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We present a novel construction of the QCD equation of state (EoS) at finite baryon density. Our work
combines a recently proposed resummation scheme for lattice QCD results with the universal critical
behavior at the QCD critical point. This allows us to obtain a family of equations of state in the range
0 ≤ μB ≤ 700 MeV and 25 MeV ≤ T ≤ 800 MeV, which match lattice QCD results near μB ¼ 0 while
featuring a critical point in the 3D Ising model universality class. The position of the critical point can be
chosen within the range accessible to beam-energy scan heavy-ion collision experiments. The strength of
the singularity and the shape of the critical region are parametrized using a standard parameter set. We
impose stability and causality constraints and discuss the available ranges of critical point parameter
choices, finding that they extend beyond earlier parametric QCD EoS proposals. We present thermody-
namic observables, including baryon density, pressure, entropy density, energy density, baryon suscep-
tibility and speed of sound, that cover a wide range in the QCD phase diagram relevant for experimental
exploration.

DOI: 10.1103/PhysRevD.109.094046

I. INTRODUCTION

The determination of the multidimensional QCD phase
diagram is one of the main ingredients in understanding
matter under extreme conditions of temperature and den-
sity, such as those created in heavy-ion collision experi-
ments taking place at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC). In nature,
this kind of matter could be present in the core of neutron
stars, and also in a primordial phase that permeated
the universe a few microseconds after the big bang. To
determine the QCD phase diagram we need to explore the
thermodynamic behavior of strongly interacting matter,
including its phase structure, equation of state (EoS) and
critical phenomena [1].

In its most common representation [2,3], which involves
temperature and baryon chemical potential or baryon
density, the EoS at low net-baryon density is well under-
stood. It exhibits a smooth crossover from a hadron gas to a
quark-gluon plasma [4–8] with a pseudo-critical temper-
ature of T0 ¼ 158.0� 0.6 MeV [9], and can be determined
from first principles through lattice QCD simulations
[5,10–15]. Several QCD models predict that the smooth
crossover can turn into a first-order phase transition at high
densities, thus implying the existence of a critical point on
the QCD phase diagram [16–19]. The search for the critical
point is at the core of the Beam Energy Scan II (BESII)
at RHIC, which completed data taking recently. The role
of theorists in this program is to provide crucial tools to
simulate and interpret the data. The equation of state is one
of the fundamental quantities needed in the hydrodynamic
description of the heavy-ion collision evolution.*mkahangi@Central.uh.edu
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Lattice simulations at finite chemical potential face
challenges because of the fermion sign problem [20–23],
which renders traditional numerical techniques prohibi-
tively costly. Despite recent developments in methods
to directly simulate at finite chemical potentials, such as
reweighting [24–26], these are still limited to small
volumes and rather coarse lattices. This has so far prevented
realistic direct simulations in the most intriguing region of
the QCD phase diagram. Therefore, the expected first-order
phase transition from hadron gas to quark-gluon plasma
at high density, as well as the critical point terminating
this transition [1,18] are still out of the reach of lattice
simulations. Extrapolation techniques, such as Taylor
expansion [8,27–33], analytic continuation from imaginary
chemical potential [6,9,12,34–39] and Padé approximation
[15,40], are usually employed to extend lattice QCD
thermodynamic results to finite densities. However, they
are limited in their applicability to small chemical potentials.
An important tool for the theoretical interpretation of

experimental results are hydrodynamic simulations [41–48],
which describe the evolution of the fireball produced in
heavy-ion collisions. Although modifications to the rela-
tivistic viscous hydrodynamic approach are required close
to the critical point [41,49], it is crucial that the equation
of state (EoS) used in these simulations encompasses all
existing theoretical knowledge and accurately represents
the singularity related to the QCD critical point in a
predetermined and adjustable way. Moreover, the EoS as
well as the properties of partons and their interactions are
probed directly within microscopic transport approaches,
wherein partonic and hadronic degrees of freedom are
propagated explicitly [50].
In an attempt to provide a tool to address these issues, the

BEST collaboration developed a family of equations of
state, based on the lattice QCD Taylor expansion, with a 3D
Ising model critical point which matches lattice results at
low chemical potential [51–54]. However, this approach is
limited to μB ≤ 450 MeV, because unphysical oscillation
inherited from the Taylor expansion appear in some
observables at large μB [51,55].
It is important to note that the temperature of the

hypothetical chiral critical point should not exceed the
critical temperature of the chiral phase transition (for
mu ¼ md ¼ 0) T0

c ¼ 132þ3
−6 MeV [56,57]. Lattice QCD

simulations disfavor the existence of the critical point at
μB ≤ 300 MeV [9]. Besides, several recent results seem to
converge in predicting a critical point location at 560 ≤
μB ≤ 650 MeV [58–62]. For this reason, and to properly
support the BESII at RHIC that can cover a range up to
μB ≲ 700 MeV, the BEST collaboration EoS needs to be
extended to larger values of μB. While some results exist in
the literature [63], where a critical scaling function was
developed on top of an EoS with a smooth crossover
between hadrons and quarks, here we follow the same
strategy as the BEST collaboration EoS: we introduce

the 3D Ising critical point into a lattice-QCD-based EoS.
However, instead of using the Taylor expansion method, we
build our EoS on the basis of the new expansion scheme
developed in [13,14]. This will allow us to reach a value of
chemical potential μB ∼ 700 MeV.
The manuscript is organized as follows. In Sec. II we recall

the lattice QCD approaches: Taylor expansion and alter-
native T-expansion scheme developed by the Wuppertal-
Budapest lattice QCD collaboration in [13,14]. Section III
focuses on the mapping of the 3D Ising model onto the
QCD coordinates. Moving on to Sec. IV, we discuss
the merging of the lattice QCD equation of state with
the critical one. In Sec. V, we present the thermodynamic
quantities with a critical point, and in Sec. VI we explore
the constraints on the parameter space. Conclusions and
outlook will be provided in Sec. VII. Finally, in
Appendix A, B and C we provide detailed derivation for
the formulas used. The code that generates the family of
equations of state presented in this paper can be down-
loaded from [64].

