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The Schwinger-Keldysh functional renormalization group developed by Y.-y. Tan et al. [Real-time
dynamics of theOð4Þ scalar theory within the fRG approach, SciPost Phys. 12, 026 (2022)] is employed to
investigate critical dynamics related to a second-order phase transition. The effective action of model A is
expanded to the order of Oð∂2Þ in the derivative expansion for the OðNÞ symmetry. By solving the fixed-
point equations of effective potential and wave function, we obtain static and dynamic critical exponents for
different values of the spatial dimension d and the field component number N. It is found that one has z ≥ 2

in the whole range of 2 ≤ d ≤ 4 for the case of N ¼ 1, while in the case of N ¼ 4, the dynamic critical
exponent turns to z < 2 when the dimension approach towards d ¼ 2.
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I. INTRODUCTION

Nonequilibrium critical dynamics might play a signifi-
cant role, when quark-gluon plasma (QGP) produced in
relativistic heavy ion collisions evolves into the critical
region of the critical end point (CEP) in the QCD phase
diagram [1–4], though recently, it has been found the
critical region of QCD is extremely small [5]. This is quite
relevant for the search of CEP in experiments under way
currently at, e.g., the Relativistic Heavy Ion Collider
(RHIC) [6,7] and other facilities. In the critical region,
dynamics are dominated by the massless modes, and the
significantly increased correlation length results in the well-
known critical slowing down [8,9]. On the other hand, the
dynamics in the critical region is simplified, since it does
not depend on the details of interactions of different
systems but is rather governed by some universal proper-
ties, which has been discussed in detail in the seminal
paper [10].
In early studies of critical dynamics, perturbation tech-

niques are usually adopted, for example the ϵ-expansion
[11–13] or the 1=N expansion [14]. In recent years, many
nonperturbative methods have been utilized. Real-time
lattice simulations in classical-statistical field theory are
used to calculate spectral functions and critical dynamics
[15–20]. Real-time correlation functions, spectral functions,

dynamic critical exponent, dissipation dynamics, etc., are
investigated within the real-time functional renormalization
group (FRG) approach [21–25] or based on analytically
continued FRG flows [26]. Moreover, spectral representa-
tions of correlation functions have recently been combined
with the FRG and Dyson-Schwinger equations (DSE),
which are now known as the spectral FRG [27,28] or spectral
DSE [29–32].
In our former work [21], we have developed the

formalism of FRG formulated on the Schwinger-Keldysh
closed time path [33,34]; see also, e.g., [35–38] for some
relevant reviews about the Schwinger-Keldysh path inte-
gral. By the use of the Keldysh rotation, one is able to
formulate the real-time effective action in terms of two
different fields: one is referred to as the “classical” field,
say ϕc, and the other “quantum” field ϕq. The relevant
diagram techniques were also devised there [21].
In this work, we would like to employ the Schwinger-

Keldysh FRG in [21] to study the critical dynamics of a
dissipative relaxation model, that is classified as model A
in [10]. The formalism of Schwinger-Keldysh FRG in
terms of the physical classical and quantum fields, facil-
itates the description of real-time dynamics from the
microscopic level to, e.g., mesoscopic or macroscopic
levels. For instance, the effective action expanded up to
the order of ϕ2

q is equivalent to Langevin-like equations
with white noises; see, e.g., [38] for more details. We will
employ the method of derivative expansion to make
truncation for the real-time effective action, which is
usually used in the studies of static critical properties,
cf. [39,40]. The action is expanded to the order ofOð∂2Þ for
the OðNÞ symmetry. Fixed-point equations will be utilized
to investigate the critical dynamics of the relaxation model.
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Therefore, one is able to compute the dynamic critical
exponent directly by solving the fixed-point equations and
eigenperturbations near the fixed point, rather than calcu-
late it indirectly from, e.g., spectral functions [21].
This paper is organized as follows: In Sec. II, the

dynamic model and its representation in the Schwinger-
Keldysh FRG are presented. In Sec. III, we discuss the flow
equations of the effective potential, wave function, and the
kinetic coefficient. Numerical results are presented and
discussed in Sec. IV. In Sec. V, we show our summary and
conclusions. In Appendix A, we show the Feynman rules
for the propagators and vertices in the Schwinger-Keldysh
FRG. In Appendix B, the flow of effective potential in the
mesoscopic relaxation model and that in the microscopic
theory are compared.

II. DYNAMIC MODEL WITHIN THE
REAL-TIME FRG APPROACH

We begin with the dissipative relaxation model with no
conservation laws, which is classified as model A in the
seminal paper [10]. The equation of motion for the scalar
field of N components ϕa with a ¼ 0; 1;…N − 1 is
described by the Langevin equation, viz.,

∂ϕaðx; tÞ
∂t

¼ −Γ
δF½ϕ�
δϕa

þ ηaðx; tÞ; ð1Þ

with a functional of fields for the free energy,

F½ϕ� ¼
Z

ddx

�
1

2
ZϕðρÞð∂iϕaÞð∂iϕaÞ þ VðρÞ − cσ

�
; ð2Þ

where ZϕðρÞ and VðρÞ are the field-dependent wave
function and effective potential, respectively. The notations
∂i ¼ ∂=∂xi, ρ ¼ ϕ2=2 with ϕ2 ¼ ϕaϕa are used, and sum-
mation is assumed for repeated indices. Note that the OðNÞ
symmetry inEq. (2) is explicitly brokenby the last linear term
in σ ≡ ϕa¼0, with the breaking strength c. In Eq. (1), the
diffusion constant Γ describes the relaxation rate and the last
term denotes the Gaussian white noises with vanishingmean
value, i.e., hηaðx; tÞi ¼ 0, and nonzero two-point correla-
tions, as follows:

hηaðx; tÞηa0 ðx0; t0Þi ¼ 2ΓTδðx − x0Þδðt − t0Þδaa0 ; ð3Þ

with the temperature T.
In this work, we would like to study the critical dynamics

of model A within the functional renormalization group
formulated on the Schwinger-Keldysh closed time path.
The real-time FRG with the Schwinger-Keldysh path
integral and the relevant techniques thereof have been
discussed in detail in our former work [21]; see also
[41,42]. Following the approach there, one is able to arrive
at the renormalization group (RG) scale dependent effective
action corresponding to Eq. (1) with Eq. (2), that is,

