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Building on recent advances in studying the cohomological properties of Feynman integrals, we
apply intersection theory to the computation of Fourier integrals. We discuss applications pertinent to
gravitational bremsstrahlung and deep inelastic scattering in the saturation regime. After identifying the
bases of master integrals, the latter are evaluated by means of the differential equation method. Finally, new
results with exact dependence on the spacetime dimension D are presented.
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I. INTRODUCTION

In recent years, monumental efforts have been invested
in developing tools for evaluating Feynman integrals in
particle physics. Modern state-of-the-art computations face
the challenge of applying integration-by-parts (IBP)
decompositions [1,2] in the most efficient way possible.
IBP identities are relations among Feynman integrals
sharing a common set of denominators, appearing with
different propagator powers (irreducible scalar products in
the numerator can be dealt with as denominators with
negative powers). These allow for the decomposition of any
Feynman integral in terms of a finite spanning set of
simpler and linearly independent integrals, often referred to
as master integrals. The decomposition into master inte-
grals is fundamentally a matter of linear algebra, and
several publicly available computer programs can effi-
ciently execute it [3–11].
When recognized as twisted periods, Feynman integrals

can alternatively be decomposed into master bases by
making use of concepts and computing tools of de

Rham twisted cohomology theory [12–15], as first proposed
in [16–19].
Within this framework, integrals are considered as

pairings of regulated integration domains and differential
n-forms, known as twisted cycles and cocycles respec-
tively, which are elements of isomorphic vector spaces,
equipped with inner products, called the intersection
numbers. The intersection number can be used to derive
the decomposition of Feynman integrals in terms of master
integrals by projections, as an alternative to the system-
solving procedure underpinning IBP decompositions.
Although the most recent applications of intersection

theory have dealt with Feynman integrals [17–31], the
method is rather general, and the range of its applications
can be extended to a much wider class of cases, relevant for
physical and mathematical studies (see, e.g., [32–35]).
In this paper, we propose an intersection theory–based

approach to the evaluation of dimensionally regularized
Fourier transforms, herein referred to as Fourier integrals.
Indeed, as is the case for any Feynman integral, express-

ing any Fourier integral in Baikov representation [36]
enables its identification as a twisted period. Thus, relations
between Fourier integrals and, in particular, their decom-
positions into a common master integral basis, can be
obtained directly from intersection numbers. Moreover,
intersection theory can be used to derive the system of
differential equations satisfied by the master Fourier inte-
grals, which can be solved analytically (when possible)
similarly to Feynman integrals. [37–40].
To illustrate our method, we identify three cases of

physical interest, requiring the evaluation of certain types
of dimensionally regulated Fourier integrals: (A) the scalar
(Feynman) propagator in position space, (B) the tree-level
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gravitational spectral waveform, and Sec. III C color dipole
scattering in high-energy QCD. In each of the considered
cases, intersection numbers are used to build linear rela-
tions and differential equations for the associated master
integrals in Baikov representation. Once the systems of
differential equations are obtained, the solutions are sys-
tematically derived, provided there is an appropriate set of
boundary conditions. Using this approach, we present new,
closed-form formulas for D-dimensional Fourier integrals
relevant to cases (B) and (C).
From a mathematical point of view, our results offer a

generalization of the studies carried out on confluent
hypergeometric integrals [14,15], involving intersection
numbers between 1-forms, to cases where the evaluation
of intersection numbers for n-forms is required.
This paper is organized as follows. In Sec. II we provide

the necessary background on intersection theory and out-
line its application to Fourier integrals. The method is then
applied in Sec. III, using the three cases of study [(A), (B)
and (C)] mentioned above. For (B) and (C), a minimal
physics background is provided for the reader’s conven-
ience. In Sec. IV, we present our conclusions and an
outlook. The four Appendices contain the derivation of
the Baikov representation for Fourier integrals, and aux-
iliary formulas recalled in the text.

II. FOURIER INTEGRALS AND
INTERSECTION THEORY

In this section, we provide some background material on
intersection theory and describe how it can be applied to
dimensionally regularized Fourier integrals [16–19].
Twisted cohomology We consider instances of twisted

period integrals, which generically take the form

I ¼
Z
CR

uðzÞφLðzÞ; ð1Þ

where the twist uðzÞ is a multivalued function, φLðzÞ is an
algebraic differential n-form and CR is a contour of
integration.1 The latter is defined such that uðzÞ vanishes
on its boundary: uðzÞ ¼ 0 for any z∈ ∂CR. This condition
on u together with Eq. (1) give an equivalence relation
between differential forms

φL ∼ φL þ∇ωξ; ð2Þ

where ξ is a differential (n − 1)-form and

∇ω ¼ dþ ω ∧ with ω ¼ d logu: ð3Þ

The collection of all the equivalence classes forms the
twisted cohomology group Hn

ω.
2 This group is always

finite-dimensional and forms a vector space [17]. We
denote an element by

hφLj∈Hn
ω: ð4Þ

As for any other finite-dimensional vector space, there
exists a dual vector space Hn

−ω, denoted by

Hn
−ω ∋ jφRi: ð5Þ

Using these definitions, we write the (dual) integrals in
Eq. (1) as a pairing between a (dual) cycle and a (dual)
cocycle

I ¼
Z
CR

uðzÞφLðzÞ ¼ hφLjCR�; ð6aÞ

Ǐ ¼
Z
CL

uðzÞ−1φRðzÞ ¼ ½CLjφRi: ð6bÞ

Basis of master integrals We can formally define bases for
Hn

ω and its dual Hn
−ω as

spanfhe1j;…; heνjg ¼ Hn
ω; ð7aÞ

spanfjě1i;…; jěνig ¼ Hn
−ω; ð7bÞ

respectively. Both Hn
ω and Hn

−ω have the same dimen-
sion [18,41], which can be computed as

ν ¼ f# of solutions to ω ¼ 0g: ð8Þ

Any elements hφLj∈Hn
ω and jφRi∈Hn

−ω can then be
decomposed with respect to the choice of (dual) bases

hφLj ¼
Xν
i¼1

ciheij and jφRi ¼
Xν
i¼1

čijěii: ð9Þ

By pairing the linear combinations in Eq. (9) with the
appropriate contours, we obtain the decompositions of the
corresponding twisted periods with respect to the basis of
master integrals Ji ¼ heijCR� and J̌i ¼ ½CLjěii

I ¼ hφLjCR� ¼
Xν
i¼1

ciheijCR� ¼
Xν
i¼1

ciJi; ð10aÞ

Ǐ ¼ ½CLjφRi ¼
Xν
i¼1

či½CLjěii ¼
Xν
i¼1

čiJ̌i: ð10bÞ

1It is assumed that the causality conditions have already been
incorporated into the definition of CR, which means the iε
prescription is accounted for there, and not in the integrand.