II. LATTICE EQUATION OF STATE

A. Taylor expansion

Taylor expansion is the most straightforward way to
extend the equation of state to finite μB. It consists of a sum
of all pressure derivatives (susceptibilities), computed on
the lattice at μB ¼ 0, multiplied by powers of a dimension-
less expansion parameter ðμBT Þ. Because of charge conju-
gation symmetry, only even susceptibilities contribute

PðT; μBÞ
T4

¼
X
n¼0

1

2n!
χB2nðT; μB ¼ 0Þ

�
μB
T

�
2n
; ð1Þ

where the coefficients are

χBn ðTÞ ¼
�

∂
n

∂ðμB=TÞn
PðT; μBÞ

T4

�
μB¼0

:

In this paper, we will focus on the baryon density,
which is defined as the first derivative of the pressure with
respect to μB:

nBðT; μBÞ
T3

¼ ∂

∂ðμB=TÞ
PðT; μBÞ

T4

¼
X∞
n¼1

1

ð2n − 1Þ! χ
B
2nðTÞ

�
μB
T

�
2n−1

: ð2Þ

To completely evaluate the baryon density in Eq. (2), we
would need all the coefficients computed on the lattice,
which are not readily available due to limitations in
computational power. Currently, coefficients are available
at finite lattice spacing up to order OðμBT Þ6 [65,66] and even
OðμBT Þ8 [12,15], and in the continuum limit in a smaller
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volume [67], which leads to the following limitations of the
method:

(i) The chemical potential range is limited to μB
T < 3,

despite large computational power [15,40].
(ii) At large μB=T, some observables exhibit unphysical,

“wiggly” behavior due to the truncation of the
Taylor series [51,55].

(iii) The inclusion of an additional higher-order term
does not improve this behavior.

(iv) The Taylor expansion struggles to account for a
transition temperature that depends on the chemical
potential, since it is performed at constant temper-
ature. In [68], the Taylor expansion was tested for
finite isospin chemical potential by comparing it to
the direct lattice simulation, and a breakdown was
observed at the critical chemical potential.

The above limitations make it difficult to model and
constrain the existence of the critical point if it is located at
high density. In [51–54], the BEST collaboration exploited
the universality class of the 3D Ising model to introduce a
critical point into the equation of state by separating the free
energy density into a critical contribution and a noncritical
one, so that the sum of the Taylor expansion coefficients up
toOððμB=TÞ4Þ reproduces the lattice results. For the baryon
density, this procedure works as follows

nBðT; μBÞ ¼ T3
X2
n¼1

1

ð2n − 1Þ! χ
B non−Ising
2n ðTÞ

�
μB
T

�
2n−1

þ T4
C

T
nIsingB ðT; μBÞ ð3Þ

where nIsingB is the contribution to the baryon density with
the singular behavior appropriate for the 3D Ising critical
point, and the coefficients χB non−Ising

n ðTÞ satisfy

χB lat
n ðTÞ ¼ χB non−Ising

n ðTÞ þ T4
C

T4
χB Ising
n ðTÞ

for n ¼ 0, 2, 4, where χB lat
n ðTÞ are the input from lattice

QCD and χB Ising
n ðTÞ represent the critical contribution

to the expansion coefficients. Although this construction
works well, it was observed that at large values of μB,
wiggles appear in the thermodynamic observables, particu-
larly the baryon density and speed of sound, for some para-
meter choices. This is due to the truncation in the Taylor
expansion of the non-Ising contribution to the observables,
which limits the current applicability of this equation
of state.

B. T0-expansion scheme

To address some of the limitations of the Taylor expan-
sion outlined above, the Wuppertal-Budapest lattice QCD
collaboration developed a novel resummation scheme,
which can reach higher values of chemical potential and

handle the QCD transition line [13,14]. The scheme is
based on the observation [13] that the crossover in terms of
the scaled baryon density TχB1 =μB as a function of T looks
very similar at different (imaginary) values of scaled
chemical potential μB=T, with most of the difference being
a μB-dependent shift of T—see Fig. 1.
This observation can be formalized by expressing baryon

density nB ≡ χB1T
3 in the form

T
χB1 ðT; μBÞ

μB
¼ χB2 ðT 0; 0Þ ð4Þ

which defines the “rescaled temperature” T 0ðT; μBÞ. At
μB ¼ 0, T 0 is the same as T. At nonzero μB function
T 0ðT; μBÞ is such that the crossover in terms of
TχB1 ðT; μBÞ=μB occurs at the same T 0 and has the same

FIG. 1. Upper panel: scaled baryon density χB1 ðT; μBÞ=μ̂B, as a
function of temperature for different values of scaled imaginary
baryon chemical potential μ̂B ≡ μB=T (labeled using different
colors). Lower panel: the same quantity, but with the temperature
rescaled by a factor 1þ κμ̂2B, with κ ¼ 0.0205. In terms of the
rescaled temperature the curves representing different μ̂B collapse
onto the same curve. The points labeled μ̂B ¼ 0 correspond to the
limit μB → 0 which is the baryon number susceptibility χB2 ðT; 0Þ
(The figure is taken from Ref. [13]).

