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We explore the ’t Hooft-Veneziano limit of the Polyakov loop models at finite baryon chemical potential.
Using methods developed by us earlier we calculate the two- and N-point correlation functions of the
Polyakov loops. This gives a possibility to compute the various potentials in the confinement phase and to
derive the screening masses outside the confinement region. In particular, we establish the existence of
complex masses and an oscillating decay of correlations in a certain range of parameters. Furthermore, it is
shown that the calculation of the N-point correlation function in the confinement phase reduces to the
geometric median problem. This leads to a large N analog of the Y law for the baryon potential.
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I. INTRODUCTION

The characteristics of strongly interacting matter at high
temperatures and densities are actively studied through
theoretical and computational methods. The phase dia-
gram of quantum chromodynamics (QCD), which shows
how strongly interacting matter behaves as temperature
and baryon density change, is currently a subject of
intense investigation. Studying the QCD phase diagram
is crucial in gaining insights into the fundamental proper-
ties of matter under extreme conditions, such as those one
encounters in heavy ion collisions or within compact
astrophysical objects.
It is well known that the introduction of a chemical

potential μ into the QCD action makes the Euclidean path
integral measure complex, so standard Monte Carlo simu-
lations are not feasible. Over the last few decades, various
approaches have been developed to tackle this sign problem
either partially or entirely. Some notable methods include
Taylor expansion or reweighting at low chemical potential,
simulations at imaginary potential, complex Langevin
simulations, and others as reviewed in [1,2]. Despite certain
progress achieved within these methods, lattice simulations
at arbitrary real chemical potential are not yet possible.

Analytical efforts to overcome the sign problem are
mainly concentrated around some effective theories, like
the Polyakov loop models, with the goal to map such
theories via the duality transformations to models with the
positive Boltzmann weight, see [3–7]. Another direction of
analytical attempts is investigation of the ’t Hooft and the ’t
Hooft-Veneziano limits of lattice QCD. For example, using
methods developed in [8,9], the large N limit was explored
for UðNÞ Polyakov loop models in [10,11]. Extension of
these methods to SUðNÞ models was accomplished in
Refs. [12–14]. In these papers we established a general
phase structure of the model in the ’t Hooft-Veneziano limit.
An important open problem is the behavior of the Polyakov
loop correlations in this limit. This problem is addressed in
the present paper. The large distance decay of the Polyakov
loop correlations at finite chemical potential is governed by
the (electric and magnetic) screening masses. For a general
review on screening masses, we refer the reader to [15]. In
Refs. [16,17] these masses have been computed in lattice
QCD with imaginary chemical potential. Relatively little is
known about screening masses in the presence of the real
chemical potential. Some results obtained from the simu-
lations of the dual of the SUð3Þ Polyakov loop model can be
found in Refs. [18,19].
A closely related problem is the emergence of the

complex spectrum at finite density. This leads to an
exponential decay of the correlations modulated by an
oscillating function [20–23]. Locating such a liquid phase
requires the computation of long-distance correlations with
real chemical potential. So far, a phase with an oscillating
decay of correlations was shown to exist in ð1þ 1Þd lattice
gauge theory (LGT) with heavy quarks in [21] and in Zð3Þ
spin model in a complex external field in [22]. The latter
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result was extended to many ZðN > 3Þ models in [23].
Here we prove that the liquid phase exists in the ’t Hooft-
Veneziano limit of the Polyakov loop model in a certain
range of parameters. Preliminary results of this study have
been presented in [13].
We work with the Polyakov loop model whose action is

given by

S ¼ β
X
x;n

ReWðxÞW�ðxþ enÞ

þ
X
x

XNf

f¼1

hðmfÞ
�
eμWðxÞ þ e−μW�ðxÞ

�
: ð1Þ

Here, WðxÞ¼TrUðxÞ;UðxÞ∈UðNÞ;SUðNÞ, β ¼ βðg2; NtÞ
is an effective coupling constant, hðmfÞ is a function of the
quark massmf, and Nf is a number of fermion flavors. Our
goal is to calculate the correlation functions of this model in
the ’t Hooft-Veneziano limit [24,25]: g → 0, N → ∞,
Nf → ∞ such that the product g2N and the ratio Nf=N ¼
κ are kept fixed. For the case of Nf degenerate flavors

considered here, one has
PNf

f¼1 hðmfÞ ¼ NfhðmÞ →
NκhðmÞ≡ Nα. In the previous papers [13,14] we derived
the large-N representation for the partition function of the

model (1) and described its phase diagram. In particular, a
third order phase transition separating two phases has
been found.
Let us briefly describe the large N representation

which is the starting point of the following calculations.
Consider the following change of variables in the partition
function ρðxÞ cosωðxÞ ¼ 1=NReWðxÞ, ρðxÞ sinωðxÞ ¼
1=NImWðxÞ. If ηðxÞ (η̄ðxÞ) is the power of the Polyakov
loop (its conjugate) then the arbitrary correlation function
can be written down as [14]