2Setting ω ¼ 0 in Eq. (2), one obtains the standard
(nontwisted) de Rham equivalence class.
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Integral decompositions Following [13,16], we can intro-
duce a scalar product h•; •i between elements of Hn

ω and
Hn

−ω, called the intersection number. With this additional
structure, the coefficients ci can be extracted using the
master decomposition formula [16,17]

ci ¼
Xν
j¼1

hφL; ějiðC−1Þji with Cij ¼ hei; ěji: ð11Þ

The computation of intersection numbers in Eq. (11) has
been the primary focus of recent work in intersection
theory, with significant progress made over the past few
years [19,29,42–45].
In the univariate case (n ¼ 1), a compact formula for the

intersection number is known and given by

hφL;φRi ¼
X
p∈P

Resz¼pðψφRÞ; ð12Þ

where P is the set of ω’s poles, and ψ satisfies the
differential equation

∇ωψ ¼ φL: ð13Þ
The calculation of multivariate intersection numbers
requires more effort and there are several strategies
[13,18,20,25,27,29,45–47]. In this paper, we adopt the
ones introduced in [18,25,26,29,31].
The computation of intersection numbers allows us to

build the differential equation Ωx satisfied by the basis of
master integrals in any external variable x

∂xJi ¼ ½Ωx�ijJj: ð14Þ
To see this, we note that in the language of twisted
cohomology, Eq. (14) translates to

∂xheij ¼ h∂xðueiÞ=uj ¼ ½Ωx�ijhejj; ð15Þ
which implies

½Ωx�ij ¼ h∂xðueiÞ=u; ěki½C−1�kj: ð16Þ

We reiterate that the derivations of Eqs. (11) and (16) do not
involve solving (potentially large) systems of linear equa-
tions but instead exclusively rely on the computation of
intersection numbers.
Fourier integrals in Baikov representation We consider

a generic D-dimensional Fourier integral, which takes the
form

f̃ðfxigÞ ¼
Z

fðfqigÞ
YL
j¼1

eiqj·xjđDqj; ð17aÞ

with measure∶ đDqj ¼
dDqj

ð2πÞD=2 : ð17bÞ

Equation (17) is the Fourier transform of the function/
distribution f performed over L internal vectors fqig. The
result is a function of E ≥ L external vectors fxig. We
denote the set of n ¼ L

2
ðLþ 1Þ þ LE internal scalar

products as

S ¼ fq21; q1 · q2;…; q2L; q1 · x1; q1 · x2;…; qL · xEg: ð18Þ

To reinterpret the Fourier transform in Eq. (17) as a twisted
period, we propose to change variables to the Baikov
variables [36,48]: the procedure involves a first change
of variables from the internal vectors qi to the internal
scalar products, followed by a second change of variables,

zi ¼ AijSj þ Bj; ð19Þ

where A is an n × n matrix, B is an n-dimensional vector
and Sj is the jth element of S. Both operations only depend
on the external scalar products. Once the dust settles, the
result reads

f̃ ¼
Z
CR

uðzÞφLðzÞ; ð20Þ

where

CR ¼ ∩
L

i¼1

�
detGfqi;…;qL;x1;…;xEg
detGfqiþ1;…;qL;x1;…;xEg

> 0

�
; ð21Þ

is the contour of integration. The differential form φLðzÞ ¼
fðzÞdnz contains the function/distribution f we would like
to Fourier transform and

uðzÞ ¼ κeigðzÞBðzÞD−L−E−12 ; ð22Þ

is the twist. Here, gðzÞ is always linear in z and we define

GðfxgÞ ¼ det½xi · xj�; ð23aÞ

BðzÞ ¼ Gðq1;…; qL; x1;…; xEÞ; ð23bÞ

κ ¼ π
Lð1−L−2EÞ

4 Gðx1;…; xEÞE−Dþ1
2

2
LD
2 detA

Q
L
j¼1 Γ

�
D−L−Eþj

2

� : ð23cÞ

Note that B ≥ 0 on CR. Complementary details regarding
the derivation of Eq. (20) can be found in Appendix A.
Representing a Fourier integral as the twisted period in

Eq. (20) enables the use of intersection theory for the
construction of differential equations [cf., Eq. (14)]. Thus,
the master Fourier integrals Ji can be evaluated by solving
the system of differential equations, analogously to
Feynman integrals.
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III. APPLICATIONS

In this section, we apply the formalism described above
to three families of Fourier integrals arising in various
corners of particle physics. An ancillary Mathematica file
(ancillary.m) containing complementary details for
each example is given as Supplemental Material [49].
Below, M ¼ R1;D−1 denotes the Minkowski spacetime

manifold. Unless specified otherwise, we work in the
mostly plus Lorentzian signature ð−;þ;þ; � � � ;þÞ.

A. Fourier transform of a scalar propagator

As a first example, we consider the Fourier transform of
a massive scalar Feynman propagator,

In ¼
Z
M

đDq
eiq·x

ðq2 þm2 − iεÞn : ð24Þ

We work with dimensionless integrals Kn, defined by

In ¼mD−2nKn; Kn ¼
Z
M
đDk

eik·v

ðk2þ1− iεÞn ; ð25Þ

where v ¼ mx and k ¼ q=m are both dimensionless
vectors. For Kn, we have L ¼ 1 internal vector fkg and
E ¼ 1 external vector fvg. We define the n ¼ 2 integration
variables as z1 ¼ k2 þ 1 and z2 ¼ k · v. Thus, in the Baikov
representation, this integral takes the form

Kn ¼
Z

d2z
zn1

uðzÞ; ð26Þ

where the twist is given by

uðz1;z2Þ¼
eiz2τ

2−D
2

2
D
2

ffiffiffi
π

p
Γ
�ðD−1Þ=2�

�ðz1−1Þτ− z22
�D−3

2 ; ð27Þ

and τ ¼ v2. From Eq. (8), the number of master integrals is
found to be ν ¼ 2. We choose them as K1 and K2 and form
the basis vector K ¼ ðK1; K2Þ⊤. From intersection decom-
positions, we find that K obeys the differential equation

∂τK¼Ωτ ·K; with Ωτ ¼−

 ðD−2Þ
2τ

1
τ

1
4

0

!
: ð28Þ

We can decouple this system of equations into second- and
first-order differential equations forK1 andK2 respectively,
by first changing the variable τ in favor of the intermediate
variable t ¼ ffiffiffiffiffiffi

−τ
p

. We find

0 ¼ t∂2t K1ðtÞ þ ðD − 1Þ∂tK1ðtÞ þ tK1ðtÞ; ð29aÞ

0 ¼ K2ðtÞ þ
1

2
t∂tK1ðtÞ þ

D − 2

2
K1ðtÞ: ð29bÞ

Solving Eq. (29a) first, followed by Eq. (29b), results in
(after changing the variable back to τ)

K1 ¼
c1JD−2

2
ð ffiffiffiffiffiffi

−τ
p Þ þ c2YD−2

2
ð ffiffiffiffiffiffi

−τ
p Þ

ð−τÞD−24 ; ð30aÞ

K2 ¼ −
c1JD−4

2
ð ffiffiffiffiffiffi

−τ
p Þ þ c2YD−4

2
ð ffiffiffiffiffiffi

−τ
p Þ

2ð−τÞD−44 ; ð30bÞ

where JνðzÞ and YνðzÞ are the Bessel functions of the first
and second kind respectively.
To fix the boundary constants c1 and c2 for K, we

consider its boundary values at τ ¼ ∞ and τ ¼ 0.
In terms of the four-vector v, the boundary point at