FINITE DENSITY QCD EQUATION OF STATE: CRITICAL … PHYS. REV. D 109, 094046 (2024)

094046-3



shape. The function T 0 can be then expanded in powers of
μB=T at fixed T:

T 0ðT; μBÞ ¼ T
�
1þ κBB2 ðTÞ

�
μB
T

�
2

þ κBB4 ðTÞ
�
μB
T

�
4

þ � � �
�

ð5Þ
where the Taylor expansion coefficients κBB2 , etc. are almost
constant as functions of T in the transition region, while the
rapid changes in EoS associated with the crossover are
mostly captured by the function χB2 ðT 0; 0Þ (see Fig. 2 below.).
The “T 0-expansion” scheme is essentially a reshuffling of

the Taylor expansion in Eq. (2), and the coefficients κBBn ðTÞ
can be expressed in terms of the susceptibilities χB2nðTÞ:

κBB2 ðTÞ ¼ 1

6T
χB4 ðTÞ
χB2

0ðTÞ
κBB4 ðTÞ ¼ 1

130TχB2
0ðTÞ3

�
3χB2

0ðTÞ2χB6 ðTÞ − 5χB5
00χB4 ðTÞ4

�
:

ð6Þ

These coefficients were obtained in high-statistics lattice
QCD simulations [13]. As expected, compared to the sharply
rising χB2 ðTÞ, κBB2 shows a very mild temperature depend-
ence around the transition region, which makes the
T 0-expansion scheme more favorable than the Taylor expan-
sion since it does not introduce the wiggly behavior in the
EoS at large μB. Moreover, the fact that κBB4 is shown in [13]
to be consistent with zero hints at a faster convergence
compared to the Taylor series.
These results agree with the one used in [32] for “lines of

constant physics” calculated up to Oðμ4BÞ. As suggested
in [13], as long as χB1 =μ̂B is a monotonic function of T, the
finite-density physics can be encoded into the T 0ðT; μBÞ
function. As a result, we can embed the singularity
associated with the critical point and the first-order phase
transition into T 0ðT; μBÞ, as we will show in Sec. IV.

C. Lattice data

Lattice results for the susceptibility χB2 ðT; 0Þ≡ χB2 ðTÞ
and coefficients κBB2 ðTÞ are available only over a limited
range of (discrete) temperatures. To obtain a smooth
description of the equation of state in the temperature
range 25 MeV ≤ T ≤ 800 MeV, we first merge the lattice
results at finite temperature and μB ¼ 0 with 2þ 1 flavors
and physical quark masses from the Wuppertal-Budapest
Collaboration [5,10,12,30] with the hadron resonance gas
(HRG) model results [69], which provide a good descrip-
tion of the thermodynamics up to T ¼ 120 MeV, using the
most up to date particle list (list PDG2021þ) [70,71]. We
then fit these results to cover a large range of temperatures.
For convenience we introduce an auxiliary variable

x ¼ T=ð200 MeVÞ. For χB2;latðTÞ, we employ four free
parameters di, such that the crossover occurs at x ≈ d1,
and its width Δx ∼ d1=d2 is controlled by d2 ≫ 1, while

d3ð1 − d2
4

x2Þ provides large-x asymptotics:

χB2;latðTÞ ¼
�
2mp

πx

�
3=2 e−mp=x

1þ ð xd1Þd2
þ d3

e−d
2
4
=x2−d4

5
=x4

1þ ð xd1Þ−d2
ð7Þ

where, mp ≈ 4.7 denotes the proton mass (in units of
200 MeV). The first term, typically very small, yields
the correct low-temperature asymptotics for χB2 in QCD,
representing the nonrelativistic contribution of nucleons/
antinucleons. Best-fit coefficients for χB2;latðTÞ are listed in
Table I, and the resulting parametrization is shown in the
top panel of Fig. 2.

FIG. 2. Top: parametrized baryon susceptibility χB2;latðTÞ (black
curve), in the range 25 MeV < T < 800 MeV. The Stefan-
Boltzmann (SB) limit value is shown in green. Bottom: para-
metrized alternative expansion coefficient as a function of the
temperature. In both panels, the solid blue curve corresponds to
the hadron resonance gas (HRG) model prediction, while the red
dots represent continuum extrapolated lattice QCD results.

TABLE I. Coefficients of the parametrized χB2;latðTÞ in Eq. (7)
for 25 MeV ≤ T ≤ 800 MeV.

d1 d2 d3 d4 d5

0.73 11.19 0.32 0.20 0.69
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Because κBB2 , unlike χB2 , varies slowly in the temperature
region of our interest, we can use a rational fit. We enforce the
expected small-temperature linear behavior which follows
from the dominant exponential behavior χB4 ; χ

B
2 ∼ e−mp=x and

Eq. (6): κBB2 =x → A1 ¼ 1=ð6mpÞ ≈ 0.035 Similarly, the
leading large-temperature behavior follows from Eq. (7),
i.e., χ2 ¼ d3 − d3d24=x

2 þ � � � and χ4 ¼ 2=ð9π2Þ þ � � �.
Eq. (6) then gives κBB2 =x2 → A2 ¼ 1=ð54d3d24Þ ≈ 1.47. We
then use the following fitting function:

κBB2 ðTÞ ¼ A1b0xþ a2x2 þ a3x3 þ A2x4

b0 þ b1xþ x2
ð8Þ

where, again, x ¼ T=ð200 MeVÞ. Best-fit parameters for
κBB2 ðTÞ are listed in Table II, and the resulting parametrization
is shown in the bottom panel of Fig. 2.

III. MAPPING THE 3D ISING MODEL TO QCD

Close to the critical point, the correlation length of a
thermodynamic system diverges, making microscopic
(short-distance) features irrelevant. Consequently, systems
with similar global symmetries exhibit similar, universal
behavior, even though they may differ in their microscopic
degrees of freedom. Well-known examples of this phe-
nomenon include liquid-gas and ferromagnetism, which
share critical exponents within the same universality class
as the 3D Ising model [72,73]. The critical point of quan-
tum chromodynamics (QCD), if it exists, also belongs
to the 3D Ising model universality class [74]. Hence, its
critical behavior is characterized by the same critical
exponents, which describe the scaling of physical quantities
in the thermodynamic variables near the critical point [74].