Γk½ϕc;ϕq�

¼
Z

dtddx

�
Zt;kϕa;qið∂tϕa;cÞþ iZϕ;kðρcÞð∂iϕa;qÞð∂iϕa;cÞ

þ i
4
Z0
ϕ;kðρcÞϕa;qϕa;cð∂iϕb;cÞð∂iϕb;cÞþ iV 0

kðρcÞϕa;qϕa;c

−
ffiffiffi
2

p
icσq−2iZt;kTϕ2

a;q

�
; ð4Þ

with ∂t ¼ ∂=∂t, where ϕc and ϕq stand for the “classical”
and “quantum” fields, respectively. Note that in Eq. (4)
there are derivatives of the wave function and the effective
potential, i.e.,

Z0
ϕ;kðρcÞ ¼

∂Zϕ;kðρcÞ
∂ρc

; V 0
kðρcÞ ¼

∂VkðρcÞ
∂ρc

; ð5Þ

with ρc ¼ ϕ2
c=4. The action here is expanded to the order of

Oð∂2i Þ in the derivative expansion. The kinetic coefficient
Zt;k in Eq. (4) is related to the relaxation rate in Eq. (1)
through Zt;k ∼ 1=Γ. Quantities with suffix k indicate their
dependence on the RG scale. From the effective action in
the Schwinger-Keldysh field theory in Eq. (4), one is able
to obtain the retarded, advanced, and Keldysh propagators,
three- and four-point vertices, etc., which are discussed in
detail in Appendix A.

III. FLOW EQUATIONS

The flow equation of effective potential can be obtained
from the flow of one-point function as shown in Fig. 1. By
employing the Feynman rules for the propagators and
vertices in Appendix A, one is able to obtain the flow
equation of effective potential (the first-order derivative
with respect to the field), to wit,

∂τV 0
kðρÞ

¼ νd
2
Tkd

∂

∂ρ

�Z
1

0

dxx
d
2
−1 2 − ηð1 − xÞ

ðzϕðρÞ − 1Þxþ 1þ m̄2
σ

þ ðN − 1Þ
Z

1

0

dxx
d
2
−1 2 − ηð1 − xÞ

ðzϕðρÞ − 1Þxþ 1þ m̄2
π

�
; ð6Þ

FIG. 1. Diagrammatic representation of the flow equation for
the effective potential, obtained from the one-point correlation
function of the effective action with an external leg of ϕq. Here, τ
stands for the RG time τ ¼ lnðk=ΛÞ with some reference scale Λ.
The partial derivative e∂τ hits the k dependence only through the
regulator in propagators. See Appendix A for more details about
the Feynman rules.
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where we have used ρ in replace of ρc without ambiguity.
The RG time is τ ¼ lnðk=ΛÞ with Λ being some reference
scale, e.g., an ultraviolet cutoff. The angular integral in d
dimension gives rise to a constant νd ¼ 1=½ð4πÞd=2Γðd=2Þ�,
where Γðd=2Þ is the gamma function. In Eq. (6), one
also has

zϕðρÞ ¼
Zϕ;kðρÞ
Zϕ;k

; ð7Þ

with Zϕ;k ¼ Zϕ;kðρ0Þ, that is field independent, and ρ0 is
usually chosen to be the position of the minimum of
potential, i.e., V 0

kðρ0Þ ¼ 0. The anomalous dimension reads

η ¼ −
∂τZϕ;k

Zϕ;k
: ð8Þ

The dimensionless renormalized meson masses in Eq. (6)
read

m̄2
σ ¼ Z−1

ϕ;kk
−2m2

σ; m̄2
π ¼ Z−1

ϕ;kk
−2m2

π; ð9Þ

where the baremasses are shown inEq. (A4). InAppendixB,
it has been demonstrated that the flowof effective potential in
the mesoscopic relaxation model in Eq. (6) corresponds to
the high temperature limit of the flow of effective potential
in the microscopic Klein-Gordon theory [21].
In fact, in order to investigate scaling properties of

Eq. (6), it is more convenient to adopt dimensionless
renormalized variables, such as

ρ̄ ¼ Zϕ;kT−1k2−dρ; uðρ̄Þ ¼ T−1k−dVkðρÞ: ð10Þ

Then, one is left with

∂τu0ðρ̄Þ ¼ ð−2þ ηÞu0ðρ̄Þ þ ð−2þ dþ ηÞρ̄uð2Þðρ̄Þ − νd
2

×

�Z
1

0

dxx
d
2
−1½2 − ηð1 − xÞ�½z0ϕðρ̄Þxþ 3uð2Þðρ̄Þ þ 2ρ̄uð3Þðρ̄Þ�½ðzϕðρ̄Þ − 1Þxþ 1þ u0ðρ̄Þ þ 2ρ̄uð2Þðρ̄Þ�−2