τ ¼ ∞ is approached with constant and finite spacelike
component v and piecewise timelike component

v0 →

�
−i∞ for k0 ≥ 0;

i∞ for k0 < 0:
ð31Þ

In this limit, the integrand in Eq. (25) is exponentially
suppressed

eik·v ¼ eið−k0v0þk·vÞ

∼ e−k0jv0jΘðk0Þ þ ek0jv0jΘð−k0Þ ðjv0j≫ 1Þ; ð32Þ

where ΘðzÞ denotes the Heaviside step function. Thus, Kn
vanishes in this limit for any n∈Z. At the level of Eq. (30),
this condition enforces

c2 ¼ ic1: ð33Þ

Within dimensional regularization, the integral in Eq. (25)
can also be explicitly evaluated at τ ¼ 0 (approached with
vμ ¼ 0). To do so, one can first perform a Wick rotation on
Knðvμ ¼ 0Þ and then use Eq. (7.85) of [50] to find

Z
M

đDk
1

ðk2 þ 1 − iεÞn ¼
iΓðn − D

2
Þ

2
D
2ΓðnÞ : ð34Þ

When comparing the result of this calculation at n ¼ 1 or
n ¼ 2 with Eq. (30) in the vicinity of τ ¼ 0, one finds that

c1 ¼
π

2
eiπD=2 ðD < 2Þ: ð35Þ

Putting everything together and substituting back
τ ¼ v2 ¼ m2x2, we find

I1 ¼
πe

iπD
2

2

	
−
x2

m2


2−D
4

Hð1Þ
D−2
2

�
m

ffiffiffiffiffiffiffiffi
−x2

p �
; ð36aÞ

I2 ¼ −
πe

iπD
2

4

	
−
x2

m2


4−D
4

Hð1Þ
D−4
2

�
m

ffiffiffiffiffiffiffiffi
−x2

p �
; ð36bÞ
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where Hð1Þ
ν ðzÞ ¼ JνðzÞ þ iYνðzÞ is the Hankel function of

the first kind.3

Despite the dimensionality condition in Eq. (35), we find
the D → 4 limit of Eq. (36a) to be smooth, and for timelike,
spacelike and lightlike x, respectively, to reduce to the
known results in Eqs. (2.84)–(2.86) of [51], once factors
coming from different normalizations and metric signatures
are taken into account (see also [52]).
Moreover, taking the m → 0 limit, we also verify that I1

and I2 agree with the result for the massless integral

Z
M

đDq
eiq·x

ðq2 − iεÞn ¼
iðx2Þn−D

2ΓðD
2
− nÞ

2
4n−D
2 ΓðnÞ ; ð37Þ

which can be obtained directly from the result in
Appendix B, after Wick rotating the left-hand side
of Eq. (37).

B. Spectral gravitational waveform

With the prospect of future space-based gravitational-
wave observatories such as LISA [53], a pressing theo-
retical problem is to streamline the path to higher-precision
computations as much as possible. There is a growing
interest in obtaining, from amplitude methods, the one-loop
correction to the gravitational waveform [54–61], as well as
the spin corrections [62–64] which could potentially be
measured by such observatories.
A standard dictionary used to link waveforms and

scattering amplitudes is the observable-based Kosower-
Maybee-O’Connell (KMOC) formalism [58]. In this frame-
work, the gravitational waveform is characterized as the
expectation value Exp3 of measuring asymptotically in the
future a graviton field in the background of two black holes
(modeled here as heavy scalars) scattering off each other,
from and back to the far past (see Fig. 1).
To establish the connection with scattering amplitudes

more precisely, it is useful to first introduce the generators
a; a†; b and b† for the algebra of asymptotic measurements.
Its existence is physically motivated by the naive expect-
ation that finite energy excitations in the “bulk” should
decay into a set of stable and free particles at asymptotic
times. This means that the asymptotic states are assumed to
be free of any external forces/fields, so that they do not
radiate or decay.4

The annihilation and creation operators in the far past are
denoted, respectively, by a and a†, while those in the far
future are similarly denoted by b and b†. In what follows,
the key property is that a and b are conjugated to each other
with respect to unitary time evolution: b ¼ S†aS (and,
similarly, b† ¼ S†a†S), where SS† ¼ 1. We refer the reader
to [60] for complementary details.
The background in which the scattering occurs is defined

by perturbations of the time-invariant vacuum j0i in the
far past

j12i ¼ a†2a
†
1j0i and j1020i ¼ a†

20a
†
10 j0i: ð38Þ

As these two-particle states evolve over time, they can
interact nontrivially with each other (i.e., create and absorb
particles). Then, Exp3 is defined as

Exp3 ¼ inh2010jb3j12iin: ð39Þ

The connection between Exp3 and amplitudes is made
manifest in two steps. First, using the relation b ¼ S†aS
and inserting a complete basis of states5 1 ¼PR XjXihXj in
Eq. (39), we obtain

Exp3 ¼ inh2010jS†a3Sj12iin
¼
XZ
X

inh2010jS†jXihX3jSj12iin: ð40Þ

Next, plugging the decomposition formula S ¼ 1þ iT of
the four-point S-matrix (where T is the connected part) into
Eq. (40), we obtain

FIG. 1. The KMOC momentum space waveform as the expect-
ation value of measuring a graviton (labeled by 3) in the
background of two Schwarzschild black holes/heavy scalars
(labeled by 1 and 2). The prime decorations on 10 and 20
emphasize that the scattering is nonforward (no in and out states
are exactly collinear). To obtain, e.g., the spectral waveform, one
needs to Fourier transform this observable to impact parameter.

3We note that since our original integral is manifestly spheri-
cally symmetric after performing a Wick rotation, it is not
surprising that its closed form involves Bessel functions, inde-
pendently of spacetime dimension.

4In the context of collider physics, particles encountered near
the detectors are, of course, generally not free (their motion is
most likely affected by background fields). In such cases, it is
essential to also consider the scattering of unstable particles
(which can decay and radiate). Recent literature on this subtle
subject includes [65–67].

5The symbol
PR

X formally denotes an integral-sum over
the on-shell phase space of the inserted state jXi [see
Eq. (3.5) of [60]].
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Exp3 ¼ inh32010jiTj12iin
þ
XZ
X

inh2010jT†jXihX3jTj12iin: ð41Þ

The first term is a (conventional) time-ordered 3 ← 2
amplitude, while the second term is a product of two
time-ordered amplitudes glued together by a s1020 ¼
−ðp10 þ p20 Þ2 channel cut. In practice, we can therefore
compute Exp3 perturbatively, directly from conventional
time-ordered Feynman rules. (Alternatively, it was recently
explained in [68] how to obtain such observables from
analytic continuations of time-ordered scattering amplitudes.)
To eventually streamline comparison with experimental

data, one may opt to work with waveforms expressed as
functions of variables other than momenta. Such quantities
can be derived from Exp3 after performing additional
Fourier transforms. For example, obtaining the spectral
waveform requires Fourier transforming Exp3 to impact
parameter space. Similarly, to obtain the time domain
waveform, an additional Fourier transform in the frequency
of the outgoing graviton is needed.
It was recently demonstrated in [56] (see also [54]) that

to obtain the leading-order (tree-level) spectral waveform in
pure general relativity and N ¼ 8 supergravity from the
KMOC formalism, (similar integrals appear also in the
effective field theory approach [69,70], in the context of
worldline quantum field theory [71,72] and in the eikonal
approach [73]) one must perform Fourier transforms of the
form6

