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We present a simple holographic QCD model that provides a unified description of vector mesons and
nucleons in a confining background based on Einstein-dilaton gravity. For the confining background, we
consider analytical solutions of the Einstein-dilaton equations where the dilaton is a quadratic function of
the radial coordinate far from the boundary. We build actions for the 5D gauge field and the 5D Dirac field
dual to the 4D flavor current and the 4D nucleon interpolator, respectively. In order to obtain asymptotically
linear Regge trajectories, we impose for each sector the condition that the effective Schrödinger equation
has a potential that grows quadratically in the radial coordinate far from the boundary. For the vector
mesons, we show that this condition is automatically satisfied by a 5D Yang-Mills action minimally
coupled to the metric and the dilaton. For the nucleons, we find that the mass term of the 5D Dirac action
needs to be generalized to include couplings to the metric and the dilaton. Using Sturm-Liouville theory, we
obtain a spectral decomposition for the hadronic correlators consistent with large Nc QCD. Our setup
contains only three parameters: the mass scale associated with confinement, the 5D gauge coupling, and the
5D Dirac coupling. The last two are completely fixed by matching the correlators at high energies to
perturbative QCD. We calculate masses and decay constants and compare our results against available
experimental data. Our model can be thought of as a consistent embedding of soft wall models in Einstein-
dilaton gravity.
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I. INTRODUCTION

The origin of hadron masses and its relation to confine-
ment is one of the challenging problems in quantum
chromodynamics (QCD) due to the necessity of non-
perturbative techniques. An important mechanism for mass
generation in QCD is related to the spontaneous breaking of
chiral symmetry; see, for example, [1]. The order parameter
of spontaneous chiral symmetry breaking is the quark
condensate defined as the VEV (vacuum expectation value)
of the quark mass operator, i.e., hq̄qi. Another important
quantity associated with mass generation, confinement, and
the QCD vacuum is the so-called gluon condensate defined
as the VEV of the Yang-Mills operator, i.e., hTrF2i. The
gluon and quark condensates are both related to the QCD
trace anomaly and the vacuum energy density of QCD; see,
for instance, [2].

Several approaches have emerged in an attempt to
describe QCD in the nonperturbative regime, such as the
Nambu-Jona-Lasinio model [3,4], the linear sigma model
[5], chiral perturbation theory (for a review, see [6]), lattice
QCD [7], and QCD sum rules [8] (for a review, see [9]).
The Nambu-Jona-Lasinio and the linear sigma models
describe spontaneous chiral symmetry breaking, generating
a mass scale. Chiral perturbation theory is a systematic
approach that exploits the approximate chiral symmetry of
QCD at low energies and allows describing some hadronic
properties. Lattice QCD is a numerical approach based on
the discretization of spacetime, enabling the calculation of
correlation functions of QCD operators through numerical
simulations on a lattice. This approach allows for the
investigation of nonperturbative properties of hadrons,
such as masses. Lastly, the QCD sum rules approach
considers correlation functions of composite operators built
from quark fields and then uses operator product expan-
sions (OPE) and spectral functions to estimate hadronic
properties such as masses and decay constants. The
composite operators are usually known as interpolating
fields (this terminology is also used in lattice QCD).
The AdS/CFT correspondence is an alternative approach

for investigating QCD in the strong coupling regime. This
conjecture establishes a duality between string theories on
AdSdþ1 ×M (AdS is anti–de Sitter spacetime and M is a
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compact space) and conformal field theories (CFT) in d
dimensions [10–12]. In this work, we will restrict ourselves
to the particular example of the duality that relates IIB
string theory on AdS5 × S5 to the N ¼ 4 super Yang-Mills
theory in four dimensions. After the conjecture was
proposed, some models emerged that became known as
AdS/QCD, which aim to capture low-energy aspects of
QCD by breaking the conformal symmetry. These models
incorporate QCD properties such as confinement and chiral
symmetry breaking.
There are two main approaches in AdS/QCD: the

bottom-up and top-down. The bottom-up approach aims
to capture QCD properties mapping the deformation of the
CFT4 to deformations of the AdS5 space. In this approach,
a minimal set of 5D fields is introduced to describe the
dynamics of 4D operators similar to those appearing in
real QCD. The actions are usually minimal models for
the 5D fields that reproduce the symmetries of the dual
4D operators. Examples of models within this approach
include the hard wall model [13–16], the soft wall
model [17], and the Einstein-dilaton models [18–23]. In
the hard wall model, specific boundary conditions are
imposed on the AdS space, while the soft wall model
introduces a scalar field, known as the dilaton, in the action.
The Einstein-dilaton model, distinct from the other two, is
consistent with Einstein’s equations and allows for a
description of a nontrivial vacuum in the 4d dual theory.
A more rigorous approach in AdS/QCD is the top-down
approach, which aligns with string theory principles and
introduces the breaking of conformal symmetry and super-
symmetry through a setup of D-branes. Models within this
approach include the D3/D7 model [24] and the D4/D8
model [11,25].
An important test for AdS/QCD is the description of

hadronic masses and decay constants and its relation to
confinement. In this work, we will focus on the description
of light vector mesons and nucleons using the bottom-up
approach. Light vector mesons have been investigated
previously in the bottom-approach using hard wall models
[15,26], soft wall models [17,27], and metric deformations
in AdS [28–30] considering a 5DYang-Mills action. There
has also been some progress on the description of light
vector mesons in holographic models inspired by string
theory [19,31,32] and models based on Einstein-dilaton
gravity [33,34]. Nucleons have been investigated previ-
ously in holographic QCD following two approaches. In
the first approach, one builds a 5D Dirac action for the 5D
Dirac field dual to a 4D nucleon interpolator; see [35,36]
for the hard wall model, [37–39] for the soft wall model and
[28,30,40] for AdS deformations. The second approach
consists of mapping 5D solitons to 4D skyrmions; see, for
example, [41–47]. We also noticed some recent progress on
the description of fermionic states qualitatively similar to
baryons considering a fermionic action for Dp=Dq brane
models in string theory [48,49].

We present in this paper a simple 5D holographic QCD
model that provides a unified description of light vector
mesons and nucleons in a confined background, the latter
arising from Einstein-dilaton gravity. Our model contains
only three parameters; two of them are 5D coupling
constants that are fixed matching the result for the two-
point correlators at high energies to perturbative QCD, the
third parameter is the mass scale associated with confine-
ment, which can be fixed matching for instance the mass of
the ρð770Þ meson to the mass of the fundamental vector
meson state, i.e., mρ0 . We calculate the spectrum of light
vector mesons and nucleons as well as their decay con-
stants. In order to provide a clean comparison to previous
models and experimental data, we will present our results
dividing all the observables by the appropriate power of
mρ0 . We impose for vector mesons and nucleons a con-
dition that guarantees an asympotically linear spectrum,
namely that the Schrödinger effective potential grows
quadratically in the radial coordinate far from the boundary.
We find for vector mesons that this condition is automati-
cally satisfied a 5DYang-Mills action minimally coupled to
the metric and dilaton. For the nucleons, we find that the
mass term of the 5D Dirac action needs to be extended to
include nonminimal couplings to the metric and dilaton.
We use Sturm-Liouville theory to obtain spectral decom-
positions for the two-point correlation functions associated
with the 4D flavor current and the 4D nucleon interpolator
(Ioffe current). We show that the spectral decompositions
for the hadronic correlators are consistent with QCD in the
large Nc limit. This in turn allows us to obtain a holo-
graphic dictionary for the decay constants of vector mesons
and nucleons valid for a general class of holographic
models based on Einstein-dilaton gravity.
From the theoretical point of view, our model improves

previous bottom-up approaches allowing to make predic-
tions from a consistent five-dimensional background that
satisfies the confinement criterion. From the phenomeno-
logical point of view, our model leads to results for the
vector meson and nucleon masses that are very close to
experimental data. Moreover, the model leads to very clean
results for the vector meson and nucleon decay constants.
In the latter case, we will compare for the very first time
against lattice QCD results and provide predictions for the
excited states that could be a useful guide for future
phenomenological studies.
The organization of this paper is as follows: In Sec. II,

we review the action and field equations of Einstein-dilaton
gravity and present two analytical solutions that satisfy the
confinement criterion. These two concrete backgrounds
will be used in the rest of the paper. In Sec. III, we
investigate the light vector mesons. We describe the 5D
action, the field equations, the holographic dictionary for
the VEVof the 4D flavor current, and the bulk to boundary
propagator. Using Sturm-Liouville theory, we obtain a
spectral decomposition for the current correlator and
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finally, solving the Schrödinger equation, we obtain the
vector meson spectrum and decay constants. In Sec. IV,
we investigate the nucleons. We present the Dirac action,
the field equations, the VEV of the 4D nucleon operator
and the bulk to boundary propagator. Using Sturm-
Liouville theory, we find the spectral decomposition for
the nucleon correlator and finally solving the Schrödinger
equations we obtain the spectrum of nucleons and the
nucleon decay constants. Our conclusions are presented
in Sec. V, and additional material is described in four
appendixes. Appendix A briefly reviews the Sturm-
Liouville theory and the spectral decomposition. The
Proca field propagator associated with vector mesons is
described in Appendix B. The vector mesons and nucleons
in the soft wall model and hard wall model are described in
Appendixes C and D, respectively.

II. CONFINING HOLOGRAPHIC QCD MODELS
FROM EINSTEIN-DILATON GRAVITY

A. The action

Holographic QCD models based on Einstein-dilaton
gravity are described by the following action in the string
frame [19,22,23]:

Ss ¼ σ

Z
M

d5x
ffiffiffiffiffiffiffiffi
−gs
p

e−2Φs ½Rs þ Ls
Φ�: ð1Þ

In this expression, σ ¼ 1=16πG5, where G5 represents
the five-dimensional Newton’s constant, Rs is the Ricci
scalar, Φ is the dilaton, and Ls

Φ is the dilaton Lagrangian
express by

Ls
Φ ¼ 4∂μΦ∂

μΦþ l−2VsðΦÞ: ð2Þ
The subscript “s” in the previous equations indicates that
they are written in the string frame. The parameter l is the
AdS radius. We omit here an additional surface term that is
required from the variational principle.1

In Einstein-dilaton gravity, there are two interesting
frames: the string frame and the Einstein frame. We can
write the action (1) in the Einstein frame using the
following transformations:

gmn ¼ gsmne−
4
3
Φ; ð3Þ

VðΦÞ ¼ Vse
4
3
Φ: ð4Þ

Plugging (3) and (4) into (1), the action in Einstein frame
becomes

SE ¼ σ

Z
d5x

ffiffiffiffiffiffi
−g
p ½Rþ LΦ�; ð5Þ

where

LΦ ¼ −
4

3
gmn

∂mΦ∂nΦþ l−2VðΦÞ: ð6Þ

B. The field equations

By varying the action (5) with respect to the metric, we
obtain

Rmn −
R
2
gmn ¼

1

2σ
Tmn; ð7Þ

∇2Φþ 3

8l2

dV
dΦ
¼ 0; ð8Þ

where the tensorial equation in (7) corresponds to the
Einstein equations in the presence of scalar matter and (8) is
the generalization of the Klein-Gordon equation in curved
space. The energy-momentum tensor Tmn, is given by

Tmn ¼ σ

�
8

3
∂mΦ∂nΦþ gmnLΦ

�
; ð9Þ

and the Einstein equations can also be written in the Ricci
form,

Rmn ¼
4

3
∂mΦ∂nΦ −

1

3l2
gmnV: ð10Þ

We now consider the following ansatz for the 5D metric:

ds2 ¼ 1

ζðzÞ2 ½−dt
2 þ dx2i þ dz2�: ð11Þ

This metric preserves Poincaré symmetry. Plugging this
ansatz into the Einstein-dilaton equations, we find the
following field equations:

ζ00 −
4

9
ζΦ02 ¼ 0; ð12Þ

l−2V − ζ5ðζ−3Þ00 ¼ 0; ð13Þ

8

3
ζ2
�
Φ00 − 3

ζ0

ζ
Φ0
�
þ l−2 dV

dΦ
¼ 0; ð14Þ

where 0 ¼ d=dz. The Eq. (14) comes from the scalar
differential equation (8) or from the Bianchi identity
∇nTmn ¼ 0. This equation is not independent because it
can be obtained from Eqs. (12) and (13). The inverse scale
factor ζðzÞ is usually written in terms of the warp factor
AðzÞ using the relation,

ζðzÞ ¼ expð−AðzÞÞ: ð15Þ
The warp factor in the string frame takes the form,

AsðzÞ ¼ AðzÞ þ 2

3
Φ ¼ − ln ζ þ 2

3
Φ: ð16Þ

1This term, usually called the Gibbons—Hawking—York
boundary term, is also important in the study of vacuum energy
in holographic QCD.
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C. Confining holographic QCD models

In this work, we will consider holographic QCD models
where the dilaton is quadratic far from the boundary
(infrared regime), i.e.,

Φðz → ∞Þ ¼ kz2: ð17Þ
Near the boundary we only impose that the metric is
asymptotically AdS, i.e.,