þ ðN − 1Þ
Z

1

0

dxx
d
2
−1½2 − ηð1 − xÞ�½z0ϕðρ̄Þxþ uð2Þðρ̄Þ�½ðzϕðρ̄Þ − 1Þxþ 1þ u0ðρ̄Þ�−2

�
: ð11Þ

The flows of the wave function renormalization Zϕ;kðρcÞ
and the kinetic coefficient Zt;k in the effective action in
Eq. (4) can be extracted from the flow equation of the two-
point function, e.g., the inverse retarded propagator in
Eq. (A1). The flow of the inverse retarded propagator is
shown in Fig. 2. Inserting the different propagators, three-
and four-point vertices inAppendixA into the flow equation,
one is able to close the equations. The computation is
straightforward, though a bit tedious. It is obvious from
Eq. (A1) that the flow of the wave function renormalization
can be obtained by performing the projection as follows:

∂τZϕ;kðρÞ ¼ lim
p0→0
p→0

ð−iÞ ∂

∂p2
δ2∂τΓk½Φ�

δϕa;qð−pÞδϕa;cðpÞ
����
ΦEoM

: ð12Þ

Note that there is no summation for the index of field
component a. In the same way, one finds for the kinetic
coefficient,

∂τZt;k ¼ lim
p0→0
p→0

∂

∂p0

δ2∂τΓk½Φ�
δϕa;qð−pÞδϕa;cðpÞ

����
ΦEoM

: ð13Þ

In thiswork, the projections inEqs. (12) and (16) aremade on
the pion field, i.e., the field component a ≠ 0. Then, one
arrives at

∂τzϕðρ̄Þ ¼ ηzϕðρ̄Þ þ ð−2þ dþ ηÞρ̄z0ϕðρ̄Þ þ
2

d
ρ̄ðz0ϕðρ̄ÞÞ2νd

Z
1

0

dxx
d
2sðxÞ

�
1

LπðxÞL2
σðxÞ

þ 1

L2
πðxÞLσðxÞ

�

þ 4ρ̄z0ϕðρ̄Þuð2Þðρ̄Þνd
Z

1

0

dxx
d
2
−1 sðxÞ

LπðxÞLσðxÞ2
− 4ρ̄ðuð2Þðρ̄ÞÞ2νd

Z
1

0

dxx
d
2
−1 sðxÞ

L2
πðxÞL2

σðxÞ
ð∂xLπðxÞÞ

þ 8

d
ρ̄ðuð2Þðρ̄ÞÞ2νd

Z
1

0

dxx
d
2

�
1

L2
πðxÞL3

σðxÞ
þ 1

L3
πðxÞL2

σðxÞ
�
ð∂xLπðxÞÞ2sðxÞ

−
8

d
ρ̄ðuð2Þðρ̄ÞÞ2νd

Z
1

0

dxx
d
2

1

L2
πðxÞL2

σðxÞ
ð∂2xLπðxÞÞsðxÞ − ðz0ϕðρ̄Þ þ 2ρ̄zð2Þϕ ðρ̄ÞÞνd

Z
1

0

dxx
d
2
−1 1

L2
σðxÞ

sðxÞ

− ðN − 1Þz0ϕðρ̄Þνd
Z

1

0

dxx
d
2
−1 1

L2
πðxÞ

sðxÞ; ð14Þ
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with

sðxÞ ¼ ½2 − ηð1 − xÞ�Θð1 − xÞ;
LπðxÞ ¼ zϕðρ̄Þxþ ð1 − xÞΘð1 − xÞ þ u0ðρ̄Þ;
LσðxÞ ¼ zϕðρ̄Þxþ ð1 − xÞΘð1 − xÞ þ u0ðρ̄Þ

þ 2ρ̄uð2Þðρ̄Þ; ð15Þ

where the flat regulator, cf. Eq. (A7), is used, and ΘðxÞ
denotes the Heaviside step function.
The flow of the kinetic coefficient reads

∂τZt;k ¼ −Zt;k2ρ̄ðuð2Þðρ̄ÞÞ2νd
Z

1

0

dxx
d
2
−1sðxÞ

×
L2
πðxÞ þ 4LπðxÞLσðxÞ þ L2

σðxÞ
L2
πðxÞL2

σðxÞ½LπðxÞ þ LσðxÞ�2
; ð16Þ

which allows us to define the dynamic anomalous dimen-
sion as follows:

ηt ¼ −
∂τZt;k

Zt;k
: ð17Þ

The static anomalous dimension in Eq. (8) can be
obtained by evaluating Eq. (14) at the minimum of potential
ρ̄0, and one arrives at

η ¼ −∂τzϕðρ̄0Þ þ ηzϕðρ̄0Þ − ð∂τρ̄0Þz0ϕðρ̄0Þ; ð18Þ

with

∂τρ̄0 ¼ −
∂τu0ðρ̄0Þ
uð2Þðρ̄0Þ

; ð19Þ

where the last equation follows from the requirement,

du0ðρ̄0Þ
dτ

¼ ∂τu0ðρ̄0Þ þ ð∂τρ̄0Þuð2Þðρ̄0Þ ¼ 0: ð20Þ

Note that since the field dependence of the kinetic
coefficient is neglected, it is a natural choice to compute
its flow in Eq. (16) at the physical point ρ̄0. With the static
anomalous dimension η in Eq. (8) or (18) and dynamic
anomalous dimension ηt in Eq. (17), one is able to calculate
the dynamic critical exponent [10],

z ¼ 2 − ηþ ηt: ð21Þ

It is interesting to find that the flows of the effective
potential in Eq. (11) and the wave function in Eq. (14) do
not receive contributions from the dynamical variable ηt,
indicating that the dynamics is decoupled from the static
properties in the truncation as shown in the effective action
in Eq. (4). In fact, in more sophisticated truncations, for
instance, when the momentum or frequency dependence of
the kinetic coefficient Zt;k is taken into account, there is no
decoupling any more. Moreover, if the field dependence of
the wave function is ignored, the truncation then is reduced
to the modified local potential approximation, usually
denoted by LPA0. Then the static anomalous dimension
reads