Iν2m
β1β2

¼
Z
M

đDq
δðu1 · qÞδðu2 · ðq − kÞÞqν1…qν2me−iq·b

½q2 − iε�β1 ½ðq − kÞ2 − iε�β2 ;

ð42Þ

where the ui’s denote the (dimensionless) classical veloc-
ities of the heavy external objects, k is the (on-shell:
k2 ¼ 0) graviton momentum and b is the impact parameter.
In what follows, we showcase how our method can be

applied to obtain new D-dimensional closed-form formulas
for Eq. (42) in the case where β2 ¼ 0. [Given that the
ultrasoft graviton limits of the results presented below are
not smooth, a separate evaluation of Eq. (42) for kμ ¼ 0 is
provided for completeness in Appendix C.]
Evaluation of Iν2m

β10
The tensor reduction of Eq. (42) is

simple to perform. We find

Iν2m
β10

¼ NIβ1−m; ð43Þ

where we define

Iα ¼
Z
M

đDq
δðu1 · qÞδðu2 · ðq − kÞÞe−iq·b

½q2 − iε�α ; ð44aÞ

N ¼ ð−1Þm½η⊗m�fν2mgQ
m
j¼1

�
Dþ 2ðj − 1Þ� : ð44bÞ

Above, η⊗m denotes m occurrences of the metric tensor,
and ½…�fν2mg stands for the sum over all possible shufflings
of the 2m Lorentz indices νi in the tensor ½…�.
Defining the kinematics as

u2i ¼−1; u1 ·u2 ¼−y; ui ·b¼ 0;

k ·b¼ 0; k ·u1¼−w1; k ·u2¼−w2; ð45Þ
and denominators

z1¼ u1 ·q; z2 ¼ u2 ·qþw2; z3 ¼ q2; z4¼−ib ·q;

ð46Þ
the integral in Baikov representation reads

Iα ¼
Z
M

d4z
zα3

uðzÞδðz1Þδðz2Þ: ð47Þ

Treating the delta functions appearing as cut propagators,
we can rewrite the integrals by taking the residues at z1 ¼ 0
and z2 ¼ 0 as

Iα ¼
Z
M

d2z
zα3

uðzÞjz1¼z2¼0; ð48Þ

where the twist on the cut is defined as

uðzÞjz1¼z2¼0 ¼ −iez4
�
−b2ðy2 − 1Þ�2−D

2

2
D
2π3=2Γ

�
D−3
2

�
× ðb2w2

2 − ðy2 − 1Þ�b2z3 þ z24Þ
�D−5

2 : ð49Þ
Rescaling with respect to jbj allows us to work with
dimensionless integrals Kn defined as

Iα ¼ jbj2þ2α−DKα: ð50Þ
We find ν ¼ 2 master integrals, which we define

as K ¼ fK1;K2g.
Next, defining the dimensionless parameter s ¼ w2

2b
2,

intersection decompositions yield the system of differential
equations

∂sK¼Ωs ·K; Ωs ¼
 

0 −1
y2−1

− 1
4s

D−6
2s

!
; ð51aÞ

∂yK ¼ Ωy ·K; Ωy ¼
0
@ −y

y2−1
2sy

ðy2−1Þ2
y

2ðy2−1Þ
ð5−DÞy
y2−1

1
A: ð51bÞ6Note that the exponential has the nonstandard sign. This

is due to our use of a signature convention opposite to that
in [54,56].
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In terms of the dimensionful master integrals, the solution
to Eq. (51a) reads

I1 ¼ ðb2=w2
2Þ

4−D
4 ðy2 − 1Þ2−D4

×

"
c1I2−D

2

 ffiffiffiffiffi
b2

p
w2ffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p

!
− c2ID

2
−2

 ffiffiffiffiffi
b2

p
w2ffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p

!#
; ð52Þ

and similarly for I2. In this expression, IνðzÞ denotes the
modified Bessel function of the first kind.
We now fix the boundary conditions. Similarly to what

happened in Eq. (31), in the neighborhood of b2 ¼ ∞
approached from

b0 →

�
i∞ for q0 ≥ 0;

−i∞ for q0 < 0;
and fixed b; ð53Þ

the integrand in Eq. (44a) is exponentially suppressed [see
Eq. (32)] and thus vanishes. This condition fixes

c2 ¼ c1; ð54Þ

in Eq. (52).
To fix c1, we evaluate Eq. (44a) at zero impact parameter.

In doing so, it is convenient to commit to the rest frame of
u1, where

u1 ¼ ð1; 0; 0⊥Þ and u2 ¼ ðy;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
; 0⊥Þ; ð55Þ

such that u1 · u2 ¼ −y. In this frame, the integral at bμ ¼ 0
becomes

Iαjb¼0 ¼
Z
M

đDq
δðq0Þδðyq0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
q1 − w2Þ

½−ðq0Þ2 þ ðq1Þ2 þ ðq⊥Þ2 − iε�α : ð56Þ

Integrating out the two delta functions gives the αth mass
derivative of the Euclidean ðD − 2Þ-dimensional tadpole of
mass m ¼ w2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p

Iαjb¼0 ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p ∂
ðαÞ
m2

Z
RD−2

đD−2q⊥
ðq⊥Þ2 þm2

¼ Γðαþ 1 − D=2Þ
2D=2πΓðαÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p �
y2 − 1

w2
2

�
αþ1−D=2

: ð57Þ

Using these results, and by computing the b → 0 limit of
Eq. (52), c1 is fixed to

c1 ¼
1

4
csc

	
πD
2



: ð58Þ

Putting everything together, the final expressions for the
dimensionful master integrals read

I1 ¼
ðb2=w2

2Þ
4−D
4

2πðy2 − 1ÞD−24 K4−D
2

 ffiffiffiffiffi
b2

p
w2ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p

!
; ð59aÞ

I2 ¼
ðb2=w2

2Þ
6−D
4

4πðy2 − 1ÞD−44 K6−D
2

 ffiffiffiffiffi
b2

p
w2ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p

!
; ð59bÞ

where KνðzÞ stands for the modified Bessel function of the
second kind. The D → 4 limit of Eq. (59a) is smooth and
agrees with Eq. (C16) of [54], once convention differences
are taken into account. The D-dimensional analytic expres-
sions in Eq. (59) are new and constitute one of the main
results of this work.

