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Continuous gauge theories, because of their bosonic degrees of freedom, have an infinite-dimensional
local Hilbert space. Encoding these degrees of freedom on qubit-based hardware demands some sort of
“qubitization” scheme, where one approximates the behavior of a theory while using only finitely many
degrees of freedom. We propose a novel qubitization strategy for gauge theories, called “fuzzy gauge
theory,” building on the success of the fuzzy σ-model in earlier work. We provide arguments that the fuzzy
gauge theory lies in the same universality class as regular gauge theory, in which case its use would obviate
the need of any further limit besides the usual spatial continuum limit. Furthermore, we demonstrate that
these models are relatively resource-efficient for quantum simulations.
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I. INTRODUCTION

There are many obstacles to the use of quantum com-
puters in quantum field theory calculations. Besides the
need for more reliable hardware than currently available,
there are a number of conceptual questions to be answered
before these calculations become feasible. This paper
addresses one of these obstacles: how to reduce the
infinite-dimensional Hilbert space of a bosonic field theory,
in particular a gauge theory, to a finite-dimensional Hilbert
space that “fits” onto a quantum computer with finite
registers.1

Before proceeding, let us emphasize the importance of
this direction and briefly contrast this approach to alter-
native numerical methods. The dimension of the Hilbert
space in a finite-dimensional field theory grows exponen-
tially with the volume (∼DV for local Hilbert space
dimension D); therefore, the direct diagonalization of the
time evolution operator by classical computers also has a

computational cost that grows exponentially with the
volume V. Monte Carlo methods are more efficient, with
a cost scaling roughly as ∼V, but they are limited to
problems that can be framed as an evolution in imaginary
time. This restriction leaves real-time evolution and finite-
chemical potential problems, among others, mostly out of
reach of Monte Carlo methods. The culprit of this limitation
is the famous sign problem that has resisted valiant attempts
to bypass it (see Refs. [2–8] for reviews in the context of
QCD simulations). The quantum simulation of the evolu-
tion can instead be performed directly in real time,
manipulating a number of qubits proportional to V (and
not exponential in V). Therein lies a possible (exponential)
quantum advantage over classical methods.
The first step of qubitization is the substitution of the

continuous, d-dimensional physical space by a lattice with
a finite lattice spacing a > 0 and finite extent L ¼ aN in
each direction. Space discretization is a well understood
topic, since it is a routine part of the lattice field theory
approach. Whether this discretization of spatial domain
alone suffices depends on the spin statistics of one’s theory.
For purely fermionic theories, the resulting Hilbert space is
already finite-dimensional, and so in principle it can readily
be encoded and simulated on a quantum computer.
However, for bosonic fields the occupation numbers at a
lattice site may be arbitrarily large; even the Hilbert space
of a bosonic theory defined on a single spatial site (or link)
is infinite-dimensional. Therefore, for bosons some trun-
cation of the field space is also required to render the local
Hilbert space finite. This reduction of the Hilbert space to a
finite-dimensional one is sometimes called “qubitization.”
Many methods to accomplish this truncation have been
proposed, which we briefly review below.
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1The application of tensor network methods also favors
theories with a finite-dimensional Hilbert space. See, for instance,
Ref. [1].
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Perhaps the most obvious approach for qubitization is
the substitution of the field space manifold by a finite
subset: For instance, the substitution of the sphere S2 in the
(1þ 1)-dimensional Oð3Þ σ-model by the vertices of a
platonic solid. The internal symmetries are reduced to a
finite group, and Monte Carlo studies have shown (after
substantial discussion in the literature) that these models
are not in the same universality class as the Oð3Þ σ-model
[9,10] although fairly large, but finite, correlation lengths
are achievable. In the (3þ 1)-dimensional SUð3Þ gauge
theory a similar phenomenon occurs. In Ref. [11], a gauge
theory based on the Sð1080Þ group, the largest (and
therefore finest) “crystal-like” discrete subgroup of
SUð3Þ was simulated. The result shows that this lattice
theory does not have a continuum limit although fairly
large correlation lengths can be achieved, corresponding to
a lattice spacing of the order of a ≈ 0.08 fm, small enough
to be of phenomenological use. The reason these trunca-
tions fail to have a continuum limit can be intuited by
considering the imaginary time path integral. Due to the
discretization of the field values, there is a gap between the
smallest and the next-to-smallest values of the action.
When the coupling becomes small all field configurations
except one are exponentially suppressed, resulting in the
“freezing” of the system. Nevertheless, there are many
ongoing efforts to work around this issue in the case of
SUð2Þ gauge theory, including different samplings from the
gauge group manifold [12,13] as well as studies of finite
subgroups [14–18], q-deformed groups [19], and different
encodings of physical degrees of freedom [20–26].
Another common approach to qubitization is to truncate

the one-site (or one-link) Hilbert space to some finite irrep
of the Laplacian on the target space of the theory [27–31].
For instance, in the Oð3Þ σ-model, where the fields take
value on a sphere S2, this strategy truncates the Hilbert
space of spherical harmonics up to some value l ≤ lmax of
the angular momentum. In an SUð2Þ gauge theory, on each
link one would truncate the basis of Wigner functionsDj

mm0

up to j ≤ jmax. Such a truncation preserves the gauge
symmetry of the theory, but it has serious drawbacks. First,
because such a basis diagonalizes a kinetic energy operator
and the truncation restricts to low irreps, one expects such a
truncation to effectively capture the physics of the original
theory only in a strong-coupling limit. In asymptotically
free theories, this limit coincides with a large lattice spacing
and therefore is not expected to be well-suited for studying
continuum physics. Second, as demonstrated in the case of
the σ-model, such a truncation can entirely fail to have a
continuum limit outright [32]. Last, as a practical consid-
eration: while such discretizations of field space can be
arbitrarily improved by increasing jmax, doing so comes at
the price of the number of qubits per register (i.e., site or
link) and the number of gates in the simulation circuit. In
fact, there is evidence that the number of gates required to
simulate the time evolution grows considerably with the

number of qubits per link/site [33]. This observation
suggests that there is a high cost in approaching the
continuum limit that most likely negates the potential
quantum advantage in such a framework.
We note that there have been alternatives to the trunca-

tion strategy described above to obtain a finite gauge
theory, wherein one searches for finite matrices satisfying
the exact quantum symmetry algebra [34] and constructs a
gauge-invariant Hamiltonian out of those matrices. For
example, the first such proposal was due to Horn in 1981
[35], who explored an SUð2Þ gauge theory with a five-
dimensional one-link Hilbert space. The extension to
higher gauge groups was considered, but then dismissed
due to the presence of a spurious Uð1Þ gauge symmetry.
Orland and Rohrlich [36] later proposed “gauge magnets”
as a family of finite SUð2Þ gauge theories, with its smallest
representation being of dimension four per link. In 1996,
the “quantum link” framework was introduced by
Chandrasekaran and Wiese [37], which could be formu-
lated for arbitrary SUðNÞ [38]. For SUð2Þ the smallest
representation was again four-dimensional, but this repre-
sentation had the spurious Uð1Þ problem, as Horn’s did; to
remedy this complication, they proposed carrying out
calculations with a six-dimensional representation for each
link.
Regardless of the discretization strategy, one ultimately

wants not only a finite-dimensional model with gauge
symmetry but also a model that reproduces the spectrum of
the desired continuum gauge theory in a critical limit. To
that end, we propose a framework for “fuzzifying” gauge
theory. It constitutes a generalization of the strategy we
employed in the fuzzy σ-model [32,39,40]. Although the
fuzzy approach2 is closer in spirit to the finite gauge theory
strategy, it is guided by analogies with the original theory in
the field space representation, entailing a different Hilbert
space from the models outlined above. And although
nonperturbative simulations of the theory are not yet
accessible, we will identify throughout the paper various
properties that the fuzzy model satisfies and we believe
must be satisfied by any qubitization of non-Abelian gauge
theories. For reference, these properties, together with our
degrees of confidence in them vis-à-vis the fuzzy model,
are summarized finally in the Conclusions (Sec. VI).
The bulk of this article is organized as follows. In Sec. II,

we briefly review the Hamiltonian formulation of untrun-
cated gauge theories on a lattice. In Sec. III, we describe the
properties of “fuzzy” qubitizations of lattice gauge theories
in general, and we consider an explicit realization in the
SUð2Þ case. Then, in Sec. IV, we explore the features of
fuzzy models that allow for a continuum limit, first in the

2We stress the difference between our approach, where the
target space of the theory is substituted by its fuzzy version, from
the extensively studied fuzzy field theories where spacetime
becomes a noncommuting space. See Ref. [41] for a review.
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simpler case of the fuzzy σ-model, and then in the case of
the fuzzy SUð2Þ gauge theory. Finally, in Sec. V, we
demonstrate the simulability of the fuzzy SUð2Þ proposal.