ζðz → 0Þ ¼ z
l
: ð18Þ

The IR asymptotic behavior (17) was originally proposed by
Karch et al. [17] as a condition that guarantees approximate
linear Regge trajectories for mesons. It was later proven by
Gursoy et al. [19] that this asymptotic behavior is compatible
with the confinement criterion and also leads to a linear
spectrum for glueballs; see also [23]. Later in this section, we
will use thewarp factor in the string frameAsðzÞ to show that
models satisfying this asymptotic behaviour satisfy the
confinement criterion developed in [50].
In order to build concrete models, we consider two

simple analytical solutions of the Einstein-dilaton equa-
tions that satisfy the conditions (17) and (18).
The first model is given by

ΦIðzÞ ¼ kz2; ζIðzÞ ¼ Γð5=4Þ
�
3

k

�
1=4

ffiffiffi
z
p
l

I1=4

�
2

3
kz2

�
:

ð19Þ
In this case, we considered a simple ansatz for the dilaton
field ΦðzÞ and found the inverse scale factor ζðzÞ using the
Einstein-dilaton equation (12). This model was investigated
by Huang and Li in [22].
The second model is given by

ΦIIðzÞ ¼
1

2

ffiffiffi
k
p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4kz2

p
þ 9

4
sinh−1

�
2

3

ffiffiffi
k
p

z

�
;

ζIIðzÞ ¼
z
l
exp

�
2

3
kz2

�
: ð20Þ

In this case, we took a simple ansatz for the inverse scale
factor ζðzÞ and use the Einstein-dilaton equation (12) to
find the dilaton ΦðzÞ. This model was proposed by Gursoy
et al. in [19] as a simple analytical model for describing
confinement.2

The behavior of the inverse scale factor, in the Einstein
frame, for models I and II is shown on the left panel of
Fig. 1. In both cases, the inverse scale factor behaves as
ζðzÞ ¼ z=lþ � � � at small z (AdS asymptotics) and
becomes expð2

3
kz2 þ…Þ at very large z. The dilaton field

ΦðzÞ is displayed on the right panel of Fig. 1. In model I,
the dilaton field is alwaysΦðzÞ ¼ kz2, whilst in model II, it
evolves from ΦðzÞ ¼ 3

ffiffiffi
k
p

zþ… at small z to ΦðzÞ ¼ kz2

at large z.
Using the Einstein-dilaton equation (13), we can recon-

struct the dilaton potential VðΦÞ for models I and II.
This is shown in Fig. 2, where we also show the limit
VðΦ → 0Þ ¼ 12 that corresponds to the negative cosmo-
logical constant for AdS space.

D. Conformal symmetry breaking and confinement

The models presented in the previous section describe an
explicit breaking of conformal symmetry and guarantee
confinement. In this section, we briefly describe the confine-
ment criterion discussed in [19] for Einstein-dilaton models
based on the general criterion found in [50]. The behavior of
the potential energy of a heavy quark-antiquark pair, des-
cribed by a rectangular Wilson loop, for a review, see [52],
when the distance between them is large is given by

EðLÞ ¼ μfðz⋆ÞL; ð21Þ

whereEðLÞ is the potential energyof the quark-antiquark pair
as a function of the distanceL, μ is the fundamental tension of

0 1 2 3 4
0

5

10

15

20

z

(z
)

0 1 2 3 4
0

5

10

15

20

25

z

(z
)

FIG. 1. Left panel: inverse scale factor ζðzÞ in the Einstein frame for model I (blue) and model II (red). The black dashed line
represents the AdS limit ζðzÞ ¼ z. Right panel: dilaton field ΦðzÞ for model I (blue) and model II (red). The plots were obtained in units
of k ¼ 1 and l ¼ 1.

2A similar analytical model was proposed earlier in the
string frame as a phenomenological approach for the quark-
antiquark potential without actually solving the Einstein-dilaton
equations [51].
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the string, and f ¼ expð2AsÞ is a function of the string warp
factor As. A nonzero minimum for f, located at z ¼ z⋆,
guarantees a nonzero string tension for the quark-antiquark
potential. Note that confinement in Einstein-dilaton models
involves the string frame warp factor,

AsðzÞ ¼ AðzÞ þ 2

3
ΦðzÞ: ð22Þ

As explained previously in this section, in order to guarantee a
linear spectrum for mesons and glueballs, the dilaton field
must behave at large z as

Φðz → ∞Þ ¼ kz2 þ…; ð23Þ

and this in turn implies that the Einstein frame warp factor
should behave as

Aðz → ∞Þ ¼ −
2

3
kz2 þ… ð24Þ

The dots in the equations above represent subleading terms
forΦðzÞ andAðzÞ. As described in [19], at large z, the dilaton
and warp factor should satisfy the condition,

ΦðzÞ þ 3

2
AðzÞ ¼ 3

4
ln jA0ðzÞj þ…ðz → ∞Þ: ð25Þ

This in turn implies that the string framewarp factor behaves
at large z as

Asðz → ∞Þ ¼ 1

2
ln jA0ðzÞj þ � � � ¼ 1

2
lnð

ffiffiffi
k
p

zÞ þ… ð26Þ

On the other hand, AdS asymptotics at small z implies that

Asðz → 0Þ ¼ − lnðz=lÞ þ… ð27Þ

These results when applied to the function f ¼ expð2AsÞ
imply that this function behaves at large z as fðz → ∞Þ ¼ffiffiffi
k
p

zþ � � � and at small z at fðz → 0Þ ¼ ðl=zÞ2 þ… Then
the function fðzÞ is nonmonotonic in z and possesses a
minimum at some z ¼ z�. This is shown in Fig. 3 where we
plot the function f ¼ expð2AsÞ for models I and II.
We finish this section with an important remark. In the

holographic QCD models presented here, conformal sym-
metry breaking and confinement are driven by a single
(infrared) mass scale

ffiffiffi
k
p

. If we set k to zero, the dilaton
vanishes, and we recover the AdS space and conformal
symmetry. The analog of this situation in QCD is the
presence of a gluon condensate associated with a nonzero
trace for the stress energy tensor and conformal symmetry
breaking (the QCD trace anomaly). In fact, the problem of
generation of hadron masses is expected to be understood
in terms of a nontrivial stress energy tensor.
In the following sections, we will incorporate vector

mesons and nucleons in models I and II. We will obtain a
unified description of vector meson and nucleon masses in
terms of the single mass scale

ffiffiffi
k
p

. When investigating the
spectrum of vector mesons and nucleons, we will focus on
mass ratios, since those are independent of the choice of k.
Wewill also find that the two point correlation functions for
the vector meson and nucleon interpolating fields satisfy a
spectral decomposition consistent with QCD in the large N
limit. We will use this decomposition to extract the decay
constants of vector mesons and nucleons.

III. VECTOR MESONS IN CONFINING
HOLOGRAPHIC QCD

In this section, we will describe vector mesons in
confining holographic QCD models based on Einstein-
dilaton gravity. Firstly, we will present the 5D action and
the equations of motion in both coordinate and momentum
space. The VEVs and their connections with 4D currents
are discussed. Subsequently, we will study the on shell
action and the bulk to boundary propagator, allowing us to

0 2 4 6 8 10
0

10

20

30

40

z

ex
p(
2A

s)

FIG. 3. The function f ¼ expð2AsÞ as a function of z for model
I (blue) and model II (red). The plot was done in units of k ¼ 1
and l ¼ 1.

0 1 2 3 4 5
0

50

100

150

200

V(
)

FIG. 2. Dilaton potential in the Einstein frame for model I
(blue) and model II (red). The black dashed line represents the
AdS limit V ¼ 12 when Φ goes to zero.
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obtain the two-point function. The spectral decomposition
for the bulk to boundary propagator is described using
Sturm-Lioiuville theory in order to obtain a spectral
decomposition for the two-point function consistent with
QCD in the large Nc limit. Lastly, we will obtain the
spectrum and decay constants of vector mesons for the
Einstein-dilaton models I and II described in Sec. II,
comparing with previous models and available experimen-
tal data.

A. The 4D flavor currents

Consider vector mesons in large Nc QCD with Nf ¼ 2

flavors. The flavor (isospin) currents responsible for
creation of vector meson states can be written as

Jμ;aðxÞ ¼ q̄ðxÞγμTaqðxÞ; ð28Þ

where qðxÞ is the quark doublet with components uðxÞ and
dðxÞ and Ta, with a ¼ 1,2,3, are the generators of the
SUð2Þ group. For simplicity, we assume flavor (isospin)
symmetry mu ¼ md so that the flavor current is conserved.
The matrix element for this current when applied to the
vacuum and a vector meson state can be written as

h0jJμ;að0ÞjVn;bðp; λÞi ¼ Fvnϵ
μðp; λÞδab; ð29Þ

where ϵμðp; λÞ is the polarization of the vector meson state.
The coupling Fvn is associated with the probability ampli-
tude of creating a particular vector meson state from the
vacuum. It can be related directly to the weak decay of
vector mesons, and for this reason it is known as the vector
meson decay constant. Since the flavor current is con-
served, its conformal dimension is equal to its canonical
dimension, so Δ ¼ 3 at all RG energy scales. Thus, the
decay constant Fvn has dimension of mass squared.3 In
large Nc QCD, the correlation function for two flavor
currents admits the spectral decomposition [53,54],

hJμ;aðqÞJν;bðq0Þi¼δ4ðq−q0ÞδabPμν
⊥ ðqÞ

X
n

F2
vn

q2þm2
vn
; ð30Þ

where

Pμν
⊥ ðqÞ ¼ ημν −

qμqν

q2
ð31Þ

is the transverse projector, which appear in propagators of
massive spin 1 states (vector mesons). The result in (30)
was obtained previously for some particular holographic
QCDmodels [15,26,27]. In this section, wewill show that a
general class of holographic QCD models based on

Einstein-dilaton gravity lead to current correlators that
satisfy the spectral decomposition (30).

B. The 5D action and field equations

We start with a set of 5D gauge fields Va
mðz; xÞ dual to

the 4D flavor currents JaμðxÞ. In order to describe the
spectrum of vector mesons, we only need a 5D action
quadratic on these fields. Assuming a minimal coupling to
the metric and dilaton field, the action can be written as

SV ¼ −
Z

d4 x dz
1

4g25

ffiffiffiffiffiffiffiffi
−gs
p

e−Φvamn
2; ð32Þ

wherevamn ¼ ∂mVa
n − ∂nVa

m are the (Abelian) field strengths,4

the 5Dmetric gsmn is in the string frame, and the index a ¼ 1,
2, 3 is implicitly summed. The gauge coupling is fixed as
g25 ¼ 12π2=Nc in order to reproduce the perturbative QCD
result for the current correlator at small distances [15]. The
action in (32) can be obtained from the vectorial sector of
holographic models of chiral symmetry breaking after
expanding at quadratic order the5DYang-Mills-Higgs action
associated with the breaking of SUð2ÞL × SUð2ÞR chiral
symmetry; see, for example, [15,17,34,55,56].
As described in the previous section, in holographic

QCD models based on Einstein-dilaton gravity the string
frame metric can be written as

gsmn ¼ e2AsðzÞηm̂ n̂; ð33Þ

where AsðzÞ is the string frame warp factor and the indices
ðm̂; n̂Þ correspond to coordinates in the 5D flat metric.
Then the action in (32) becomes

S2 ¼ −
Z

d4x
Z

dz
1

4g25
eAs−Φvam̂ n̂

2: ð34Þ

Varying the action (34), in order to get the field
equations, we will have both the contribution of the bulk
action and the boundary,

δS2 ¼ δSBulk2 þ δSBdy2 ; ð35Þ

where

δSBulk2 ¼
Z

d4x
Z

dz δVa
n̂∂m̂

�
1

g25
eAs−Φvm̂ n̂

a

�
; ð36Þ

and

δSBdy2 ¼ −
Z

d4x
Z

dz∂m̂

�
1

g25
eAs−Φvm̂ n̂

a δVa
n̂

�
: ð37Þ

3The meson states are normalized as hp⃗jq⃗i ¼ 2Ep⃗ð2πÞ3 ×
δ3ðp⃗ − q⃗Þ.

