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We study the generalized gluon distribution that governs the dynamics of quarkonium inside a non-
Abelian thermal plasma characterizing its dissociation and recombination rates. This gluon distribution can
be written in terms of a correlation function of two chromoelectric fields connected by an adjoint Wilson
line. We formulate and calculate this object inN ¼ 4 supersymmetric Yang-Mills theory at strong coupling
using the AdS/CFT correspondence, allowing for a nonzero center-of-mass velocity v of the heavy quark
pair relative to the medium. The effect of a moving medium on the dynamics of the heavy quark pair is
described by the simple substitution T →

ffiffiffi
γ

p
T in agreement with previous calculations of other

observables at strong coupling, where T is the temperature of the plasma in its rest frame, and γ ¼
ð1 − v2Þ−1=2 is the Lorentz boost factor. Such a velocity dependence can be important when the
quarkonium momentum is larger than its mass. Contrary to general expectations for open quantum
systems weakly coupled with large thermal environments, the contributions to the transition rates that are
usually thought of as the leading ones in Markovian descriptions vanish in this strongly coupled plasma.
This calls for new theoretical developments to assess the effects of strongly coupled non-Abelian plasmas
on in-medium quarkonium dynamics. Finally, we compare our results with those from weakly coupled
QCD, and find that the QCD result moves toward the N ¼ 4 strongly coupled result as the coupling
constant is increased within the regime of applicability of perturbation theory. This behavior makes it even
more pressing to develop a non-Markovian description of quarkonium in-medium dynamics.

DOI: 10.1103/PhysRevD.109.094043

I. INTRODUCTION

Strongly coupled systems, such as superconductors,
topological insulators, cold atoms in optical lattices, and
neutron stars, usually exhibit complex behavior. Historically,
studying them has led to many breakthroughs in our under-
standing of matter. One particular example in high energy
nuclear physics is the quark-gluon plasma (QGP) created in
relativistic heavy ion collisions (HICs). In these experiments,
two heavy nuclei are accelerated to almost the speed of
light and then collide. Shortly after the collision, a hot and
dense QGP is created that only lasts for a tiny fraction of a
second (10−22 s). The QGP’s short lifetime makes it very

challenging to measure its properties directly, and so indirect
probes have been primarily used. The microscopic nature of
the QGP at different energy scales is studied by combining
experimental measurements, phenomenological studies, and
theoretical calculations at weak and strong coupling.
A useful probe of the QGP involves quarkonium [1,2], a

bound state of a heavy quark-antiquark (QQ̄) pair. Different
quarkonium species have hierarchically ordered binding
energies and thus can probe the QGP at multiple scales. For
a long time, it was believed that the suppression of
quarkonium production in HICs probes the Debye screen-
ing of (the real part of) the QQ̄ potential [3,4]. However,
systematic studies using thermal field theory showed that in
addition to the Debye screening, the in-medium QQ̄
potential also develops a thermal imaginary part,1 which
is a reflection of quarkonium dissociation [5,6]. When the
QGP temperature is low enough that a particularQQ̄ bound
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1Whether or not the dissociation rate is the expectation value of
the imaginary part of the potential depends on the definition of
the potential, i.e., at which scale each relevant process happens.
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state can exist, the inverse process of dissociation, i.e.,
regeneration, also occurs and plays a crucial role in
charmonium production [7–9]. Many phenomenological
studies of quarkonium suppression have shown that the
dynamical processes of dissociation and regeneration are,
if not more important than, as important as the Debye
screening [10–14].
The understanding of dynamical processes for quarko-

nium can be dated back to the early work by Peskin and
Bhanot [15,16], where they studied perturbatively the
scattering process gþ ðQQ̄Þb ↔ Qþ Q̄ (the subscript b
indicates a bound state), as shown in Fig. 1, in which the
gluon is on shell. By convoluting the scattering amplitude
squared with the Bose-Einstein distribution nB for the
gluon, one can obtain the dissociation rate [17–20] and the
regeneration rate [18,21] if the QGP were a free gas of
quarks and gluons. These studies have been generalized
to the case of a weakly interacting gas in which the
gluon mediating the t-channel 2 ↔ 3 scattering proc-
esses (q=gþ ðQQ̄Þb ↔ q=gþQþ Q̄) is virtual2 [22,24].
However, it is well known that at temperatures around
ΛQCD the QGP is a strongly coupled fluid. This is the
regime where most regeneration occurs and the binding
energy cannot be neglected. Therefore, it is important to
find the nonperturbative generalization of the Peskin-
Bhanot and related higher order processes.
With recent developments combining potential nonrela-