II. LATTICE GAUGE THEORY IN THE
HAMILTONIAN FORMALISM

The fuzzy gauge theory that we propose will be
formulated in the Hamiltonian language, convenient for
quantum computer implementations. As such, we begin by
reviewing some features of untruncated lattice gauge theory
in this language. This formalism has been well-understood
since Kogut and Susskind first described it [34], and so we
only briefly recapitulate it here to establish notation and
highlight a few points that will be pertinent later. Although
we will take the case of an SUðNÞ gauge theory, the
formulation readily generalizes to other compact groups.
We start with a d-dimensional spatial lattice (and

continuum time). The target space on each link is the
gauge group in consideration—here an SUðNÞ manifold
(see, e.g., Refs. [42,43] for N ¼ 2)—constituting the
bosonic degrees of freedom of the theory. The wave
function for a single link is a complex function of an
SUðNÞmatrixU, and furthermore the wave function for the
total system will be a function of all links, ψðU1; U2;…Þ,
describing both “physical” and “unphysical” states each to
be distinguished later. The wave function on a single link
may be expanded in an infinite Taylor series

ψðUÞ ¼ ψ0 þ ψ ijUij þ ψ̃ ijU�
ij þOðU2Þ; ð1Þ

with implied summation over repeated color indices
i; j ¼ 1;…; N. Notably, these states belong to an infin-
ite-dimensional Hilbert space, even if the spatial lattice has
a finite number of links.
A gauge transformation at a site x is defined by

multiplying all links connected to x by an element of
SUðNÞ, from either the left or the right (depending on the
orientation of the links). Thus, a one-link wave function ψ
transforms as

ψðUÞ ↦ LψðUÞ ¼ ψðL−1UÞ;
ψðUÞ ↦ RψðUÞ ¼ ψðURÞ; ð2Þ

depending on whether the link points away from (L) or into
(R) the site x. These operators can be written in terms of
infinitesimal generators, TL;R

a (a ¼ 1;…; N2 − 1), as

L ¼ e−iω
L
aTL

a ; R ¼ e−iω
R
aTR

a ; ð3Þ

where real coefficients ωL;R
a parametrize the group elements

L ¼ expð−iωL
aλa=2Þ; R ¼ expð−iωR

aλa=2Þ with 1
2
λa being

the generators of the fundamental representation of SUðNÞ.
On a single link, the generators are Hermitian, first-order
differential operators [44,45] satisfying

½TL
a ; TL

b � ¼ ifabcTL
c ; ð4Þ

½TR
a ; TR

b � ¼ ifabcTR
c ; ð5Þ

½TL
a ; TR

b � ¼ 0; ð6Þ

where fabc is the totally antisymmetric structure tensor
of SUðNÞ.
We define field operators Uij at every link by

UijψðUÞ ¼ UijψðUÞ; ð7Þ

which implies the commutation relations

½Uij;Ukl� ¼ ½Uij;U�
kl� ¼ 0: ð8Þ

Now, the links U are SUðNÞ matrices whose components
obey the relations

U�
jiUjk ¼ UijU�

kj ¼ δik; ð9Þ

detU ¼ 1: ð10Þ

The same relations are therefore satisfied by the field
operators Uij;U�

ij, and the ordering of the operators is
immaterial since Uij;U�

ij commute among themselves.
From the previous definition of gauge transformations,

one finds that the link operators transform as

R†L†UijLR ¼ Lii0Ui0j0 ðR−1Þj0j; ð11Þ

the infinitesimal versions of which satisfy

½TL
a ;Uij� ¼ −

1

2
ðλaÞii0Ui0j; ð12Þ

½TR
a ;Uij� ¼ þ 1

2
Uij0 ðλaÞj0j: ð13Þ

Finally, the physical Hilbert space of the theory is defined
as the gauge-invariant subspace of the total Hilbert space,
that is, the wave functions satisfying

e−iωaGaðxÞψphysðfUlgÞ ¼ ψphysðfUlgÞ; ð14Þ

GaðxÞ ¼
X
μ

½TL
a ðx; μÞ þ TR

a ðx − μ̂; μÞ� ð15Þ

for all x and a; here, μ runs over all spatial directions. The
infinitesimal condition GaðxÞψphysðfUlgÞ ¼ 0 is the quan-
tum version of Gauss’s law.
Using Eqs. (4) and (5) as well as (12) and (13), we may

confirm the gauge invariance of the Kogut-Susskind
Hamiltonian,
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aH ¼ g2

2

X
l

½TLðlÞ2 þ TRðlÞ2� − 1

2g2
X
P

□ðPÞ þ H:c:;

ð16Þ

where l ¼ ðx; μÞ label the links of the lattice and
P ¼ ðx; μ; νÞ label the plaquettes,

□ðPÞ ¼ Uijðl1ÞUjkðl2ÞUlkðl3Þ�Uilðl4Þ�: ð17Þ

Here, UðliÞ are the positively oriented links comprising a
plaquette P. We work in units of the lattice spacing, so that
g2 is dimensionless for any chosen spacetime. For d < 3,
the dimensionful bare coupling is ad−3g2, but the con-
tinuum limit is achieved by g2 → 0. Of course, many other
gauge-invariant terms may be added to Eq. (16), but such
modified Hamiltonians are believed to lead to the same
continuum limit as g2 → 0.3 Taking this limit is a nontrivial
process, which has been studied extensively. To summarize
that analysis, it is found that as g2 → 0, correlation lengths
ξ become exponentially larger than the lattice spacing
[ξ=a ∼ expð1=g2Þ] and the continuum limit is thus
achieved. Additional terms in the Hamiltonian, as long
as they do not break any symmetry, only change the rate at
which this same limit is approached, on account of the
universality of critical phenomena [47]. These additional
terms are sometimes used to achieve higher accuracy with
coarser lattices (i.e., the so-called Symanzik improvement
program [48,49]).
The ingredients we have presented, namely a Hilbert

space, a realization of gauge transformations on this space,
and consequently the structure of typical gauge-invariant
observables such as the Hamiltonian, are enough to define a
quantum gauge theory. Note that the commutativity of field
operators, as expressed in Eq. (8), did not play an essential
role in the (gauge) symmetry properties of the theory.

III. FUZZY LATTICE GAUGE THEORY

Our goal is to define a theory with a finite-dimensional
Hilbert space having the same continuum limit as that of the
SUðNÞ gauge theory defined in the previous section. To
this end, we borrow a strategy from the philosophy of
noncommutative geometry: at each link of the lattice, we
replace the Hilbert space of functions on SUðNÞ by a finite-
dimensional space of matrices, in which each matrix
element Uij is replaced by a D ×D matrix U ij for each
i; j ¼ 1;…; N, with D yet to be determined. If the U ij,
together with their conjugate-transposes ðU ijÞ† and prod-
ucts thereof, span the space of matrices, then states on this

“fuzzy SUðNÞ” will be expressible as a series, analogous to
Eq. (1),

Ψ ¼ Ψ01þ ΨijU ij þ Ψ̃ijðU ijÞ† þOðU 2Þ; ð18Þ

where the complex numbers Ψ̃ij are again not necessarily
related to Ψij. Because sufficiently high powers of these
finite matrices will not be linearly independent from lower
powers, the series must terminate at a finite order. The
Hilbert space on each link has the inner product hΨjΦi ≔
tr½Ψ†Φ� and dimension D2.
At a minimum, the finite theory should have the same

internal symmetries as the untruncated theory, according to
the standard universality arguments of the Wilsonian
renormalization group. In particular, we must find
D ×Dmatrices L andR that realize gauge transformations
via conjugation:

Ψ ↦ RLΨL†R†: ð19Þ

The generators of these transformations are given by

T L
a ¼ ½TL

a ; •�; T R
a ¼ ½TR

a ; •�; ð20Þ

where TL;R
a are D-dimensional representations of the 1

2
λa,

satisfying the algebra Eqs. (4)–(6). From this one can
readily check that T L;R

a also satisfy this same algebra. To
constitute a gauge symmetry, the operators T L;R

a and U ij

together must also satisfy analogs of Eqs. (12) and (13).
This property will be guaranteed as long as TL;R

a themselves
with U ij obey those equations, owing to the Leibniz rule
obeyed by commutators T L;R

a . Thus, for any matrices
U ij; T

L;R
a satisfying a D-dimensional representation of

the gauge symmetry algebra, the operators U ij; T
L;R
a will

satisfy an (adjoint) representation of that same algebra,

½T L
a ; T L

b � ¼ ifabcT L
c ; ð21Þ

½T R
a ; T R

b � ¼ ifabcT R
c ; ð22Þ

½T L
a ; T R

b � ¼ 0; ð23Þ

½T L
a ;U ij� ¼ −

1

2
ðλaÞii0U i0j; ð24Þ

½T R
a ;U ij� ¼ þ 1

2
U ij0 ðλaÞj0j; ð25Þ

when acting on the fuzzy Hilbert space. It follows, for
example, that the link matrices transform as

e−iω
R
aT R

a e−iω
L
aT L

aU ij ¼ RLU ijL†R†

¼ Lii0U i0j0 ðR−1Þj0j; ð26Þ

3To recover Lorentz invariance in the continuum limit, one
should multiply the operators in H by an appropriately deter-
mined renormalization constant ηðg2Þ [46], as also described in
Ref. [40].
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with L ¼ expð−iωL
aTL

a Þ and R defined analogously. From
these matrices, one may construct gauge-invariant operators
in the same way as in the untruncated gauge theory (i.e., by
contracting color and adjoint indices appropriately).
For lattice gauge theories or chiral models with target

space SUðNÞ, the “classical” elements Uij ∈C satisfy
special unitarity Eqs. (9) and (10) defining the SUðNÞ
manifold. In a fuzzy theory, one seeks matrices U ij which
satisfy analogs of these equations, though it is clear that the
noncommutativity of matrices implies that there may not be
a unique way to define the fuzzy manifold counterpart to
Eqs. (9) and (10). For example, a natural choice would be to
find matrices satisfying the set of N2 equations

1

2
fðU jiÞ†;U jkg ¼ δik1

or
1

2
fU ij; ðU kjÞ†g ¼ δik1; ð27Þ

where f•; •g is the anticommutator and we have regarded
ðU ijÞ† as the noncommutative counterpart to U�

ij. By using
the anticommutator, we have totally symmetrized the
products that occur in the classical manifold definition.
We also stress that the unitarity constraints themselves are
gauge-invariant, as one observes by applying the trans-
formation Eq. (26). One can furthermore seek operator-
valued manifold relations corresponding to the classical
determinant condition (up to a chosen symmetrization of
the products of U s),

1

N!
εi1���iNεj1���jNU i1j1 � � �U iNjN ¼ 1; ð28Þ

where ε is the Levi-Civita pseudotensor of rank N. (In
Appendix A, we describe a family of fuzzy models
satisfying a different kind of fuzzy unitarity.)
For the case of N ¼ 2, we can parametrize

U ij ¼ δijΓ0 − iðσaÞijΓa; ð29Þ

with Hermitian matrices Γ0 and Γa, a ¼ 1, 2, 3, analogous
to the real coefficients of Uij ¼ δijx0 − iðσaÞijxa. A series

of representations of U ij; T
L;R
a (or, alternatively,

Γ0;Γa; T
L;R
a ) were worked out in Ref. [36]. There it was

shown that the ten operators TL
a , TR

a , Γ0, and Γa can be
recognized as the ten generators of SO(5) and thus every
irrep of SO(5) defines a representation of Eqs. (4)–(6), (12),
and (13). Just as well, T L;R

a ;U ij are also then specified by
these irreps, by definition, as per Eqs. (20) and (29). For
instance, the four-dimensional (i.e., spinorial) representa-
tion of SO(5) leads to

Γ0 ¼
1

2

�
0 1

1 0

�
; Γa ¼

1

2

�
0 iσa

−iσa 0

�
;

TR
a ¼ 1

2

�
σa 0

0 0

�
; TL

a ¼ 1

2

�
0 0

0 σa

�
: ð30Þ

In this representation, fuzzy analogs of the special unitarity
constraints, Eqs. (27) and (28), are satisfied. The wave
function (of a single link) can then be expanded, for
example, as

Ψ ¼ Ψ01þ Ψ5Γ5 þ ΨαΓα þ iΨ5α½Γ5;Γα� þ iΨαβ½Γα;Γβ�;
ð31Þ

where Γ5 ¼ 8Γ1Γ2Γ3Γ0 and therefore has the form of
Eq. (18). This example forms a 16-dimensional Hilbert
space (per link), in contrast with the original, four-
dimensional (i.e., vector-valued) representation of the model
inRef. [36].Higher powers ofΓα are not linearly independent
from the lower ones, so the series terminates as promised.
We emphasize that, contrary to usual gauge theories, the

field operatorsU ij and ðU ijÞ† here do not commute among
themselves, and our Hilbert space is itself comprised by
finite-dimensional matrices. As remarked above, this prop-
erty has no bearing on the gauge symmetry of the theory.
Heuristically, it is as ifΨ could be viewed as a “function” of
noncommuting variables U ij in a way analogous to how
ψðUÞ is a function of the commuting variable Uij.
The construction thus far guarantees the usual gauge

symmetry but does not exclude the possibility of the theory
having a larger symmetry. In particular, past (finite)
Hamiltonian formulations of gauge theories, such as
Refs. [35,38], contain an extra Uð1Þ symmetry. In ordinary
SUðNÞ lattice gauge theory, the links U cannot be trans-
formed under Uð1Þ without carrying them out of the target
space SUðNÞ. However, in a finite gauge theory, the finite-
dimensional link operators are not SUðNÞ-valued, so it is
possible that there exist matrices that generate left and right
Uð1Þ transformations. This property would make the theory
possess an unintended Uð1Þ gauge symmetry. Such a
situation leads one to either break the extra Uð1Þ explicitly
in the Hamiltonian or otherwise devise a method to project
to the trivial irrep of Uð1Þ on each link. Nevertheless, one
can prove that in our case there do not exist matrices that
generate aUð1Þ gauge symmetry, in the sense that there are
no matrices TR;L

0 satisfying

e−iωT
R;L
0 U ije

iωTR;L
0 ¼ e∓iωU ij;

while commuting with the SUð2Þ generators.
Just as in the regular gauge theory, the gauge-invariant

physical states form a subspace of the total Hilbert space
defined by
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e−iωaGaðxÞΨphys ¼ Ψphys; ð32Þ

where

GaðxÞ ¼
Xd
μ¼1

ðT L
a ðx;μÞ þ T R

a ðx− μ̂;μÞÞ ¼ ½GaðxÞ; •�; ð33Þ

with GaðxÞ defined as in the ordinary theory, Eqs. (14) and
(15), with TL;R

a → TL;R
a . We remark that in a fuzzy gauge

theory, the statewith identity matrices on all links is always a
trivially gauge-invariant state. A family of gauge-invariant
states can be constructed from this trivial singlet by applying
invariant products of U s. In fact, any invariant state of the
untruncated theory can be directlymapped into a fuzzy state,
and therefore previous enumerations of the gauge-invariant
states of the full theorymay be of use [42,50]. However, only
a finite subset of such states will be linearly independent, due
to the closure of the matrix algebra. Furthermore, the fuzzy
gauge theory may have more gauge-invariant products of
field operators than those enumerated by the family above
(up to closure redundancy), due to the noncommutativity of
the U ijs.
The construction of possible Hamiltonian operators for a

fuzzy gauge theory proceeds by analogy with the Kogut-
Susskind Hamiltonian. The immediate choice is to take

aH ¼ ηg2

2

X
l

KðlÞ � η

2g2
X
P

□ðPÞ þ H:c:; ð34Þ

where □ is the plaquette term

□ðPÞ ¼ U ijðl1ÞU jkðl2ÞU lkðl3Þ†U ilðl4Þ†; ð35Þ

and K the kinetic term

K1 ¼ ðT LÞ2 þ ðT RÞ2 ¼ ½TL
a ; ½TL

a ; •�� þ ½TR
a ; ½TR

a ; •�� ð36Þ

on each link. Above, li indexes the links of an elementary
plaquette P on a lattice, and each link operatorU ij acts via
left multiplication, for reasons we explain in the next
section. The coupling g2 is taken to be dimensionless. If
the model has a critical point as g2 → 0, then we expect g2

to be closely related to the bare coupling of the original
theory. The multiplicative factor ηðg2Þ is included to allow
for the recovery of Lorentz covariance in the event that the
above Hamiltonian has a relativistic dispersion relation.
Other gauge-invariant terms can be added to the
Hamiltonian. For instance,

K2 ¼ −U ij • ðU ijÞ† − ðU ijÞ† •U ij; ð37Þ

K3 ¼ Γ5 ð38Þ

can be used as kinetic terms instead of (or in addition to)
K1.