4Non-Abelian terms are of cubic or higher order on the fields
Va
m and are relevant only to describe interactions.
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Imposing periodic boundary conditions in the xμ coordi-
nates, the boundary term reduces to

δSBdy2 ¼ −
Z

d4x

�
1

g25
eAs−Φvẑ μ̂a δVa

μ̂

�
z→∞

z¼ϵ
: ð38Þ

As described in the previous section, in this work, we
consider holographic QCD models where the dilaton is
quadratic far from the boundary, cf. (23). The string frame
warp factor in that case becomes logarithmic far from the
boundary, cf. (26). Using these results, we conclude that the
surface term at z → ∞ will vanish due to the presence of
e−Φ. Imposing Dirichlet boundary condition for the fields
Vc
μ̂ at the boundary z ¼ ϵ, one guarantees that δSBdy2 ¼ 0.
The vanishing of δSBulk2 leads us to the Euler-Lagrange

equations,

∂m̂ðeAs−Φvm̂ n̂
a Þ ¼ 0: ð39Þ

These can be understood as a generalization of Maxwell
equations for the fields Va

m̂ in a background with metric
gsmn, given in (33) and a dilaton ΦðzÞ. These equations are
invariant under the gauge transformation,

Vm̂;a → Vm̂;a − ∂m̂λ
a
V: ð40Þ

We can write (39) in terms of the coordinates z and μ̂
decomposing the gauge field Va

m̂ ¼ ðVa
z ; Va

μ̂Þ and the
derivatives ∂m̂ ¼ ð∂z; ∂μ̂Þ. In this way, the Eq. (39) written
in components is expressed as

½∂z þ A0s −Φ0�ð∂zV μ̂;a − ∂
μ̂Va

z Þ þ□V μ̂;a − ∂
μ̂ð∂ν̂V ν̂;aÞ ¼ 0;

□Va
z − ∂zð∂μ̂V μ̂;aÞ ¼ 0:

ð41Þ

The gauge symmetry (40) allows us to define Va
z ¼ 0. The

quadri-dimensional vector V μ̂ admit the Lorentz decom-
position,

V μ̂;a ¼ V⊥̂
μ;a þ ∂μ̂ξ

a; ð42Þ

where V⊥̂
μ;a is the transverse vector field and ξ

a are massless
scalar fields not present in QCD. Since it is not possible to
find normalizable modes for these fields, we can set ξa

to zero.
Using these results, the Eq. (41) reduce to

½∂z þ A0s −Φ0�∂zV μ̂;a
⊥ þ□V μ̂;a

⊥ ¼ 0; ð43Þ

where V μ̂;a
⊥ is the physical field that describe the vector

mesons. Taking the 4D Fourier transform, one obtains

½∂z þ A0s −Φ0�∂zV μ̂;a
⊥ − q2V μ̂;a

⊥ ¼ 0: ð44Þ

C. VEVs of the 4D flavor currents

In this subsection, the vacuum expectation values
(VEVs) of the 4D flavor currents. We start by writing
the boundary term (38) as

δSBdy2 ¼
Z

d4x

�
1

g25
eAs−Φvẑ μ̂a δVa

μ̂

�
z¼ϵ

: ð45Þ

As described in the previous subsection, the surface term at
z → ∞ vanishes due to the dilaton asymptotic behavior. At
small z (near the boundary), we can approximate the metric
by the AdS metric and solve the Eq. (43). We find that the
vector gauge field can be expanded at small z as

V μ̂;cðx; zÞ ¼ Vð0Þμ̂;cðxÞ þ � � � þ Vð2Þμ̂;cðxÞz2 þ…; ð46Þ

where Vð0Þμ̂;cðxÞ are the 4D external sources and Vð2Þμ̂;cðxÞ are
the VEV coefficients. The VEV of the flavor currents
responsible for the creation of vector mesons, according to
the holographic dictionary, is given by

hJμ̂;aðxÞi ¼ δSo−s2

δVð0Þμ̂;aðxÞ
¼ δSBdy2

δVð0Þμ̂;aðxÞ
¼ 1

g25
½eAs−Φvẑ μ̂a �z¼ϵ

¼ 1

g25
½eAs−Φ∂zV μ̂;a�z¼ϵ; ð47Þ

where the last equality holds for the gauge Va
z ¼ 0. Note

that it is possible to write the VEVs in (47) in terms of the

VEV coefficients Vð2Þμ̂;cðxÞ. In this work, it will be sufficient
to use the result (47). Later in this section, we will derive a
Sturm-Liouville expansion for the vector fields that will
lead to a spectral decomposition for the correlator of flavor
currents.

D. The on shell action, the bulk to boundary
propagator, and the two point function

In this subsection, we will write the on shell action in
terms of bulk to boundary propagator and the 4D sources.
We will establish the connection between the bulk to
boundary propagator, the VEV of the 4D flavor currents
and the correlator of flavor currents.
First, we evaluate the action in (34) on shell and find

So−s2 ¼ So−s2;Bdy þ So−s2;Bulk; ð48Þ

where

So−s2;Bdy ¼ −
Z

d4x
Z

dz∂m̂

�
1

2g25
eAs−Φvm̂ n̂

a Va
n̂

�
; ð49Þ

and

So−s2;Bulk ¼
Z

d4x
Z

dzVa
n̂∂m̂

�
1

2g25
eAs−Φvm̂ n̂

a

�
¼ 0: ð50Þ
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We remind the reader that the indices ðm̂; n̂Þ are raised or
lowered using the 5D flat metric ηm̂ n̂. As expected, the on
shell action becomes a surface term. Using again periodic
boundary conditions for the xμ coordinates and the con-
dition that the surface term at z → ∞ vanishes, due to the
asymptotic behavior of the dilaton, the on shell action is
reduced to

So−s2 ¼
Z

d4x

�
1

2g25
eAs−Φð∂zV μ̂

aÞVa
μ̂

�
z¼ϵ

; ð51Þ

where we also used the gauge condition Va
z ¼ 0. We can

define the bulk to boundary propagator in real space by the
relation,

Va
μ̂ðz; xÞ ¼

Z
d4yKab

μ̂ ν̂ðz; x; yÞV ν̂;0
b ðyÞ; ð52Þ

where Kcd
μ̂ ν̂ðz; x; yÞ is the bulk to boundary propagator (in

real space) and V ν̂;0
b ðyÞ is the 4D external source. Plugging

(52) into (51) yields

So−s2 ¼
Z

d4x
Z

d4y

×

�
1

2g25
V μ̂;0
c ðxÞ½eAs−Φ∂zKcd

μ̂ ν̂ðz; x; yÞ�z¼ϵV ν̂;0
d ðyÞ

�
:

ð53Þ
The VEVof the flavor currents (47) can also be expressed
in terms of the bulk to boundary propagator,

hJμ̂;cðxÞi ¼
1

g25
½eAs−Φ∂zV μ̂;c�z¼ϵ

¼ 1

g25

Z
d4y½eAs−Φ∂zKcd

μ̂ ν̂ðz;x;yÞ�z¼ϵV ν̂;0
d ðyÞ: ð54Þ

Varying the on shell action in (53), we obtain

δSo−s2 ¼
Z

d4xhJμ̂;cðxÞiδV μ̂;0
c ; ð55Þ

as expected. Note that we used the x ↔ y symmetry in the
bulk to boundary propagators. According to the holo-
graphic dictionary, the correlator of flavor currents in real
space corresponds to

Gcd
μ̂ ν̂ðx − yÞ ¼ hJμ̂;cðxÞJν̂;dðyÞi ¼

δSo−s2

δV μ̂;0
c ðxÞδV ν̂;0

d ðyÞ
¼ 1

g25
½eAs−Φ∂zKcd

μ̂ ν̂ðz; x; yÞ�z¼ϵ: ð56Þ

The relation between the VEV and the source is expressed
through the two-point function, given by

hJμ̂;cðxÞi ¼
Z

d4yGcd
μ̂ ν̂ðx − yÞV ν̂;0

d ðyÞ: ð57Þ

E. Spectral decomposition for the bulk
to boundary propagator

In Sec. III B, we saw that the vector mesons are described
by a transverse vector field. This implies that the bulk to
boundary propagator in momentum space takes the form,

K̃ab
μ̂ ν̂ðz; qÞ ¼ Pμν

⊥ ðqÞδabVðz; qÞ; ð58Þ
where Pμν

⊥ ðqÞ is the transverse projector, defined in (31),
and Vðz; qÞ a scalar function that carries all the information
of the bulk to boundary propagator in momentum space.
In momentum space, the 5D gauge fields can be

written as

Ṽa
μ̂ðz; qÞ ¼ K̃ab

μ̂ ν̂ðz; qÞṼ ν̂;0
b ðqÞ: ð59Þ

Using these relations in the field equation (44), we obtain

½ð∂z þ A0s −Φ0Þ∂z − q2�Vðz; qÞ ¼ 0; ð60Þ
which is an ordinary second order differential equation for
the bulk to boundary propagator. It is convenient to rewrite
this equation as

½∂zðeAs−Φ∂zÞ − q2eAs−Φ�Vðz; qÞ ¼ 0: ð61Þ
This equation can be written as a Sturm-Liouville equation,

½Lþ λrðzÞ�yðzÞ ¼ fðzÞ; L ¼ ∂zðpðzÞ∂zÞ − sðzÞ; ð62Þ

where we identify

pðzÞ ¼ eAs−Φ; sðzÞ ¼ 0; λ ¼ −q2;

rðzÞ ¼ eAs−Φ; and fðzÞ ¼ 0 ðhomogeneousÞ: ð63Þ
The Sturm-Liouville theory is briefly described in
Appendix A. In the nonhomogeneous case, i.e., fðzÞ ≠ 0,
we can define the Green’s function by the equation,

½Lþ λrðzÞ�Gðz; z0Þ ¼ δðz − z0Þ: ð64Þ

Now we will define an infinite set of eigenfunctions, vnðzÞ,
that obey the eigenvalue equation,

½Lþ λnrðzÞ�vnðzÞ ¼ 0; ð65Þ

or

½∂zðeAs−Φ∂zÞ þm2
vne

As−Φ�vnðzÞ ¼ 0; ð66Þ

where λn ¼ m2
vn are the eigenvalues. Note that these Sturm-

Liouville modes are essentially the normalizable modes
in holographic QCD. Indeed, these modes satisfy the
orthonormality condition,Z

dz eAs−ΦvmðzÞvnðzÞ ¼ δmn; ð67Þ
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and the Green’s function admits the spectral decomposition,

Gðz; z0Þ ¼ −
X
n

vnðzÞvnðz0Þ
q2 þm2

vn
: ð68Þ

For more details, see Appendix A.
We can find a relation between the bulk to boundary

propagator Vðz; qÞ, corresponding to the homogeneous
solution, can be written in terms of the Green’s function,
associated with the nonhomogeneous solution as follows.
Multiplying both sides of (64) by Vðq; zÞ, integrating

over z and using (61), we obtain

Vðz0; qÞ ¼ ½eAsðzÞ−ΦðzÞðVðz; qÞ∂zGðz; z0Þ
− Gðz; z0Þ∂zVðz; qÞÞ�z→∞

z¼ϵ : ð69Þ

For a dilaton that is quadratic at large z, it is possible to
show that the surface term at z → ∞ vanishes so we end up
with the relation,

Vðz0; qÞ ¼ −½eAs−Φ∂zGðz; z0Þ�z¼ϵ; ð70Þ

where we also used the boundary condition Vðϵ; qÞ ¼ 1.
Substituting the spectral decomposition (68) in (70),
we find

Vðz0; qÞ ¼
X
n

cnðq2Þvnðz0Þ; ð71Þ

where

cnðq2Þ ¼
½eAs−Φ∂zvnðzÞ�z¼ϵ

q2 þm2
vn

: ð72Þ

Using this result and the orthonormality condition (67), we
obtain

Z
dz eAs−ΦvmVðz; qÞ ¼ cmðq2Þ; ð73Þ

replacing this result in (71), we obtain the completeness
relation for the normalizable (Sturm-Liouville) modes,

X
n

eAs−ΦvnðzÞvnðz0Þ ¼ δðz − z0Þ: ð74Þ

Plugging (71) into (58), the tensorial bulk to boundary
propagator becomes

K̃ab
μ̂ ν̂ðz; qÞ ¼ Pμν

⊥ ðqÞδab
X
n

cnðq2ÞvnðzÞ: ð75Þ

F. The 4D current correlator

The 2-point current correlator in real space was obtained
in (56) from the bulk to boundary propagator. In momen-
tum space, it takes the form,

Gab
μ̂ ν̂ðqÞ ¼

1

g25
½eAs−Φ∂zK̃ab

μ̂ ν̂ðz; qÞ�z¼ϵ: ð76Þ

Using the spectral decomposition (75) with the coefficients
(72), the 2-point function becomes

Gab
μ̂ ν̂ðqÞ ¼

�
ημ̂ ν̂ −

qμ̂qν̂
q2

�
δab

X
n

F2
vn

q2 þm2
vn
; ð77Þ

where the coefficients Fvn are defined as

Fvn ¼
1

g5
½eAs−Φ∂zvnðzÞ�z¼ϵ: ð78Þ

The Fvn can be interpreted as probability amplitudes
associated with the creation of vector mesons from the
vacuum. They are commonly known as vector meson decay
constants because they are relevant for describing the weak
decay of vector mesons.
The result in (77) is very general for holographic QCD

models based on Einstein-dilaton gravity. It is consistent
with (30), which is the spectral decomposition for a current
correlator in large Nc QCD. Note the appearance in (77) of
4D propagators for the vector mesons. The vector meson
propagator can be obtained as a particular case of the Proca
propagator, as described in Appendix B.

G. Spectrum of vector mesons

To obtain the spectrum of vector mesons we need to
solve the eigenvalue problem for the normalizable (Sturm-
Liouville) modes,

½∂zðeAs−Φ∂zÞ þm2
vne

As−Φ�vnðzÞ ¼ 0: ð79Þ

We can write this equation in the form of a Schrödinger
equation considering the Bogoliubov transformation,

vn ¼ e−BVψVn where BV ¼
1

2
ðAs −ΦÞ: ð80Þ

Plugging (80) into (79), we find the following Schrödinger
equation:

½∂2z þm2
vn − VV �ψVn ¼ 0; ð81Þ

VV is expressed by

VV ¼ B00V þ B02V
: ð82Þ

From the Schrödinger equation, we can derive the mass
spectrum and the wave functions associated with the
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normalizable (Sturm-Liouville) modes. Notice that the
dominant contribution to the Schrödinger potential at large
z (far from the boundary) is given by the dilaton which is
quadratic in z for large z. This in turn guarantees the
condition that the Schrödinger potential is quadratic in z at
large z leading to asymptotically linear Regge trajectories.
Figure 4 displays our numerical results for the

Schrödinger potential for vector mesons in the Einstein-
dilaton models I and II (blue and red lines, respectively),
compared against the soft wall model (black dashed line).
Note that the potentials of the Einstein-dilaton models are
very similar to the potential in the soft wall model. The
main difference between them is that model I (model II)
displays a miminum at lower (higher) energy than the soft
wall model. One may conclude from this analysis that
model I (model II) leads to a lower (higher) mass for the
fundamental state ρ0. However, the mass of the funda-
mental state also depends on the infrared parameter k,
which can be fixed differently for each model. In this work,
we will consider only dimensionless mass ratios so that we
do not need to fix the infrared parameter k.