tivistic QCD and open quantum systems [13,25–42] (see
recent reviews [43–46]), a factorization formula was con-
structed for the dissociation and recombination of small-
size quarkonium states [37]. At linear order in the multipole
expansion, the dissociation and recombination rates are
factorized into a nonrelativistic part that only involves the

wave functions of theQQ̄ pair, which can be obtained from
solving Schrödinger equations, and a generalized gluon
distribution (GGD), shown in Fig. 1, which is the effective
distribution of quasigluons from the medium that the QQ̄
pair absorbs or radiates. This GGD has only been studied
perturbatively so far [23]. In this paper, we report the first
nonperturbative study of it that uses the AdS/CFT corre-
spondence by extending the framework in [47] to the case
of a QQ̄ pair moving in a thermal plasma, and compare
with its weakly coupled counterpart in QCD. Surprisingly,
our findings suggest that a small-size QQ̄ pair weakly
interacting with a strongly coupled plasma is an exception
to the general expectation [48] that the dynamics of an open
quantum system weakly coupled with a large thermal
environment can be described by Markovian processes,
and therefore, that the existing transport formalisms need to
be generalized to include this regime.

II. GENERALIZED GLUON DISTRIBUTION

We first review the factorization formula for quarkonium
dissociation and recombination and the relevant GGD,
valid in the quantum optical regime M ≫ Mvrel ≫
Mv2rel; T where vrel is the relative velocity between the
heavy quark pair and T the plasma temperature. The
number density nb of a quarkonium state with quantum
numbers b evolves in time according to [33]

dnbðt;xÞ
dt

¼ −Γnbðt;xÞ þ Fðt;xÞ; ð1Þ

where Γ is the dissociation rate and F denotes the
contribution of quarkonium (re)combination:

Γ ¼
Z

d3prel

ð2πÞ3 jhψbjrjΨprelij2½gþþ
adj �>ð−ΔEÞ

F ¼
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3 jhψbjrjΨprelij2½g−−adj �>ðΔEÞfQQ̄: ð2Þ

Here ΔE≡ jEbj þ p2
rel
M is the energy transferred to or away

from the QQ̄ pair, hψbjrjΨpreli is the dipole transition
amplitude between a bound ψb and a scattering Ψprel state,
and fQQ̄ is the two-particle phase space distribution.
Details can be found in [33].
The GGD for dissociation is defined in terms of a

chromoelectric field correlator

½gþþ
adj �>ðωÞ≡g2TF

3Nc

Z
dt
2π

eiωthEa
i ðtÞWabðt;0ÞEb

i ð0ÞiT; ð3Þ

whereWabðt; 0Þ denotes a timelike adjoint Wilson line and
hOiT¼TrHðOe−H=TÞ=Z, where Z¼TrHðe−H=TÞ, and H is
theQGPHamiltonian in the absence of any external sources.

QGP

FIG. 1. A few perturbative Feynman diagrams for quarkonium
dynamics (left) and its nonperturbative generalization (right) at
leading order (dipole) in the multipole expansion. The single
(double) solid line indicates a QQ̄ bound (unbound) state and the
dotted line represents a light quark. The effective operator on the
right is a chromoelectric field dressed with a timelike adjoint
Wilson line.

2Other non-t-channel processes such as those shown in Fig. 1
also contribute, which is a requirement of gauge invariance [22].
A complete set of diagrams at g4 can be found in [22,23].
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The GGD ½g−−adj �> for recombination can be related to ½gþþ
adj �>

via a generalized Kubo-Martin-Schwinger relation

½gþþ
adj �>ðωÞ ¼ eω=T ½g−−adj �>ð−ωÞ; ð4Þ

which is necessary for the system to reach detailed
balance between dissociation and recombination [23].
For a free gluon gas, ½gþþ

adj �>ð−ΔEÞ ∝ ΔE3nBðΔEÞ,
½g−−adj �>ðΔEÞ ∝ ΔE3ð1þ nBðΔEÞÞ, and Eq. (2) reproduces
the Peskin-Bhanot result.
Furthermore, the GGDs at zero frequency g��

adj ðω ¼ 0Þ
govern the Lindblad equation for quarkonium dynamics in
the quantum Brownian motion regime M ≫ Mvrel ≫ T ≫
Mv2rel [29], where the binding energy effect is suppressed.