4 Similarly, one can add terms involving the product of
U ij over Wilson loops larger than a single plaquette.
Nevertheless, the only thing that is required of the terms
included is that, in the continuum limit, they reproduce an
SUðNÞ gauge theory, and experience with regular lattice
gauge theories strongly suggests that the addition of larger
Wilson loops to the Hamiltonian does not change the
universality class of the theory. Still, the question of
whether the fuzzy theory (with one or more of the kinetic
terms above) reduces to regular gauge theory in the
continuum limit is a delicate question, to be discussed in
the next section.
Now that we have defined a Hamiltonian model as well

as our Hilbert space, we may also observe that our fuzzy
SUð2Þ gauge theory carries a certain global center Z2

symmetry [51].5 Let us define a center transformation by
ZS ¼

Q
l⊥SZðlÞ, where

ZðlÞ ¼ e−i2πT
L
a ðlÞ ¼ γ5ðlÞ • γ5ðlÞ; ð39Þ

acting via conjugation by γ5 only on the links intersecting
with an affine [i.e., (d − 1)-dimensional] hyperplane of the
spatial lattice. Two important identities of this operator
are ZSU ijðlÞZ†

S ¼ slU ijðlÞ, with sl ¼ −1 if l⊥S and

sl ¼ þ1 otherwise, and ZS commutes with all T L=R
a . From

the second identity, we conclude that the global center
symmetry transformation commutes with the local fuzzy
gauge transformations generated by the operators of
Eq. (33). From the first identity, we can see that an
elementary square plaquette is invariant under such trans-
formations, while a Wilson loop intersecting with this
hyperplane on a lattice with periodic boundary conditions
will flip sign. Meanwhile, the possible kinetic terms K1,
K2, andK3 are all invariant under the center transformation.
In summary, the Hamiltonian of our fuzzy SUð2Þ gauge
theory possesses a global center symmetry just as in the
untruncated theory.

IV. THE CONTINUUM LIMIT OF FUZZY
THEORIES

Whether the fuzzy gauge theory defined above is
equivalent to ordinary gauge theory in the continuum limit
is a dynamical question that, just as most dynamical
questions in non-Abelian gauge theories, is difficult to
settle. In order to gain some insights into this question, let
us first consider the fuzzy qubitization of the better-
understood (1þ 1)-dimensional Oð3Þ nonlinear σ-model,

4We remark that fuzzy unitarity, such as in Eq. (27), combined
with the demand of time-reversal invariance, implies that the
seemingly viable kinetic termK4 ¼ U ijðU ijÞ† þ ðU ijÞ†U ij ∝ 1
does not alter the dynamics of the theory.

5We thank Aleksey Cherman for asking insightful questions on
this point.
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and identify the salient features indicating the correct
universality class. We then discuss the corresponding
features in the fuzzy gauge theory.

A. σ-model

The lattice Oð3Þ σ-model can be defined as follows.
Consider a one-dimensional spatial lattice with N ¼ L=a
sites. The local Hilbert space defined at each site x is the
set of square-integrable complex functions of a three-
dimensional unit vector n: ψðnÞ. These states can be
expanded in an infinite series of the components ni
(i ¼ 1, 2, 3):

ψðnÞ ¼ ψ0 þ ψ ini þOðninjÞ: ð40Þ
The global Hilbert space of the theory is the tensor product
of all one-site Hilbert spaces. We define “position oper-
ators” nðxÞ at every site x as multiplication by n:
nðxÞψðfnðxÞgÞ ¼ nðxÞψðfnðxÞgÞ. A (global) Oð3Þ rota-
tion R is implemented on the wave function by the operator
R defined by RψðfnðxÞgÞ ¼ ψðfR−1nðxÞgÞ, which can
be written in terms of generating operators as
R ¼ expð−iωkT kÞ. In the “position space” representation,
Tk are differential operators on the sphere. The operators n
and T at one site satisfy the algebra:

½ni; nj� ¼ 0; ð41Þ

½T i; T j� ¼ iϵijkT k; ð42Þ

½T i;nj� ¼ iϵijknk; ð43Þ

while operators at distinct sites commute. Additionally,
since n are unit vectors, the operators obey the constraints

ðnðxÞ · nðxÞ − 1Þψ ¼ 0; ð44Þ
for all states ψ and every site x. A Hamiltonian invariant
under Oð3Þ is

aH ¼ ηg2
X
x

TðxÞ2 − η

g2
X
x

nðxÞ · nðxþ 1Þ: ð45Þ

The continuum limit is obtained as g2 → 0, where the
correlation lengths diverge (in units of the lattice spacing).
In order to recover Lorentz invariance, the parameter η,
which alters the energy levels but not the wave function or
correlation length ξ, has to be tuned so that the energy gap
equals 1=ξ. The continuum theory is solvable [52] and
describes a triplet of particles with mass M ¼ 1=ξ inter-
acting elastically with the phase shift of a δ-distribution
potential. There are two limiting energy scale regimes to
consider: E ≪ M ≪ 1=a (infrared) and M ≪ E ≪ 1=a
(ultraviolet).6 In the ultraviolet regime the theory is asymp-
totically free, similar to non-Abelian gauge theories.

As mentioned in Sec. I, one can try to qubitize this theory
by substituting the target space (the unit sphere S2) by a
finite set of points equally spaced over the sphere (i.e., the
vertices of Platonic solids). This approach lacks a con-
tinuum limit [9,10,53], although large finite correlation
lengths can be found. An analogous approach is taken in
Refs. [54,55] for SUð3Þ gauge theories and leads to similar
results. Another approach would be to restrict the local
Hilbert space at every site to functions that can be expanded
in terms of spherical harmonics up to some value l ≤ lmax:
ψðnÞ ¼ Plmax

l¼0 ψlmYlmðnÞ. In Ref. [56] evidence was
found that the σ-model is recovered in the limit
lmax → ∞, followed by the g2 → 0 limit. Taking the
continuum limit requires taking larger lmax truncations,
since it is known from Ref. [32] that at fixed lmax the theory
does not have a critical point.
The final σ-model regularization that we consider is the

fuzzy qubitization, whose gauge theory generalization we
have outlined in previous sections. This model was
proposed in Refs. [39,57] and further studied in
Refs. [31,32,40,58]. It exhibits a high degree of universality
which suggests that the continuum σ-model can be recov-
ered in an appropriate limit, even at finite regularization.
Here, we substitute the local Hilbert space of the

σ-model with a Hilbert space of dimension ð2jþ 1Þ2, where
j indexes irreps of SUð2Þ: j ¼ 0; 1

2
; 1;…. The elements of

every local Hilbert space are ð2jþ 1Þ × ð2jþ 1Þ matrices.
The (one-site) wave functions can be expanded as

Ψ ¼ ψ01þ ψkTk þOðT2Þ; ð46Þ

where Tk are the generators of the j irrep of SUð2Þ. In
contrast with the expansion inEq. (40), this series terminates.
Oð3Þ rotations act as

Ψ ↦ R†ΨR ¼ e−iωkT kΨ; ð47Þ

whereT k ¼ ½Tk; •�. Since theTk satisfy ½Ti; Tj� ¼ iϵijkTk, so
do T k. The analogs to the position operators are

nk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp Tk; ð48Þ

which act via left multiplication. Because n2 ¼ T2=
jðjþ 1Þ ¼ 1, all states in the Hilbert space satisfy
Eq. (44). Now, whereas ½ni; nj� ¼ 0, the ni do not commute:

½ni;nj� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp iϵijknk: ð49Þ

The Hamiltonian is

aH ¼ ηg2
X
x

T ðxÞ2 � η

g2
X
x

nðxÞ · nðxþ 1Þ; ð50Þ6The E ≳ 1=a regime is not universal and consequently is of
no interest.
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where the neighbor operator is chosen to act on states
from the left. The construction we have given is just the
well-known construction of the fuzzy sphere [59,60]. In the
limit j → ∞, the operator algebra of the fuzzy σ-model
reduces to that of the untruncated lattice σ-model, i.e.,
Eqs. (41)–(43).
A more relevant consideration is whether, at fixed j, the

fuzzy model has a continuum limit that matches the
continuum σ-model. We focus on j ¼ 1=2 in the following
discussion. To study this problem let us use the basis of
matrices Eab ¼ ea ⊗ eb, with

e1 ¼
�
1

0

�
; e2 ¼

�
0

1

�
; ð51Þ

and expand the (one-site) wave function in this basis:
Ψ ¼ ψabEab. The result of acting on a state with nk is

nkΨ ¼ 2ffiffiffi
3

p ðTkÞaa0ψa0bEab; ð52Þ

while the T k operator involves multiplication from the left
and from the right

T kΨ ¼ ½Tk;Ψ� ¼ ððTkÞaa0ψa0b − ψab0 ðTkÞb0bÞEab: ð53Þ

Meanwhile, since the neighbor operator V ¼ P
x nðxÞ ·

nðxþ 1Þ involves only left multiplication, its eigenstates
factorize as

Ψ ¼ ðψnÞa1���aNχb1���bNEa1b1 ⊗ � � � ⊗ EaNbN ≡ jni ⊗ jχi;
ð54Þ

where jni is an energy eigenstate of the spin-1=2
Heisenberg chain, while χb1���bN can be any 2N-dimensional
state. (Notably, this feature is not guaranteed if the neighbor
operator acts by a mixture of left and right multiplication.)
Thus, there is a ≥ 2N-degenerate family of eigenstates of
V for each n.
The factorization property of V can also be understood as

follows: each site x sees an “a” (“b”) spin acted on via left-
(right-)multiplication operations. Therefore, in this basis, the
one-dimensional j ¼ 1=2 fuzzy chain is seen to be equivalent
to the Heisenberg comb of Ref. [57], which consists of two
spins-1=2 at every site. Specifically, theneighbor operators in
V couple neighboring a spins, while the kinetic operator
T ðxÞ · T ðxÞ couples the a and b spins at each site, but no
coupling is set between neighboring b spins; this picture
yields a comb structure.Moreover, we shall see that this basis
is convenient for demonstrating and characterizing the
continuum limit of this fuzzy model, due to its ability to
build on existing knowledge of the Heisenberg chain.
The spectrum of the spin-1=2 Heisenberg chain is well-

known, so let us recall its relevant characteristics here for
studying the low-lying spectrum of H as g2 → 0. In the

ferromagnetic case [the “−” sign in Eq. (50)], the ground
state has spins pointing in the same direction. One-particle
states (magnons) have a quadratic dispersion relation
EðpÞ ∼ p2 (p ¼ 0; 2π=L;…). In the antiferromagnetic case
[the “þ” sign in Eq. (50)], the ground state is much more
complicated; the ground state is not formed simply by
alternate spins, but it can still be found by the Bethe ansatz
[61]. (For a more contemporary introduction, see, e.g.,
Refs. [62–64].) Assuming N is even, the ground state then
has zero total spin (s ¼ 0), and it has components in all
states of the computational basis with vanishing total
Sz ¼ 0. The excitations, in the case of half-integer spin,
are gapless [65] with a linear dispersion relation EðpÞ ∼ p
(spinons). Even-N lattices can have only integer-spin states,
and so the first excited states are spinon pairs with s ¼ 1.
As we will now argue, the features above strongly

suggest that the model has a critical point as g2 → 0.
First, since the kinetic term acts on both the left and the
right of each site, it breaks the degenerate eigenspace of V
associated with each jni, for any g2 > 0. In particular, in the
ground V-eigenspace (n ¼ 0) a gap exists between a singlet
ground state and a triplet of first excited states.
Consequently, for any finite lattice size, the gap must
vanish as g2 → 0, since the spectrum of aH in Eq. (50)
reduces to that of V=g2 in that limit. Moreover, the
degenerate spaces have dimension ≥ 2N, implying the
number of states merging together as g2 → 0 is exponential
in the volume, as desired of any field theory. In strictly
infinite volume, on the other hand, we cannot prove
gaplessness as g2 → 0. That the infinite-volume theory
indeed becomes gapless in the limit was demonstrated
numerically in Ref. [32] using the density matrix renorm-
alization group (DRMG) algorithm.7

Alone, the existence of a critical point argued above does
not guarantee that one obtains the asymptotically free
σ-model in the continuum limit. To that end, we can gain
more insight by studying the small g2 limit in perturbation
theory. Since the ground state of V is highly degenerate, we
adopt the effective Hamiltonian approach to degenerate
perturbation theory [66].
The first-order term aHð1Þ

eff is simply the kinetic operator
restricted to the ground subspace, fjΨαi ¼ j0i ⊗ jχαig
with α ¼ 1;…; 2N,

Kαβ ¼ ηg2hΨαj
X
x

T ðxÞ2jΨβi

¼ ηg2A1δαβ − ηg2A2

X
x;k

h0jTkðxÞj0i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

hχαjTkðxÞjχβi;

ð55Þ

7The neighbor term in the lmax truncation is gapped in any
finite volume and therefore does not have an exponentially
degenerate ground state. Together these facts may explain the
failure of that model to have a critical point [32].
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where we use the fact that T 2 ¼ ½Tk; ½Tk; •�� ¼ T2 •þ •
T2 − 2Tk • Tk and T2 ∝ 1, and A1;2 are constants. We can
see that the second term above must vanish because the
Heisenberg-chain ground state is rotationally invariant.

Since ðHð1Þ
eff Þαβ ¼ Kαβ ∝ δαβ, there is no first-order contri-

bution to the gapΔE ¼ E1 − E0 in the degenerate subspace
of j0i. Therefore, we expect the gap to scale as
aΔE ∼ ð1=g2ÞðAg4 þ Bg8 þ � � �Þ ∼ g6, with A ¼ 0.8 We
confirm this behavior numerically by exact diagonalization
of Eq. (50) in small volumes; see Fig. 1.
Although this perturbative expansion is valid in small

enough boxes, L ¼ aN ≪ 1=M, it breaks down in larger
volumes, L ¼ aN ≫ 1=M, due to an infrared divergence of
the B coefficient in aΔE. We have observed this behavior
numerically by directly computing B via exact diagonal-
ization up to N ¼ 18 (see Fig. 2), but we can also under-
stand it analytically. The second-order contribution to the
effective Hamiltonian in the ground subspace of V is
determined by the matrix9

aðHð2Þ
eff Þαβ ¼ hΨαjKP1½v0P1 − P1VP1�−1P1KjΨβi

¼ 2
X
m≥1

X
x;y

ηg6

vm − v0
h0jTiðxÞjmihmjTjðyÞj0i

× hχαjTiðxÞTjðyÞjχβi; ð56Þ

where P1 is a projector to the excited subspaces fjmi ⊗
jχi∶m ≥ 1g of V and v0; vm are the respective eigenvalues
of j0i; jmi. The m-sum includes the low-lying two-spinon
states with vm − v0 ∼ p (p ≈ 2π=L;…, at large L). Note
that the matrix elements h0jTiðxÞjmi do not vanish for
states jmi with total spin 1. Therefore, for large L, unless
those matrix elements vanish at small p, the sum over m
will diverge logarithmically:

aΔE ∼
Z

π=a

2π=L

dp
p

∼ lnðL=aÞ; ð57Þ

indicating the breakdown of perturbation theory in large
volumes.
The features described above, namely, the existence of a

critical point with an exponentially degenerate Hilbert
space, and the breakdown of perturbation theory at large
distances, are hallmarks of asymptotically free continuum
field theories.

B. Gauge theory

Much of the reasoning above carries over to the fuzzy
gauge theory, with a Hamiltonian given in Eq. (34). Again,
the potential (plaquette) operator acts only from the left on
fuzzy states, and the eigenstates factorize as before: jΨni ¼
jni ⊗ jχi with potential energy vn. Here the jni are
eigenstates of a plaquette operator acting on a four-
dimensional one-link Hilbert space (rather than 4 × 4
matrix states). In fact, this “reduced” plaquette operator
is just the simplest example of a “gauge magnet” as
proposed by Orland and Rohrlich in Ref. [36]. In a
spin-wave analysis, the pure-plaquette case of the gauge
magnet was argued to be gapless with a nonrelativistic
dispersion relation. However, since the eigenstates are
independent of the overall coupling of the plaquette term,
so is the correlation length (in lattice units). Therefore, the

FIG. 1. Comparison of the energy gaps in the fuzzy σ-model
with those of the lmax truncation strategy for lmax ¼ 1, 2. The
chain length isN ¼ 4 in each case. The inset displays the small-g2

behavior of the fuzzy gap on a log-log scale; the slope of the line
is 3.