η ¼ 8

d
1

2dπd=2Γðd=2Þ
ρ̄0ðuð2Þðρ̄0ÞÞ2

ð1þ 2ρ̄0uð2Þðρ̄0ÞÞ2
; ð22Þ

and the dynamic anomalous dimension is given by

ηt ¼
4ð2þ d − ηÞ
dð2þ dÞ

1

2dπd=2Γðd=2Þ ρ̄0ðu
ð2Þðρ̄0ÞÞ2

×
3þ 6ρ̄0uð2Þðρ̄0Þ þ 2ρ̄20ðuð2Þðρ̄0ÞÞ2

ð1þ ρ̄0uð2Þðρ̄0ÞÞ2ð1þ 2ρ̄0uð2Þðρ̄0ÞÞ2
: ð23Þ

If the static anomalous dimension in Eq. (22) is assumed to
be vanishing, i.e., η ¼ 0, the truncation then returns to the
local potential approximation (LPA).
Here, we end this section with a summary of relations

among the different truncations used in this work. As
mentioned above, the effective action in Eq. (4) is expanded
to the order ofOð∂2Þ in the derivative expansion, where the
wave function is field dependent as shown in Eq. (14). If
the field dependence of the wave function is neglected
while its RG scale dependence is kept, this is LPA0. When
the RG scale dependence is even ignored, one is left with
the LPA.

IV. NUMERICAL RESULTS

In this section, we solve fixed-point solutions of the
flow equations of the effective potential and wave function
numerically, that is ∂τu0ðρ̄Þ ¼ 0 and ∂τzϕðρ̄Þ ¼ 0. In this
work, we focus on the Wilson-Fisher fixed point, which is
characterized by just one relevant eigenvalue of eigenper-
turbations around the fixed point [43,44], and this rel-
evant eigenvalue is usually denoted by 1=ν, where ν is one
of two static critical exponents besides the anomalous
dimension η.
In this work, we employ two different numerical

methods to solve the fixed-point equations. One is the
conventional grid method where the potential u0ðρ̄Þ and
wave function zϕðρ̄Þ are discretized on a grid of ρ̄.
The other one is the high-precision direct integral of the

FIG. 2. Diagrammatic representation of the flow equation for
the inverse retarded propagator; see Eq. (A1) or Fig. 9.
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fixed-point equation, that is recently proposed in [45], and
more details can be found there. We find that these two
different numerical methods produce identical results.
In Fig. 3, we show the fixed-point solutions of the global

potential and wave function. It is found that with the
decrease of dimension d, the zero crossing point ρ̄0 of
u0ðρ̄Þ, i.e., u0ðρ̄0Þ ¼ 0, moves right towards the direction
of larger ρ̄. One can also find that with the decrease of
dimension d, the dependence of the wave function zϕðρ̄Þ on
the field ρ̄ becomes stronger, which indicates that when the
dimension is small, say d≲ 3, the field dependence of the
wave function should be taken into account. In Fig. 4, we
show the critical exponent ν as a function of the dimension
d. Obviously, results obtained from the three truncations
are convergent when the dimension is d≳ 3. Deviations are
observed in the region of small d, in particular in the
vicinity of d ¼ 2. In fact, the numerical calculations
become more and more difficult as the dimension is
approaching d ¼ 2. This is already indicated in the results
of the potential in the left panel of Fig. 3. The zero crossing

point ρ̄0 is divergent when one has d ¼ 2 and N ≥ 2.
Therefore, the calculation of derivative expansion ceases at
a value of d, where the computation is quite time con-
suming. In Fig. 4, we also show the ϵ ¼ 4 − d expansion
result for comparison, which reads

ν ¼ 1

2
þ N þ 2

4ðN þ 8Þ ϵþ
N þ 2

8ðN þ 8Þ3 ðN
2 þ 23N þ 60Þϵ2

þ N þ 2

32ðN þ 8Þ5 ½2N
4 þ 89N3 þ 1412N2 þ 5904N

þ 8640 − 192ð5N þ 22ÞðN þ 8Þ × 0.60103�ϵ3
þOðϵ4Þ; ð24Þ

up to the order ofOðϵ3Þ [46]. It is found that the ϵ expansion
is consistent with the FRG computation with d > 3.
The results of static anomalous dimension η are pre-

sented in Fig. 5. Since one has η ¼ 0 in LPA, only two
truncations in FRG are compared. One finds that the static

FIG. 3. Derivative of the effective potential u0ðρ̄Þ (left panel) and the wave function zϕðρ̄Þ (right panel) at the Wilson-Fisher fixed point
as functions of ρ̄ for the OðNÞ symmetry with N ¼ 4. Three different values of dimension d are chosen.