III. CHROMOELECTRIC FIELD CORRELATOR
FROM A WILSON LOOP

For our AdS/CFT calculation, we express the chromo-
electric field correlator defining the GGD in terms of
variations of a Wilson loop. As an intermediate step, we
introduce a time-ordered chromoelectric correlator,

½gTadj�ijðtÞ≡ g2TF

3Nc
hT̂ Ea

i ðtÞWabðt; 0ÞEb
j ð0ÞiT; ð5Þ

where T̂ is the time-ordering symbol.
We consider a closed path Ch ⊂ Mink4 (four-dimen-

sional Minkowski spacetime) parametrized by s ↦
xμhðsÞ ¼ xμ0ðsÞ þ hμðsÞ, where xμ0ðsÞ goes along the time
direction from x00 ¼ −T =2 to T =2 and then backtracks to
−T =2. hμðsÞ is a local deformation of this path. A
fundamental Wilson loop along Ch is denoted as W½Ch�.
First, we note that W½Ch¼0� ¼ 1. For h ≠ 0, Ch is not made
up of two antiparallel straight lines, but if they are still
coincident and locally antiparallel at every point, then one
still has W½Ch� ¼ 1. Therefore, nontrivial operator inser-
tions are generated by taking hμðsÞ to be “antisymmetric”
on opposite sides of the contour. Technical details are
in [47]. Restricting the variations to be antisymmetric in
this sense, we find

−12½gTadj�ijðtÞ ¼
δ2hT̂ W½Ch�iT
δhiðtÞδhjð0Þ

����
h¼0

; ð6Þ

where we have assumed 0 < jtj < T =2. As desired, we
have obtained a timelike adjoint Wilson line Wabðt; 0Þ
from the variation of a fundamental Wilson loop, with
electric field operators inserted at its end points.

IV. WILSON LOOPS IN AdS/CFT

We will use the holographic correspondence to calculate
the Wilson loop in Eq. (6) in the strong coupling limit.
While this calculation cannot be carried out in QCD, since

it does not have a known gravitational dual, it can be carried
out in N ¼ 4 supersymmetric Yang-Mills theory (N ¼ 4
SYM), which has a well-established gravitational dual
description in terms of an (asymptotically) AdS5 × S5
spacetime [49,50].
There is a well-known prescription [51] to calculate the

expectation value of the generalized Wilson loop,

WS½C; n̂� ¼
1

Nc
TrPeig

H
C
ds½AμðxÞẋμþ

ffiffiffiffi
ẋ2

p
n̂·ϕðxÞ�; ð7Þ

where P denotes path ordering, xμ ¼ xμðsÞ is the position
in Mink4 that parametrizes the path C, n̂ ¼ n̂ðsÞ describes a
path in S5, and Aμ;ϕ are the gauge and scalar fields of
N ¼ 4 SYM. The expectation value of this loop is given by

hWS½C; n̂�i ¼ eiðSNG½Σ½C;n̂� �−S0½C�Þ; ð8Þ

where Σ½C;n̂� is the two-dimensional surface with boundary
conditions set by C and n̂, parametrized by Xμðτ; σÞ ¼
ðtðτ; σÞ; xðτ; σÞ; zðτ; σÞ; n̂ðτ; σÞÞ∈AdS5 × S5 that extrem-
izes the Nambu-Goto (NG) action,

SNG ¼ −
1

2πα0

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν∂αXμ

∂βXνÞ
q

; ð9Þ

where 2πα0 is the inverse string tension. Locally, near the
boundary z ¼ 0, we can choose the coordinates ðτ; σÞ to be
ðs; zÞ, where s is the parameter that defines the contour C.
In these coordinates, the boundary conditions are given
by tðs; 0Þ ¼ x0ðsÞ, xiðs; 0Þ ¼ xiðsÞ, and n̂ðs; 0Þ ¼ n̂ðsÞ.
Finally, S0½C� is a renormalization factor accounting for
the phase factor e−2iMT from the time evolution of an
infinitely heavy particle that generates the Wilson loop.
Furthermore, it turns out that the expectation value of the

pure gauge Wilson loop,

W½C� ¼ 1

Nc
TrPeig

H
C
dsAμðxÞẋμ ; ð10Þ

can be described through “free” boundary conditions on the
S5 [52], i.e., by writing

hW½C�i ¼ NC

Z
Dn̂hWS½C; n̂�i; ð11Þ

whereNC is a path-dependent (re)normalization factor (the
need for it is clear when considering the Euclidean
calculation of the heavy quark interaction potential [51],
as the lhs of this equation is bounded by 1 and the rhs is not
[in Euclidean signature]). Equation (11) results in
Neumann boundary conditions as an equation of motion
on the string world sheet. The fact that Neumann boundary
conditions provide a description of a pure gauge Wilson
loop was previously argued in [53].
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V. THE WILSON LOOP THAT GENERATES
THE TIMELIKE ADJOINT WILSON LINE