Γ ¼ eμ
P

x
ðη̄ðxÞ−ηðxÞÞ

�Y
x

ρðxÞηðxÞþη̄ðxÞeiωðxÞðηðxÞ−η̄ðxÞÞ
�
: ð2Þ

The expectation value in the last expression refers to the
following partition function:

Z ¼
Y
x

Z
1

0

ρðxÞdρðxÞ
Z

2π

0

dωðxÞ
2π

×
Z

∞

−∞
duðxÞdtðxÞdsðxÞ eN2Seff : ð3Þ

Making the shift ω → ωþ iμ, one obtains for the effective
action

Seff ¼ β
X
x;n

ρðxÞρðxþ enÞ cosðωðxÞ − ωðxþ enÞÞ þ α
X
x

ρðxÞ cosωðxÞ

þ μ
X
x

uðxÞ þ
X
x

VðρðxÞ;ωðxÞ; uðxÞ; tðxÞ; sðxÞÞ;

Vðρ;ω; u; t; sÞ ¼ −iuωþ 3

2
juj − 1

2
ð1þ jujÞ2 lnð1þ jujÞ þ 1

2
u2 ln juj − 2iρs

þ juj lnðtþ isÞ − t2 − s2 −
X∞
k¼0

ðt2 þ s2Þkþ1CkðjujÞ: ð4Þ

The function CkðjujÞ is given in the Appendix. This
representation was derived in our previous paper [14]
with a general type of the gauge action. The phase diagram
of the model (3) with the action (4) was thoroughly
studied in [14]. It was found the model exhibits the phase
transition of third order on the surface z ¼ 0, where z is
defined as

z ¼ μ − ln

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

ð1 − βdÞ2

s 1
A

þ ln
α

1 − βd
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

ð1 − βdÞ2

s
: ð5Þ

In the region z > 0 the SUðNÞ partition function gets a
nontrivial dependence on the chemical potential. This can
be explained as follows. Because SUðNÞ reduces to UðNÞ
in the large-N limit, naively one would expect the same
happens for the partition functions of both theories.
Indeed, this is the case when the charge conjugation
symmetry is not broken and static quarks and antiquarks
have the same weights in the fermion determinant. When
nonzero baryon chemical potential is added, the charge
conjugation symmetry is broken, weights are different, and
this results in different answers for the partition functions
with UðNÞ and SUðNÞ groups. UðNÞ partition function
does not depend on μ (this is a consequence of the absence
of baryon states in this model) whereas SUðNÞ partition
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function depends on μ in a certain region of parameters
(quark masses and coupling constant). We proved this
explicitly in our paper [12].
In this paper we derive the large-N representation for

the arbitrary correlation function (2) and study two- and
N-point functions in details. It turns out that in the ’t
Hooft-Veneziano limit the correlation function reduces to
a product of the Polyakov loop expectation values.
Therefore, in order to get a nontrivial dependence of
the correlations on the distances between static quarks one
has to evaluate the first nontrivial correction to the ’t
Hooft-Veneziano limit. This can be done by an expansion
around the saddle-point large-N solution and performing
an integration over fluctuations.

The rest of the paper is organized as follows. In Sec. II
we calculate the general form of the correlation function
and study the behavior of the screening masses. Complex
masses appearing above the phase transition are described
in details. In Sec. III the N-point function related to baryon
potential is evaluated in the confinement phase of the pure
gauge theory. Section IV presents our summary.

II. CORRELATION FUNCTIONS
AND SCREENING MASSES

In this section we calculate various correlation functions
and corresponding screening masses in the large N limit.
As is well known, at nonzero chemical potential the
Polyakov loop correlations form a correlation matrix [17]

Γðx; yÞ ¼

0
BB@

D
1
N ReWðxÞ 1

N ReWðyÞ
E
c

D
1
N ReWðxÞ 1

N ImWðyÞ
E
cD

1
N ImWðxÞ 1

N ReWðyÞ
E
c

D
1
N ImWðxÞ 1

N ImWðyÞ
E
c

1
CCA ¼

�Γrr Γri

Γri Γii

�
; ð6Þ

where h…ic refers to a connected part of the correlation. To give the definition for Γrr, Γri, and Γii in terms of (2), we
introduce the following correlations:

Γqq ≡ ΓðηðxÞ ¼ 1; ηðyÞ ¼ 1Þ ¼
�
1

N
WðxÞ 1

N
WðyÞ

�
;