FIG. 4. Critical exponent ν as a function of the dimension d for the OðNÞ symmetry with N ¼ 1 (left panel) and N ¼ 4 (right panel).
Three different truncations, LPA, LPA0, and derivative expansion up to the order of Oð∂2Þ are used, and their results are also compared
with that of ϵ expansion in the order of Oðϵ3Þ.
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anomalous dimension as a function of the dimension is
monotonic for N ¼ 1, whereas there is a nonmonotonic
dependence in the case of N ¼ 4. This is closely related to
the Mermin-Wagner-Hohenberg theorem [47–49]; i.e.,
there is no phase transition in d ¼ 2 dimension for the
OðNÞ symmetry with N ≥ 2. The result of ϵ expansion for
the static anomalous dimension [46,50]; i.e.,

η ¼ N þ 2

2ðN þ 8Þ2 ϵ
2 þ N þ 2

2ðN þ 8Þ2
�
6ð3N þ 14Þ
ðN þ 8Þ2 −

1

4

	
ϵ3

þ N þ 2

32ðN þ 8Þ6 ½−5N
4 − 230N3 þ 1124N2 þ 17920N

þ 46144 − 768ð5N þ 22ÞðN þ 8Þ × 0.60103�ϵ4
þOðϵ5Þ; ð25Þ

in the order of Oðϵ4Þ, is also presented in Fig. 5 for
comparison. One can see that it is better for the derivative
expansion in agreement between the FRG and the ϵ

expansion in the region of large d. In Fig. 6, we show
the dynamic anomalous dimension ηt. Similar with the
static one, the dependence of ηt on the dimension is
monotonic in N ¼ 1 but nonmonotonic for N ≥ 2.
Moreover, one can see ηt ¼ 0 at d ¼ 4, indicating there
is no critical fluctuation or critical slowing down at the
Gaussian fixed point.
With the static and dynamic anomalous dimensions, one

can obtain the dynamic critical exponent through Eq. (21).
The relevant results are presented in Fig. 7. In the same
way, we use three different truncations. Moreover, we also
compare with the result of ϵ ¼ 4 − d expansion in the order
of three loops [11,51], which reads

z ¼ 2þ cη; ð26Þ

with the constant c,

c ¼ 0.726ð1 − 0.1885ϵÞ; ð27Þ

FIG. 5. Static anomalous dimension η as a function of the dimension d for the OðNÞ symmetry with N ¼ 1 (left panel) and N ¼ 4

(right panel). Results are obtained in LPA0, the derivative expansion in the order of Oð∂2Þ, and the ϵ expansion in the order of Oðϵ4Þ.

FIG. 6. Dynamic anomalous dimension ηt as a function of the dimension d for theOðNÞ symmetry with N ¼ 1 (left panel) and N ¼ 4
(right panel). Results obtained in three different truncations are compared.
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and the static anomalous dimension η in Eq. (25). One can
see that when the dimension is very close to d ¼ 4, say
d≳ 3.5, where the ϵ expansion should work well, our
results obtained with the LPA0 or the derivative expansion
are comparable with the ϵ expansion. However, the LPA
computation overestimates the dynamic critical exponent
apparently, since the static anomalous dimension in LPA is
neglected. Furthermore, in the whole range of 2 ≤ d ≤ 4,
our results prefer z ≥ 2 for the case of N ¼ 1. The case of
N ¼ 4 is, however, more intricate, and one can see that the
dynamic critical exponent calculated with the derivative
expansion turns to z < 2 when the dimension is below
d ¼ 2.5.
In Fig. 8, we also show the dynamic critical exponent

with N ¼ 10. In comparison to the results of N ¼ 1 and
N ¼ 4, one can see that the magnitude of z − 2 decreases
significantly, since both the static and dynamic anomalous
dimensions approach to zero in order of 1=N in the large
N limit.

V. SUMMARY AND CONCLUSIONS

In this work, we have used the Schwinger-Keldysh FRG
developed in [21] to study critical dynamics related to a
second-order phase transition. As a concrete example, a
dissipative relaxation model classified as model A is
employed. In the formalism of Schwinger-Keldysh FRG,
theRG scale dependent effective action is expressed in terms
of two different kinds of fields. One is similar with the
physical classical field, i.e., the “classical” field, and the
other plays the role of fluctuations, called the “quantum”
field. This formalism of double fields provides uswith a very
powerful approach to study real-time critical dynamics by
employing systematic expansions for the truncation. For
example, the derivative expansion can be applied to the
sector of classical fields. For the sector of quantum fields,
one is able to study the transition from a microscopic theory
to a mesoscopic model, e.g., the semiclassical limit of a
quantum action; see, e.g., [38] formore relevant discussions.
We expand the effective action of OðNÞ symmetry to the

order of Oð∂2Þ in the derivative expansion, from which one
can readily obtain the truncations LPA0 and LPA by
neglecting the field dependence of the wave function
and the wave function itself, respectively. The flow equa-
tions of the effective potential, wave function, and the
kinetic coefficient are obtained. By solving the fixed-point
equations of the dimensionless renormalized potential and
wave function, one is able to find the solution of the
Wilson-Fisher fixed point and the relevant static and
dynamic critical exponents. It is found that both the static
anomalous dimension η and the dynamic anomalous
dimension ηt behave as monotonic functions of the spatial
dimension d in the range of 2 ≤ d ≤ 4 in the case of N ¼ 1,
whereas they are both nonmonotonic when N ≥ 2.
The dynamic critical exponent z is obtained as a function

of the spatial dimension d for different values of N. Our
results are also compared with those of ϵ expansion in the
order of three loops. It is found that results obtained from

FIG. 7. Dynamic critical exponent z as a function of the dimension d for theOðNÞ symmetry with N ¼ 1 (left panel) and N ¼ 4 (right
panel). Results are obtained in FRG with three different truncations, and they are also compared with the results of three-loop order ϵ
expansion [52].