IN AdS/CFT

As described when we formulated the correlator in
Eqs. (5) and (6), an adjoint Wilson line will be generated
by performing small deformations on a Wilson loop. Here
we discuss the holographic description of this Wilson loop
without the deformations (i.e., we set hμ ¼ 0), solving for
the world sheet that hangs from the closed path C0 on the
AdS5 boundary, where C0 consists of two long antiparallel
timelike segments of length T , as introduced earlier. In the
large coupling limit λ ¼ R2=α0 ≫ 1, the extrema of the NG
action become more and more dominant as λ → ∞. Thus, it
is sufficient to look for the dominant contributions to the
path integral in Eq. (11) that defines the Wilson loop
expectation value:

hT̂ W½C0�iT ¼ NC

Z

Z
Dn̂TrH

�
e−βHT̂ WS½C0; n̂�

�
: ð12Þ

The dominant contribution to the integral over S5 comes
from configurations where n̂ takes antipodal positions on
opposite sides of the contour, such that T̂ WS½C0; n̂� ¼ 1.
This follows from the fact that e−βH is a positive definite
matrix on the Hilbert space and that the time-ordered
Wilson loop T̂ WS½C0; n̂� is constructed from a unitary time-
evolution operator, and as such,���� 1Z TrH

�
e−βHT̂ WS½C0; n̂�

����� ≤ 1: ð13Þ

An explicit proof of this bound is given in Appendix A. On
the gravity side of the duality, in the limit where T → ∞,
the corresponding extremal surface with minimal energy is
the one that hangs from each side of the boundary contours
radially into the AdS5 bulk.

VI. GGDS IN A MOVING MEDIUM

We consider the case where the rest frame of the plasma
is moving with velocity v relative to that of the QQ̄ pair.
The holographic setup for a boosted medium is described
by the metric of a Lorentz-boosted AdS5-Schwarzschild
spacetime (×S5) [54,55].
The calculation of the correlator is analogous to that in a

medium at rest [47], introducing perturbations hμ on top of
the undeformed contour C0, except that the string configu-
ration that hangs from each side of C0 is given by the
trailing string of [56,57], instead of a string hanging straight
into the bulk. This is the lowest energy configuration
because n̂ takes antipodal positions on opposite sides of
the contour. We present this calculation in Appendix B.
Remarkably, we find that the result for the time-ordered

correlation function in amoving plasma is equal to that in the
static case, but with the substitution T → T

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh η

p ¼ T
ffiffiffi
γ

p
,

where γ ¼ ð1 − v2Þ−1=2 is the Lorentz boost factor, in the
sameway that previous AdS/CFT studies of the heavy quark
potential [54,55] and diffusion coefficient [58,59] in a
medium have observed.3 In the rest frame of the heavy
quark pair, the longitudinal and transverse components of the
chromoelectric field relative to thevelocity of themediumare
the same. Explicitly, the result is

½gTadj�N¼4
ij ðωÞ ¼

ffiffiffi
λ

p
TFδij

ðπT ffiffiffi
γ

p Þ3
12π

�
−i

F−
jΩjð0Þ

∂
3F−

jΩj
∂ξ3

ð0Þ
�
;

ð14Þ

where F−
Ω is defined as the regular solution of

∂
2F−

Ω
∂ξ2

− 2

�
1þ ξ4

ξð1 − ξ4Þ −
iΩξ3

1 − ξ4

	
∂F−

Ω
∂ξ

þ
�
iΩξ2

1 − ξ4
þ Ω2ð1 − ξ6Þ

ð1 − ξ4Þ2
	
F−
Ω ¼ 0: ð15Þ

In the above, Ω ¼ ω=ðπT ffiffiffi
γ

p Þ, and λ ¼ g2Nc is the ’t Hooft
coupling of the N ¼ 4 SYM theory. An immediate conse-
quence of Eq. (14) is that the moving medium effect on
quarkonium dynamics is that the temperature it experiences
gets increased by a factor of

ffiffiffi
γ

p
. Qualitatively, when

the medium is boosted, the light quarks and gluons interact-
ing with quarkonium are more energetic and thus the
corresponding quarkonium dynamics occurs faster.
Following [47], we find that the GGD for quarkonium in-
medium dynamics in the strong coupling limit is given by

½gþþ
adj �>ðωÞ ¼ 2θðωÞRef½gTadj�iiðωÞg: ð16Þ

It is worth emphasizing that, from the field theory
perspective, the correlation functions that characterize
quarkonium and open heavy quark in-medium dynamics
are fundamentally different.4 The spectral function for
quarkonium ρþþ

adj ðωÞ ¼ ð1 − e−ω=TÞ½gþþ
adj �>ðωÞ is non-odd

in ω and vanishes at negative frequencies, whereas that for
heavy quark diffusion is odd in ω [61].