Γqq̄ ≡ ΓðηðxÞ ¼ 1; η̄ðyÞ ¼ 1Þ ¼
�
1

N
WðxÞ 1

N
W�ðyÞ

�

¼ Γðη̄ðxÞ ¼ 1; ηðyÞ ¼ 1Þ ¼
�
1

N
W�ðxÞ 1

N
WðyÞ

�
;

Γq̄ q̄ ≡ Γðη̄ðxÞ ¼ 1; η̄ðyÞ ¼ 1Þ ¼
�
1

N
W�ðxÞ 1

N
W�ðyÞ

�
;

M≡ Γðηð0Þ ¼ 1Þ ¼
�
1

N
Wð0Þ

�
; M� ≡ Γðη̄ð0Þ ¼ 1Þ ¼

�
1

N
W�ð0Þ

�
: ð7Þ

In (7) all sources η, η̄ apart from those explicitly mentioned
are assumed to be zero. Then, we can write

Γrr ¼
1

4
ðΓqq þ 2Γqq̄ þ Γq̄ q̄ − ðM þM�Þ2Þ;

Γii ¼ −
1

4
ðΓqq − 2Γqq̄ þ Γq̄ q̄ − ðM −M�Þ2Þ;

Γri ¼
1

4i
ðΓqq − Γq̄ q̄ −M2 þM�;2Þ: ð8Þ

When μ ¼ 0 the off-diagonal terms Γri vanish and the
coefficients in the exponential decay of diagonal terms
define the magnetic and electric screening masses

Γrr ≃
e−mMR

Rη ; Γii ≃
e−mER

Rη ; R ¼ jx − yj: ð9Þ

When μ > 0 the electric and magnetic sectors mix, so each
correlation matrix element is a sum of two terms—one
decaying with mM and the other with mE.
In the limitN → ∞ the model exhibits so-called “largeN

factorization” [24]. This means all correlations become
trivial in the sense they are reduced to the product of
averages of Polyakov loops. For example, the expectation
value of the Polyakov loop equals ρ0e�iω0 and the invariant
two-point correlation function is simply ρ20. Therefore, to
get a nontrivial dependence of correlation functions on the
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distances we need to take into account the fluctuations
around the large-N solution. In the limit N → ∞ all
integrals in (3) are evaluated by the saddle-point method
(see, [14] for details). In what follows we denote by ρ0, ω0,
u0, t0, s0 the corresponding saddle points. For the SUðNÞ
model the full analytic solution can be obtained near
the critical surface z ¼ 0. For completeness, we give
this solution in the Appendix. Performing the shift

ρðxÞ → ρ0 þ 1
N ρðxÞ and similar ones for other saddles,

we expand the full action around saddle points. The
leading contribution to the correlation function arises
from the Gaussian fluctuations. The Gaussian integrals
over u, t, s variables are factorized as can be seen from the
form of the effective action (4). Evaluating these Gaussian
integrals leads to the following representation for the
correlation function:

Γ ¼
Y
x

ρηðxÞþη̄ðxÞ
0 eðiω0−μÞðηðxÞ−η̄ðxÞÞ 1

Z

Z
∞

−∞

Y
x

dρðxÞdωðxÞ e
P

x
½− 1

ρ0N
ðηðxÞþη̄ðxÞÞρðxÞ− i

NðηðxÞ−η̄ðxÞÞωðxÞ�þSfluct ; ð10Þ

Sfluct ¼
X
x;n

	
βρðxÞρðxþ enÞ −

1

2
βρ20ðωðxÞ − ωðxþ enÞÞ2



þ
X
x

½a1ρ2ðxÞ − a3ω2ðxÞ þ ia2ρðxÞωðxÞ�; ð11Þ

where the coefficients ai are functions of saddle points (their explicit form is not important here). Two remaining
Gaussian integrals are less trivial but quite the standard ones. The final result of the integration is presented in Eqs. (13)–
(15) below. In those equations we use the following lattice Green’s function:

Gx;x0 ðmÞ ¼ 1

Ld

XL−1
kn¼0

e
2πi
L

P
d
n
knðxn−x0nÞ

mþ fðkÞ ; fðkÞ ¼ d −
Xd
n¼1

cos
2π

L
kn: ð12Þ

A. Correlation functions in SUðNÞ model

Evaluating the Gaussian integrals in the second line of (10) we arrive at the following general result when z > 0:

Γ ¼
Y
x

eðμ−iω0Þðη̄ðxÞ−ηðxÞÞρðηðxÞþη̄ðxÞÞ
0 exp

	
1

4N2βρ20

X
x;x0

ðA1ðx; x0Þ þ A2ðx; x0ÞÞ



ð13Þ

A1ðx; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p ðC1ηðxÞηðx0Þ þ C2η̄ðxÞη̄ðx0ÞÞðGx;x0 ðm−Þ − Gx;x0 ðmþÞÞ; ð14Þ

A2ðx; x0Þ ¼ 2ηðxÞη̄ðx0ÞðGx;x0 ðm−Þ þ Gx;x0 ðmþÞÞ: ð15Þ

The masses mþ and m− are given by

m� ¼ 1

2βρ20

�
C3 �

ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p �
; ð16Þ

where the constants Ci are defined as

C1;2 ¼ b2 þ ðdβ − b1Þρ20 � ib3ρ0;

C3 ¼ b2 − ðdβ − b1Þρ20: ð17Þ

This result means that in the general case the masses m�
can be complex. Coefficients bi are given in the Appendix,

Eqs. (A1)–(A3). This result allows one to compute any
observable above the critical surface z > 0 by choosing the
appropriate values of the sources ηðxÞ and η̄ðxÞ. The
expectation value of the Polyakov loop M ¼ hρðxÞeiωðxÞi
becomes

M ¼ ρ0eiω0 exp

	
C1

4N2βρ20
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p ðG0ðm−Þ −G0ðmþÞÞ


;

ð18Þ

where G0ðmÞ is the zero distance Green’s function. When
masses are real and m− ≤ mþ one obtains for the eigen-
values of the correlation matrix (6) in the limit of a large
separation R
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M1 ¼
MM�

2N2βρ20
GRðm−Þ; ð19Þ

M2 ¼

8>><
>>:

MM�
2N2βρ2

0

GRðmþÞ; if m− ≤ mþ ≤ 2m−;

MM�
2N2βρ2

0

�
GRðmþÞ þ 1

16N2βρ2
0

�
2 − C1þC2ffiffiffiffiffiffiffiffi

C1C2

p
�
G2

Rðm−Þ
�
; if mþ ≥ 2m−:

ð20Þ

When masses are complex, m− ¼ m�þ, the Green’s functions GRðm�Þ also become complex, GRðm−Þ ¼ GRðmþÞ�. The
correlation matrix eigenvalues can be described by (19) and the top line of (20). These formulas generalize the notion of the
magnetic and the electric masses: m� could be considered as μ ≠ 0 analog of the magnetic and electric masses mM, mE.
The leading linear terms in GRðm�Þ of the elements of the correlation matrix are found to be

Γrr ¼ D

	
ð

ffiffiffiffiffiffi
C1

p
M þ

ffiffiffiffiffiffi
C2

p
M�Þ2GRðm−Þ − ð

ffiffiffiffiffiffi
C1

p
M −

ffiffiffiffiffiffi
C2

p
M�Þ2GRðmþÞ



; ð21Þ

Γii ¼ D

	
ð

ffiffiffiffiffiffi
C1

p
M þ

ffiffiffiffiffiffi
C2

p
M�Þ2GRðmþÞ − ð

ffiffiffiffiffiffi
C1

p
M −

ffiffiffiffiffiffi
C2

p
M�Þ2GRðm−Þ



; ð22Þ

Γri ¼ −iD½ðC1M2 − C2M�;2ÞðGRðm−Þ −GRðmþÞÞ�; D ¼ 1

8N2βρ20
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p : ð23Þ

B. Phase diagram and complex masses

The general phase structure of the SUðNÞ model has
been described in [14]. Figure 1 shows cross sections of the
phase diagram for a fixed value of βd (left panel) and a
fixed value of α (left panel), d ¼ 3. These cross sections
reveal three regions of the phase diagram which can be
characterized by a different behavior of correlation func-
tions and screening masses.

Region I. Here, one finds a single mass equal to the mass
in the UðNÞ model for the same values of parameters. The
free energy and correlation functions do not depend on the
chemical potential. Crossing the transition line (blue line in
Fig. 1 along which C1 ¼ C2 ¼ 0) one enters the region III
which becomes more and more narrow with μ increasing.
Analytical expressions for the masses can be found in the
vicinity of this transition line using explicit formulas for

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

I

II

III

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

I II

III

FIG. 1. Cross sections of the phase diagram of the SU(N) model. Left: μ–α coordinates at fixed βd ¼ 0.1. Right: μ–βd coordinates at
fixed α ¼ 0.2. The blue curve shows the critical line of the third order phase transition. See text for details.
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coefficients bi and saddle points given in the Appendix.
One finds

m� ¼ 1

β
− d−

2

βð4þ ln z2

1− α2

ðβd−1Þ2
Þ∓

2

βð4þ ln z2

1− α2

ðβd−1Þ2
Þ þOðzÞ:

ð24Þ

Region II. Crossing the lower red line in Fig. 1 the
system moves to a phase, where a complex spectrum
emerges. Masses mþ and m− become conjugate to each
other: mþ ¼ m�

− ¼ mr þ imi. The connected part of the
two-point correlation is

Γ2ðRÞ≈MM�ðGRðmþÞþGRðm−ÞÞ∼
e−mrR

R
cosmiR; ð25Þ

i.e. it has an exponential decay modulated by the cosine
function.
For sufficiently small α and βd, the region mi > mr is

bounded from above by ρ ≈ 0.41. In this region the
boundary has very small dependence on other parameters.
A maximum of the ratio mi=mr is reached close to the
phase transition and becomes larger when α and βd
decrease. As a result, the smaller α and β are, the more
profound oscillations are observed. The corresponding
behavior of the two-point correlation function is reflected
in Fig. 2.
Region III. Separated from region II by a red line on

Fig. 1, region III has two distinct real masses and corre-
lations decay exponentially according to Eqs. (21)–(23).
The equation defining the red line reads C2 ¼ 0. This line
does not define a genuine phase transition, since the

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

1.2 1.4 1.6 1.8 2.0 2.20

50

100

150

200

1.8 2.0 2.2 2.4 2.6 2.8
0

50

100

150

200

2.6 2.8 3.0 3.2 3.4 3.60

50

100

150

200

250

FIG. 3. Real (red) and imaginary (blue) parts of the screening masses vs μ at fixed βd ¼ 0.1 and fixed α ¼ 0.7 (top left), α ¼ 0.2 (top
right), α ¼ 0.1 (bottom left), α ¼ 0.05 (bottom right). See text for details.

FIG. 2. Oscillating decay of the correlation function with a distance in region II of the phase diagram. Left: mi=mr ≈ 7, α ¼ 0.05,
βd ¼ 0.1, μ ¼ 2.595. Right: mi=mr ≈ 30, α ¼ 0.01, βd ¼ 0.1, μ ¼ 4.1935.
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partition function together with all its derivatives remains
analytical in the thermodynamic limit.
Finally, Fig. 3 shows the screening masses as a function

of μ for βd ¼ 0.1 and several values of α. Two real masses
above the third order phase transition can be only seen on
the top left panel (red line). When α is decreasing, region III
gets narrower and two masses become hardly distinguish-
able. Values of μ, where the imaginary part is not zero,
define region II of the phase diagram. A maximum of the
imaginary part is located close to the smallest μ value. In
the upper region III the imaginary part of the mass vanishes
and the real mass splits into two. The larger one has a sharp
increase, while the smaller one starts increasing when μ is
large enough.
The most important and interesting result of this study is

the demonstration that in a certain region of parameters—
coupling constant, quark mass, and chemical potential—
the spectrum of the theory is complex. The average value
of the Polyakov loop is not sensitive to complex masses, as
is seen from Eq. (18). Indeed, it is always real on the
saddle-point solutions. To reveal the mass spectrum of
the theory one has to study the long-distance correlation
functions. In the present case it is sufficient to study
the correlation functions of the Polyakov loops. In the
region where masses are complex, these correlations
exhibit exponential decay modulated by a cosine function.
Similar oscillating (also called liquid) phase was found
earlier in other models. This phase was shown to exist in
(1þ 1)-dimensional SU(3) LGT at finite chemical
potential [21]. Here, the model was studied in the static
approximation for the quark determinant and the spectrum
was calculated using the transfer matrix method.
Reference. [22] explored Zð3Þ Potts model in an external
complex field in one (via the transfer matrix) and three
dimensions (via the mean-field and MC simulations of the
dual theory). Here, the correlations of Zð3Þ spins exhibit the
oscillating behavior in a certain range of parameters. Finally,
the oscillating phase exists in all (1þ 1)-dimensional ZðNÞ
lattice gauge theories in a static approximation for the quark
determinant [23]. The common feature of all of these
models is the presence of the chemical potential which
makes the effective action complex. It is thus impossible to
simulate these actions via the conventional Monte Carlo
algorithms due to a severe sign problem. It is necessary to
use either analytical methods to study such systems or to
map the original theory with a complex action to a dual
theory with a positive Boltzmann weight. Both approaches
cannot be applied to a full QCD with dynamical fermions;
therefore, one should restrict to approximations like the one
used here. We think it is instructive to see the emergence of
the oscillating phase in the ’t Hooft-Veneziano limit. The
question whether this phase can be realized in the SUð3Þ
QCD remains open.