FIG. 8. Dynamic critical exponent z as a function of the
dimension d for the OðNÞ symmetry with N ¼ 10. Results of
the FRG and ϵ expansion of three-loop order are presented.
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derivative expansion and LPA0 are consistent with that from
the ϵ expansion when the dimension is close to d ¼ 4,
while LPA overestimates the dynamic critical exponent.
Furthermore, we find that z ≥ 2 in the whole range of
2 ≤ d ≤ 4 for the case of N ¼ 1, while in the case of N ¼ 4
the dynamic critical exponent turns to z < 2 when the
dimension approach towards d ¼ 2.
Furthermore, it is very interesting to investigate the

convergence of different truncations in FRG. To that
end, one has to move on to higher orders of the derivative
expansion, e.g., the order of Oð∂4Þ. The dependence of
regulators used also has to be studied, and the “principle of
minimal sensitivity” (PMS) procedure is usually adopted in
the literatures; see, e.g. [40]. We will report the relevant
progress in the future.
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APPENDIX A: PROPAGATORS AND VERTICES

In the functional renormalization group (FRG) approach,
quantum and thermal fluctuations of different scales are
integrated in successively with the evolution of RG scale
[53]. It is a nonperturbative continuum field theory; see,
e.g., [2,54] for reviews and [55–60] for recent progresses.
From the effective action in Eq. (4), one is able to obtain

various correlation functions, such as the two-point func-
tions,

Γð2Þqc
k;ba ðq0; qÞ ¼ δ2Γk½Φ�

δϕb;qðq0Þδϕa;cðqÞ
����
ΦEoM

¼ ðZt;kq0 þ iZϕ;kðρcÞq2 þ im2
a;kÞ

× δabð2πÞdþ1δdþ1ðqþ q0Þ; ðA1Þ

which is depicted in Fig. 9. Here, Φ denotes all the fields
involved in the theory and ΦEoM the fields on their
respective equations of motion (EoM), i.e., the expectation
value of fields. For the classical and quantum fields, one has

ϕa;qjΦEoM
¼ 0; ðA2Þ

and

ϕa;cjΦEoM
¼

�
ϕ0;c a ¼ 0

0 a ≠ 0
; ðA3Þ

which leads to ρcjΦEoM
¼ ϕ2

0;c=4. The subscript jΦEoM
is

omitted for brevity, such as in the second line of (A1), if
there is no ambiguity. The squared mass in Eq. (A1) reads

m2
a;k ¼

�
m2

a¼0;k ¼ m2
σ;k ¼ V 0

kðρcÞ þ 2ρcV
ð2Þ
k ðρcÞ

m2
a≠0;k ¼ m2

π;k ¼ V 0
kðρcÞ

: ðA4Þ

In the same way, one finds for the σ and π fields,

ϕa;qðcÞ ¼
�
σqðcÞ a ¼ 0

πi;qðcÞ a ¼ i ≠ 0
: ðA5Þ

The relevant infrared regulator reads

Rqc
k;baðq0; qÞ ¼ iZϕ;kq2rB

�
q2

k2

�
δabð2πÞdþ1

× δdþ1ðqþ q0Þ; ðA6Þ

where Zϕ;k ¼ Zϕ;kðρc0Þ is field independent, and ρc0 is
usually chosen to be the position of the minimum of
potential, i.e., V 0

kðρc0Þ ¼ 0. In this work, we use the flat
regulator [61,62], given by

rBðxÞ ¼
�
1

x
− 1

�
Θð1 − xÞ; ðA7Þ

with the Heaviside step function ΘðxÞ. Then, one arrives at
the inverse retarded propagator [21],

Pk;R¼Γð2Þqc
k;ba ðqÞþRqc

k;baðqÞ

¼
�
Zt;kq0þ iZϕ;kðρcÞq2þ iZϕ;kq2rB

�
q2

k2

�
þ im2

a;k

	
δab;

ðA8Þ

where we do not show the delta function of momenta
explicitly. Following the same approach, one can also
readily obtain the inverse advanced propagator,

Pk;A ¼ Γð2Þcq
k;ba ðqÞ þ Rcq

k;baðqÞ

¼
�
−Zt;kq0 þ iZϕ;kðρcÞq2 þ iZϕ;kq2rB

�
q2

k2

�
þ im2

a;k

	

× δab:

ðA9Þ

For the qq component, one is led to
FIG. 9. Diagrammatic representation of the two-point function
in Eq. (A1).
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Pk;K ¼ Γð2Þqq
k;ba ðq0; qÞ ¼ δ2Γk½Φ�

δϕb;qðq0Þδϕa;qðqÞ
����
ΦEoM

¼ −4iZt;kTδabð2πÞdþ1δdþ1ðqþ q0Þ: ðA10Þ

Note that there is no regulator in the qq component as
discussed in [21].
Then, we obtain the matrix of inverse propagator,