3A Lorentz transformation of the results for κT, κL in [58]
shows that in the rest frame of the heavy quark one has
κHQ rest
T ¼ κHQ rest

L ¼ π
ffiffiffi
λ

p ð ffiffiffi
γ

p
TÞ3.

4Comparing to the results of [60], we find a simple relation
between the spectral functions for open heavy quark ρfund and
quarkonium ρþþ

adj in N ¼ 4 SYM:

ρþþ
adj ðωÞ ¼

1

2
θðωÞð1 − e−ω=TÞρfundðωÞ:
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VII. WEAKLY COUPLED QCD AND STRONGLY
COUPLED SYM

Finally, we compare the strong coupling and weak
coupling results, in order to assess their phenomenological
implications and shed light on the physics at intermediate
coupling. For definiteness, we assume v ¼ 0 for the
purposes of this comparison. The weak coupling result
was calculated in [23,61]. We provide the explicit expres-
sion and details on the choice of renormalization scheme in
Appendix C.
Qualitatively, one of the striking features of the result in

strongly coupled N ¼ 4 SYM is that ½gþþ
adj �>ðω < 0Þ ¼ 0.

As we can see from Fig. 2, increasing the coupling in the
perturbative calculation leads to the same feature: if we
normalize the spectral function such that its behavior in the

ultraviolet (UV) ω=T ≫ 1 is fixed, then the spectral
function at negative ω becomes smaller as the coupling
increases. As such, the trend at weak coupling is compat-
ible with the (supersymmetric) strongly coupled result.
We then focus on the infrared (IR) regime jωj=T ≲ 1 in

Fig. 3. We have chosen the normalization such that the
leading contribution to each curve goes as ω2 at ω=T ≫ 1.
On the one hand, the asymptotic IR behavior of ρðωÞ=ω is
constant at weak coupling, and linear in ω at strong
coupling. On the other hand, as before, there is a consistent
trend between weak and strong coupling, in the sense that
the transition between IR and UV regimes takes place gets
pushed to higher values of ω=T with increasing coupling.
This means that, except for the regime jωj ≪ T (where the
convergence of perturbation theory in QCD is generally
poor), the perturbative result moves toward the strongly
coupled one as the coupling is increased in a consistent
trend, both at positive and negative frequencies.

VIII. CONCLUSIONS

We calculated the GGD that characterizes the in-medium
dynamics of quarkonium and determines its dissociation
and recombination rates in a strongly coupledN ¼ 4 SYM
plasma moving at velocity v relative to the QQ̄ pair. The
velocity dependence is a rescaling of the temperature T toffiffiffi
γ

p
T, in consistency with the effect of a “hot wind” on

quarkonium screening in AdS/CFT [54,55]. This effect is
not small when the quarkonium momentum is larger than
its mass, which is highly relevant for quarkonium produc-
tion measured in current HIC experiments, and will
generically make dissociation/recombination processes
faster (as long as the multipole expansion

ffiffiffi
γ

p
T ≪ Mvrel

is under control). This effect will compete with the fact that
a QQ̄ pair of higher-pT generally has less time to interact
with the medium.
Furthermore, the strongly coupled result is compatible

with the qualitative trends observed by increasing the
coupling in perturbative QCD calculations. Future phe-
nomenological studies using the GGDs at different cou-
plings have the potential to tell which value of the coupling
provides the best description of the experimental data for
each quarkonium species. However, our findings imply that
this will not be straightforward. Previous phenomenologi-
cal studies solved Markovian transport equations such as
Boltzmann equations [37] or Lindblad equations [13], in
which either the ω ¼ −ΔE < 0 (if T ∼ ΔE) or ω ¼ 0 (if
T ≫ ΔE) part of ρþþ

adj ðωÞ contributes. Our results imply
that no such contribution exists in the strongly coupled
limit, and thus the leading mechanisms driving quarkonium
dynamics, coming from the positive ω ∼ T part of ρþþ

adj ðωÞ,
must be non-Markovian. That is to say, QGP memory
effects are not negligible for quarkonium transport in a
strongly coupled QGP. Physically, there is no quasigluon
that a bound QQ̄ pair can absorb resonantly and

FIG. 2. Spectral function for quarkonium transport in weakly
coupled QCD with two light (massless) quarks for different
values of the coupling at the reference scale μ0 ≈ 8.1T. The
coupling constant is evolved to high energies using the two-loop
QCD beta function.