C. Two-point functions in UðNÞ model

UðNÞ models are easier to study due to a much simpler
saddle-points structure, u0 ¼ t0 ¼ ω0 ¼ 0. The depend-
ence on the chemical potentials drops out from the invariant
correlation functions. To analyze the correlations in the
UðNÞ model one uses Eqs. (13)–(15) together with the
following saddle-point solutions [14]:

s0 ¼−i
�
α

2
þ βdρ0

�
;

ρ0 ¼

8><
>:

α
2ð1−βdÞ ; αþ βd≤ 1;

1
4βd

�
2βd−αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2βdþαÞ2− 4βd

p �
; αþ βd≥ 1:

ð26Þ
In the pure gauge case, α ¼ 0, one observes a first order
confinement-deconfinement phase transition. The expect-
ation value of the Polyakov loop jumps from zero to 1=2 at
the critical point. When α is nonzero, the system undergoes
the third order phase transition. Accordingly, we describe
two-point correlations for these cases.
(1) α ¼ 0, confinement phase:

Γ2ðRÞ ¼ hWð0ÞW�ðRÞi ¼ 1

βN2
GRðm1Þ;

m1 ¼
1

β
− d: ð27Þ

(2) α ¼ 0, deconfinement phase:

Γ2ðRÞ ¼ ρ20 exp

	
1

2βρ20N
2
ðG0ðm2Þ þ GRðm2Þ

−G0ð0Þ þ GRð0ÞÞ


;

m2 ¼
1

β

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=βd

p �
−2

− d: ð28Þ

(3) α ≠ 0, confinement phase:

Γ2ðRÞ ¼ ρ20 exp

	
1

βρ20N
2
GRðm1Þ



: ð29Þ

(4) α ≠ 0, deconfinement phase:

Γ2ðRÞ ¼ ρ20 exp

	
1

2βρ20N
2
ðG0ðm3Þ þ GRðm3Þ

−G0ðm4Þ þ GRðm4ÞÞ


;

m3 ¼
1

4βð1 − ρ0Þ2
− d; m4 ¼

α

2βρ0
; ð30Þ

where ρ0 is given in the bottom line of (26).
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The dependence on the chemical potential drops out in the
UðNÞ model both from the free energy and from invariant
observables. Screening masses do not depend on μ.

III. N-POINT FUNCTION

In this section we briefly consider the N-point function.
In the pure gauge theory (α ¼ 0) in the confinement phase
such function is related to the potential between N static
quarks (baryon potential). In order to compute the N-point
function one should specify sources ηðxÞ and η̄ðxÞ in
Eq. (2). Let xðiÞ; i ¼ 1;…; N be positions of N static
quarks on a d-dimensional lattice. Then, one takes the
following values: ηðxðiÞÞ ¼ 1, ηðxÞ ¼ 0 if x ≠ xðiÞ and
η̄ðxÞ ¼ 0 for all x. In the confinement region the saddle-
point solutions equal that of the UðNÞ model, Eq. (26).
Expanding around these solutions, one finds after a long
but straightforward algebra

ΓNðσÞ ∼
X
x

YN
i¼1

Gx;xðiÞðσÞ; σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

β
ð1 − dβÞ

s
; ð31Þ

where the sum over x runs over all lattice sites and an
irrelevant constant factor is omitted. In the continuum limit
the Green’s function (12) takes the form

Gx;x0 ¼
const

R
d
2
−1

Kd
2
−1ðσRÞ; R2 ¼

Xd
n¼1

ðxn − x0nÞ2; ð32Þ

where KnðxÞ is the modified Bessel function of the second
kind. The summation over x can now be replaced by the
integration. The evaluation of ΓNðσÞ reduces to the well-
known geometric median problem: find a point y which
minimizes the expression

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
n¼1

ðyn − xnðiÞÞ2
vuut : ð33Þ

It follows that the N-quark potential takes the form of the
geometric median law

VNðσÞ ¼ − lnΓNðσÞ ∼ σ
XN
i¼1

jy − xðiÞj: ð34Þ

If N ¼ 3 this gives a Y law for the three-quark potential
V3ðσÞ ∼ σY. This result agrees with Ref. [26], where it
was shown via Monte Carlo simulations that the Y law
dominates the three-quark potential in the SUð3Þ Polyakov
loop model. σ is a string tension of the N-quark system. It
equals the quark–antiquark string tension. This elucidates
how an analog of the Y law appears in the large N limit.
In the full theory with α ≠ 0 we use again the general

result, Eqs. (13)–(15), to find for the N-point function

above the phase transition

ΓN ∼ e−μNMN exp
	

1

4N2βρ20

C1ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
X
i≠j

ðGxðiÞ;x0ðjÞðm−Þ

−GxðiÞ;x0ðjÞðmþÞÞ


: ð35Þ

This result leads to conclusions similar to those described
in Sec. II B. The most important one is that the connected
part of the N-point function exhibits the oscillating behav-
ior in the same region of parameters as the two-point
functions.