Pk ¼
�

0 Pk;A

Pk;R Pk;K

�
; ðA11Þ

and the propagator matrix immediately follows as

Gk ¼ ðPkÞ−1 ¼
�
Gk;K Gk;R

Gk;A 0

�
; ðA12Þ

with

Gk;R ¼ ðPk;RÞ−1; Gk;A ¼ ðPk;AÞ−1; ðA13Þ

Gk;K ¼ −Gk;RPk;KGk;A: ðA14Þ

In short, the retarded, advanced and Keldysh propagators
read

iGR
k;ab ¼ hTpϕa;cðxÞϕb;qðyÞi; ðA15Þ

iGA
k;ab ¼ hTpϕa;qðxÞϕb;cðyÞi; ðA16Þ

iGK
k;ab ¼ hTpϕa;cðxÞϕb;cðyÞi; ðA17Þ

where Tp denotes the time ordering in the closed time path
from the positive to negative branch [21]. In the momentum
space by means of Fourier transformation, one arrives at

iGR
k;abðqÞ

¼ i

Zt;kq0 þ iZϕ;kðρcÞq2 þ iZϕ;kq2rB


q2

k2

�
þ im2

a;k

δab;

ðA18Þ

iGA
k;abðqÞ

¼ i

−Zt;kq0 þ iZϕ;kðρcÞq2 þ iZϕ;kq2rB


q2

k2

�
þ im2

a;k

δab;

ðA19Þ

iGK
k;abðqÞ

¼ 4Zt;kT

ðZt;kq0Þ2þðZϕ;kðρcÞq2þZϕ;kq2rB


q2

k2

�
þm2

a;kÞ2
δab:

ðA20Þ

In fact, the retarded propagator is essentially the response
function as follows:

χ ¼ iGR; ðA21Þ

and the Keldysh propagator is also usually called as the
correlation function,

C ¼ iGK: ðA22Þ

From their expressions above, one can easily show

C ¼ 4T
q0

Imχ; ðA23Þ

which is the fluctuation-dissipation relation.
To proceed, we discuss the vertices in the Schwinger-

Keldysh field theory, that are relevant in our computation.
We begin with the three-point vertex, as follows:

iΓð3Þqcc
k;a1a2a3

ðq1; q2; q3Þ

≡ i
δ3Γk½Φ�

δϕa1;qðq1Þδϕa2;cðq2Þδϕa3;cðq3Þ
����
ΦEoM

; ðA24Þ

which is shown diagrammatically in Fig. 10. Substituting
the effective action in Eq. (4) into the equation above, one
obtains after a few calculations,

iΓð3Þqcc
k;a1a2a3

ðq1; q2; q3Þ
¼ Z0

ϕ;kðρcÞρ1=2c ðq1 · q2δa1a2δa30 þ q1 · q3δa1a3δa20

þ q2 · q3δa2a3δa10Þ − ρ1=2c Vð2Þ
k ðρcÞðδa1a2δa30

þ δa1a3δa20 þ δa2a3δa10Þ − 2ρ3=2c Vð3Þ
k ðρcÞδa10δa20δa30;

ðA25Þ

where the delta function of momenta is not shown
explicitly. In the same way, the four-point vertex reads

FIG. 10. Diagrammatic representation of the three-point vertex,
where “c” and “q” denote the classical and quantum fields,
respectively. The momenta q1, q2 and q3 are incoming.
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iΓð4Þqccc
k;a1a2a3a4

ðq1; q2; q3; q4Þ

≡ i
δ4Γk½Φ�

δϕa1;qðq1Þδϕa2;cðq2Þδϕa3;cðq3Þδϕa4;cðq4Þ
����
ΦEoM

;

ðA26Þ

which is shown in Fig. 11. The relevant result can be
divided into two parts,

iΓð4Þqccc
k;a1a2a3a4

ðq1; q2; q3; q4Þ ¼ iΓð4Þ
k;I þ iΓð4Þ

k;II; ðA27Þ

with

iΓð4Þ
k;I ¼

1

2
Z0
ϕ;kðρcÞ½ðq1 · q2 þ q3 · q4Þδa1a2δa3a4 þ ðq1 · q3 þ q2 · q4Þδa1a3δa2a4 þ ðq1 · q4 þ q2 · q3Þδa1a4δa2a3 �

þ ρcZ
ð2Þ
ϕ;kðρcÞðq1 · q2δa1a2δa30δa40 þ q1 · q3δa1a3δa20δa40 þ q1 · q4δa1a4δa20δa30 þ q2 · q3δa2a3δa10δa40

þ q2 · q4δa2a4δa10δa30 þ q3 · q4δa3a4δa10δa20Þ; ðA28Þ

and

iΓð4Þ
k;II ¼ −

1

2
Vð2Þ
k ðρcÞðδa1a2δa3a4 þ δa1a3δa2a4 þ δa1a4δa2a3Þ

− ρcV
ð3Þ
k ðρcÞðδa1a2δa30δa40 þ δa1a3δa20δa40

þ δa1a4δa20δa30 þ δa2a3δa10δa40 þ δa2a4δa10δa30

þ δa3a4δa10δa20Þ − 2ρ2cV
ð4Þ
k ðρcÞδa10δa20δa30δa40:

ðA29Þ

Furthermore, in the flow equation of the effective
potential in Fig. 1, one also needs the one-point vertex
as shown in Fig. 12, which reads

iΓð1Þq
k;a ðqÞ≡ i

δΓk½Φ�
δϕa;qðqÞ

����
ΦEoM

¼ ð−2ρ1=2c V 0
kðρcÞ þ

ffiffiffi
2

p
cÞδa0: ðA30Þ

Note that the explicit symmetry breakingc isRG independent.