A. Scaling: 3D Ising model

In this work, we employ the same form of the scaling
equation of state as used in the BEST collaboration
equation of state. The parametrization of magnetization,
denoted by M, reduced temperature (r) and external
magnetic field (h) in terms of additional scaling standard
variables R and θ, is given as follows [51,75–80]:

M ¼ M0Rβθ ð9Þ

h ¼ h0Rβδh̃ðθÞ ð10Þ

r ¼ Rð1 − θ2Þ: ð11Þ

The scale invariant “angular” variable θ describes the
position of a point on r, h plane relative to the h ¼ 0
(θ ¼ 0) and r ¼ 0 (θ ¼ 1) axes, allowing a nonsingular
description of both regimes for R ≠ 0. The “radial” variable
R measures the distance from the critical point, R ¼ 0.
The parametrization involves an odd function h̃ðθÞ ¼
θð1þ aθ2 þ bθ4Þ, where a¼ −0.76201 and b¼ 0.00804.
The critical exponents for the 3D Ising model are
β ¼ 0.326 and δ ¼ 4.80. While R is non-negative (R ≥ 0),
jθj should not exceed the first nontrivial zero of h̃ðθÞ,
denoted as θ0 ≃ 1.154 and corresponding to r < 0, h ¼ 0
axis. To fix the values of the normalization constants M0

and h0, two conditions Mðr ¼ −1; h ¼ 0þÞ ¼ 1 and
Mðr ¼ 0; h ¼ 1Þ ¼ 1 are used. These conditions result
in M0 ¼ 0.605 and h0 ¼ 0.364. It is important to note
that this parametric representation gives a nonglobally
invertible mapping from ðR; θÞ ↦ ðr; hÞ. The critical point
is located at ðr ¼ 0; h ¼ 0Þ, and when r < 0, there is a
smooth transition (crossover), while r > 0 corresponds to a
first-order phase transition.
In this parametrization form, the pressure is defined in

terms of the most singular part of the Ising Gibbs free
energy GðR; θÞ:

GðR; θÞ ¼ h0M0R2−α
�
θh̃ðθÞ − gðθÞ�; ð12Þ

where

gðθÞ ¼ c0 þ c1ð1 − θ2Þ þ c2ð1 − θ2Þ2 þ c3ð1 − θ2Þ3;

c0 ¼
β

2 − α
ð1þ aþ bÞ;

c1 ¼ −
1

2

1

α − 1
ðð1 − 2βÞð1þ aþ bÞ − 2βðaþ 2bÞ;

c2 ¼ −
1

2α

�
2βb − ð1 − 2βÞðaþ 2bÞ�;

c3 ¼ −
1

2ðαþ 1Þ bð1 − 2βÞ;

with α ¼ 0.11 another critical exponent, related to β, δ by
the relation 2 − α ¼ βðδþ 1Þ.

B. Mapping 3D Ising coordinates to QCD coordinates

To map from the 3D Ising model to QCD, we employ a
two-step nonuniversal mapping, as shown in Fig. 3. This
process involves transforming the 3D Ising control param-
eters, namely the reduced temperature (r) and the external
magnetic field (h), initially into the T 0-expansion scheme
coordinates represented by the “rescaled temperature” (T 0)
and the squared baryon chemical potential (μ2B) using
Eq. (13) below. Subsequently, using the relation between
T and T 0, we map these coordinates to the QCD parameters,
specifically the temperature (T) and the baryon chemical
potential (μB). To ensure that the transition of the Ising

TABLE II. Coefficients of the rational parametrization for
κBB2 ðTÞ in Eq (8) for 25 MeV ≤ T ≤ 800 MeV.

a2 a3 b0 b1

0.652 −2.60 21.4 −9.81
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model (h ¼ 0) aligns with the QCD crossover line, we
apply the following transformation:

T 0 − T0

TCT 0
;T

¼ −w0h sin α012

μ2B − μ2BC
2μBCTC

¼ w0�−rρ0 − h cos α012
� ð13Þ

where T0 is the transition temperature at μB ¼ 0, TC and
μBC are the temperature and chemical potential at the
critical point, T 0

;T ≡ ð∂T 0=∂TÞμ at the critical point, and the
free parameters w0,ρ0, and α012 act as scaling factors for
variables r and h. w0 determines the size of the critical
region, and ρ0 modifies its shape. The scaling can also be
accomplished by modifying the angle α012. These free
parameters can easily be related to the ones used by the
BEST Collaboration [51] in the linear mapping shown in
Eq. (C1). By linearizing Eq. (13) around the critical point,
and comparing to the coefficients of r and h in Eq. (C1),
we obtain the following relations between w0, ρ0, α012 and w,
ρ, α1, α2:

tan α012 ¼ tan α1 − tan α2 ð14aÞ

w0 ¼ w
1

cos α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos α1 cos α2Þ2 þ ðsin α12Þ2

q
ð14bÞ

ρ0 ¼ ρ
cos2 α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos α1 cos α2Þ2 þ ðsin α12Þ2
p : ð14cÞ

The parameters (w; ρ) act as scaling factors for the
variables r and h, where r and w determines the size of
the critical region, and r and ρ modifies its shape. The
difference α12 between α2 and α1 also controls the strength
of the discontinuity. Equations (14) can be inverted to give:

tan α2 ¼ tan α1 − tan α012; ð15aÞ

w ¼ w0 cos α012
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtan α1 − tan α012Þ2

q
; ð15bÞ

ρ ¼ ρ0
1

cos α1 cos α012
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtan α1 − tan α012Þ2

p : ð15cÞ

A more concise way of converting from one set of
parameters to another is as follows. First, find α012 from α2
using Eq. (15a). Then use it to find w0 from

w0 cos α012 ¼ w cos α2: ð16Þ

Then find ρ0 by solving

ρ0w0 ¼ ρw cos α1: ð17Þ

FIG. 3. The top-left plot represents the 3D Ising model axes, with a critical point located at (r ¼ 0, h ¼ 0). The top-right plot displays
the T 0-expansion scheme coordinates, with a critical point at (T 0 ¼ T0, μB ¼ μBC). Finally, the bottom plot corresponds to the QCD
coordinates, featuring a critical point located at (TC ¼ μBC). The parameters in red μBC, w0, ρ0, and α012 are the free parameters.
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It is also important to identify the parameters that control
the strength of the discontinuity, which can be clearly seen
in the expansion of the specific heat at constant pressure
Cp. The leading singular behavior of Cp is given by:

Cp ¼ T3

�ðsc=ncÞ sin α1 − cos α1
w sin α12

�
2

Ghh

�
1þOðrβδ−1Þ�

ð18Þ

in terms of the standard BEST collaboration parameters
[51], where Ghh is the order parameter susceptibility in the
Ising model, while sc and nc are the critical entropy and
baryon density respectively. Since Ghh is the same for all
mapping parameters, we can use the coefficient in front of it
as a “universal” measure of the strength of the singularity.
It is then obvious that the strength measured that way
depends on α12 and w (at fixed α1) only via the combi-
nation w sin α12.
The mapping in Fig. 3 comes with inherent advantages.

The tunable free parameters can be guided by physics, such
as the physical value of the quark masses, stability, and
causality of the equation of state [73]. This feature enables
us to transport any physical quantity in 3D Ising to any
point in the QCD phase diagram, and as the mapping is an
even function in the baryon chemical potential, it ensures
the expected charge conjugation symmetry.

C. Transition line

With the mapping defined in Eq (13), the location of the
transition line in the phase diagram is naturally determined.
The transition line TCðμBCÞ is such that TC and μBC have to
satisfy T 0ðT; μBÞ ¼ T0, where T0 is the crossover temper-
ature at μB ¼ 0. For convenience, we use the pseudo-
critical temperature related to chiral symmetry restoration
T0 ¼ 158 MeV computed from the lattice in [9]. In
addition, for simplicity, we identify T 0 with T 0

latðT; μBÞ
in [13] up to second order in μB=T. From Eq. (12), we make
use of the mapping to express the critical pressure Pcrit as a
function of temperature and chemical potential:

PcritðT; μBÞ ¼ −T4G
�
RðT; μBÞ; θðT; μBÞ

�
: ð19Þ

The critical baryon density is then defined as

χB crit
1 ¼ ncritB ðT; μBÞ

T3
¼ ∂ðPcritðT; μBÞ=T4Þ

∂ðμB=TÞ
				
T
: ð20Þ

With this mapping the critical point is also forced to sit
on the transition line by construction. Therefore, the
number of free parameters is reduced since the critical
temperature follows from the choice of critical chemical
potential, and the angle α1 is given by the slope of the
transition line at the critical point:

α1 ¼ tan−1
�
2κ2ðTCÞμBC

TCT 0
;T

�
: ð21Þ

In this paper, we illustrate two choices of critical baryon
chemical potential. The first one, used mainly for com-
parison with the BEST collaboration EoS, is μBC ¼
350 MeV, giving TC ¼ 140 MeV and α1 ¼ 6.7°. For the
first choice of parameters, we show in Fig. 4 contours of
equal normalized critical pressure, in the r − h, T 0 − μ2B and
T-μB planes. The first-order transition line is shown as a red
solid line, and the critical point corresponds to a black dot.
We show positive and negative values of μB, corresponding
to positive and negative baryon chemical potentials, to
illustrate the symmetry of QCD under baryon-and-
antibaryon exchange. This symmetry arises naturally from
the selection of a quadratic mapping of the chemical
potential in Eq. (13). For the same choice of parameters,
in Fig. 5 we show the critical baryon density, which
develops a discontinuity for μB > μBC, as required for a
first order transition. With the second choice we place the
critical point in a region that goes beyond the limits of the
BEST collaboration EoS: we choose μBC ¼ 500 MeV,
corresponding to TC ¼ 116 MeV and α1 ¼ 11.2°.

IV. EQUATION OF STATE: MERGING THE
LATTICE DATA AND THE CRITICAL POINT

SINGULARITY

It is important to keep in mind that Eq. (4) is the
definition of T 0ðT; μBÞ. Since the function χB2 ðT 0; 0Þ is
analytic (smooth crossover), the singularity in nB due to the
critical point and the first-order transition must be carried
by T 0ðT; μBÞ. Since the singularity of nB is inherited from
the singularity of the pressure via Eq. (20), we can
determine the corresponding singularity in T 0 via Eq. (4).
We shall separate the baryon density into a regular and

singular parts: nB ¼ nregB þ ncritB , where ncritB is defined by
Eq. (20). Similarly, we separate T 0: T 0 ¼ T 0

reg þ T 0
crit. Since

ncritB vanishes at the critical point we can expand χB2 in
Eq. (4) and obtain the relationship between T 0

crit and ncritB :

T 0
critðT; μBÞ ¼

�
∂χB2 ðT; 0Þ

∂T

				
T0

�−1 ncritB ðT; μBÞ
T3 × ðμB=TÞ

ð22Þ

Of course, the Taylor expansion of T 0
crit is different from

Eq. (5) inferred from lattice data. However, we can always
choose the regular T 0

reg contribution so that the Taylor
expansion of the full T 0 agrees with the lattice. To match
lattice results at low ðμB=TÞ, since κBB4 ðTÞ is consistent with
zero, we can truncate the Taylor expansion in Eq. (5) and
define

T 0
latðT; μBÞ ¼ T

�
1þ κBB2 ðTÞ

�
μB
T

�
2
�
: ð23Þ
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We can then write

T 0ðT; μBÞ ¼ T 0
latðT; μBÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

lowest orders in ðμB=TÞ

þ T 0
critðT; μBÞ − Taylorn≤2½T 0

critðT; μBÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
higher orders in ðμB=TÞ

; ð24Þ

which has the same singularity as T 0
crit and the same

truncated Taylor expansion as T 0
lat.