C. QCD color dipole scattering

A central objective of future electron-ion collision
experiments [74] is to gather data on how the density of
partons inside hadrons changes as a function of energy. It is
theorized that, as energy increases, this density becomes
larger and larger until it reaches the so-called saturation
regime of QCD, where nonlinear effects from gluon
recombination (gg → g) take over soft bremsstrahlung.
This prediction arises in the color glass condensate
interpretation of deep inelastic scattering (DIS) [75,76].
In this framework, the incoming lepton emits a high-energy
virtual photon scattering from the color potential of the
proton. This interaction is then modeled in the frame where
the virtual photon fluctuates into a color dipole (quarkonia)
that scatters eikonally from the color potential (see Fig. 2).
At leading order, the total cross section for the photon

polarization states is obtained by applying the optical
theorem to the color dipole forward amplitude T [77]

σγ
�p
LO ¼ 2

Z
d2bqd2bq̄dzjψðΔ⊥;q2;zÞj2T ðbq;bq̄;YÞ: ð60Þ

Here, ψ ¼ ψγ�↑qq̄ denotes the light-cone wave function of
the virtual photon of momentum q in the frame where it
decays into a quarkonia dipole of transverse size Δ⊥ ¼
jbq − bq̄j carrying a fraction z of the photon’s longitudinal
momentum. The forward amplitude T is related to the
correlator of Wilson lines

FIG. 2. The bare color dipole cross-section discussed in the
main text. The eikonal quark and anti-quark are represented by
(red pill-shaped) Wilson lines. The color potential, which appears
as a static two-dimensional pancake in the laboratory rest frame,
models the highly boosted target nucleus (and is represented by
the filled blue oval region).
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Ũðbq;bq̄; YÞ ¼
1

Nc
tr½Uðbq; YÞU†ðbq̄; YÞ�; ð61Þ

via T ¼ 1 − Ũ. Here, Nc denotes the number of colors and
each Wilson line Uðbp; YÞ represents a parton p traversing
the target at transverse position/impact parameter bp and
rapidity Y ¼ YðzÞ (see Fig. 2).
The rapidity evolution of the target color field is descri-

bed by the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner equation [78]. An approximate, yet more
tractable, large-Nc/mean-field description is given by the
Balitsky-Kovchegov (BK) equation [79–81], which is to
leading-order accuracy given by

∂Ũðbq;bq̄; YÞ
∂Y

¼
Z

d2bgKLO
BKðbq;bq̄;bgÞ

× ½Ũðbq;bg; YÞŨðbg;bq̄; YÞ
− Ũðbq;bq̄; YÞ�; ð62Þ

where KLO
BKðbq;bq̄;bgÞ ¼ αsNc

2π2
ðbq̄−bqÞ2

ðbq̄−bgÞ2ðbq−bgÞ2 and αs is the

strong coupling constant.7

The solution to the BK equation predicts an interesting
feature of the DIS total cross section known as geometrical
scaling [85]. This scaling is indicative of gluon saturation
within the hadron in the Regge limit.
Over the past decade, significant efforts have been made

to refine the BKequation by including next-to-leading-order
(NLO) corrections and beyond (see, e.g., [82,86–88]). These
refinements involve calculating higher-order corrections in
the strong coupling constant, which can be quite cumber-
some. In particular, as intermediate steps, it is often
necessary to trade the transverse-momentum dependence
in expressions in favor of transverse position. This step
necessarily leads to complicated Fourier integrals.
As illustrative examples, we consider two D-dimensional

families of integrals relevant to deep inelastic scattering in
the saturation regime

Iij ¼
Z
R2D

đDq1đDq2
Nij

I ðq1; q2Þeiðq1·x1þq2·x2Þ

q21ðq21τ þ q22Þ
; ð63aÞ

Gij ¼
Z
R2D

đDq1đDq2
Nij

Gðq1; q2Þeiðq1·x1þq2·x2Þ

ðq1 þ q2Þ2ðq21τ þ q22Þ
; ð63bÞ

where the qi ≡ q⊥
i ’s are Euclidean, 1 ≥ τ > 0 and

Nij
I ¼ qi1q

j
2;

Nij
G ¼ δijðq21−q22Þ−

2qi1ðq1þq2Þj
u

þ2ðq1þq2Þiqj2
uτ

: ð64Þ

In particular, in D ¼ 2, Eqs. (63a) and (63b) appear in the
derivation of the NLO BK equation [Eq. (42) of [86]]. A
small subset of diagrams leading to their appearance is
shown in Fig. 3.
In the following, we present new closed-form formulas

for Eqs. (63a) and (63b) in D dimensions. We anticipate
these results to be useful considering that the OðϵÞ
correction to the NLO BK equation yields nontrivial
contributions to the next-to-NLO (NNLO) BK equation
in the critical dimension.8

Tensor decomposition We first perform the tensor
decomposition of Iij and Gij, namely

Iij ¼
X5
a¼1

Iat
ij
a and Gij ¼

X5
a¼1

Gat
ij
a ; ð65Þ

with basis

tij1 ¼ xi1x
j
1; tij2 ¼ xi1x

j
2; tij3 ¼ xi2x

j
1;

tij4 ¼ xi2x
j
2; tij5 ¼ δij: ð66Þ

Here, Ia and Ga are respectively given by

FIG. 3. A small sample of NLO diagrams relevant to the
rapidity evolution of a color dipole in light-cone coordinates (the
transverse direction is left implicit). The first diagram exemplifies
a cut self-energy correction, while the subsequent ones illustrate
cut vertices. The Fourier integrals discussed in the main text
emerge as intermediate steps in the computation of NLO BK
observables in D dimensions.

7When considering high-energy QCD in situations involving
dilute targets and projectiles, the partonic Wilson lines in Eq. (62)
tend to stay close to unity such that Ũ → 1− [82]. In such
scenarios, T is a small parameter and the relevant physics is
governed by the linearized version of Eq. (62) known as the one-
loop Balitsky-Fadin-Kuraev-Lipatov equation (see [77,83,84] for
a recent review).

8More precisely, as prescribed by the “spacelike-timelike
correspondence” [88–90], at any fixed order in αs, the nonglobal
log Hamiltonian is independent of ϵ in dimensional regularization
and equals the BK Hamiltonian in the critical dimension (recall
that nonglobal observables (e.g., jet shapes) involve incomplete/
“nonglobal” integrals over final states phase space. These phase-
space cuts lead soft radiation to not be integrated over all angles,
resulting in “nonglobal” large logarithms that need to be
resummed). Concretely,

if Hð2Þ
BK ¼ Hð2;0Þ

BK þ ϵHð2;1Þ
BK þ… then Hð3Þ

BK −Hð3Þ
NGL ¼ Hð2;1Þ

BK :

This situation bears similarity to the relation between the soft
anomalous dimension γs, which is independent of ϵ, and the
rapidity anomalous dimension, as mentioned in Eq. (6.21) of [91].
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fIa; Gag ¼
X5
b¼1

ðT−1ÞabfKðIÞ
a ; KðGÞ

a g; ð67Þ

where we have defined

KðIÞ
a ¼ tija Iij; KðGÞ

a ¼ tija Iij; Tab ¼ tija t
ij
b : ð68Þ

Therefore, in order to find the tensor decomposition of
these integrals, our first task is to compute the scalar

integrals KðIÞ
a and KðGÞ

a for a ¼ 1;…; 5.

