ≫0hπjOjπiZp⃗i

Zp⃗f

mπ

Epi

mπ

Epf

e−Eiτ−Efðt−τÞ; ðA12Þ

where p⃗i and p⃗f are the source momentum and sink momentum and q⃗ ¼ p⃗f − p⃗i is the three-momentum injected by the
glue trace anomaly operator O.
Similarly, for the nucleon with positive parity, i.e., the proton, we have

CNþ;3ptðt; τ; p⃗i; p⃗fÞ ¼
X
x⃗f ;z⃗

e−ip⃗f ·x⃗f eiq⃗·z⃗Tr½ΓþhχNþðx⃗f; tÞOðz⃗; τÞχ†Nþð0⃗; 0Þi�

⟶
t≫τ≫0

mNþGNþZp⃗i
Zp⃗f

mþ
Epi

mþ
Epf

e−Eiτ−Efðt−τÞ 1

8m2þ
½−4ðp⃗i · p⃗f − Epi

Epf
Þ þ 4m2þ þ 4mþðEpi

þ Epf
Þ�;

ðA13Þ

where we have used =pi ¼ p⃗i · γi þ iEiγ4.

TABLE III. The kinematic factors of the two- and three-point functions for pion and nucleon.

π N

2pt mπ
Eπ;p⃗

mNþEN;p⃗

EN;p⃗

3pt mπ
Eπ;p⃗i

mπ
Eπ;p⃗f

1
2EN;p⃗i

EN;p⃗f
½−ðp⃗i · p⃗f − EN;p⃗i

EN;p⃗f
Þ þm2

N þmNðEN;p⃗i
þ EN;p⃗f

Þ�
3pt back to back mπ

Eπ;p⃗i

mπ
Eπ;p⃗f

4mN
8Epi

Epf
½2mN þ ðEpi

þ Epf
Þ�

3pt source at rest mπ
Eπ;p⃗f

mNþEN;p⃗f

EN;p⃗f
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The general functional form of the 3pt can be written as

CH;3ptðt; τÞ ¼ mHGHKH;3ptðpi; pfÞZp⃗i
Zp⃗f

T 3ptðt; τ; TÞ þ
Xnmax

n¼1

X
αn

Cn
αT̃

n
3pt;αðt; τ; TÞ; ðA14Þ

where t is the source-sink time separation and τ is the current-source time separation.KH;3ptðpi; pfÞ is the kinematic factor,
which can be calculated using the dispersion relationship or using fitted parameters Ei and Ef, etc. The kinematic factors for
momentum transfer scenarios are listed in Table III. Zp⃗i

and Zp⃗f
are overlap factors between the hadron state and the

interpolating operator. T 3ptðt; τ; TÞ is the time dependence of the ground state and the second term includes contributions
from the first excited state up to the nmaxth excited state, with αn terms summed up. T̃ n

3pt;αðt; τ; TÞ is the corresponding time
time dependence and Cn

αs are the corresponding weights.
In this work, we include the first excited states and have

T 3ðt; τ; TÞ ¼ e−Eiτ−Efðt−τÞ; ðA15Þ

T̃ 1
3pt;aðτ; t; TÞ ¼ e−E

1
i τ−Efðt−τÞ; T̃ 1

3pt;bðτ; t; TÞ ¼ e−Eiτ−E1
fðt−τÞ; T̃ 1

3pt;cðτ; t; TÞ ¼ e−E
1
i τ−E

1
fðt−τÞ: ðA16Þ

The functional form we used for fitting 3pt is

CH;3ptðt; τÞ ¼ mHGHKH;3ptðpi; pfÞZp⃗i
Zp⃗f

e−Eiτ−Efðt−τÞ þ C1e−E
1
i τ−Efðt−τÞ þ C2e

−Eiτ−E1
fðt−τÞ þ C3e

−E1
i τ−E

1
fðt−τÞ: ðA17Þ
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