1. Asymptotic solution and numerical integration

In order to find the spectrum of vector mesons, we need
to solve the differential equation (79) or equivalently, the
Schrödinger equation (81). We first find the asymptotic
solution at small z,

vnðzÞ ¼ NVnz2 þ…; or ψVnðzÞ ¼ NVnz3=2 þ…;

ð83Þ
where NVn is a constant necessary for the normalization
condition, Z

dzψVnðzÞ2 ¼ 1: ð84Þ

The eigenvalues of the problem can be obtained inte-
grating numerically either (79) or (81) and imposing the
following behavior at large z,

lim
z→∞

ffiffiffi
z
p

ψVnðzÞ ¼ 0; ð85Þ

which guarantees that the solution is normalizable. The
numerical procedure, commonly known as the shooting
method, consists of shooting the value of mVn until one
finds a solution that satisfies the condition (85). In this way,
one finds a discrete set of eigenvalues corresponding to the
vector meson masses.

2. Spectrum

We present, in Table I, our results for the spectrum of
vector mesons in the Einstein-dilaton models I and II
described in Sec. II. As described above, we consider only
dimensionless mass ratios so that we can compare different
models without fixing the infrared parameter k. We show, in
Table I, our results for the mass ratios mρn=mρ0 for the first
five excited states, i.e. n ¼ 1;…; 5. The mass of the
fundamental state mρ0 can later be fixed to the correspond-
ing experimental value fixing the infrared parameter k. We
compare our results for models I and II with previous
results obtained using the soft wall and hard wall models
and also against experimental results.
Figure 5 shows the behavior of the squared masses of

vector mesons as a function of the radial excitation number
in the Einstein-dilaton models I and II (blue and red solid
lines) and the soft wall model (black dashed line), com-
pared against experimental data (orange dots and error
bars). As expected, the Einstein-dilaton models I and II lead
to approximately linear Regge trajectories whilst the Regge
trajectory in the soft wall model is exactly linear. The main
difference between the Einstein-dilaton models and the soft
wall model is that the masses of excited states grow faster

TABLE I. Ratio of vector meson masses mρn=mρ0 for the first
excited states n ¼ 1;…; 5 in the Einstein-dilaton models I and II,
the soft wall model, and the hard wall model, compared against
experimental results. The experimental result for mρ1 was taken
from [57] and the experimental results for the other states were
obtained from particle data group (PDG) [58], including the mass
of the fundamental statemρ0 ¼ 0.776� 0.001 GeV. The numeri-
cal error in our computations of mass ratios in Einstein-dilaton
models I and II was of the order of 10−6.

Ratio Model I Model II Soft wall Hard wall Experimental

mρ1=mρ0 1.591 1.34 1.414 2.295 1.652� 0.048
mρ2=mρ0 2.015 1.611 1.732 3.598 1.888� 0.032
mρ3=mρ0 2.365 1.843 2 4.903 2.216� 0.026
mρ4=mρ0 2.67 2.049 2.236 6.209 2.443� 0.072
mρ5=mρ0 2.944 2.236 2.45 7.514 2.727� 0.265
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FIG. 4. Schrödinger potentials for vector mesons in Einstein-
dilaton models I and II (blue and red solid lines) and soft wall
model (black dashed line).
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(slower) in model I (model II) than in the soft wall model
leading to a higher (smaller) slope. Note that the Einstein-
dilaton model I and the soft wall model provide results that
are closer to the experimental data.

H. Wave functions and vector meson decay constants

Besides calculating the spectrum, it is important to
investigate the vector meson wave functions. This allows
us to identify the emergence of the fundamental state V0

and the excited states Vn with n ¼ 1; 2;… by a comparison
with normal modes in wave mechanics. From the small z
behavior of the vector meson wave functions, we will also
be able to extract the vector meson decay constants FVn .
Figure 6 illustrates the behavior of the vector meson

wave functions in Einstein-dilaton models I and II (blue
and red solid curves) and the soft wall model (black dashed
curve). Note that the wave functions in models I and II are
not very different to the wave functions in the soft wall

model. The discrepancy occurs at small and intermediate
values of z. This is expected because the Einstein-dilaton
models affect the differential equation (79) through the
dilaton and the AdS space deformation while in the soft
wall model the AdS space is not deformed. At large z, the
quadratic dependence of the dilaton field is expected to be
the dominant contribution to the differential equation,
which is the same as in the soft wall model.
We finally evaluate the vector meson decay constant as

follows:

Fvn ¼
1

g5
½eAs−Φ∂zvnðzÞ�z¼ϵ ¼

2

g5
NVn; ð86Þ

where we used the small z behavior of the normalizable
mode (83), the AdS asymptotic behavior for As, and the
property that the dilaton vanishes at the AdS boundary. The
normalization constants NVn are calculated numerically
using the normalization condition (84). In Table II, we
present our results for the dimensionless ratios

ffiffiffiffiffiffiffi
Fρn

p
=mρ0

for Einstein-dilaton models I and II, compared against the
soft wall model and the hard wall model. For the funda-
mental state, we also compare against the experimental
result. We conclude that, although the Einstein-dilaton
model I provides a better result than the soft wall model,
the hard wall model still provides the best result. We would
like to remark that the results for the vector meson decay
constants in the case of excited states are theoretical
predictions from holographic QCD. In particular, we note
that all holographic QCD models predict that the vector
meson decay constants grow with the radial excitation
number. We hope that these predictions will be tested in the
near future.

IV. NUCLEONS IN CONFINING
HOLOGRAPHIC QCD

In this section, we describe 1=2 spin baryons, more
specifically the nucleons (proton and neutron). We first

0 1 2 3 4 5
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2

4

6

8

n

m n
2

m 0
2

FIG. 5. Dimensionless squared mass ratios m2
ρn=m

2
ρ0

for
vector mesons as a function of the radial excitation number n in
the Einstein-dilaton models I and II (blue and red solid lines and
dots) and the soft wall model (black solid line and dots), compared
against experimental data (orange dots and error bars).
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FIG. 6. Wave functions of vector mesons in the Einstein-dilaton
models I and II (blue and red solid curves) and the soft wall model
(black dashed curve).

TABLE II. Dimensionless ratios
ffiffiffiffiffiffiffi
Fρn

p
=mρ0 for vector meson

decay constants in theEinstein-dilatonmodels I and II, the soft wall
model, and the hardwallmodel, compared against the experimental
result. The experimental result was obtained using

ffiffiffiffiffiffiffi
Fρ0

p ¼
0.3462� 0.0014 GeV [59] and mρ0 ¼ 0.776� 0.001 GeV [58].
The numerical error in our computations of

ffiffiffiffiffiffiffi
Fρn

p
=mρ0 in Einstein-

dilaton models I and II was of the order of 10−3.

Ratio Model I Model II
Soft
wall

Hard
wall Experimentalffiffiffiffiffiffiffi

Fρ0
p

=mρ0 0.3719 0.283 0.3355 0.4246 0.446� 0.0019ffiffiffiffiffiffiffi
Fρ1

p
=mρ0 0.4704 0.3407 0.3989 0.7946 � � �ffiffiffiffiffiffiffi

Fρ2
p

=mρ0 0.5298 0.3798 0.4415 1.114 � � �ffiffiffiffiffiffiffi
Fρ3

p
=mρ0 0.5741 0.41 0.4744 1.405 � � �ffiffiffiffiffiffiffi

Fρ4
p

=mρ0 0.61 0.4351 0.5017 1.677 � � �
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present the so-called Ioffe currents which are spinorial
operators associated with the creation of nucleons and
describe the spectral decomposition for the nucleon corre-
lator in large Nc QCD. Next, we present the 5D action for
the Dirac spinor dual to the nucleon operator and derive the
equations of motion. Subsequently, we study the VEV of
nucleon operators, and from the on shell action, we obtain
the two-point nucleon correlation function. Next, we
investigate the spectral decomposition for the bulk to
boundary propagator using the Sturm-Liouville theory,
and we find a spectral decomposition for the nucleon
correlator consistent with large Nc QCD. Finally, we obtain
the spectrum and decay constants for nucleons for the
Einstein dilaton models I and II described in Sec. II and
compare against previous models and available experimen-
tal data.

A. The 4D nucleon operator

Consider nucleons in large Nc QCD with Nf ¼ 2

flavors. For simplicity, we consider isospin symmetry,
i.e., mu ¼ md. The creation of nucleon states can be
described by nucleon operators built from the quark fields.
For the case of the proton, the nucleon operator takes the
form of the Ioffe current [60,61],

OðxÞ ¼ ϵabcðuTaðxÞCγμubðxÞÞγ5γμdcðxÞ; ð87Þ

where u and d are the quark fields, a, b, and c are color
indices, and C is the charge conjugation operator. The
operator (87) has Iz ¼ 1=2 corresponding to proton states.
A similar operator can be constructed for the neutron states
(Iz ¼ −1=2) replacing the uud structure by a ddu structure.
The matrix element for the nucleon operator when applied
to the vacuum and a nucleon state can be written as

h0jOð0ÞjNnðpÞi ¼ λNn unðpÞ; ð88Þ

where unðpÞ is the Dirac spinor corresponding to the
nucleon state. The coupling λNn is associated with the
probability amplitude of creating a particular nucleon state
from the vacuum. Although there is no direct connection of
these couplings to the weak decay of the neutron, we will
nevertheless call them nucleon decay constants. If the
conformal dimension Δ of the nucleon operator O is equal
to the canonical dimension, we have Δ ¼ 9=2, and the
nucleon decay constant λNn has dimension of mass cubed.5

If we take into account the effect of the anomalous
dimension, one would obtain Δ < 9=2 and λn would have
dimension MΔ−3=2. In this work, we will investigate the
spectrum of nucleons for the cases Δ ¼ 9=2 and Δ ¼ 7=2
using holographic QCD based on Einstein-dilaton gravity.

In large Nc QCD, the nucleon correlator admits the
following spectral decomposition [53,62]:

hOðqÞŌðq0Þi ¼ iδ4ðq − q0Þ
X
n

λ2Nn

ði=qþmNnÞ
q2 þm2

Nn

: ð89Þ

On the right-hand side, we identify the Dirac propagators
associated with the different nucleon states. In holographic
QCD, we are interested on the two point correlation
function of the right part of the nucleon correlator, namely,

hORðqÞŌRðq0Þi ¼ PRhOðqÞŌðq0ÞiPL

¼ δ4ðq − q0Þð−PR=qÞ
X
n

λ2Nn

q2 þm2
Nn

; ð90Þ

where

PR=L ¼
1

2
ð1� γ5Þ; ð91Þ

are the right and left chiral projectors. The result in (90)
was obtained previously in the soft wall model [38].
In this section, we will show that a general class of
holographic QCD models based on Einstein-dilaton
gravity lead to nucleon correlators that satisfy the spectral
decomposition (90).