FIG. 3. Same as Fig. 2, but focusing on the transition between
IR and UV physics at positive frequencies. Because the pertur-
bative difference between ω > 0 and ω < 0 is a temperature-
independent term, the IR features of the weakly coupled result at
negative frequencies are qualitatively the same as those at positive
frequencies. The only qualitative difference occurs at ω ∼ −T,
where the weakly coupled QCD curves cross, in accordance with
the ω < 0 behavior of Fig. 2.
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incoherently in a strongly coupled plasma. Rather, the
plasma responds coherently through strong correlations
between different points in time, as opposed to behaving as
independent, pointlike sources.
Our findings motivate formulating the in-medium

dynamics of QQ̄ pairs in a general non-Markovian setup,
without which it may be impossible to provide reliable
phenomenological predictions for quarkonium transport in
strongly coupled plasmas. It is also worth exploring at
which finite coupling the non-Markovian contribution
becomes more important than the Markovian one. In the
future, by following this direction, we expect to deepen our
knowledge of the QGP’s microscopic structure.
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APPENDIX A: THE TIMELIKE ADJOINT
WILSON LINE IN AdS/CFT AND THE

ROLE OF THE S5

In the main text, we claim that���� 1Z TrH

�
e−βHT̂ WS½C0; n̂�

����� ≤ 1; ðA1Þ

for a timelike path C0 that goes over a straight segment of
length T and then backtracks to its starting point (in what
follows, it will be clear that it is not essential for the path to
be straight, but it does have to be timelike).
Showing the bound is straightforward once the notation

is made explicit. The main ingredient that has to be dealt
with carefully is time ordering. The simplest way to
proceed is to define the time-ordered version of the
Wilson loop by introducing a more general object that
contains it through the differential equation satisfied by the
color degrees of freedom of the heavy quarks. Let Wii0;j0j
be such that (in this expression we use the convention that
repeated indices are summed; the rest of the summations in
this section will be made explicit)

d
dt
Wii0;j0j ¼

�
igðAa

0ðtÞ þ n̂1ðtÞ · ϕaðtÞÞ½Ta
F�ii0δj0j

− igðAa
0ðtÞ þ n̂2ðtÞ · ϕaðtÞÞ½Ta

F�j0jδii0
	
Wi0i0;j0j0 ;

ðA2Þ

with Wii0;j0jðt ¼ −T =2Þ ¼ δii0δjj0 . The S5 coordinates are
given by n̂1ðtÞ and −n̂2ðtÞ, representing their values on each
side of the contour C0. The minus sign is necessary to be
consistentwith the definition (7),where there is no sign flip in
the prefactor of the scalars caused by the sign flipping of ẋμ.
Then, one has T̂ WS½C0; n̂� ¼ 1

Nc

P
i;i0 Wii0;i0iðt ¼ T =2Þ.

More importantly,W is a unitary operator on the Hilbert
space Hext ¼ H ⊗ FundNc

⊗ FundNc
, which describes the

Hilbert spaces of the QGP without any external charge, the
heavy quark and the heavy antiquark respectively. As such,
we can write

1

Z
TrH

�
e−βHT̂ WS½C0; n̂�

�

¼ 1

ZNc

X
n

e−βEn

XNc

i;j¼1

hn; i; ijWjn; j; ji; ðA3Þ

where we have labeled states in Hext as jn; i; ji, in which n
labels the energy eigenstates of H, i labels the color
index of FundNc

, and j labels the color index of FundNc
.

Generally, the action of an operator can be written in terms
of its matrix elements. Inserting an identity as a complete
set of states yields

Wjn; i; ji ¼
X
m

XNc

k;l¼1

jm; k; li½W�mkl;nij; ðA4Þ

and the fact that W is a unitary operator means that we can
write its matrix elements in terms of its eigenstates’

components vðLÞnij as

½W�mkl;nij ¼
X
L

vðLÞ�mkl e
iϕLvðLÞnij ; ðA5Þ

where the eigenstates are labeled by L. We then have

1

Z
TrH

�
e−βHT̂ WS½C0; n̂�

�

¼ 1

ZNc

X
n

e−βEn

XNc

i;j¼1

½W�nii;njj

¼ 1

ZNc

X
n

e−βEn

XNc

i;j¼1

X
L

vðLÞ�nii eiϕLvðLÞnjj

¼ 1

ZNc

X
n

X
L

e−βEn

����X
Nc

i¼1

vðLÞnii

����
2

eiϕL : ðA6Þ

Whatever the eigenvectors vðLÞnij are, this sum is largest in
absolute value if all of the phases eiϕL are equal. However,
if this is the case, then it follows thatW ¼ eiϕ1. Therefore,
from Eq. (A3) we have
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���� 1Z TrH