The last term in Eq. (24) represents the Taylor expansion
of T 0

critðT; μBÞ, which we will carry out to order
OððμB=TÞ2Þ and truncate beyond that order. Using Eq. (22)
we find:

Taylorn≤2½T 0
crit� ¼

�
∂χB2;latðTÞ

∂T

				
T0

�−1�
∂ncritB =T3

∂ðμB=TÞ
				
μ̂B¼0

þ 1

3!

∂
3ncritB =T3

∂ðμB=TÞ3
				
μ̂B¼0

�
μB
T

�
2
�
: ð25Þ

FIG. 5. Critical baryon density for the chosen parameters
w ¼ 2, ρ ¼ 2, α12 ¼ 900 with the critical point at μBC ¼
350 MeV and TC ¼ 140 MeV. For μB < μBC, no significant
changes occur, indicating a smooth crossover transition. How-
ever, for μB > μBC, a distinct jump appears, marking the
transition as first-order.

FIG. 4. The figure comprises three contour plots of the critical (singular) contribution to pressure, in three different coordinate systems
related to each other by transformations shown in Fig. 3. The top-left plot uses the Ising model coordinates ðh; rÞ, with the critical point
located at (0, 0). The top-right plot uses coordinates ðT=T 0

;T ; μ
2
B=ð2μBCÞÞ, with the critical point at ðT0=T 0

;T ; μBC=2Þ. The bottom plot
shows the same pressure in QCD coordinates ðμ; TÞ, featuring critical points located at ðμBC ¼ �350 MeV; TC ¼ 140.1 MeVÞ. In all
panels, the black dot represents the critical point and the red solid line denotes the first-order transition line.
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One can thus identify the regular contribution T 0
reg, using

Eq. (24), as T 0
reg ¼ T 0

lat − Taylorn≤2½T 0
crit�.

At this point, inserting Eq. (24) in (4) completely defines
the baryon density with a critical point for a chosen set of
critical point parameters. As an example, we show in Fig. 6
the baryon density as a function of the temperature, for
different values of μB=T, for a critical point located at
μBC ¼ 350 MeV, resulting in TC ¼ 140 MeV, α1 ¼ 6.65°,
with α2 ¼ α1 − α12, α12 ¼ 90°, w ¼ 2 and ρ ¼ 2. We
compare these results with lattice QCD results obtained
in Ref. [13] from the alternative expansion scheme.
Notably, we can see that our results are not in tension,
within error bars, with the lattice ones, even when a critical
point is placed in the chemical potential regime accessible
to the extrapolation.

V. RESULTS: THERMODYNAMICS

In this section, we calculate all thermodynamic observ-
ables. From Eq. (4), the baryon density nBðT; μBÞ in
temperature and chemical potential is readily provided, and
the pressurePðT; μBÞ is obtained through simple integration:

PðT; μBÞ
T4

¼ χB0;latðT; 0Þ þ
1

T

Z
μB

0

dμ0B
nBðT; μ0BÞ

T3
: ð26Þ

The integration constant χB0;latðT; 0Þ is the pressure at μB ¼ 0,
for which we employ lattice QCD results from Ref. [10].
Entropy density, energy density and second baryon

susceptibility are derivatives of pressure and baryon den-
sity, defined as:

sðT; μBÞ
T3

¼ 1

T3

∂PðT; μBÞ
∂T

				
μB

ð27Þ

ϵðT; μBÞ
T4

¼ −
PðT; μ̂BÞ

T4
þ sðT; μ̂BÞ

T3
þ μ̂B

nBðT; μ̂BÞ
T3

ð28Þ

χB2 ðT; μBÞ ¼
∂ðnBðT; μBÞ=T3Þ

∂μB=T

				
T

ð29Þ

which we implement through Eqs. (B1) and (B2). In
Figs. 7–10 we show the baryon density, pressure, second
baryon susceptibility and energy density, respectively,
as functions of the temperature, for different values of the
baryon chemical potential. These correspond to a critical
point located at μBC ¼ 500 MeV, resulting in TC ¼
117 MeV and α1 ¼ 11°. Additionally, we have w ¼ 15,
ρ ¼ 0.3, and α12 ¼ α1, meaning α2 ¼ α1 − α12 ¼ 0.

FIG. 6. Baryon density as a function of the temperature, for
different values of μB=T. Solid lines correspond to the equation
of state with a critical point located at μBC ¼ 350 MeV resulting
in TC ¼ 140 MeV; α1 ¼ 6.650, with α2 ¼ α1 − α12; α12 ¼ 900;
w ¼ 2 and ρ ¼ 2. They are compared to lattice QCD results from
Ref. [13] obtained using the T 0-expansion scheme, shown as
bands indicating the errors due to Taylor expansion truncation.

FIG. 7. Baryon density as a function of the temperature for
different baryon chemical potentials. As expected, a discontinuity
appears when μB > μBC, where the transition is first order. The
critical point is located at μBC ¼ 500 MeV, resulting in TC ¼
117 MeV and α1 ¼ 11°. Additionally, we have w ¼ 15, ρ ¼ 0.3,
and α12 ¼ α1, meaning α2 ¼ α1 − α12 ¼ 0.

FIG. 8. Pressure as a function of the temperature for different
baryon chemical potentials. The critical point manifests itself less
clearly in the pressure, which only develops a kink for μB > μBC.
The plot corresponds to the same parameters as the ones
used in Fig. 7.
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VI. CONSTRAINTS ON THE EOS

In this manuscript, we obtain a family of equations of
state which depend on the free parameters μBC, w, ρ and α12
introduced by the mapping in Eq. (3). However, the values
of these parameters can be guided by physics and the
current knowledge from experiments, in order to constrain
them and obtain a physical equation of state that describes
strongly interacting matter.

A. Lattice results

While our equations of state depend on the free param-
eters at high μB, we require that they all reproduce lattice
QCD results for pressure and its μB derivatives up to 4th
order at μB ¼ 0. This can be inferred from Fig. 6, where we

compare our baryon density (exhibiting a discontinuity at
μB > μBC) with the lattice QCD results from Ref. [13]:
within error bars, our discontinuity does not contradict the
results from lattice QCD.