B. The 5D action and field equations

We start with a 5D Dirac field ψðz; xÞ dual to the 4D
nucleon operatorO. The dynamics of the 5D Dirac field can
be obtained coupling the Dirac spinor to a background
given by Einstein-dilaton gravity. The generalized 5D Dirac
action action in the string frame can be written as

SF ¼GF

Z
d5x

ffiffiffiffiffiffiffiffi
−gs
p

e−Φ
�
i
2
ψ̄ =Dψ þ c:c:− im̃ ψ̄ ψ

�
þΔS;

ð92Þ

where ψ and ψ̄ are the Dirac spinor and its adjoint,
respectively, with ψ̄ ¼ ψ†Γ0̂. We have included a surface
term ΔS necessary for the variational principle. The
coupling m̃ is a generalization of the mass term that
may include first derivatives of the metric and the dilaton.
The 5D coupling constant GF will be determined later
when comparing the result for the two point nucleon
correlator at high energies with the perturbative QCD
result.
The covariant derivative in the Feynman notation is

given by

=D ¼ ΓnDn; ð93Þ

where the (curved space) gamma matrices, Γn, and the
covariant derivative, Dn, explicitly are

5The nucleon states are normalized as hp⃗jq⃗i ¼ 2Ep⃗ð2πÞ3 ×
δ3ðp⃗ − q⃗Þ and the Dirac spinors as ūrðpÞusðpÞ ¼ 2m δrs.
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Γn ¼ enâΓâ; ð94Þ

Dn ¼ ∂n þ
1

8
ωâ b̂
n ½Γâ;Γb̂� ¼ ∂n þ

1

4
ωâ b̂
n Γâ b̂: ð95Þ

The quantities enâ and ωâ b̂
n are the vielbein and spin

connection, respectively, and Γâ are the gamma matrices
in 5D flat space. For the string frame metric given in (33),
they take the form,

enâ ¼ e−AsðzÞδnâ; ð96Þ

ωâ b̂
n ¼ emâ∇neb̂m: ð97Þ

Note that m, n are tensorial indices associated with the
curved space gmn

s whilst â; b̂ are tensorial indices associated
with the tangent flat space ηâ b̂. The gamma matrices in the
tangent space satisfy the Clifford algebra,

fΓâ;Γb̂g ¼ 2ηâ b̂1: ð98Þ

The coupling expð−ΦÞ in the Dirac action can be absorbed
in the following redefinition of the Dirac spinor:

ψ → eΦ=2ψ : ð99Þ

Plugging (99) into action (92), we obtain

SF ¼ GF

Z
d5x

ffiffiffiffiffiffiffiffi
−gs
p �

i
2
ψ̄ =Dψ þ c:c: − im̃ ψ̄ ψ

�
þ ΔS:

ð100Þ

To find the equation of motion, we first note that the only
nonvanishing components of the spin connection are

ωẑ ν̂
μ ¼ −ων̂ ẑ

μ ¼ −A0sδν̂μ: ð101Þ

Using (94)–(96) and (101), the Dirac operator acting on the
Dirac field takes the form,

=Dψ ¼ ΓnDnψ ¼ e−AsðΓâ
∂â þ 2A0sΓẑÞψ ; ð102Þ

where the indices â ¼ ðẑ; μ̂Þ are contracted using the 5D
Minkowski metric ηâ b̂. Writing the action (100) in terms of
the operator (102), we find

SF ¼ GF

Z
d5 x e4As

�
i
2
ψ̄Γâ

∂âψ −
i
2
ð∂âψ̄ÞΓâψ

− ieAsm̃ ψ̄ ψ

�
þ ΔS: ð103Þ

The field equations are found by varying the action (103)
with respect to ψ and ψ̄ . We obtain

ðΓâ
∂â þ 2A0sΓẑ − eAsm̃Þψ ¼ 0; ð104Þ

ψ̄ð∂â Γâ þ 2A0sΓẑ þ eAsm̃Þ ¼ 0: ð105Þ

It is interesting to write the Eq. (104) in terms of left and
right chiralities of the Dirac field. Thus, in the decom-
position ψ ¼ ψR þ ψL, the left and right components are
given by

ψR=L ¼
1

2
ð1� ΓẑÞψ ¼ PR=Lψ ð106Þ

ψ̄R=L ¼ ψ̄
1

2
ð1 ∓ ΓẑÞ ¼ ψ̄PL=R; ð107Þ

where PR and PL are the right and left chiral projectors.
The left and right spinors are eigenstates of the chirality
operator, Γẑ ¼ γ5,

ΓẑψR=L ¼ �ψR=L: ð108Þ

Plugging (106)–(108) in the Dirac equation, (104), we
arrive at the following system of coupled equations:

=∂ψL ¼ −ð∂z þ 2A0s − eAsm̃ÞψR; ð109Þ

=∂ψR ¼ ð∂z þ 2A0s þ eAsm̃ÞψL; ð110Þ

and a similar system for their adjoints. Acting on the right
with the operator =∂ in (109) and (110), we obtain the
decoupled second-order differential equations,

□ψR=L ¼ −ð∂z þ 2A0s � eAsm̃Þð∂z þ 2A0s ∓ eAsm̃ÞψR=L:

ð111Þ

The general solutions for the left and right Dirac fields can
be written as

ψR=Lðx; zÞ ¼
Z

d4q eiq·xFR=Lðq; zÞαR=LðqÞ; ð112Þ

where FR=Lðq; zÞ are the bulk to boundary propagators in
momentum space for the right and left chiralities whilst
αR=LðqÞ are left and right spinorial sources in the 4D field
theory. Plugging (112) into (111), we obtain the equation
for the bulk to boundary propagator,

½∂2z þ 4A0s∂z þ 2A00s þ 4A02s ∓ ∂zðeAsm̃Þ − e2Asm̃2

þQ2�FR=L ¼ 0; ð113Þ

where Q ¼
ffiffiffiffiffiffiffiffi
−q2

p
.

Alternatively, we can expand the right and left Dirac
fields in terms of 4D modes as follows:
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ψR=Lðx; zÞ ¼
X
n

fnR=LðzÞαnR=LðxÞ: ð114Þ

The 4D modes αnR=LðxÞ satisfy the coupled equations,

=∂αnR=L ¼ mNnαnL=R; ð115Þ

which are equivalent to the Dirac equation,

ð=∂ −mNnÞαn ¼ 0; ð116Þ

for the 4D Dirac spinor modes αnðxÞ ¼ αnRðxÞ þ αnLðxÞ.
Using these results in (109), we find that the norma-
lizable modes fnR=Lðq; zÞ obey the system of coupled
equations,

ð∂z þ 2A0s ∓ eAsm̃ÞfnR=L ¼ ∓mNn fnL=R: ð117Þ

The second order decoupled equations for these normal-
izable modes take the form,

½∂2z þ 4A0s∂z þ 2A00s þ 4A02s ∓ ∂zðeAsm̃Þ − e2Asm̃2

þm2
Nn �fnR=L ¼ 0: ð118Þ

Note that the Eq. (118) can be thought as the eigenvalue
equations associated with the bulk to boundary propagator
satisfying Eq. (113).
In Sec. IV E, we will apply the Sturm-Liouville theory to

the Eq. (113) in order to arrive at a spectral decomposition
for the bulk to boundary propagator, and in Sec. IV F, we
will obtain the spectral decomposition of the 4D nucleon
correlator. In Sec. IVG, we will use the Eq. (118) to find
the spectrum of nucleons. But first, we will obtain in the
following two subsections the VEV of the 4D nucleon
operator as well as the dictionary for the nucleon correlator
in terms of the bulk to boundary propagator.

C. VEV of the 4D nucleon operator

In this subsection, we obtain the holographic dictionary
for the VEVof the right projection of the nucleon operator,
namely,

hORðxÞi ¼ PRhOðxÞi; ð119Þ

from the 5D action. The key observation is that this
operator couples to a left spinorial source αLðxÞ asZ

d4xðᾱLðxÞhORðxÞi þ c:c:Þ: ð120Þ

The 4D spinorial source αLðxÞ will appear as the leading
term coefficient in the small z (UV) expansion of the 5D
left spinor field ψLðx; zÞ. As described at the beginning
of the section, the nucleon operator hORðxÞi has conformal

dimension Δ. We will consider the cases Δ ¼ 9=2
(canonical dimension) and Δ ¼ 7=2 (including anomalous
dimension). The 4D source αLðxÞ have conformal dimen-
sion 4 − Δ.
Let us start with the variation of the action,

δSF ¼ δSbulk þ δSBdy; ð121Þ

where

δSBulk ¼ GF

Z
d5xðie4Asδψ̄ðΓâ

∂â þ 2A0sΓẑ − m̃eAsÞψ

þ c:c:Þ ¼ 0; ð122Þ

and

δSBdy ¼ GF

Z
d5x∂â

�
−
i
2
e4Asδψ̄Γâψ þ c:c:

�
þ δðΔSÞ:

ð123Þ

Imposing periodic boundary condition in the xμ coordinates
and using the property that the spinor field solution decays
fast enough at z → ∞ vanishes, the on shell variation
reduces to

δSF ¼ GF

Z
d4x

�
i
2
e4Asδψ̄Γẑψ þ c:c:

�
z¼ϵ
þ δðΔSÞ:

ð124Þ

Decomposing the Dirac spinor in their chiralities, we obtain

δSF ¼ GF

Z
d4x

�
i
2
e4Asδψ̄LψR −

i
2
e4Asδψ̄RψL

�
z¼ϵ

þ c:c:þ δðΔSÞ: ð125Þ

The left and right chiralities of the Dirac field are coupled,
which means that it is impossible to fix them simulta-
neously. As a result, we need to select one of the chiralities.
In order to fix the left component, we define the surface
term ΔS as

ΔS ¼ GF

Z
d4x

� ffiffiffiffiffiffi
−γ
p i

2
ψ̄ψ

�
z¼ϵ

¼ GF

Z
d4x

�
i
2
e4Asðψ̄LψR þ ψ̄RψLÞ

�
z¼ϵ

: ð126Þ

Varying this surface term, we obtain

δðΔSÞ ¼ GF

Z
d4x

�
i
2
e4Asðδψ̄LψR þ δψ̄RψLÞ

�
z¼ϵ
þ c:c:

ð127Þ
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Plugging (127) into (125), we obtain the final result for the
variation of the action,

δSF ¼ GF

Z
d4xðie4Asδψ̄LψRÞz¼ϵ þ c:c:

¼
Z

d4xðδψ̄LΠR þ Π̄RδψLÞz¼ϵ; ð128Þ

where we introduced the conjugate momenta,

ΠR ¼ iGFe4AsψR; Π̄R ¼ iGFe4As ψ̄R: ð129Þ

Note from (128) that fixing the left spinor at the boundary is
now consistent with the variational principle. Solving at
small z (near the AdS boundary), the second order differ-
ential equations (111) for the left and right components, we
find

ψLðx; zÞ ¼ αLðxÞz2−m þ � � � þ βLðxÞz3þm þ…;

ψRðx; zÞ ¼ αRðxÞz3−m þ � � � þ βRðxÞz2þm þ…; ð130Þ

wherem is the constant mass which is the asymptotic value
of the 5D mass coupling m̃ðzÞ in the limit z → 0 (near the
AdS boundary). The 4D spinors αLðxÞ and αRðxÞ are the
source coefficients associated with the non-normalizable
sector of the 5D spinors ψLðx; zÞ and ψRðx; zÞ, respectively.
The 4D spinors βLðxÞ and βRðxÞ are the VEV coefficients
corresponding to the normalizable sector of the 5D spinors
ψLðx; zÞ and ψRðx; zÞ, respectively.
As described above, we take αLðxÞ as the only inde-

pendent 4D source. Note that it has conformal dimension
2þm since the 5D spinor has conformal dimension zero
near the AdS boundary. This source couples to the operator
OR of conformal dimension Δ ¼ 2þm so we can find the
VEV of this operator using the holographic dictionary.
From the action variation in (128), we obtain

hORi ¼
δSF
δᾱL
¼ ðz2−mΠRÞz¼ϵ

¼ iGFðz2−me4AsψRÞz¼ϵ: ð131Þ

Using (110), we can write the result in (131) in terms of the
left spinor,

hORi ¼ iGF

�
z2−me4As

∂

∂
2
ð∂z þ 2A0s þ eAsm̃ÞψL

�
z¼ϵ

:

ð132Þ

The VEV, according to the results (131) and (132), is the
one-point function in the presence of the 4D source ᾱL. In
the next subsection, we will obtain the two-point function
of the nucleon operator from the bulk to boundary
propagator and will find a relation with the VEV.

D. The on shell action, the bulk to boundary
propagator, and the two point function

The on shell and the bulk to boundary propagator of the
Dirac field allow us to obtain the VEV and the two-point
function for nucleons. Our starting point is the Dirac action
in (103) with the additional surface term given in (126).
Evaluating this action on shell, we obtain

So−sF ¼ So−sBulk þ So−sBdy; ð133Þ

where the bulk action is given by

So−sBulk ¼ GF

Z
d5x e4As

�
i
2
ψ̄ð−2A0sΓẑ þ eAsm̃Þψ

−
i
2
ψ̄ð−2A0sΓẑ − eAsm̃Þψ − ieAsm̃ ψ̄ ψ

�
¼ 0;

ð134Þ
and the boundary action is

So−sBdy

¼ΔSo−s¼GF

Z
d4x

�
i
2
e4As ψ̄LψRþ c:c:

�
z¼ϵ

¼GF

Z
d4x

�
i
2
e4As ψ̄L

=∂
∂
2
ð∂zþ2A0sþeAsm̃ÞψLþ c:c:

�
z¼ϵ

:

ð135Þ

Note that in (134) we used the Eqs. (104) and (105) for the
Dirac field and in (135), we used (110).
The bulk to boundary propagator written in coordinate

space can be expressed by the following relation:

ψLðz; xÞ ¼
Z

d4yFLðz; x; yÞαLðyÞ; ð136Þ

where ψLðz; xÞ is the left component of the Dirac field in
5D, FLðz; x; yÞ is a real scalar representing bulk to
boundary propagator, and αLðyÞ is the 4D left spinorial
source. Substituting (136) in (134) and (135), the on shell
action becomes

So−sF ¼ GF

Z
d4x

Z
d4y

�
i
2
ᾱLðxÞ

�
z2−me4As

=∂x−y
∂
2
ð∂z þ 2A0s þ eAsm̃ÞFLðz; x; yÞ

�
z¼ϵ

αLðyÞ þ c:c:

�
; ð137Þ

where we also used the asymptotic behavior (130).
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Note that the VEV in (132) can be written in terms of the bulk to boundary propagator as

hORðxÞi ¼ iGF

Z
d4y

�
z2−me4As

=∂x−y
∂
2
ð∂z þ 2A0s þ eAsm̃ÞFLðz; x; yÞ

�
z¼ϵ

αLðyÞ: ð138Þ

Varying the on shell action, we obtain

δSo−sF ¼
Z

d4xðδᾱLðxÞhORðxÞi þ c:c:Þ; ð139Þ

as expected. Varying once more, we obtain the two-point function,

ΓRðx − yÞ ¼ hORðxÞŌRðyÞi ¼
δSo−sF

δᾱLðxÞδαLðyÞ
¼ PR

δhŌRðyÞi
δᾱLðxÞ

¼ iGFPR
=∂x−y
∂
2
ðz2−me4Asð∂z þ 2A0s þ eAsm̃ÞFLðz; x; yÞÞz¼ϵ: ð140Þ

The relation between the one-point and two-point
functions is

hORðxÞi ¼
Z

d4yΓRðx − yÞαLðyÞ: ð141Þ

The Eq. (136) can be written in momentum space as

ψLðz; qÞ ¼ FLðz; qÞαLðqÞ: ð142Þ

The VEV (138) in momentum space takes the form,

hORðqÞi ¼ ΓRðqÞαLðqÞ; ð143Þ

where

ΓRðqÞ ¼ −GFPR
=q
Q2

× ðz2−me4Asð∂z þ 2A0s þ eAsm̃ÞFLðz; qÞÞz¼ϵ:
ð144Þ

We end this subsection fixing the coupling constantGF that
characterizes the 5D Dirac action. In order to do that, we
evaluate the correlator (144) in the limit, q2 → ∞ (UV). In
this limit, the 4D theory becomes conformal and the bulk to
boundary propagator can be approximated by the (analyti-
cal) solution corresponding to 5D AdS space. For m half-
integer, we find that

ΓRðqÞ ¼ GFamPR=qq2m−1 ln q2; ð145Þ

where

am ¼
ð−1Þm−1=2

22mΓðmþ 1=2Þ2 : ð146Þ

For m ¼ 5=2, we have Δ ¼ 9=2, which is the canonical
dimension of the nucleon operator. In this case, we can
compare against the perturbative QCD result [61],

ΓRðqÞ ¼
1

64π4
PR=qq4 ln q2 ðperturbativeQCDÞ; ð147Þ

and obtain

GF ¼
2

π4
: ð148Þ

In the following subsections, we will obtain a spectral
decomposition for the bulk to boundary propagator using
Sturm-Liouville theory. From this result, we will finally
obtain the spectral decomposition of the nucleon correlator.
The spectrum of nucleons then will be obtained from
the eigenvalue problem and the nucleon decay constants
will be extracted from the coefficients of the spectral
decomposition.

E. Spectral decomposition for the bulk
to boundary propagator

In this subsection, we will use Sturm-Liouville theory to
find a spectral decomposition for the bulk to boundary
propagator. We will proceed in a similar way as in the case
of vector mesons, described in Sec. III E.
We start writing the equation in (113) for the left bulk to

boundary propagator in the following form:

½ð∂z þ 4A0sÞ∂z þ θL þQ2�FLðq; zÞ ¼ 0; ð149Þ

where

θL ¼ 2A00s þ 4A02s þ ∂zðeAsm̃Þ − e2Asm̃2: ð150Þ

Rewriting (149) as
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½∂zðe4As∂zÞ þ e4AsθL þQ2e4As �FLðq; zÞ ¼ 0; ð151Þ

we identify this equation with the Sturm-Liouville
equation,

½LL þ λrðzÞ�yðzÞ ¼ fðzÞ; LL ¼ ∂zðpðzÞ∂zÞ − sLðzÞ;
ð152Þ

where

pðzÞ ¼ rðzÞ ¼ e4As ; sLðzÞ ¼ −e4AsθL;

λ ¼ Q2 and fðzÞ ¼ 0 ðhomogeneousÞ: ð153Þ

The Sturm-Liouville theory is briefly described in
Appendix A. The Green’s functionGLðz; z0Þ corresponding
to the nonhomogeneous case satisfies the equation,

½LL þ λrðzÞ�GLðz; z0Þ ¼ δðz − z0Þ: ð154Þ

Again, it is convenient to define an infinite set of eigen-
functions fnLðzÞ by the eigenvalue equation,

½LL þ λnrðzÞ�fnLðzÞ ¼ 0; ð155Þ

or

½∂zðe4As∂zÞ þ e4AsθL þ λne4As �fnLðzÞ ¼ 0; ð156Þ

where λn ¼ m2
Nn are the eigenvalues. Comparing this

equation with (118), we see that the Sturm-Liouville modes
are the normalizable modes in holographic QCD. These
modes satisfy the orthonormality condition,

Z
dz e4AsfmL ðzÞfnLðzÞ ¼ δmn; ð157Þ

and the Green’s function admits the following spectral
decomposition:

GLðz; z0Þ ¼
X
n

fnLðzÞfnLðz0Þ
q2 þm2

Nn

: ð158Þ

For more details, see Appendix A.
Multiplying both sides of (154) by FLðq; zÞ, integrating

over z and using (151), we obtain the relation between the
bulk to boundary propagator and the Green’s function,

FLðq; z0Þ ¼ ½e4AsðzÞðFLðq; zÞ∂zGLðz; z0Þ
− GLðz; z0Þ∂zFLðq; zÞÞ�∞z¼ϵ: ð159Þ

Assuming that FLðq; zÞ and GLðz; z0Þ vanish sufficiently
fast in the limit z → ∞ and using the spectral decom-
position (158), we obtain

FLðq; z0Þ ¼
X
n

fL;nðz0Þ
q2 þm2

Nn

½e4AsðzÞðFLðq; zÞf0L;nðzÞ

− fL;nðzÞF0Lðq; zÞÞ�z¼ϵ: ð160Þ

From (112) and (130), we see that FLðq; zÞ behaves as z2−m
at small z. Using also the asymptotic behavior for the warp
factor the Eq. (160) reduces to

FLðq; z0Þ ¼
X
n

fnmNn fL;nðz0Þ
q2 þm2

Nn

; ð161Þ

where we also used the coupled equations (117), and the
coefficients fn are defined as

fn ¼ ½z−2−mfR;nðzÞ�z¼ϵ: ð162Þ

In the next subsection, we will relate these coefficients
correspond to the nucleon decay constants. Lastly, it is easy
to show that the Sturm-Liouville modes satisfy the com-
pleteness relation,X

n

e4AsfL;nðzÞfL;nðz0Þ ¼ δðz − z0Þ: ð163Þ

For more details, see Appendix A. In the following
subsection, we will obtain the spectral decomposition for
the 4D nucleon correlator and show the compatibility with
the spectral decomposition expected in large Nc QCD.

F. The 4D nucleon correlator

In Sec. IV D, we obtained the holographic dictionary
(144) that relates the 4D nucleon correlator ΓRðqÞ to the 5D
bulk to boundary propagator FLðz; qÞ. In Sec. IV E, we
obtained the spectral decomposition (161) for the bulk to
boundary propagator. Then using (144) and (161), we
finally obtain the spectral decomposition for the nucleon
correlator,

ΓRðqÞ ¼ −PR
=q
Q2

X
n

λ2Nnm2
Nn

q2 þm2
Nn

; ð164Þ

where

λNn ¼
ffiffiffiffiffiffiffi
GF

p
fn ¼

ffiffiffiffiffiffiffi
GF

p
½z−2−mfR;nðzÞ�z¼ϵ; ð165Þ

and we also used the coupled equations (117). It is
interesting the correlator in (164) as

ΓRðqÞ ¼ −PR=q

�
1

Q2

X
n

λ2Nn þ
X
n

λ2Nn

q2 þm2
Nn

�
: ð166Þ

The first term in (166) diverges. This UV divergence is
expected since we have worked with the original on shell
action without introducing holographic renormalization.
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Subtracting this UV divergence, we obtain the renormal-
ized correlator,

Γren
R ðqÞ ¼ −PR=q

X
n

λ2Nn

q2 þm2
Nn

: ð167Þ

This final result (167) for the nucleon correlator is valid
for a general class of holographic QCD models based on
Einstein-dilaton gravity, and it is consistent with the
spectral decomposition (90) obtained in large Nc QCD.
The coefficients λNn defined in (165) are therefore iden-
tified with the nucleon decay constants.

G. Spectrum of nucleons

In this subsection, we obtain the spectrum of nucleons
solving the eigenvalue equation (118) for the normalizable
modes. Before doing that it is interesting to rewrite (118) as
Schrödinger equations and investigate the corresponding
Schrödinger potentials.
Using the Bogoliubov transformation,

fnR=LðzÞ ¼ e−2AsðzÞξnR=LðzÞ; ð168Þ

in (118), we obtain

½−∂2z þ VR=L�ξnR=L ¼ m2
NnξnR=L ð169Þ

where the Schrödinger potential VR=L are given by

VR=L ¼ �∂zðeAsm̃Þ þ ðeAsm̃Þ2: ð170Þ

Motivated by the Schrödinger potential potential behavior
of vector mesons (82), which is a combination of the warp
factor and dilation derivatives, we postulate the following
mass coupling for our model:

m̃ ¼ e−As

�
1

2
Φ0 −mA0s

�
: ð171Þ

The coefficients were fixed in order to recover on the one
hand the 5D constant mass m in the AdS limit, and on
the other hand, to guarantee a quadratic behavior for the
Schrödinger potential at large z compatible with the soft
wall model. The latter is a necessary requirement for
obtaining asymptotically linear Regge trajectories for the
nucleons, i.e., m2

n ∼ n at large n.6

Figure 7 shows the results for the Schrödinger potentials
VR (left panel) and VL (right panel) for the nucleons in the
casem ¼ 3=2. The blue and red lines represent the results for
theEinstein-dilatonmodels I and II, respectively,whereas the
black dashed lines represent the results for the soft wall
model. Figure 8 shows the results for the Schrödinger
potentials in the case m ¼ 5=2. Note that the Schrödinger
potentials for the soft wall model present a minimum at a
higher value compared with the minima for the Einstein-
dilatonmodels I and II. Note that this effect is enhanced aswe
go from the case m ¼ 3=2 to the case m ¼ 5=2.

1. Asymptotic solution and numerical integration

To find the spectrum of nucleons, we need to solve the
eigenvalue equations (118) or equivalently, the Schrödinger
equations (169). As expected, the eigenvalues for the left
and right sector are the same since these two sectors are
coupled.
The eigenvalues and eigenfunctions are found numeri-

cally. For the numerical integration, we use for the initial
conditions the asymptotic solution at small z,

fnR ¼ Nn
Rz

2þm; fnL ¼ Nn
Lz

3þm: ð172Þ
The normaliztion constants Nn

R and Nn
L can be obtained

imposing the condition that the eigenfunctions ξnR and ξnL,
defined in (168), are normalized to 1. The numerical
integration is carried from small z to large z, where we
impose the asymptotic behavior,

lim
z→∞

ffiffiffi
z
p

ξnR=L ¼ 0: ð173Þ
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FIG. 7. Schrödinger potentials VR (left panel) and VL (right panel) for Einstein-dilaton models I and II (blue and red lines) and the soft
wall model (black dashed lines) in the case m ¼ 3=2.

6This can be easily checked using a WKB approximation.
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Using this shooting method we find the set of eigenvalues
mNn corresponding to the 4d nucleon masses.

2. Spectrum

In Tables III and IV, we present our results for the
nucleon masses for the Einstein-dilaton models I and II and
compare them against the soft wall model, the hard
wall model as well as the experimental results. Table III
displays the results when the conformal dimension is fixed
as Δ ¼ 7=2, whereas table IV corresponds to the case
Δ ¼ 9=2. The former takes into account the possible
contribution from the anomalous dimension whilst the
latter sets the anomalous dimension to zero. The results
for the soft wall model and the hard wall model were
obtained following [38] and [36] respectively. We briefly
review those works in Appendixes C and D.
From our analysis, we conclude that the Einstein-dilaton

model I provide the results that are closest to the exper-
imental data in both cases Δ ¼ 7=2 and Δ ¼ 9=2. This can
also be seen in Fig. 9 where we plot the squared masses of
the first six nucleon states as a function of the radial
excitation number for the Einstein-dilaton models I and II
(blue and red solid lines with dots) and the soft wall model
(black dashed line with dots). As expected, the Regge

trajectories in the Einstein-dilaton models I and II are
approximately linear whilst the Regge trajectory in the soft
wall model is exactly linear.

H. Wave functions and nucleon decay constants

Figures 10 and 11 display the normalized eigenfunctions
fnRðzÞ and fnLðzÞ, representing the nucleon states, for the
cases Δ ¼ 7=2 (m ¼ 3=2) and Δ ¼ 9=2 (m ¼ 5=2),
respectively. The blue and red solid lines correspond to
Einstein-dilaton models I and II, respectively, whilst the
black dashed line represents the soft wall model. These
results confirm that the first nucleon masses obtained in the
previous subsection correspond to the fundamental state
and the first excited states.
Previously in this section, we obtained the holographic

dictionary for the nucleon decay constants (165). We can
finally evaluate this formula using the normalized eigen-
functions and obtain

λNn ¼
ffiffiffiffiffiffiffi
GF

p
½z−2−mfR;nðzÞ�z¼ϵ ¼

ffiffiffiffiffiffiffi
GF

p
Nn

R; ð174Þ

where Nn
R is the normalization constant in the right sector.

The coupling constant GF in the fermionic sector was
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FIG. 8. Schrödinger potentials VR (left panel) and VL (right panel) for Einstein-dilaton models I and II (blue and red lines) and the soft
wall model (black dashed lines) in the case m ¼ 5=2.