Change of variables For KðIÞ
a , we make the change of

variables

q1 ¼
κ1ffiffiffi
τ

p jx2j
and q2 ¼

κ2
jx2j

; ð69Þ

while for KðGÞ
a , we instead consider

q1 ¼
κ1 −

ffiffiffi
τ

p
κ2ffiffiffi

τ
p jx2 − x1j

and q2 ¼
ffiffiffi
τ

p
κ1 þ κ2

jx2 − x1j
: ð70Þ

From there, we define the dimensionless vectors

ξ1 ¼
x1ffiffiffi
τ

p jx2j
; ξ2 ¼

x2
jx2j

; ð71aÞ

ζ1 ¼
x1 þ τx2ffiffiffi
τ

p jx2 − x1j
; ζ2 ¼

x2 − x1
jx2 − x1j

; ð71bÞ

such that both integrals take the universal form

KðIÞ
a ¼ ð ffiffiffi

τ
p

x22Þ2−DI
�
ξ1; ξ2;N

ðIÞ
a

�
; ð72aÞ

KðGÞ
a ¼ ð1þ τÞD−3

ð ffiffiffi
τ

p ðx2 − x1Þ2ÞD−2
I
�
ζ1; ζ2;N

ðGÞ
a

�
; ð72bÞ

where

Iðη1;η2;N Þ¼
Z
R2D

đDκ1đDκ2
N eiðκ1·η1þκ2·η2Þ

κ21ðκ21þ κ22Þ
; ð73Þ

and η22 ¼ 1. The numerators are respectively given by

N ðIÞ
a ¼ tija N

ij
I

	
κ1ffiffiffi
τ

p jx2j
;
κ2
jx2j


; ð74aÞ

N ðGÞ
a ¼ tija N

ij
G

	
κ1 −

ffiffiffi
τ

p
κ2ffiffiffi

τ
p jx2 − x1j

;
ffiffiffi
τ

p
κ1 þ κ2

jx2 − x1j


: ð74bÞ

Master integrals of I In Baikov representation, the family
of integrals defined in Eq. (73) reads

Iðη1; η2;N Þ ¼
Z
CR

d7z
uðzÞfðzÞ
z1z2

; ð75Þ

where z1 ¼ κ21, z2 ¼ κ21 þ κ22, z3 ¼ κ1 · κ2, z4 ¼ κ1 · η1,
z5 ¼ κ1 · η2, z6 ¼ κ2 · η1, z7 ¼ κ2 · η2, and only z1 and z2
can appear as denominators. The twist is given by

uðzÞ ¼ −
eiðz4þz7Þðη21 − ðη1 · η2Þ2Þ3−D2

2Dπ5=2ΓððD − 3Þ=2ÞΓðD=2 − 1ÞBðzÞ
D−5
2 ; ð76Þ

where BðzÞ is given in the Supplemental Material [49] and
fðzðκ1; κ2; η1; η2ÞÞ ¼ N . In this case, there are two master
integrals

J1ðη1; η2Þ ¼ Iðη1; η2; κ21Þ ¼
Z
CR

d7z
uðzÞ
z2

; ð77aÞ

J2ðη1; η2Þ
ðD − 2Þ2 ¼ Iðη1; η2; 1Þ ¼

Z
CR

d7z
uðzÞ
z1z2

; ð77bÞ

where the factor ðD − 2Þ2 is introduced for later
convenience.
Using intersection decompositions, the differential equa-

tions for the basis J ¼ ðJ1; J2ÞT read

∂η2
1
J ¼ Ωη2

1
· J; Ωη2

1
¼

0
B@

1−D
1þη2

1

0

ðD−2Þð1þη2
1
Þ

4η2
1

2−D
2η2

1

1
CA;

∂η1·η2J ¼ 0: ð78Þ

The solutions to this system of differential equations are

J1ðη1Þ ¼ J10ð1þ η21Þ1−D; ð79aÞ

J2ðη1Þ ¼ J20ðη21Þ
2−D
2 þ J10

2
F ðIÞ; ð79bÞ

with F ðIÞ ¼ 2F1ðD−22 ;D − 2; D
2
;−η21Þ.

To fix the constants J10 and J20, we examine the
boundary conditions at η1 ¼ 0. For J, the limits evaluate to

J1ð0Þ ¼ 2D−2ΓðD − 1Þ; ð80aÞ

J2ð0Þ ¼ 2D−3ΓðD − 1Þ; ð80bÞ

as shown in Appendix D. Thus, since Eq. (79) yields
J1ð0Þ ¼ J10, we immediately see that

J10 ¼ 2D−2ΓðD − 1Þ: ð81Þ

To fix J20 we use the fact that J2ð0Þ is finite. This
necessarily requires J20 ¼ 0.
Computing Iij For Iij, we have that η1 ¼ ξ1 and η2 ¼ ξ2.

Thus, the master integrals are
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JðIÞ1 ¼ 2D−2ΓðD − 1Þ
	
1þ x21

τx22



1−D

; ð82aÞ

JðIÞ2 ¼ 2D−3ΓðD − 1ÞF ðIÞ; ð82bÞ

with F ðIÞ ¼ 2F1ðD−22 ;D − 2; D
2
;− x2

1

τx2
2

Þ.
We can then decompose the I integrals in Eq. (73) in

terms of these master integrals to find

KðIÞ
1 ¼

ffiffiffi
τ

p
x12J

ð ffiffiffi
τ

p
x22ÞD−1

; KðIÞ
2 ¼ J

ð ffiffiffi
τ

p
x22ÞD−2

; ð83aÞ

KðIÞ
3 ¼

ffiffiffi
τ

p
x212J

x21ð
ffiffiffi
τ

p
x22ÞD−1

; KðIÞ
4 ¼ x12J

x21ð
ffiffiffi
τ

p
x22ÞD−2

; ð83bÞ

KðIÞ
5 ¼

ffiffiffi
τ

p
x12J

x21ð
ffiffiffi
τ

p
x22ÞD−1

; ð83cÞ

where x12 ¼ x1 · x2 and J ¼ ðτx22−x21
2τx2

2

JðIÞ1 − JðIÞ2 Þ.
Applying the transformation described earlier in

Eq. (67), we find

I1¼ I3¼ I4 ¼ I5¼ 0 and I2¼
ffiffiffi
τ

p
J

x21ð
ffiffiffi
τ

p
x22ÞD−1

: ð84Þ

The final answer is then

Iij ¼
ffiffiffi
τ

p
J xi1x

j
2

x21ð
ffiffiffi
τ

p
x22ÞD−1

: ð85Þ

In D ¼ 2, we find

Iij ¼ −
xi1x

j
2

x22ðx21 þ τx22Þ
; ð86Þ

in agreement with the known result given in Eq. (42)
of [86]. (Subleading terms in the D ¼ 2 − 2ϵ expansion
are provided in Appendix E for “QCD practitioners”
convenience.)
ComputingGij ForGij, we have instead that η1 ¼ ζ1 and

η2 ¼ ζ2. Thus, the master integrals are

JðGÞ1 ¼ 2D−2ΓðD − 1Þ
	ð1þ τÞðx21 þ τx22Þ

τðx2 − x1Þ2



1−D
; ð87aÞ

JðGÞ2 ¼ 2D−3ΓðD − 1ÞF ðGÞ; ð87bÞ

with F ðGÞ ¼ 2F1

�
D−2
2
;D − 2; D

2
;− ðx1þτx2Þ2

τðx2−x1Þ2
�
.