�
e−βHT̂ WS½C0; n̂�

�����
≤

1

ZNc

X
n

e−βEn

XNc

i;j¼1

hn; i; ij1jn; j; ji

¼ 1

ZNc

X
n

e−βEn

XNc

i;j¼1

δij

¼
P

ne
−βEn

Z

PNc
i¼1 1

Nc
¼ 1; ðA7Þ

as initially claimed.
Furthermore, this bound is saturated by configurations

where n̂ takes antipodal positions on the S5. This is easy to
see from the defining Eq. (A2), because, noting that
T̂ WS½C0; n̂� ¼ 1

Nc
Wii0;i0iðt ¼ T =2Þ, it suffices to inspect

this differential equation for i ¼ j and i0 ¼ j0. Explicitly,
we have

d
dt
Wii0;i0i ¼

h
igðAa

0ðtÞ þ n̂1ðtÞ · ϕaðtÞÞ½Ta
F�ii0δj0i − igðAa

0ðtÞ

þ n̂2ðtÞ · ϕaðtÞÞ½Ta
F�j0iδii0

i
Wi0i0;i0j0

¼
h
igðAa

0ðtÞ þ n̂1ðtÞ · ϕaðtÞÞ½Ta
F�j0i0 − igðAa

0ðtÞ

þ n̂2ðtÞ · ϕaðtÞÞ½Ta
F�j0i0

i
Wi0i0;i0j0 ; ðA8Þ

which vanishes if n̂1 ¼ n̂2. As discussed earlier, this
corresponds to taking antipodal positions on the S5 for
the generalized Wilson loop (7). The bound is then
saturated because

d
dt
Wii0;i0i ¼ 0 ⇒ T̂ WS½C0; n̂� ¼

1

Nc
Wii0;i0iðt ¼ T =2Þ

¼ 1

Nc
Wii0;i0iðt ¼ −T =2Þ ¼ 1

Nc
δii0δii0 ¼ 1:

Any other configuration will give a highly oscillatory
contribution to the trace over H, and thus its numerical
value would be suppressed. Therefore, the dominant con-
tribution indeed comes from the configurations we just
described.
One can then also verify on the gravity side of the duality

that the extremal world sheet associated to this configura-
tion is stable and allows for a calculation of the correlator
(6) by solving a set of linear differential equations for the
path variations in the dual gravitational description [47].
As a final comment,wenote that the above argument relies

crucially onWS½C0; n̂� being constructed from unitary oper-
ators. This is true for timelike Wilson loops, but if the path C
is spacelike, then the prefactor

ffiffiffiffiffi
ẋ2

p
of the scalars in the

exponential of Eq. (7) becomes imaginary. Consequently,
there is no unitarity bound for such Wilson loops, and thus
our preceding argument does not follow through.

APPENDIX B: CHROMOELECTRIC
CORRELATOR FROM FLUCTUATIONS

ON THE TRAILING STRING

Here we describe the calculation of the chromoelectric
correlator that determines the in-medium dynamics of
quarkonium for the case when the QGP is moving with
respect to the heavy quark pair. We first discuss the setup of
the background world sheet calculation, which has been
studied in the past [56,57], and then proceed to discuss the
dynamics of fluctuations on this surface. Some degree of
parallel with [59] will be explicit, but, in the same way as
the calculation of [47] differs from that of [60], there are
important conceptual differences to be highlighted.
The reason why the relevant background world sheet is

the string trailing a single heavy quark trajectory is because
each side of the contour is located at opposite points on the
S5. In the limit T → ∞ (essentially, T πT ≫ 1), locally, the
lowest energy configuration for the world sheet hanging
from each side of the contour is to fall inwards as if there
were only a single Wilson line. Physically, this is consistent
with the fact that two heavy quarks in the octet represen-
tation cannot form a singlet bound state, and so propagate
independently through the same trajectory. This is also
consistent with the expectation that the heavy quark
potential in the octet channel vanishes in the large Nc
limit. Furthermore, this configuration satisfies the expect-
ation T̂ W½C0� ¼ 1 after subtracting the divergence due to
the heavy quark masses.
To characterize this world sheet, we go to the rest frame

of the heavy quarks, where the Wilson lines extend purely
along the time direction, and the metric dual to the boosted
N ¼ 4 SYM plasma is

ds2¼R2

z2



−dt2þdx21þdx22þdx23þ

dz2

fðzÞþ z2dΩ2
5

þ½1−fðzÞ�ðcosh2ηdt2þ sinh2ηdx1dtþ sinh2ηdx21Þ
�
;