TABLE III. Nucleon masses divided by the mass of the ρ0
meson in the case Δ ¼ 7=2 (m ¼ 3=2) in the Einstein-dilaton
models, the soft wall model, and the hard wall model compared
against the experimental results from PDG [58]. The numerical
error in our computations of mass ratios in Einstein-dilaton
models I and II was of the order of 10−6.

Ratio Model I Model II
Soft
wall

Hard
wall Experimental [58]

mN0=mρ0 0.987 0.988 1.414 1.593 1.209� 0.002
mN1=mρ0 1.623 1.339 1.732 2.917 1.856� 0.039
mN2=mρ0 2.053 1.613 2 4.23 2.204� 0.039
mN3=mρ0 2.403 1.847 2.236 5.54 2.423� 0.065
mN4=mρ0 2.707 2.054 2.449 6.849 2.706� 0.065

TABLE IV. Nucleon masses divided by the mass of the ρ0
meson in the case Δ ¼ 9=2 (m ¼ 5=2) in the Einstein-dilaton
models, the soft wall model, and the hard wall model compared
against the experimental results from PDG [58]. The numerical
error in our computations of mass ratios in Einstein-dilaton
models I and II was of the order of 10−6.

Ratio Model I Model II
Soft
wall

Hard
wall Experimental [58]

mN0=mρ0 0.896 0.952 1.732 2.136 1.209� 0.002
mN1=mρ0 1.593 1.314 2 3.5 1.856� 0.039
mN2=mρ0 2.04 1.595 2.236 4.832 2.204� 0.039
mN3=mρ0 2.399 1.833 2.449 6.153 2.423� 0.065
mN4=mρ0 2.708 2.043 2.646 7.468 2.706� 0.065
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already fixed in (148) in order to reproduce the perturbative
QCD result for the correlation function.
We display in Tables Vand VI our results for the nucleon

decay constants in the cases Δ ¼ 7=2 (m ¼ 3=2) and Δ ¼
9=2 (m ¼ 5=2), respectively. In the latter case, we also
present the result for the fundamental state in lattice QCD
obtained in [63] using a nucleon operator similar the one
presented in (87). Note that the Einstein-dilaton model I
and the soft wall model provide results that are closer to
lattice QCD. It is interesting to note that holographic QCD

models provide results for the excited nucleon states which,
as far as we are concerned, are not available in other
nonperturbative approaches. In particular, all the holo-
graphic QCD models predic that the nucleon decay con-
stants grow with the radial excitation number.

V. CONCLUSIONS

We have built in this paper a bottom-up holographic
QCD model that provides a unified description of vector
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FIG. 9. Left: dimensionless squared mass ratiosm2
Nn=m2

ρ0
in the caseΔ ¼ 7=2 (m ¼ 3=2) for nucleons in the Einstein-dilaton models I

and II (blue and red solid lines with dots) and the soft wall model (black dashed line with dots), compared against experimental data
(orange dots and error bars). Right: same as Left but this time Δ ¼ 9=2 (m ¼ 5=2).
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FIG. 10. Normalized wave functions Fn
RðzÞ (left panel) and Fn

LðzÞ (right panel) for the Einstein-dilaton models I (blue), II (red) and the
soft wall model (black dashed) for the case Δ ¼ 7=2 (m ¼ 3=2).
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FIG. 11. Normalized wave functions Fn
RðzÞ (left panel) and Fn

LðzÞ (right panel) for the Einstein-dilaton models I (blue), II (red) and the
soft wall model (black dashed) for the case Δ ¼ 9=2 (m ¼ 5=2).
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mesons and nucleons in a confining background based
on Einstein-dilaton gravity. Our model has three param-
eters: g25 associated with the two-point correlation
function in the vector meson sector, GF associated with
the two-point correlation function in the nucleon sector
and k the infrared mass scale associated with the
spectrum. We fixed g25 and GF using the perturbative
QCD results for the hadronic correlators in the high
energy regime. Since we worked with dimensionless
ratios for the hadronic masses and decay constants, we
did not need to fix the constant k.
To investigate the spectral decomposition of the hadronic

correlators and the associated decay constants, we applied
the Sturm-Liouville theory inspired by previous works
[15,26,27]. The Sturm-Liouville theory allowed us to find
spectral decompositions for the 5D bulk to boundary
propagators and the 4D correlation functions. We showed
that the latter are compatible with QCD in the large Nc
limit. We obtained a holographic dictionary for the had-
ronic decay constants that is valid for a general class of
holographic models based on Einstein-dilaton gravity. The
Sturm-Liouville also led naturally to the completeness
relation for the normalizable modes, identified as the
Sturm-Liouville modes.
We would like to remark that our model allows for a

clean description of the spectrum and decay constants of
nucleons and vector mesons in a confining background
based on Einstein-dilaton gravity. This improves previous
bottom-up approaches in many aspects. The results for the
vector meson and nucleon masses lie on approximate linear
Regge trajectories and are very close to experimental data.
The results for the vector meson and nucleon decay
constants provide a guide for future phenomenological
studies, in particular for the higher excited states. Below we
discuss some of the main results that are relevant to hadron
phenomenology.
In Table I, we presented our results for the spectrum of

vector mesons in terms of the ratio between the masses of
excited states, i.e., mρn with n ≥ 1, and the mass of the
ground state mρ0 for the Einstein-dilaton models I and II,
discussed in Sec. II. We compared our results with the
soft wall model, the hard wall model and experimental
data. We concluded that the Einstein-dilaton model I and
the soft wall model provide results that are the closest to
the experimental results. We presented our results for the
nucleon spectrum in Eintein-dilaton models I and II for the
cases Δ ¼ 7=2 and Δ ¼ 9=2 in Tables III and IV, respec-
tively. Our results for the nucleon spectrum were presented
in terms of the ratios between the masses of the nucleon
states mNn with n ¼ 0; 1;… (ground state and excited
states) relative to the mass of the vector meson ground state
mρ0 . We compared our results with the soft wall model, the
hard wall model and experimental data and concluded that
the Einstein-dilaton model I provide the best results
compared to experimental data.

In Table II, we presented our results for the vector meson
decay constants Fρn in terms of the dimensionless ratiosffiffiffiffiffiffiffi
Fρn

p
=mρ0 for n ¼ 0; 1;… (ground state and excited

states). We compared our results for the Einstein-dilaton
models I and II with the soft wall and hard wall model. For
the ground state case (n ¼ 0), we also compared against
the only available experimental data and concluded that
the hard wall model still provides the closest result. We
presented our results for the nucleon decay constants λNn

for the cases Δ ¼ 7=2 and Δ ¼ 9=2 in Tables V and VI,
respectively. The results were presented in terms of the
dimensionless ratios λNn=mα

ρ with α ¼ Δ − 3=2. For the
case Δ ¼ 9=2 (canonical dimension) and n ¼ 0 (nucleon
ground stated), we also compared against the lattice QCD
result and concluded that the Einstein-dilaton model I, and
the soft wall model provide results that are closer to lattice
QCD. It is important to remark that holographic QCD
models are capable of predicting the decay constants of
excited states. In particular, we noted that for both light
vector mesons and nucleons the decay constants increase
with the radial excitation number. We hope that in the
future, as more experimental results on hadronic decay
constants become available, these findings can be further
tested.

TABLE V. Nucleon decay constants λNn divided by mα
ρ0 with

α ¼ Δ − 3=2 ¼ mþ 1=2 in the case Δ ¼ 7=2 (m ¼ 3=2) in the
Einstein-dilaton models, the soft wall model, and the hard wall
model. The numerical error in our computations of λNn=mα

ρ0
in

Einstein-dilaton models I and II was of the order of 10−3.

Ratio Model I Model II Soft wall Hard wall

λN0=mα
ρ0

0.1108 0.09835 0.0507 0.1667

λN1=mα
ρ0

0.1302 0.1158 0.0716 0.4096

λN2=mα
ρ0

0.1519 0.1284 0.0877 0.7138

λN3=mα
ρ0

0.1708 0.1388 0.1013 1.069

λN4=mα
ρ0

0.1878 0.1478 0.1133 1.469

TABLE VI. Nucleon decay constants λNn divided by mα
ρ0 with

α ¼ Δ − 3=2 ¼ mþ 1=2 in the case Δ ¼ 9=2 (m ¼ 5=2) in the
Einstein-dilaton models, the soft wall model, and the hard wall
model. In this case, we also compare against the lattice QCD
result. The numerical error in our computations of λNn=mα

ρ0
in

Einstein-dilaton models I and II was of the order of 10−3.

Ratio Model I Model II
Soft
wall

Hard
wall Lattice QCD [63]

λN0=mα
ρ0

0.1055 0.158 0.01791 0.1414 0.05778� 0.0107

λN1=mα
ρ0

0.1201 0.1906 0.03102 0.4755 � � �
λN2=mα

ρ0
0.1462 0.2172 0.04387 1.058 � � �

λN3=mα
ρ0

0.172 0.2409 0.05664 1.931 � � �
λN4=mα

ρ0
0.1973 0.2627 0.06937 3.129 � � �
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A natural continuation of this work would be to inves-
tigate the spectrum and decay constants of the Delta
baryons that have spin and isospin 3=2 in the context of
holographic QCD models based on Einstein-dilaton grav-
ity. Some works have already been developed using the
hard wall model and the soft wall model [35,64,65]. We
also want to apply the Sturm-Liouville theory in that case to
obtain the spectral decomposition for the correlators of
Delta baryon operators. We are also interested in studying
the strong couplings between vector mesons and baryons,
the electromagnetic and the gravitational form factors. Last
but not least, we want to investigate the effects of chiral
symmetry breaking on the mass generation of nucleons and
vector mesons. We intend to develop these works in the
near future.
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APPENDIX A: STURM-LIOUVILLE THEORY
AND THE SPECTRAL DECOMPOSITION

The Sturm-Liouville theory can be described, for exam-
ple, by a nonhomogeneous one-dimensional second-order
differential equation [66,67],

d
dz

�
pðzÞ dy

dz

�
− sðzÞyþ λrðzÞy ¼ fðzÞ; ðA1Þ

where yðzÞ, pðzÞ, sðzÞ, rðzÞ, and fðzÞ are functions of z and
λ is a constant parameter. In the homogeneous case, we
takes fðzÞ ¼ 0 in (A1) equation. From the two first terms in
(A1), we can define the Sturm-Liouville operator,

L≡ d
dz

�
pðzÞ d

dz

�
− sðzÞ: ðA2Þ

This is a second-order self-adjoint operator with eigenvalue
λ. Rewriting the Eq. (A1) in terms of L, we have

½Lþ λrðzÞ�y ¼ fðzÞ: ðA3Þ

We will be particularly interested in the solution of the
homogeneous case fðzÞ ¼ 0, we will call this solution
y0ðzÞ. We can obtain the Green’s functions that satisfy (A3)
starting from

½Lþ λrðzÞ�Gðz; z0Þ ¼ δðz − z0Þ; ðA4Þ

where Gðz; z0Þ is the Green function that must obey some
boundary condition. We can expand the Green’s functions
into a series of eigenfunctions expressed as

Gðz; z0Þ ¼
X
n

anðz0ÞφnðzÞ: ðA5Þ

Plugging (A5) into (A4) and imposing the orthonormality
condition, Z

dzrðzÞφmðzÞφnðzÞ ¼ δmn; ðA6Þ

we have

anðz0Þ ¼
φnðz0Þ
λ − λn

: ðA7Þ

Substituting (A7) in (A5), we obtain the spectral decom-
position for the Green’s function,

Gðz; z0Þ ¼
X
n

φnðzÞφnðz0Þ
λ − λn

: ðA8Þ

The eigenfunctions obey the equation,

½Lþ λnrðzÞ�φnðzÞ ¼ 0: ðA9Þ

We can relate the homogeneous solution y0ðzÞ to the
Green’s function Gðz; z0Þ as follows. Multiplying both
sides of (A4) by y0ðzÞ, integrating by parts twice over z
and using the homogeneous equation for y0ðzÞ, we obtain

y0ðz0Þ ¼ ½rðzÞðy0ðzÞ∂zGðz; z0Þ −Gðz; z0Þ∂zy0ðzÞÞ�z¼zfz¼zi :

ðA10Þ

Note that this result has the form of a Wronskian in the z
variable for the functions y0ðzÞ and Gðz; z0Þ. The limits of
integration zi and zf depend on the boundary conditions of
the problem.
Plugging the spectral decomposition (A8) into (A10), we

find the expansion,

y0ðz0Þ ¼
X
n

φnðz0Þ
λ−λn

½rðzÞðy0ðzÞ∂zφnðzÞ−φnðzÞ∂zy0ðzÞÞ�z¼zfz¼zi

≡X
n

αnφnðz0Þ: ðA11Þ

Using the orthonormality condition, we haveZ
dz rðzÞφmðzÞy0ðzÞ ¼ αm: ðA12Þ

From (A11) and (A12), we obtain

y0ðz0Þ ¼
X
n

�Z
dz rðzÞφnðzÞy0ðzÞφnðz0Þ

�
ðA13Þ
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¼
Z

dz y0ðzÞ
�X

n

rðzÞφnðzÞφnðz0Þ
�

ðA14Þ

¼
Z

dz δðz − z0Þy0ðzÞ: ðA15Þ

In this way, we find the completeness relation,X
n

rðzÞφnðzÞφnðz0Þ ¼ δðz − z0Þ: ðA16Þ

APPENDIX B: THE PROCA FIELD
PROPAGATOR

In this appendix, we briefly discuss the Proca field with
an additional term that acts as a Lagrange multiplier; see,
for example, [68,69].
Consider the Proca Lagrangian for a massive spin 1

particle in four dimensions,

L ¼ −
1

4
ðFμνÞ2 þ

1

2
m2A2

μ −
1

2

�
1 −

1

χ

�
ð∂μAμÞ2; ðB1Þ

where

Fμν ¼ ∂μAν − ∂νAμ; ðB2Þ

being Fμν the field strength usual, Aμ is the gauge field,m is
the mass and χ the Lagrange multiplier. The equations of
motions obtained from (B1) written in momentum space
takes the form,