We again decompose our integrals and transform back to
our tensor decomposition in Eq. (67) to find

G1 ¼
ð1þ τÞD−1

�
Y1J

ðGÞ
1 þ 2τðx2 − x1Þ2JðGÞ2

�
uτ1þD

2ðx1 þ τx2Þ2
�ðx2 − x1Þ2

�
D

;

G2 ¼ ðτ − 1ÞG1; G3 ¼ 0; G4 ¼ −τG1;

G5 ¼ −
ð1þ τÞD−2

�
Y2J

ðGÞ
1 þ Y3J

ðGÞ
2

�
τ
D
2ðx1 þ τx2Þ2

�ðx2 − x1Þ2
�
D

; ð88Þ

where

Y1 ¼ 4τx12 þ ðτ − 1Þðτx22 − x21Þ; ð89aÞ

Y2 ¼ ð1þ τÞ2�ðτ − 1Þx21x22 þ ðx21 − τx22Þx12
�
; ð89bÞ

Y3 ¼ 2τðx2 − x1Þ2
�ðτ − 1Þx12 þ x21 − τx22Þ

�
: ð89cÞ

The final result is then given by Eq. (65) and reads

Gij ¼
X5
a¼1

Gat
ij
a : ð90Þ

In D ¼ 2, we find that

Gij ¼ 2τðx1 − x2Þixj2 þ 2xi1ðx1 − x2Þj þ uτðx22 − x21Þδij
uτðx2 − x1Þ2ðx21 þ τx22Þ

;

ð91Þ

which is also in agreement with [86]. (Once again,
subleading terms in the ϵ-expansion are provided in
Appendix E.)
Let us close this application by noting that for both

Eqs. (85) and (90), the ϵ expansions (see Appendix E)
involve only polylogarithms with rational coefficients in
the kinematics. This observation resonates with the fact that
the known results for NNLO BK in N ¼ 4 super Yang-
Mills involve only (weight three) polylogarithms with
similar coefficients [82]. Therefore, one might naively
expect the full QCD result to be constructed from similar
functions.
The differential equation matrices evaluated in applica-

tions (A), (B), and (C) by means of intersection numbers,
have also been verified by computing IBP identities in
momentum space.

IV. CONCLUSIONS

In this paper, we applied intersection theory to dimen-
sionally regularized Fourier integrals, extending the range
of applicability of this technique in particle physics beyond
Feynman integrals.
We showed how to express Fourier integrals as twisted

periods by deriving their Baikov representation. From
there, we explained how to derive relations between
Fourier integrals within a given family and how to obtain
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the system of differential equations they satisfy using
intersection numbers. This offered a fresh perspective on
Fourier calculus, inspired by recent advances in Feynman
calculus.
We showcased our method by computing explicitly

relevant instances of Fourier integrals appearing in the
tree-level spectral waveform within pure general relativity
and N ¼ 8 supergravity, as well as in color dipole
scattering at NLO in QCD. Each time, we were able to
verify our new (dimensionally regularized) results with
existing data from the literature in specific limits, high-
lighting the method’s accuracy and potential. We hope that
these developments open up a number of new directions,
some of which are outlined below.
It would be interesting to see to what extent the method

described in this paper proves efficient in tackling the
remaining integrals relevant to the tree-level spectral wave-
form [i.e., those with β2 ≠ 0 in Eq. (42)], and more
ambitiously, those pertinent to the one-loop spectral wave-
form (these come with an additional loop integration on top
of the impact parameter Fourier transform). To the authors’
knowledge, none of these has been analytically computed
in D dimensions.
Similarly, it would also be interesting to investigate the

extent to which our approach can be adapted to address
the remaining steps in calculating the full NLO evolution
of color dipoles within dimensional regularization (with
or without the incorporation of running coupling correc-
tions [86,92], the latter requiring the computation of
Fourier transforms involving additional logarithms [92]).
As stressed in the main text, such NLO results would
contain valuable nontrivial information about higher-order
corrections to the rapidity evolution equation in the
critical dimension, which is relevant for the phenomenol-
ogy of high-energy hadronic and nuclear content.
From the mathematical point of view, the study of the

cohomology of Fourier integrals, poses interesting ques-
tions on the type of systems of differential equations they
obey, as well as on the type of functions that are expected to
appear in their solutions, possibly involving new types of
transcendental leading singularities/maximal cuts. Finally,
it would be interesting to explore the extent to which
tropical geometry [93–97] could be used in the context of
Fourier integrals, offering new directions for their analytic
and numerical evaluation.
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APPENDIX A: DERIVATION OF THE BAIKOV
REPRESENTATION FOR FOURIER INTEGRALS

Let us consider the generic Fourier integral given
by Eq. (17). To derive the Baikov representation, we
first split each momentum qj into components per-
pendicular and parallel to the subspace spanned by
fqjþ1;…; qL; x1;…; xEg. The effect on the measure is

dDqj ¼ dE−L−jqjk ∧ dD−EþLþjqj⊥: ðA1Þ

The parallel component gives

dE−L−jqjk ¼
⋀L

k¼jþ1dðqj · qkÞ ∧ dðqj · yEÞ
G1=2ðqjþ1;…; qL; x1;…; xEÞ

; ðA2Þ

while the perpendicular component gives (in spherical
coordinates)

dNqj⊥ ¼ qN−1
j⊥ dΩN−2 ∧ dqj⊥

¼ 1

2
qN−2
j⊥ dΩN−2 ∧ dðq2j⊥Þ

¼ 1

2

	
Gðqj;…; xEÞ
Gðqjþ1;…; xEÞ


N−2
2

dΩN−2 ∧ dðq2j⊥Þ; ðA3Þ

where N ¼ D − Eþ Lþ j and dΩN−2 is the measure
accounting for the N − 2 angular degrees of freedom.
Substituting Eqs. (A2) and (A3) into Eq. (A1), we observe
that the Gram determinants simplify, leading to

Z
RLD

YL
j¼1

đDqj ¼
π−

LðL−1Þ
4

−LE
2 Gðx1;…; xEÞ−DþEþ1

2

2
LD
2

Q
L
j¼1 Γ

�
D−L−Eþj

2

�

×
Z
Rn

Gðq1;…; xEÞD−L−E−12

Yn
j¼1

dSj: ðA4Þ

We then conveniently redefine our propagators such that

zi ¼ AijSj þ Bj; ðA5Þ
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which introduces a Jacobian for the change of variables,
given by detA. Thus, we find

Z
RLD

YL
j¼1

đDqj ¼ κ

Z
Rn

dnzBðzÞðD−L−E−1Þ=2; ðA6Þ

where κ and BðzÞ are defined in Eqs. (23b) and (23c),
respectively.

APPENDIX B: FOURIER TRANSFORM
OF A POWER LAW

From the generalized Schwinger trick, we have

Z
RD

đDq
eiq·x

AðqÞn ¼
2πn=2

Γðn=2Þ
Z
RD

đDqeiq·x

×
Z

∞

0

dξξn−1e−πξ
2AðqÞ2 : ðB1Þ

For AðqÞ ¼ q, and after swapping the order of integration
on the right-hand side, the inner integral becomes much
easier to perform. This is because the Fourier transform of a
Gaussian is itself a Gaussian

Z
RD

đDqe−πξ2q2eiq·x ¼ ξ−De
− x2

4πξ2

ð2πÞD=2 : ðB2Þ

Plugging this into Eq. (B1), we find (for 0 < n < D)

ðB1ÞjA¼q ¼ N
Z

∞

0

dξξn−D−1e
− x2

4πξ2

¼ N
Z

∞

0

dζζðD−nÞ−1e−
x2ζ2

4π

¼ Γ
�ðD − nÞ=2�

2n−D=2Γðn=2Þ ðx
2Þn−D2 ; ðB3Þ

where N ¼ 2πn=2

ð2πÞD=2Γðn=2Þ and ζ ¼ 1=ξ. After a trivial change

of variables, Eq. (B3) is seen to agree with Eq. (A1) of [98].