IV. SUMMARY

This paper continues the investigation of Polyakov loop
models at nonzero chemical potential in the ’t Hooft-
Veneziano limit. In [14] we have studied the general phase
structure of various such models. The present paper deals
with the correlation functions of the Polyakov loops and the
corresponding screening masses. Our main findings are the
following:

(i) Explicit formulas for the correlation functions and
screening masses of UðNÞ and SUðNÞ Polyakov
loop models with nonzero chemical potential have
been obtained in the ’t Hooft-Veneziano limit both in
the confinement and deconfinement phases.

(ii) In the deconfinement phase we established
the existence of the complex masses and an
oscillating decay of correlations in a certain region
of parameters.

(iii) The computation of the screening masses in different
regions demonstrates that at small α the ratio
mi=mr ≫ 1 reaches its maximum close to the critical
surface. In this region, one observes profound
oscillations of correlation functions with distance.

(iv) It was shown that the calculation of the N-point
correlation function reduces to the geometric median
problem in the confinement phase.

In a nutshell, the paper provides a deeper understanding
of the properties of the Polyakov loop models at finite
density in the large N limit. Formulas (19)–(23) were used
in the SUð3Þ Polyakov loop model considered in [19]. It
was found that these expressions are well suitable as a
fitting ansatz for analysis of MC data forN ¼ 3. It would be
important and interesting to extend the results of the present
paper to models with an exact static determinant and to
SUðNÞ models at other finite values of N. Such work is in
progress.
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APPENDIX

The functions b1, b2, b3 are given by

b1 ¼
2it
sΔ

	
4t4ðH2 þH4Þ þ 4H4s2t2 þ itsuðsþ itÞ2 þ ðs2 þ t2Þ2

�
H3 þ u2 ln

1þ u
u

�

þ 2it3

su
; ðA1Þ

b2 ¼
iu2

2Δ
½4stH2 − iuðsþ itÞ2� þ 1

2
αρ coshω; ðA2Þ

b3 ¼
2i ut
Δ

½4t2H2 þ 2ðs2 þ t2ÞH4 − uðsþ itÞ2� − α sin iω; ðA3Þ

Δ ¼ 4istðH2H3 −H2
4Þ þ u½ðsþ itÞ2H3 þ 4istH4 − 4t2ðH2 þH4Þ�

þ u2ð4istH2 þ uðsþ itÞ2Þ ln 1þ u
u

: ðA4Þ

The functions H2, H3, H4 are defined as derivatives of the function H1

H1 ¼
X∞
k¼0

r2kþ2CkðuÞ; H2 ¼ r2
∂
2H1

∂r2
; H3 ¼ u2

∂
2H1

∂u2
; H4 ¼ ru

∂H1

∂u∂r
; ðA5Þ

CkðuÞ ¼
X∞
m¼1

ð−4Þkð−uÞmΓðkþ m
2
þ 1ÞΓð2kþmÞ

ðkþ 1Þðkþ 1Þ!ð2kþ 1Þ!Γðm
2
þ 1ÞΓðmÞ ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p
: ðA6Þ

The saddle-point solutions near the critical surface z ∼ 0 read [14]

u0 ¼ y; t0 ¼
y
2ρ1

; s0 ¼ −i
�
α

2
þ βdρ1 þ βdρ2y

�
; ω0 ¼ −i

y
αρ1

;

ρ0 ¼ ρ1 þ ρ2y; ρ1 ¼
α

2ð1 − βdÞ ; ρ2 ¼
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ρ21

q
; y ¼ −

z
W−1ð−e−czÞ

; ðA7Þ

where W−1ðxÞ is a lower branch of the Lambert function and c—unessential constant.

[1] O. Philipsen, Proc. Sci., LATTICE2019 (2019) 273.
[2] E. Seiler, EPJ Web Conf. 175, 01019 (2018).
[3] C. Gattringer, Nucl. Phys. B850, 242 (2011).
[4] Y. D. Mercado and C. Gattringer, Nucl. Phys. B862, 737

(2012).
[5] M. Fromm, J. Langelage, S. Lottini, and O. Philipsen, J.

High Energy Phys. 01 (2012) 042.
[6] O. Borisenko, V. Chelnokov, and S. Voloshyn, EPJ Web

Conf. 175, 11021 (2018).
[7] O. Borisenko, V. Chelnokov, and S. Voloshyn, Phys. Rev. D

102, 014502 (2020).
[8] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).