�
ημνðk2 þm2Þ −

�
1 −

1

χ

�
kμkν

�
Aμ ¼ 0: ðB3Þ

To obtain the two-point correlation function, let us write the
above operator in (B3) as

ημνðk2þm2Þ− kμkνþ 1

χ
kμkν

¼
�
ημν−

kμkν

k2

�
ðk2þm2Þþ

�
kμkν

k2

�
1

χ
ðk2þ χm2Þ: ðB4Þ

The Proca propagator is obtained by inverting the terms that
multiply the projectors in (B4),

hAμðkÞAνð−kÞi ¼ −i
k2þm2

�
ημν −

kμν

k2

�
þ −iχ
k2þ χm2

�
kμkν

k2

�
ðB5Þ

¼ −i
k2 þm2

�
ημν −

kμkν

k2 þ χm2
ð1þ χÞ

�
: ðB6Þ

From the result (B6) above, we can take some limits. For
χ ¼ 0, we have

hAμðkÞAνð−kÞijχ¼0 ¼
−i

k2 þm2

�
ημν −

kμkν

k2

�
: ðB7Þ

For χ → ∞,

hAμðkÞAνð−kÞijχ¼0 ¼
−i

k2 þm2

�
ημν −

kμkν

m2

�
: ðB8Þ

Lastly, for χ ¼ −1,

hAμðkÞAνð−kÞijχ¼0 ¼
−iημν

k2 þm2
: ðB9Þ

APPENDIX C: VECTOR MESONS AND
NUCLEONS IN THE SOFT WALL MODEL

The soft wall model, initially proposed in the seminal
paper by Karch et al. [17], has been demonstrated to
effectively capture the Regge trajectories of various par-
ticles, including vector mesons and nucleons. In order to
break the conformal symmetry, the soft wall model
incorporates a dilaton field ΦðzÞ into its action. In this
appendix, we provide a succinct overview of the field
equations, normalizable solutions, spectrum, and decay
constants of vector mesons and nucleons within the
framework of the soft wall model.

1. Vector mesons

In Sec. III, we study the vector mesons using the
Einstein-dilaton model. We can get the vector meson results
for the soft wall model from the equations of the Einstein-
dilaton model by considering the AdS limit. We start with
the Eq. (44),

½∂z þ A0s −Φ0�∂zV μ̂;a
⊥ − q2V μ̂;a

⊥ ¼ 0: ðC1Þ

In the soft wall, the warp factor is As ¼ − ln z and the
dilaton remains quadratic, Φ ¼ kz2. For simplicity, let us
consider k ¼ 1 in our equations. It is convenient to write the
vector field as V μ̂;a

⊥ ¼ ημ̂⊥vðq2; zÞ where ημ̂⊥ is a transverse
polarisation vector, i.e., qμ̂η

μ̂
⊥ ¼ 0. Writing the vector field

this way, the above equation reduces to

½z2∂2z − ð1þ 2z2Þz∂z�v − q2z2v ¼ 0: ðC2Þ

This differential equation has an analytical solution that can
be written as
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vðQ; zÞ ¼ c1 z2U

�
1 −

Q2

4
; 2; z2

�

þ c2 z2M

�
1 −

Q2

4
; 2; z2

�
; ðC3Þ

where Q ¼
ffiffiffiffiffiffiffiffi
−q2

p
, c1 and c2 are constant coefficients

whereas Uða; b; xÞ and Mða; b; xÞ are the Tricomi and
Kummer confluent hypergeometric functions. To guarantee
the regularity of the solution far from the boundary, we
must take c2 ¼ 0. In this way, the solution reduces to the
Tricomi function,

vðQ; zÞ ¼ c1z2U

�
1 −

Q2

4
; 2; z2

�
: ðC4Þ

In order to obtain the normalizable solution the first
argument of the Tricomi function in (C4) has to be −n
with n a non-negative integer. This leads to the spectrum of
the vector mesons,

m2
vn ¼ 4ðnþ 1Þ with n ¼ 0; 1; 2; 3;… ðC5Þ

The normalizable solutions take the form,

vnðzÞ ¼ Nvnz2L1
nðz2Þ with n ¼ 0; 1; 2; 3;… ðC6Þ

where Lk
nðxÞ are the associated Laguerre polynomials and

Nvn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
ðC7Þ

are the normalization constants that can be obtained using
the condition, Z

dz eAs−Φv2n ¼ 1: ðC8Þ

For small z (near the boundary) the normalizable solution
takes the form,

vnðzÞ ¼ c2;nz2 þ c4;nz4 þ…; ðC9Þ
where

c2;n ¼ ðnþ 1ÞNvn and c4;n ¼ −
1

2
nðnþ 1ÞNvn

¼ −
n
2
c2;n: ðC10Þ

The decay constants can be obtained from (78) considering
As ¼ − ln z, reproducing the results of [27,56]

fvn ¼
1

g5
½eAs−Φ∂zvnðzÞ�z→0 ¼

2c2;n
g5
¼ 2ðnþ 1ÞNvn

g5

¼ 1

g5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðnþ 1Þ

p
: ðC11Þ

2. Nucleons

In this appendix, we obtain the results for the soft wall
model as a particular case of the results of Sec. IV for the
Einstein-dilaton models. The starting point is the Eq. (113)
given by

½∂2z þ 4A0s∂z þ 2A00s þ 4A02s ∓ ∂zðeAsm̃Þ
− e2Asm̃2 þQ2�FR=L ¼ 0: ðC12Þ

Considering the warp factor as As ¼ − ln z and m̃ ¼ mþΦ
withΦ ¼ kz2, we obtain the equation for the soft wallmodel,

½ðz∂zÞ2− 5z∂zþ 6þ z2ðQ2 ∓ kÞ�−ðmþ kz2Þ2�FR=L ¼ 0:

ðC13Þ
Again, for simplicity, we will take k ¼ 1. The general
solution of this equation that is regular at large z (far from
the boundary) takes the form,

FRðzÞ ¼ e−z
2=2ðz2Þ1þm

2

�
d1U

�
mþ 1

2
−
Q2

4
; mþ 1

2
; z2

��
;

FLðzÞ ¼ e−z
2=2ðz2Þ32þm

2

�
c1U

�
mþ 1

2
−
Q2

4k
;mþ 3

2
; z2

��
;

ðC14Þ
where d1 and c1 are constant coefficients. By arguments
similar to the previous section, the spectrum of nucleons is
given by

m2
Nn ¼ 4nþ 4mþ 2; n ¼ 0; 1; 2; 3;…; ðC15Þ

where m is usually chosen as m ¼ 3=2 (Δ ¼ 7=2) or m ¼
5=2 (Δ ¼ 9=2). The normalizable solutions are expressed by

fnR=LðzÞ ¼ NR=Le−z
2=2z5=2þðm∓1=2ÞLm∓1=2

n ðz2Þ; ðC16Þ
with the normalization constants,

NR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Γðnþ 1Þ
Γðnþmþ 1=2Þ

s
; NL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

Γðnþmþ 3=2Þ

s
;

ðC17Þ
obtained from the normalization condition,Z

dz e4AðzÞfmR=LðzÞfnR=LðzÞ ¼ δmn: ðC18Þ

Using the holographic dictionary (165), the nucleon decay
constants in the soft wall model take the form,

λNn ¼
ffiffiffiffiffiffiffi
GF

p
fn ¼

ffiffiffiffiffiffiffi
GF

p
½z−2−mfR;nðzÞ�z¼ϵ

¼
ffiffiffiffiffiffiffi
GF

p
NRL

m−1=2
n ð0Þ ¼ 2

ffiffiffiffiffiffiffi
GF
p

NRΓðmþ 1=2Þ ; ðC19Þ

which is compatible with [38].
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APPENDIX D: VECTOR MESONS AND
NUCLEONS IN THE HARD WALL MODEL

In the context of holographic QCD models in the
bottom-up approach, the hard wall model is the pioneer.
This model was proposed by Polchinski and Strassler in the
study of glueball scattering in the fixed angle regime [13].
Further investigations of glueballs [14], mesons, and chiral
symmetry breaking [15] showed that the hard wall model
constitutes a very good toy model for investigating had-
ronic physics. The model consists of cutting the AdS
space limiting the holographic coordinate to the region 0 <
z ≤ z0 and imposing boundary conditions for the 5D fields.
By slicing the AdS space, the conformal symmetry is
broken, and this allows a mass gap to be generated. In
this appendix, we briefly review the field equations and
solutions, the spectrum and the decay constants for the case
of vector mesons and nucleons.

1. Vector mesons

In order to describe vector mesons in the hard wall
model, we consider As ¼ − ln z and Φ ¼ 0 in Eq. (44) and
take the vector field as V μ̂;a

⊥ ¼ ημ̂⊥vðq2; zÞ. This reduces the
equation to

½z2∂2z − z∂z�v − q2z2v ¼ 0: ðD1Þ
This differential equation has analytical solutions, that can
be written as

vðQ; zÞ ¼ z½c1J1ðQzÞ þ c2Y1ðQzÞ�; ðD2Þ
where JmðxÞ and YmðxÞ are Bessel functions of the first and
second kind, respectively, and Q ¼

ffiffiffiffiffiffiffiffi
−q2

p
. The normal-

izable solution is given by

vnðzÞ ¼ NvnzJ1ðQnzÞ: ðD3Þ
The spectrum of the vector mesons can be obtained by
imposing a Neumann boundary condition at the hard wall
z ¼ z0. For simplicity, we will work in units where z0 ¼ 1.
The condition at the hard wall becomes

J0ðQnÞ ¼ 0; ðD4Þ
and the spectrum is given by

mVn ¼ Qn ¼ j0;n n ¼ 1; 2;…; ðD5Þ
where j0;n are zeros of the Bessel function J0ðxÞ. The
behavior of the normalizable solution for small z is

vnðzÞ ¼ c2;nz2 þ c4;nz4 þ…; ðD6Þ

where we can identify the coefficients as

c2;n ¼
1

2
NvnQn; c4;n ¼ −

Q2
n

8
c2;n: ðD7Þ

Using the orthonormality condition,Z
z0

0

dz eAsvmvn ¼ δmn; ðD8Þ

we obtain the normalization constant,

Nvn ¼
ffiffiffi
2
p

J1ðj0;nÞ
: ðD9Þ

The holographic dictionary for the decay constants can be
written as, see, for instance, [26,56],

fvn ¼
1

g5
½eAs∂zvnðzÞ�z→0 ¼

2c2;n
g5
¼ NvnQn

g5
: ðD10Þ

2. Nucleons

The nucleons can be described in the hard wall model
from (113) considering As ¼ − ln z and Φ ¼ 0, thus
m̃ ¼ m. In this way, the Eq. (113) reduces to

fðz∂zÞ2 − 5z∂z þ 6�m −m2 þQ2z2gFR=L ¼ 0; ðD11Þ

whose solution is

FR=LðzÞ ¼ c1z5=2Jm∓1
2
ðQzÞ þ c2z5=2Ym∓1

2
ðQzÞ: ðD12Þ

The normalizable solutions are given by

fnR=LðzÞ ¼ Nn
R=Lz

5=2Jm∓1
2
ðQnzÞ: ðD13Þ

Again, we will work fix the hard wall position as z0 ¼ 1 for
simplicity. In the hard wall model, there are two possible
boundary conditions for the normalizable solutions in the
nucleon sector, fixing either fnR (model I) or fnL (model I)
at the hard wall. We will be interested only in model I
because the model II allows for a zero mode not present in
the nucleon spectrum [36,38]. Fixing fnR at the hard wall
z ¼ z0, we obtain

Jm−1
2
ðQnÞ ¼ 0: ðD14Þ

The spectrum of nucleons becomes

Qn ¼ j1;n when m ¼ 3=2; ðD15Þ

Qn ¼ j2;n when m ¼ 5=2; ðD16Þ

where j1;n and j2;n are zeros of the Bessel functions J1ðxÞ
and J2ðxÞ, respectively. The normalization condition is
given by Z

dz e4AsfmR=LðzÞfnR=LðzÞ ¼ δmn: ðD17Þ

Using this condition, we find the normalization constants,
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NR=L ¼
ffiffiffi
2
p

Jmþ1
2
ðQnÞ

: ðD18Þ

Using the holographic dictionary (165), we find for the
hard wall model that

λNn ¼
ffiffiffiffiffiffiffi
GF

p
½z−2−mfR;nðzÞ�z¼ϵ¼

ffiffiffiffiffiffiffi
GF

p
NR=L

21=2−mQm−1=2
n

Γðmþ1=2Þ ;

ðD19Þ

which is compatible with [38].
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