FIG. 2. Behavior of the perturbative coefficient of g6 in aΔE for

the fuzzy σ-model, as determined by the gap inHð2Þ
eff , Eq. (56), for

chains up to size N ¼ 18. The blue curve is a fit to b1 þ b2 logN,
indicating a logarithmic divergence in infinite volume.

8Since ηðg2Þ converges to a positive constant as g2 → 0 [32],
we denote this limit simply as η, with any correction resulting in a
high-order function in g2 that we may safely neglect, if we are
only concerned with the lowest-order correction in g2.

9The perturbed eigenstates are found by choosing the un-
perturbed kets to be eigenstates of Hð2Þ

eff , instead of the leading
matrix K, in contrast to standard degenerate perturbation theory.
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coupling cannot be tuned such that ξ=a → ∞ (continuum
limit) while ξ → constant, as is necessary to reproduce the
physics of an asymptotically free gauge theory. An equiv-
alent argument is to point out that the usual mechanism of
“dimensional transmutation” can occur only if there is a
coupling constant to be tuned to alter the eigenstates.10

Due to the factorization property outlined above, each
eigenvalue vn of the fuzzy plaquette operator is at least 4N-
fold degenerate (for now, including unphysical states),
where N is the number of links. As we detail below, the
degeneracy of the ground state is lifted by a suitable choice
of kinetic term. In Fig. 3 we confirm this behavior by exact
diagonalization in a small volume, where also the gaps are
compared with the two simplest angular momentum jmax

truncations (described in Sec. I). As g2 → 0, the low-lying
states merge into the degenerate ground subspace of the

fuzzy plaquette operator, and the number of such states
grows exponentially with the volume, which strongly
suggests the existence of a critical point suitable for
continuum physics.
The choice of kinetic termsK1,K2, or some combination

thereof, is unclear. Both operators are positive-semidefinite,
as in the standard Kogut-Susskind Hamiltonian. While K1

resembles the kinetic term of the Kogut-Susskind
Hamiltonian, since it is the quadratic Casimir on the fuzzy
Hilbert space, it does not completely lift the degeneracy of
the ground state in the one-plaquette system; a twofold
degeneracy in the ground state subspace, not present in
continuum gauge theories, remains. Meanwhile, K2 does
completely lift this degeneracy, but it is not as directly
associated with the Casimir operator of the original gauge
theory. Only a deeper insight into the dynamics of fuzzy
gauge theories can settle which—if any—kinetic terms lead
to the proper continuum limit.
Furthermore, without a complete understanding of the

dynamics of the Orland-Rohrlich gauge magnet, we cannot
provide an analytic argument for the breakdown of per-
turbation theory with increasing volume, nor can the fuzzy
gauge theory be exactly diagonalized beyond the one-
plaquette system on current hardware. Still, we have
observed in the one-plaquette system that the leading order
term in the effective Hamiltonian of the degenerate ground
state subspace must scale as aΔE ∼ g14, as depicted in
Fig. 3, which corresponds to fourth-order perturbation
theory in g4. This high-order first nonvanishing correction
suggests impracticality and perhaps even lack of efficacy of
perturbation theory in studying this theory (i.e., if non-
perturbative in nature). Likewise, if the spin-wave analysis
of the Orland-Rohrlich model holds, where the gauge
magnet is predicted to be gapless, then it is possible for
the perturbative coefficients of the fuzzy gauge theory
to have infrared divergences in a manner similar to the
σ-model analysis of Sec. IVA.
Before we conclude our discussion, let us justify a subtle

problem of local gauge theories not present in the theories
with only global symmetries: ensuring the exponential
growth of the physical Hilbert subspace with volume.
We implicitly claimed earlier that the growth in the ground
state degeneracy survives the restriction to the physical
subspace; we argue for this point as follows. First note that
in the product basis, the all-left-multiplying plaquette
operator of our fuzzy SUð2Þ model is simply a tensor
product of the gauge magnet plaquette operator and an
identity operator of the same dimension, as remarked
earlier. Let jni be a gauge-invariant eigenstate of the
Orland-Rohrlich total plaquette operator with energy vn.
Then, the degenerate vn-eigenspace of the fuzzy plaquette
operator includes states that, in the Eab product basis, take
the form

jΨni ¼ jni ⊗ jχi; ð58Þ

FIG. 3. Energy gaps in the physical subspace of qubitized
SUð2Þ gauge theories for a single-plaquette system. We compare
the fuzzy model (with kinetic term K2) to the angular momentum
jmax truncation models discussed in the Introduction. In each
case, as g2 → 0, the behavior is dominated by the plaquette
operator □. For the jmax models the finite gap of □ yields a
diverging energy gap, while for the fuzzy model the degeneracy
of□ ensures gaplessness. The inset plots the fuzzy gap versus g2

on a log-log scale for small g2; a fit to a straight line is in gray,
with a slope of 7.

10The gauge magnet of Ref. [36] was proposed as a candidate
for a finite-dimensional model in the same universality class as
Yang-Mills gauge theory. This model allows for the inclusion of a
kinetic term which acts on each four-dimensional one-link
Hilbert space via multiplication with γ5. We have exactly
diagonalized this model in the one-plaquette (with open boun-
daries) and four-plaquette (with periodic boundaries) systems.
The behavior for small g2 is qualitatively similar to the jmax
qubitizations. Still, a gapless point at a nonzero g2 exists in the
four-plaquette system (though not in the one-plaquette system). It
is not clear if the number of degenerate states is exponential in the
volume, unlike the fuzzy model. In any case, this model warrants
further study by nonperturbative means. See also Ref. [67].
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where jχi is a 4N-dimensional state. The action of the
gauge generator GaðxÞ in the fuzzy theory acts on this
basis as

GaðxÞjΨni ¼ −jni ⊗ GaðxÞjχi; ð59Þ

since jni is gauge-invariant, GaðxÞjni ¼ 0; cf. Eq. (32).
Therefore, the physical fuzzy states with plaquette energy
vn include all states satisfying GaðxÞjχ i ¼ 0, and the set of
such states is the entire physical subspace of the Orland-
Rohrlich gauge magnet, with dimension DOR. We note that
there also exist physical states in the fuzzy model that
cannot be written as the tensor product of two invariant
gauge-magnet states. Thus the dimension Df of the
physical fuzzy Hilbert space satisfies Df ≥ ðDORÞ2, and
the dimensionDf0 of the physical fuzzy degenerate ground
subspace satisfies Df0 ≥ DOR.
It then follows that if the Orland-Rohrlich model has a

physical Hilbert space that is exponential in the volume,
then the (physical) degenerate ground state subspace of the
fuzzy plaquette operator will be exponentially large as well,
ensuring that the number of physical states which merge in
the g2 → 0 limit is exponential. We have verified numeri-
cally, by computing the nullity of

P
x;a GaðxÞ2, that the

Orland-Rohrlich model has two physical states in the
one-plaquette system and 50 physical states in the four-
plaquette system. More generally, based upon the diagram-
matic arguments of Ref. [67] (i.e., observing that there is at
least one extra degree of freedom per site in a diagram
representing a global physical state on the lattice), we
expect the physical Hilbert space in the fuzzy SUð2Þ gauge
theory to grow at least exponentially in the volume, for all
spatial dimensions d.