APPENDIX C: ULTRASOFT GRAVITON
SPECTRAL WAVEFORM

As complementary material to the results presented in
Sec. III B, we examine the integral in Eq. (42) in the
ultrasoft graviton (kμ ¼ 0) regime

Iμα ¼
Z
M

đDqδðu1 · qÞδðu2 · qÞ
e−iq·bqμ

ðq2Þα ; ðC1Þ

using intersection theory and differential equations. This
integral, while solvable through more conventional meth-
ods such as Schwinger parameters, remains a simple
enough example to showcase the application of the

techniques used to address the more challenging calcula-
tions discussed in the main text.
Evaluation of Iμα We have L ¼ 1 internal vector fqg and

E ¼ 3 external vectors fb; u1; u2g, with kinematics
u21 ¼ u22 ¼ −1, u1 · u2 ¼ −y, u1 · b ¼ u2 · b ¼ 0. We
define the n ¼ 4 integration variables such that z1 ¼ q2,
z2 ¼ −iq · b, z3 ¼ u1 · q and z4 ¼ u2 · q.
By performing a tensor decomposition, the integral takes

the form

Iμα ¼ Ið1Þα bμ þ Ið2Þα uμ1 þ Ið3Þα uμ2: ðC2Þ

It is easy to see from Eq. (C1) that contractions with u1 or
u2 vanish due to the delta functions. Moreover, u1 and u2
are, by definition, transverse to the impact parameter b. Put
together, these conditions give

0 ¼ Ið2Þα þ yIð3Þα ¼ yIð2Þα þ Ið3Þα ; ðC3Þ

and thus Ið2Þα ¼ Ið3Þα ¼ 0. This implies

Iμα ¼ Ið1Þα bμ ¼ bνIνα
b2

bμ; ðC4Þ

such that only Ið1Þα needs to be computed. Its Baikov
representation takes the form

Ið1Þα ¼ 1

b2

Z
d4z

iz2
zα1

uðzÞδðz3Þδðz4Þ; ðC5Þ

where the twist reads

uðzÞ ¼ −i
�
−b2ðy2 − 1Þ�2−D

2

2D=2π3=2Γ
�
D−3
2

�
×
�
b2ð−ðy2 − 1Þz1 − 2yz4z3 þ z23 þ z24Þ

− ðy2 − 1Þz22
�D−5

2 : ðC6Þ

We can then integrate out z3 and z4 using the delta functions
to find

Ið1Þα ¼ 1

b2

Z
dz1dz2

iz2
zα1

uðz1; z2; 0; 0Þ: ðC7Þ

There is only one master integral (ν ¼ 1), defined as

J ¼
Z

đDqδðu1 · qÞδðu2 · qÞ
e−iq·b

q2
: ðC8Þ

Ið1Þα can then be decomposed onto this basis as

Ið1Þα ¼ ið4 − DÞ
b2

J: ðC9Þ
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The master integral J obeys the differential equations

∂b2J ¼ 4 − D
2b2

J and ∂yJ ¼ −y
y2 − 1

J: ðC10Þ

The solution to these equations is easily seen to be

J ¼ J0
ðb2Þð4−DÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p : ðC11Þ

To fix the boundary constant J0 a direct evaluation of J in
Eq. (C8) is performed at b2 ¼ 1: first, the two delta
functions in the rest frame of u2 are integrated over. Up
to a normalization factor, this gives a Euclidean ðD − 2Þ-
dimensional tadpole integral with numerator e−iq·b. After
mapping this result back to Schwinger parameter space, the
integral can be easily evaluated for b2 ¼ 1, similarly to the
computation outlined in Appendix B. This allows us to fix

J0 ¼ −
i2

D
2

32
ΓðD=2 − 2Þ: ðC12Þ

Putting everything together, we obtain

Iμα ¼ ið4 − DÞJ0
ðb2Þð2−DÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p qμ: ðC13Þ

APPENDIX D: BOUNDARY CONDITIONS
FOR APPLICATION (C)

We examine the η1 ¼ 0 limit of the master integrals in
Sec. III C

J1ðη1Þ¼ Iðη1;η2;κ21Þ; J2ðη1Þ¼ Iðη1;η2;1Þ; ðD1Þ

with Iðη1; η2;N Þ being the family of integrals defined in
Eq. (73). If we set η1 ¼ 0, we have for the first master
integral

J1ð0Þ ¼
Z
RD

đDκ2eiκ2·η2
Z
RD

đDκ1
κ21 þ κ22

¼ Γ
�
1 − D

2

�
2
D
2

Z
RD

đDκ2
eiκ2·η2

ðκ22Þ1−
D
2

¼ 2D−2ΓðD − 1Þ: ðD2Þ

For the second master integral we have

J2ð0Þ
ðD − 2Þ2 ¼

Z
RD

đDκ2eiκ2·η2
Z
RD

đDκ1
κ21ðκ21 þ κ22Þ

¼
Z
RD

đDκ2eiκ2·η2
Z

1

0

dx
Z
RD

đDκ1
ðκ21 þ κ22xÞ2

¼ Γ
�
2 − D

2

�
2
D
2

Z
RD

đDκ2
eiκ2·η2

ðκ22Þ2−
D
2

×

	Z
1

0

dxx
D
2
−2



¼ 2D−3ΓðD − 1Þ
ðD − 2Þ2 : ðD3Þ

In order to find these boundary conditions, we have used
the result from Eq. (7.85) of [50], the result from
Appendix B as well as the, Feynman parameter represen-
tation of the integrals discussed in this section.

APPENDIX E: ϵ EXPANSIONS
FOR APPLICATION (C)

In this appendix, we provide explicit formulas for the ϵ
expansions of Eqs. (85) and (90) up to Oðϵ2Þ, namely

fIij; Gijg ¼
X2
n¼0

ϵnfIijðnÞ; Gij
ðnÞg þOðϵ3Þ: ðE1Þ

The coefficients IijðnÞ are recorded explicitly in the text
below, as well as in a computer-friendly form in the
ancillary file ancillary.m [49]. The coefficients Gij

ðnÞ
are much larger and, therefore, are only recorded in
ancillary.m.
For the former, setting IijðnÞ ¼ xi1x

j
2IðnÞ, we have

Ið0Þ ¼ ð86Þ; ðE2aÞ

Ið1Þ ¼
Δ− log

h
τx2

2

Δþ

i
− 2x21

�
log
h ffiffi

τ
p

x2
2

2

i
þ γE

�
Δþx21x

2
2

; ðE2bÞ

Ið2Þ ¼
�
3Δ− log

�
Δþ
τx22

�	
log

�
Δþ
τx22

�
þ2

	
log

� ffiffiffi
τ

p
x22
2

�
þγE





þ3ΔþLi2

�
−x21
τx22

�
þ6x21

	
log

� ffiffiffi
τ

p
x22
4

�
þ2γE



log½ ffiffiffiτp

x22�

þx21ðπ2þ6ðγE− log2Þ2Þ
�
=ð3Δþx21x

2
2Þ; ðE2cÞ

where Δ� ¼ x21 � τx22.
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