B. Physical quark masses

In Ref. [73], a thorough investigation was conducted
regarding the linear mapping from Ising to QCD introduced
in Refs. [51,81]. This study effectively explored the
scenario in which the critical point closely approaches
the tricritical point, revealing a universal dependence of the
mapping parameters on the quark mass mq. Notably, when
the critical point resides in the proximity of the tricritical
point, the angle denoted as α12 between the lines of r ¼ 0
and h ¼ 0 within the ðT; μBÞ plane decreases, exhibiting a
behavior proportional to m2=5

q . For a physical quark mass
mq, the angle α12 ≈ α012 as in (C7a) needs to be small,
approximately equal to α1.

C. Stability and causality

The nonuniversal mapping from ðr; hÞ to ðT; μBÞ leaves
open the selection of free parameters. While the angle α12
can be constrained by the physical value of the quark
masses, there is no physical guidance for the scaling
parameters ðw; ρÞ. Potentially, some choices of parameters
would lead to an unstable equation of state.
For a valid equation of state, certain conditions must

be met. We require that the pressure is a monotonically
increasing function of T and μB, which means positivity of
baryon density, entropy density, energy density, speed of
sound, and baryon number susceptibility everywhere in the
ðT; μBÞ plane [82] ranging from 0 < μB < 700 MeV and
25 MeV < T < 800 MeV. This can be summarized in two
conditions: positivity of the second baryon susceptibility χ2
and of the specific heat at constant volume cV , which can be
written as [83]:

cVðT; μBÞ ¼
T
χB2

�
∂s
∂T

χB2 −
�
∂nB
∂T

�
2
�
: ð30Þ

Additionally, to uphold causality, the speed of sound

c2sðT;μBÞ ¼
�
∂p
∂ϵ

�
s=n

¼
n2 ∂

2p
∂T2 − 2sn ∂

2p
∂T∂μB

þ s2 ∂
2p
∂μ2B

ðϵþpÞ
�
∂
2p
∂T2

∂
2p
∂μ2B

−
�

∂
2p

∂T∂μB

�
2
� ð31Þ

must fall within the range 0 ≤ c2s ≤ 1. The behavior of the
speed of sound as a function of T and μB can be seen in
Fig. 11. It exhibits a dip at the critical point, where it
vanishes. We show in Fig. 12 a landscape of acceptable
(blue dots) and pathological (red squares) choices for the
parameters w and ρ, for a critical point located at μBC ¼
500 MeV, which corresponds to TC ¼ 117 MeV and
α1 ¼ 11°. Additionally, we have α12 ¼ α1, meaning

FIG. 10. Energy density as a function of the temperature for
different baryon chemical potentials. This quantity also shows a
discontinuity for μB > μBC. The plot corresponds to the same
parameters as the ones used in Fig. 7.

FIG. 9. Second order baryon susceptibility as a function of
the temperature for different baryon chemical potentials. This
quantity represents the measure of how baryon density reacts to
an increase in chemical potential. A divergence is expected at
the critical point, which can be seen for μB ¼ μBC ¼ 500 MeV.
The plot corresponds to the same parameters as the ones
used in Fig. 7.
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α2 ¼ α1 − α12, while w and ρ are varied in the range
w ¼ 2.5–22.5, ρ ¼ 0.1–1.3. Similar plots, comparing our
parameter landscapes to the ones from the BEST collabo-
ration EoS, are discussed in Appendix C.

VII. SUMMARY AND CONCLUSIONS

Determining the QCD equation of state, in particular,
establishing the existence of the QCD critical point and
pinning down its location, is a major goal of heavy-ion
collision experiments. The strategy based on comparing
predictions of hydrodynamics sensitive to EoS with experi-
ment requires a parametric family of EoS which can be fed
into a hydrodynamic code. In this paper, we introduced a
novel framework for constructing such a family of QCD
equations of state.
Our framework improves on the BEST collaboration

approach [51] by introducing several significant innova-
tions. This allows us to achieve coverage over a wider
range of the QCD phase diagram relevant for critical point
searches.

The main innovation in our paper is merging the
universal critical point singularity with the implementation
of the T 0-expansion scheme [13]. The T 0-expansion scheme
takes into account the observation that the temperature
driven crossover looks remarkably similar at different
chemical potentials, the main difference being a shift of
the crossover temperature with increasing μB. The “rescaled
temperature” T 0ðT; μBÞ defined in Eq. (4) carries informa-
tion about the dependence of the position and the shape
of the crossover at different μB. Since this dependence is
relatively slow, the expansion of T 0, as in Eq. (5), is much
better controlled than the expansion of quantities such as
χB2 , which vary rapidly at the crossover.
We introduce the critical singularity into the function

T 0ðT; μBÞ, while making sure that the Taylor expansion
coefficients (at μB ¼ 0) still agree with the lattice data.
Another innovation, relative to the BEST EoS frame-

work, is the mapping of the Ising coordinates r and h into
QCD coordinates T and μ2B, instead of μB. This takes care of
the charge conjugation symmetry and the associated
curvature of the QCD pseudocritical line.
We check the novel framework by calculating quantities

which must obey thermodynamic inequalities. Of course,
for sufficiently large μB or for sufficiently strong critical
point singularity, the framework will show its limitations by
violating these inequalities. However, the range of param-
eters where the novel framework is thermodynamically
consistent is larger than the same range for the BEST
collaboration EoS family.
In particular, our framework allows us to provide thermo-

dynamically consistent EoS in the range μB ¼ 0–700 MeV,
extending beyond the BEST EoS range μB ¼ 0–450 MeV.
In addition, the range for critical point parameters w and ρ is
also extended compared to the one for the BEST EoS at
similar values of T and μB.
There are several potential avenues for further improve-

ment. Since the approach is still based on the Taylor
expansion, necessarily truncated based on the availability
of the lattice data, it inevitably breaks down at sufficiently
large μB. It might be possible to introduce additional
resummation techniques dealing with these limitations at
larger μB. In addition, the true EoS of QCD possesses the
well known periodicity in the complex plane: μB → μB þ
2πTi due to the quantization of the baryon number. This
periodicity could also be implemented. We leave these and
further improvements to future work.
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APPENDIX A: TAYLOR EXPANSION
OF THE CRITICAL CONTRIBUTION