V. QUANTUM CIRCUITRY

In this section, we explain how we construct a quantum
circuit performing the Hamiltonian time evolution, working
explicitly with the case of SUð2Þ. To this end, we compute
the Hamiltonian in the computational basis given by single-
entry matrices, Eαβ (α; β ¼ 0;…; 3). If we flatten the
indices as αβ ↦ A with A ¼ 1;…; 16, then the operator
O represented in this computational basis has elements

½O�A;B ≔ tr½E†
AOEB�: ð60Þ

With a local Hilbert space dimension of 16 ¼ 24, we can
neatly encode these operators by their action on four qubits
jq1; q2; q3; q4i, where qi ¼ 0, 1 encode A − 1 in a binary
representation. We build the link operators out of gamma
matrices, which are given by

Γα ≐
1

2
γα ⊗ 14 ¼

1

2

0
BBB@

þXI

−YX
−YY
−YZ

1
CCCA ⊗ II ð61Þ

[cf. Eq. (30)] to compose the U as in Eq. (29), as well as

Γ5 ≐
1

2
γ5 ⊗ 14 ¼ −

1

2
ZIII: ð62Þ

The local operators relevant for the kinetic terms, Eqs. (36)
and (37), are given by

ðT LÞ2 þ ðT RÞ2 ≐ −IXIX þ IYIY − IZIZ − ZXZX

þ ZYZY − ZZZZ ð63Þ

and

−U ij •U
†
ij −U †

ij •U ij ≐ −XIXI þ YXYX − YYYY

þ YZYZ: ð64Þ

These are relatively easy to include in quantum simulations.
With these local operators encoded on qubits in hand, we

may straightforwardly construct quantum circuits to sim-
ulate the real-time evolution of the Hamiltonian of Eq. (34)
with K ¼ K2 of Eq. (37). For details elaborating how we
compile such circuits, please refer to Appendix B. In
summary, we find that 236 CNOT gates and 88 rotation
gates are involved in simulating both the kinetic and
potential terms of a Hamiltonian for an individual pla-
quette. In addition, we depict a classical simulation of the
quantum circuit for a one-plaquette system in Fig. 4.
[There, the initial state of Ψð0Þ ¼ 14⊗4=16 was prepared
with two CNOT gates and two Hadamard gates per link.]
The relatively low gate count in a circuit simulating one

plaquette may be surprising when compared with the
counts found in Ref. [33]: 180 and ∼16000 CNOT gates
demanded by the models of Orland and Rohrlich [36] and
Horn [35], respectively. In those cases, the operations on a
given link were four- and five-dimensional, respectively,
and gate costs were dominated by the number of Pauli
operators involved in the plaquette term of each model. We
also find that the large resource costs seen for the Horn
model are similar for the angular momentum jmax trunca-
tion strategy compared earlier. Moreover, one could see for
Hamiltonians approximating σ-models that gradually lift-
ing a truncation in angular momentum cutoffs would
necessitate more qubits to encode the models and con-
sequently involve much greater gate costs to simulate the
many new Pauli operators involved [32], so we expect this
trend to apply for the jmax truncation as well.
As a result, one might then be apprehensive that a model

encoding an individual link’s degrees of freedom on four
qubits instead of two or three would entail much greater
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complexity to simulate. However, note that the fuzzy link
operators as represented in Eq. (61) are proportional to
those of the Orland-Rohrlich model. Therefore, the cost in
quantum gates demanded to simulate our fuzzy plaquette of
Eq. (35) is exactly the same as for the plaquette acting on
only two-qubits per link. The only additional costs from our
proposed fuzzy gauge model come from the kinetic term in
Eq. (63), which is now somewhat more involved. While
Ref. [36] proposed a kinetic term proportional to γ5 on
each link, which can be simulated with a single rotation
gate, our one-link fuzzy kinetic terms involve a handful of
CNOT gates.

VI. CONCLUSIONS

In the above we have proposed a novel procedure to
render a bosonic gauge theory finite-dimensional. We hope
that this scheme is a helpful step in the ongoing effort to
develop scalable quantum computation methods that can be
applied to nuclear physics problems. In fact, it is likely that
such a schemewill be necessary, given that the removal of a
truncation, such as in the jmax truncation strategy, is
prohibitively expensive in a quantum circuit. As noted
before, the proposed Hamiltonian is relatively straightfor-
ward to simulate, allowing one to work in only the number
of spacetime dimensions required by the theory and

sidestepping the need for a truncation or other regulariza-
tion to be removed.
A central motivation for our work was the search for a

theory with a finite-dimensional Hilbert space (per volume)
and in the same universality class as non-Abelian gauge
theories. We proposed a theory that exhibits several features
(listed below) that are plausibly necessary toward that end.
Unfortunately, a nonperturbative numerical calculation
providing clear evidence for the correct continuum limit
has not yet been possible. Preliminary attempts to simulate
the Hamiltonian of the fuzzy gauge theory via Monte Carlo
suggest, as in many truncated theories, the presence of a
severe sign problem. In the simpler case of the (1þ 1)-
dimensional qubitized σ-model, tensor network methods
[32,40] and Monte Carlo methods specific to 1þ 1

dimensions [57,58] were used to provide such evidence.
Neither method is available for (3þ 1)-dimensional gauge
theories, though tensor network methods may be feasible in
2þ 1 dimensions. Alternatively, if a renormalization group
argument valid at weak coupling could be devised, it would
shed light on this question; we are actively pursuing such a
strategy.
An appealing aspect of the fuzzy strategy—for both

σ-models and gauge theories—is the formal similarity with
the corresponding original lattice theories; in particular,
states of the fuzzy models can be thought of as “functions”
of the noncommutative U ij, the symmetry generators
satisfy the Leibniz rule on any state, and the U ij satisfy
an analog of the classical special-unitarity constraints.
Moreover, we have identified throughout the paper various
concrete properties that we expect any qubitization of non-
Abelian gauge theory should satisfy. Namely, the qubitiza-
tion should possess
(A) the same gauge symmetry as the original theory

[i.e., SUðNÞ],
(B) the same global symmetries as the original theory

(i.e., center ZN symmetry),
(C) a critical point at fixed, finite local Hilbert space

dimension,
(D) the desired spacetime symmetry (i.e., Lorentz

covariance) in the critical limit,
(E) a gauge-invariant Hilbert subspace that grows ex-

ponentially with the volume,
(F) a nonperturbative mass gap consistent with asymp-

totic freedom, and
(G) a small local Hilbert space, for easy qubit-embedding.

The conventional wisdom is that merely possessing the
right symmetries, (A) and (B), would suffice to place a
model in the correct universality class. However, a lesson of
searches for qubitizations of the σ-model is that more
properties are required [32], as emphasized by the list
above. We emphasize that the list above is not necessarily a
minimally redundant list; for example, it is possible that
conditions (A)–(D) provide the only necessary criteria.
However, in the absence of complete knowledge of the

FIG. 4. Expectation value of the plaquette operatorO ¼ □ with
respect to the evolved state jΨðtÞi ¼ expð−itHÞjΨð0Þi, choosing
a gauge-invariant initial state Ψð0Þ ≐ 14⊗4=16 and kinetic term
K2 and g2 ¼ 1 for example. The solid line is obtained by
numerically calculating ΨðtÞ. The data points shown are obtained
by repeatedly applying the quantum circuit of Q ≈ expð−iδHÞ,
constructed as described in Appendix B and using the prescrip-
tion in Ref. [33]. Uncertainty bars on each data point show the
shot noise of 4000 measurements at each time value. Time steps
of size δ ¼ 0.04a were taken. Additionally, the state at each time
ΨðtÞ was prepared by applying t=δ iterations of Q to Ψð0Þ,
independently of the results of Ψðt − δÞ, leaving measurements at
different times uncorrelated.
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dynamics of our theory, we include possibly redundant
criteria to serve as indicators that the model is on track.
Let us now collect what evidence we have produced for

these conditions in fuzzy gauge theory. By its definition in
Sec. III, the fuzzy gauge theory satisfies condition (A), and
we demonstrated that it also satisfies (B). In Sec. IV, we
first reviewed how the fuzzy σ-model satisfies conditions
analogous to (A), (B), and (E) before providing new
evidence in favor of conditions (C) and (F); while these
properties were not completely proven here, they were
previously demonstrated nonperturbatively using DMRG
[32,40]. We then showed evidence that conditions (C),
(E)–(G) are again satisfied by the fuzzy gauge theory, but
we cannot produce as much evidence for condition (F) in
fuzzy gauge theory as in the fuzzy σ-model. We cannot yet
assert condition (D) with any confidence. Condition (G),
though not strictly necessary, is highly desirable for
efficient simulation, and we have demonstrated the rea-
sonable circuit depth of the fuzzy qubitization in Sec. V.
Over the decades much effort has been put into under-

standing gauge dynamics from the Hamiltonian point of
view, starting with Ref. [34] in the 1970s. It is possible that
a fuzzy gauge theory, by virtue of its simplicity, while still
conjectured to be equivalent to continuum gauge theory,
might be used to advance this program. Historically, many-
body physics had several breakthroughs based on wave
function ansätze, but the same has not yet occurred in field
theory (see, for instance, Refs. [45,68–72] for work in this
direction). Perhaps the fuzzy approach that we have
explored here will help in this effort.
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APPENDIX A: A GENERALIZATION
TO UðNÞ GAUGE GROUPS

As mentioned in Sec. III, one can come up with explicit
matrices to satisfy fuzzy unitarity constraints. Here, we
provide an example of these matrices here for a generali-
zation to UðNÞ and discuss obstacles to efficiently reduce
the theory to avoid a potentially undesired extra Uð1Þ
gauge symmetry in this example.