APPENDIX B: COMPARISON OF FLOWS
OF THE EFFECTIVE POTENTIAL IN THE

MESOSCOPIC RELAXATION MODEL
AND IN THE MICROSCOPIC THEORY

In Eq. (6), if the field-dependence of the wave function is
ignored, i.e., zϕðρÞ ¼ 1, one can easily simplify the flow.
Integrating the field ρ and considering the case of d ¼ 3,
one is led to

∂τVkðρÞ

¼ 1

4π2
Tk3

2

3

�
1 −

η

5

��
1

1þ m̄2
σ
þ ðN − 1Þ 1

1þ m̄2
π

�
:

ðB1Þ

In the microscopic Klein-Gordon theory of theOðNÞ scalar
fields, cf. [21], the relevant flow of the effective potential is
given by

∂τVkðρÞ ¼
1

4π2
k4

2

3

�
1−

η

5

�

×

�
1

ð1þ m̄2
σÞ1=2

�
1

2
þ 1

expðkð1þ m̄2
σÞ1=2=TÞ− 1

	

þ N − 1

ð1þ m̄2
πÞ1=2

�
1

2
þ 1

expðkð1þ m̄2
πÞ1=2=TÞ− 1

	�
:

ðB2Þ

In the limit of high temperature, one has

1

expðkð1þ m̄2Þ1=2=TÞ − 1
≃

T

kð1þ m̄2Þ1=2 ≫ 1: ðB3Þ

Then Eq. (B2) is reduced exactly to Eq. (B1).

FIG. 11. Diagrammatic representation of the four-point vertex.

FIG. 12. Diagrammatic representation of the one-point vertex.
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APPENDIX C: ϵ EXPANSION WITHIN THE
FRG APPROACH

In this section, we neglect the field dependence of the
wave function and use the truncation LPA0. Then, the flow
equation of the effective potential in Eq. (11) is reduced to

∂τuðρ̄Þ ¼ −duðρ̄Þ þ ð−2þ dþ ηÞρ̄u0ðρ̄Þ þAðρ̄Þ; ðC1Þ

with

Aðρ̄Þ ¼ νd
2

�
ð2 − ηÞ 2

d
þ η

2

dþ 2

	�
1

1þ u0ðρ̄Þ þ 2ρ̄uð2Þðρ̄Þ

þ N − 1

1þ u0ðρ̄Þ
�
; ðC2Þ

where we have integrated out the field ρ̄ on both sides of the
equation, such that one is left with the flow of uðρ̄Þ rather
than u0ðρ̄Þ as shown in Eq. (11). Expanding the potential in
Taylor series around ρ̄ ¼ 0, i.e.,

uðρ̄Þ ¼
X
n¼0

λ̄n
n!

ρ̄n; ðC3Þ

and inserting Eq. (C3) into Eq. (C1), one finds for the flows
of expanding coefficients,

∂τλ̄n ¼ −½2n − ðn − 1Þd − nη�λ̄n þ
∂
n

∂ρ̄n
Aðρ̄Þ

���
ρ̄¼0

: ðC4Þ

Since we are interested in the leading-order results of the
ϵ ¼ 4 − d expansion, expansion coefficient λ̄n’s with n ≥ 3
as well as the anomalous dimension can be ignored for the
moment. Thus, one is left with a set of flow equations for λ̄1
and λ̄2,

∂τλ̄1 ¼ −2λ̄1 −
2

d
νdðN þ 2Þλ̄2ð1þ λ̄1Þ−2; ðC5Þ

∂τλ̄2 ¼ −ð4 − dÞλ̄2 þ
4

d
νdðN þ 8Þλ̄22ð1þ λ̄1Þ−3: ðC6Þ

From the flow equations above, one is able to find solutions
of fixed points by demanding ∂τλ̄�n ¼ 0. Obviously, besides
the Gaussian fixed point λ̄�1 ¼ λ̄�2 ¼ 0 in Eqs. (C5) and (C6),
there is another nonvanishing Wilson-Fisher fixed point
with

λ̄�1 ¼ −
N þ 2

4ðN þ 8Þ ϵ; λ̄�2 ¼
d

4νdðN þ 8Þ ϵ; ðC7Þ

which are kept in the leading order OðϵÞ.
Next, we consider a linear perturbation around the

Wilson-Fisher fixed point, that is

λ̄1 ¼ λ̄�1 þ δλ̄1; ðC8Þ

λ̄2 ¼ λ̄�2 þ δλ̄2: ðC9Þ

Inserting (C8) and (C9) into (C5) and (C6) and keeping
linear terms in δλ̄1 and δλ̄2, one arrives at

∂τ

�
δλ̄1

δλ̄2

�
¼ M

�
δλ̄1

δλ̄2

�
; ðC10Þ

with the matrix,

M ¼
�
−2þ Nþ2

Nþ8
ϵ



− 2

d

�
νdðN þ 2Þ

h
1þ Nþ2

2ðNþ8Þ ϵ
i

0 ϵ

�
:

ðC11Þ

One can readily obtain the eigenvalue of the matrix M
related to the relevant parameter, which reads

λa ¼ −2þ N þ 2

N þ 8
ϵ: ðC12Þ

Then, we obtain the critical exponent ν,

ν ¼ −1=λa ¼
1

2
þ N þ 2

4ðN þ 8Þ ϵ: ðC13Þ

Substituting the Wilson-Fisher fixed point in Eq. (C7) into
Eq. (22), one finds for the static anomalous dimension,

η ¼ N þ 2

2ðN þ 8Þ2 ϵ
2; ðC14Þ

in the leading order Oðϵ2Þ. Comparing Eq. (C13) with
Eqs. (24) and (C14) with Eq. (25), one can see we have
reproduced the static critical exponents in leading order in
the ϵ expansion within the FRG approach.
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