Here we present the formula and derivation for
Taylor½T 0

critðT; μBÞ�. Since in our approach T 0
latðT; μBÞ is

truncated up to κBB2 ðTÞ, we need the Taylor½T 0
critðT; μBÞ;

n ¼ 2� ¼ a0ðTÞ þ a2ðTÞðμBT Þ2, such that we match that
same order by construction, while the higher order con-
tributions come from the critical part. The coefficients a0
and a2 are then given by;

a0ðTÞ ¼
�
∂χB2
∂T

				
T0

��
∂ncritB ðT; μBÞ
∂ðμB=TÞ

�				
μB=T¼0

ðA1Þ

a2ðTÞ ¼
�
∂χB2
∂T

				
T0

��
1

3!

∂
3ncritB ðT; μBÞ
∂ðμB=TÞ3

�				
μB=T¼0

ðA2Þ

APPENDIX B: COMPUTING
THERMODYNAMICS

From Eq. (4), we obtain Eq. (B1) and Eq. (B2), which
are derivatives of the baryon density with respect to
chemical potential and temperature, respectively

∂nBðT; μBÞ
∂ðμB=TÞ

¼ χB2;latðT 0ÞT3 þ μB
T

∂χB2;latðTÞ
∂T

				
T 0

∂T 0

∂ðμB=TÞ
T3

ðB1Þ

∂nBðT; μBÞ
∂T

¼ 2
nBðT; μBÞ

T
þ μB

T

∂χB2;latðTÞ
∂T

∂T 0

∂T
T3 ðB2Þ

Then entropy is computed from the integral of Eq. (B2)
using

sðT; μBÞ ¼ 4T3χB0;latðTÞ þ T4
χB0;latðTÞ
dT

Z
μB

0

dμ0B
∂nBðT; μ0BÞ

∂T

ðB3Þ

All thermodynamic quantities, calculated in this paper as
functions of temperature and chemical potential, are shown
in Figs. 7–10 and 13–16 for slices at constant μB in the
main text and 3D plots in the Appendix, respectively.

FIG. 13. Baryon density as a function of temperature and chemical potential for the same parameters as in Fig. 7, with a zoom into the
critical region.
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APPENDIX C: COMPARISON WITH BEST EOS

In [51,73,82], a linear map from Ising to QCD with six
parameters was utilized.

T − TC ¼ TCwðrρ sin α1 þ h sin α2Þ
μB − μBC ¼ TCwð−rρ cos α1 − h cos α2Þ: ðC1Þ

By making use of the following equations for the slopes
at the critical point:

dT
dμB

				
h¼0

¼ − tan α1 ðC2Þ

dT
dμB

				
r¼0

¼ − tan α2 ðC3Þ

and linearizing Eq. (13) around the critical point and
using T 0

lat ¼ Tð1þ κBB2 ðTÞðμBT Þ2Þ,

FIG. 14. Second baryon number susceptibility as a function of temperature and chemical potential for the same parameters as in Fig. 7,
with a zoom into the critical region.

FIG. 15. Pressure on the left panel and Energy density on the right panel with a red point representing a critical point for the same
parameters as in Fig. 7.
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1

T 0
;T

ΔT 0

ΔμB
¼ ΔT

ΔμB
þ 2κBB2 ðTÞμB

T 0
;TT

ðC4Þ

At h ¼ 0, we get Eq. (21):

tan α1 ¼
2κBB2 ðTCÞμBC

T 0
;TTC

ðC5Þ

At r ¼ 0, we get Eq. (14a):

tan α012 ¼ tan α1 − tan α2 ðC6Þ

Using simple trigonometric relations and Eq. (16) and
Eq. (17), we find (14b) and (14c).

Then, we approximate for either small angles or large
angles:

(i) For small angles:

α012 ≈ α12; ðC7aÞ

w0 ≈ w; ðC7bÞ

ρ0 ≈ ρ; ðC7cÞ

(ii) For α1 ≪ 1 and α12 ¼ 90°:

α012 ≈ 90° − α1; ðC8aÞ

w0 ≈ w; ðC8bÞ

ρ0 ≈ ρ: ðC8cÞ

In Figs. 17 and 18, we compare the stability parameter
landscape in w and ρ for our approach to the ones from the
BEST collaboration EoS. In Fig. 17, the Ising model axes
are chosen to be orthogonal to each other. However, since
physically motivated values of the angle α12, characterizing
the shape of the critical region, are small [73], it is
important that the improvement in the w and ρ ranges is
especially pronounced for small angle α12, as shown in
Fig. 18 for α2 ¼ 0, i.e., α12 ¼ α1. From these figures it is
clear that the quadratic mapping in Fig. 3 has more
acceptable points than the linear mapping in [51].

FIG. 16. Entropy density as a function of temperature and
chemical potential with a red point representing a critical point for
the same parameters as in Fig. 7.

FIG. 17. Comparison of the stability plots for w and ρ with the new mapping (quadratic) on the left panel and the BEST mapping
(linear) [51] on the right. The blue points represent acceptable parameters, while the red points denote unacceptable ones for μBC ¼
350 MeV; TC ¼ 140.073 MeV; α1 ¼ 6.653°; κ ¼ 0.02633 with α12 ¼ 90° for μB ¼ f0; 450 MeVg. Blue triangles on the left panel
indicate parameters that are acceptable in the new mapping, while they were not in the BEST collaboration mapping.
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