For the case of fuzzy unitary matrices for large gauge
groups, we propose a subtly different parametrization
of matrices in UðNÞ ∋ U ¼ x01N þ xaλa, where a ¼
1;…; N2 − 1 and λa are generalized Gell-Mann matrices.
In this case, we allow ðx0; xaÞ∈CN2

, as the complex span
of 1N and λa includes all unitary matrices. Correspondingly,
the operators to which we will promote these parameters
are not necessarily Hermitian.
Based upon a complex parametrization of the UðNÞ

manifold, we could propose new operator-valued param-
eters form a link operator

U ij ¼ δijX0 þ ðλaÞijXa: ðA1Þ
Given this parametrization of U , one can show that a
slightly different operator constraint for fuzzy unitarity,11

1

2
fU ;U †gij ¼ δij1; ðA2Þ

is equivalent to N2 constraints

NfX0; X
†
0g þ 2fXa; X

†
ag ¼ 2N1; ðA3Þ

fXa;X
†
0gþfX0;X

†
agþhabcðXbX

†
cþX†

bXcÞ¼ 0; ðA4Þ
where habc ¼ dabc þ ifabc with totally symmetric and
antisymmetric structure constants d and f, respectively.
One finds that the above equations are satisfied by

X0 ¼
1

r0
σþ ⊗ 1N; ðA5Þ

Xa ¼
1

ra
σþ ⊗ λa; ðA6Þ

where σþ ¼ ðσx þ iσyÞ=2, r20 ¼ N2=2, and ra ¼ ð2=NÞr0.
Fascinatingly, one can then see for the matrix elements of
U that

U ij ¼
ffiffiffi
2

p
σþ ⊗ Eji; ðA7Þ

using the Fierz identity of SUðNÞ for λa ⊗ λa. Here, we
have defined the single entry matrix Eij ¼ eie⊤j (with unit
vectors ei). In other words, these U matrices are actually
similar to those proposed in Ref. [38], albeit with different
normalization and intended here for action on a matrix-
valued Hilbert space.12

Moreover, we demand that these new link operators U
behave as expected under gauge group transformations.

11Notably, this constraint is not gauge-invariant for N ≥ 2.
That is, non-Abelian gauge transformations of matrices satisfying
these anticommutation relations do not result in more fuzzy
unitary matrices. Nevertheless, gauge-invariant states and Ham-
iltonian operators can be constructed from these matrices.

12We note that our use of the quantum link matrices does not
involve an appeal to dimensional reduction, and as such will be
formulated directly in the space dimension of interest.
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Technically speaking, we find that the Kogut-Susskind
relations of U ij of Eqs. (12) and (13) are equivalently

½TR=L
A ; X0� ¼ � 1

N
Xa; ðA8Þ

½TR
a ; Xb� ¼ þ 1

2
δabX0 þ

1

2
habcXc; ðA9Þ

½TL
a ; Xb� ¼ −

1

2
δabX0 −

1

2
h�abcXc: ðA10Þ

With the natural choice of TR=L
a ¼ ð1� σzÞ ⊗ λa=4 (just as

we did in Sec. III), we find that all of the above
commutation relations are indeed satisfied.
Finally, let us point out that these X operators are

nilpotent with degree 2, meaning XX0 ¼ 0 and so U
inherits this nilpotence. Nonetheless, importantly, X†X0

and XX0† are nontrivial, indicating U ijðU klÞ† and
ðU ijÞ†U kl ≠ 0, and the link operators’ products with

generators TR=L
a are also nontrivial. Still, this property does

mean that most generalizations of the determinant for
matrices over noncommutative rings still result in
detU ¼ 0. While one might desire an operator
detU ¼ 1 for a “fuzzy” SUðNÞ theory, we note that this
difference does not necessarily preclude a prediction of an
SUðNÞ theory by this model if one can still decouple a
possible extra Uð1Þ symmetry lingering in the formulation,
as we shall describe below. Additionally, there may be
benefits to this nilpotence; certain extra gauge-invariant
operators that may complicate the Hamiltonian of this
model are trivialized in this way. For example, consider for
N ¼ 2 the operator on two adjacent links

O ¼ εilεknU ijð1ÞU jkð2ÞU lmð1ÞU mnð2Þ ðA11Þ
with ε ¼ iσy, which is gauge-invariant as long as the
Kogut-Susskind relations are satisfied (otherwise regard-
less of one’s choice of promoting U ↦ U ), and yet
U ijðlÞU lmðlÞ ¼ 0 for either l ¼ 1, 2. As such, this
nilpotence property may help keep the form of our
Hamiltonian particularly simple, involving our usual
plaquette term and few other options for kinetic terms.
In this distinct proposal for matrices U , there do exist

generators of Uð1Þ gauge transformations: TR=L
0 ¼

ð1� σ3Þ ⊗ 1N . In this case, there are multiple strategies
for dealing with the additional symmetry. The first is to
explicitly break the Uð1Þ symmetry by adding to the
Hamiltonian a noninvariant term. The simplest option would
be a generalized determinant εikU ijU klεjl; however, this
operator vanishes in the fundamental rep of SUð2NÞ.
Reference [38] suggests working with larger reps of
SUð2NÞ, in which the determinant is nontrivial, but doing
so here increases the fuzzy Hilbert space dimension; for
N ¼ 2, it would be 36-dimensional. Alternatively, one could
implement a Uð1Þ projector on each one-link Hilbert space.

APPENDIX B: COMPILING QUANTUM
CIRCUITS FOR A FUZZY

GAUGE THEORY

In this section, we detail the methods used to compile the
quantum circuits for which we present simulation results in
Sec. V. As a broad outline: We first trotterize our time
evolution operator into a sequence of operators, each of
which we may diagonalize relatively efficiently. To com-
plete the compilation procedure, we use methods pre-
scribed in an earlier article [33] to determine circuits
that perform the appropriate multiqubit rotations to simu-
late the diagonalized unitary operators produced by the
earlier step.
As is common in procedures for quantum compilation of

unitary circuits expð−iHtÞ and as per the approach
of Ref. [33], we choose to expand the Hamiltonian H of
Eq. (34) in the Pauli operator basis,

H ¼
X
j

cjPj; ðB1Þ

where Pj ∈ fI; X; Y; Zg⊗n (a tensor product of n Pauli
matrices), n is the number of qubits chosen to represent the
system on a quantum computer, and cj ¼ tr½PjH�=2n.
Moreover, as in Ref. [33], we perform a trotterization by
collecting commuting Pauli operators. That is, we write

H ¼
Xk
j¼1

hj; ðB2Þ

where Pauli operators comprising a given hj commute with
one another. As in Refs. [33,73,74], collecting these
commuting Pauli operators can be reduced to the well-
known graph coloring problem.
In the case of a single plaquette system, we use n ¼ 16,

and decomposing its Hamiltonian in this fashion yields 88
Pauli operators with nonzero coefficients, excluding the
identity. Moreover, we use the DSATUR algorithm of
Ref. [75] to obtain k ¼ 5 commuting clusters of Pauli
operators. Now, having reduced our problem to the sim-
ulation of commuting clusters fhjg, we turn our attention to
how to compile a circuit for any one such Hamiltonian hj.
Since Pauli operators comprising a cluster hj commute

with each other, they can be exactly diagonalized simulta-
neously. Moreover, such a diagonalization can be per-
formed with Oðn2Þ CNOT gates [73,76]. In particular, let
Vj be an unitary transformation diagonalizing hj. We
obtain Vj via the method developed in Ref. [77], which
guarantees shallow circuits with depths Oðn log2 rÞ where
r ≤ n is the number of independent generators of the
commuting cluster. As an upshot, we can then reduce
Dj ¼ VjhjV

†
j , and so overall
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e−iHδt ≈
Y
j

e−ihjδt ¼
Y
j

V†
je

−iDjδtVj: ðB3Þ

Finally, we can employ the “tree algorithm” of Ref. [33] to implement an exact circuit for e−iDjδt using relatively few two-
qubit gates. Namely, we demand only 236 CNOT gates here for fuzzy gauge theory, as opposed to ∼17000 CNOT gates
entailed by simulating Horn’s model of SUð2Þ gauge theory [35] for example.
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