[9] S. R. Wadia, Phys. Lett. 93B, 403 (1980).
[10] P. H. Damgaard and A. Patkós, Phys. Lett. 172B, 369

(1986).
[11] C. H. Christensen, Phys. Lett. B 714, 306 (2012).
[12] O. Borisenko, V. Chelnokov, and S. Voloshyn, Nucl. Phys.

B960, 115177 (2020).
[13] O. Borisenko, V. Chelnokov, and S. Voloshyn, Proc. Sci.

LATTICE2021 (2021) 453.
[14] O. Borisenko, V. Chelnokov, and S. Voloshyn, Phys. Rev. D

105, 014501 (2022).
[15] A. Bazavov and J. H. Weber, Prog. Part. Nucl. Phys. 116,

103823 (2021).

POLYAKOV LOOP MODELS IN THE LARGE N LIMIT: … PHYS. REV. D 109, 094503 (2024)

094503-9

https://doi.org/10.22323/1.363.0273
https://doi.org/10.1051/epjconf/201817501019
https://doi.org/10.1016/j.nuclphysb.2011.04.018
https://doi.org/10.1016/j.nuclphysb.2012.05.009
https://doi.org/10.1016/j.nuclphysb.2012.05.009
https://doi.org/10.1007/JHEP01(2012)042
https://doi.org/10.1007/JHEP01(2012)042
https://doi.org/10.1051/epjconf/201817511021
https://doi.org/10.1051/epjconf/201817511021
https://doi.org/10.1103/PhysRevD.102.014502
https://doi.org/10.1103/PhysRevD.102.014502
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1016/0370-2693(80)90353-6
https://doi.org/10.1016/0370-2693(86)90272-8
https://doi.org/10.1016/0370-2693(86)90272-8
https://doi.org/10.1016/j.physletb.2012.06.073
https://doi.org/10.1016/j.nuclphysb.2020.115177
https://doi.org/10.1016/j.nuclphysb.2020.115177
https://doi.org/10.22323/1.396.0453
https://doi.org/10.22323/1.396.0453
https://doi.org/10.1103/PhysRevD.105.014501
https://doi.org/10.1103/PhysRevD.105.014501
https://doi.org/10.1016/j.ppnp.2020.103823
https://doi.org/10.1016/j.ppnp.2020.103823


[16] J. Takahashi, K. Nagata, T. Saito, A. Nakamura, T. Sasaki,
H. Kouno, and M. Yahiro, Phys. Rev. D 88, 114504 (2013).

[17] M. Andreoli, C. Bonati, M. D’Elia, M. Mesiti, F. Negro, A.
Rucci, and F. Sanfilippo, Phys. Rev. D 97, 054515 (2018).

[18] O. Borisenko, V. Chelnokov, E. Mendicelli, and A. Papa,
Nucl. Phys. B965, 115332 (2021).

[19] O. Borisenko, V. Chelnokov, E. Mendicelli, and A. Papa,
Nucl. Phys. B998, 116424 (2024).

[20] P. N. Meisinger, M. C. Ogilvie, and T. D. Wiser, Int. J.
Theor. Phys. 50, 1042 (2011).

[21] H. Nishimura, M. Ogilvie, and K. Pangeni, Phys. Rev. D 93,
094501 (2016).

[22] O. Akerlund, P. de Forcrand, and T. Rindlisbacher, J. High
Energy Phys. 10 (2016) 055.

[23] O. Borisenko, V. Chelnokov, S. Voloshyn, and P. Yefanov,
Phys. Lett. B 827, 137000 (2022).

[24] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[25] G. Veneziano, Nucl. Phys. B117, 519 (1976).
[26] O. Borisenko, V. Chelnokov, E. Mendicelli, and A. Papa,

Nucl. Phys. B940, 214 (2019).

O. BORISENKO, V. CHELNOKOV, and S. VOLOSHYN PHYS. REV. D 109, 094503 (2024)

094503-10

https://doi.org/10.1103/PhysRevD.88.114504
https://doi.org/10.1103/PhysRevD.97.054515
https://doi.org/10.1016/j.nuclphysb.2021.115332
https://doi.org/10.1016/j.nuclphysb.2023.116424
https://doi.org/10.1007/s10773-010-0626-5
https://doi.org/10.1007/s10773-010-0626-5
https://doi.org/10.1103/PhysRevD.93.094501
https://doi.org/10.1103/PhysRevD.93.094501
https://doi.org/10.1007/JHEP10(2016)055
https://doi.org/10.1007/JHEP10(2016)055
https://doi.org/10.1016/j.physletb.2022.137000
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(76)90412-0
https://doi.org/10.1016/j.nuclphysb.2019.02.002