ðB1Þ

where f ¼ 1 − ðπTzÞ4. By symmetry considerations, the
background world sheet may be locally described (at times
jtj ≪ T =2) by

Xμ → ðt; χðzÞ; 0; 0; z; n̂0Þ; ðB2Þ

and the Nambu-Goto action is therefore given by

SNG ¼ −2 ×
ffiffiffi
λ

p
T

2π

Z
dz
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ02f þ cosh2η −

sinh2η
f

s
: ðB3Þ

(The factor of 2 is due to having two copies of the world
sheet at �n̂0.) The extremal surface that solves the
equations of motion is determined by
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χ0ðzÞ ¼ − sinh η

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

¼ − sinh η
ðπTzÞ2

1 − ðπTzÞ4 ; ðB4Þ

together with χð0Þ ¼ 0. One may immediately verify thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ02f þ cosh2η −

sinh2η
f

s
¼ 1; ðB5Þ

as expected for the mass term that has to be subtracted in
order to isolate the expectation value of the Wilson loop.
This completely determines the background solution.
Following [59], to study the fluctuations on top of this

solution it is convenient to introduce a shift in the time
coordinate, namely, t̄ ¼ tþ FðzÞ. Equivalently, the para-
metrization of the time coordinate on the world sheet is now
t ¼ t̄ − FðzÞ. For obvious reasons, we will drop the bar in
what follows. Also, as discussed in [47], the iϵ prescription
that enforces time ordering on the Schwinger-Keldysh
contour can be accounted for by taking t to be slightly
tilted into the negative imaginary direction of the complex
time plane. On top of all of these ingredients, we introduce

fluctuations parallel and perpendicular to the world sheet,
denoted by Δðt; zÞ, δðt; zÞ, and yðt; zÞ. As such, the world
sheet parametrization is now

Xμ → ðtð1 − iϵÞ − FðzÞ; χðzÞ þ δðt; zÞ; yðt; zÞ;
0; zþ Δðt; zÞ; n̂0Þ: ðB6Þ

Choosing FðzÞ to remove cross terms in the differential
equations for the fluctuations lead to choosing it to satisfy

F0ðzÞ ¼ sinh2η cosh η
fcosh2η − sinh2η

ð1 − fÞ3=2
f

: ðB7Þ

Concretely, this sets to zero the coefficients of the terms
proportional to y0ẏ in the quadratic part of the action in the
next paragraph [we denote d=dz ¼ ðÞ0, d=dt ¼ ð̇Þ=ð1 − iϵÞ].
From now on, we choose units such that π2T2 cosh η ¼ 1.

(This is allowed because of conformal symmetry.) With this,
the Nambu-Goto action, expanded up to quadratic order on
Δðt; zÞ, δðt; zÞ, and yðt; zÞ, reads

Sð0–2ÞNG ¼ −
ffiffiffi
λ

p ð1 − iϵÞ
π

Z
dt dz
z2

�
1þ z4 tanh η

1 − z4
δ̇þ z2 tanh ηδ0 þ 4cosh2ηð1 − 5z4 þ 2z8 þ ð1þ z4Þ cosh 2ηÞ

zð1 − 2z4 þ cosh 2ηÞ2 Δ

−
2ð1 − z4Þcosh2η
1 − 2z4 þ cosh 2η

Δ0 þ ẏ2

2ð1 − z4Þ −
ð1 − z4Þ

2
y02 þ δ̇2

2ð1 − z4Þ −
ð1 − z4Þ

2
δ02

þ z2 sinh 2η
1 − 2z4 þ cosh 2η

�
1

1 − z4
δ̇ Δ̇þz2ðδ̇Δ0 − δ0Δ̇Þ − ð1 − z4Þδ0Δ0

�

þ 2ð1þ 2z4 þ cosh 2ηÞ sinh 2η
ð1 − 2z4 þ cosh 2ηÞ2

�
z3δ̇Δ − zð1 − z4Þδ0Δ

�

þ 2z4cosh2ηsinh2η
ð1 − 2z4 þ cosh 2ηÞ2

�
1

1 − z4
Δ̇2 − ð1 − z4ÞΔ02

�
þ 4z5sinh22η
ð1 − z4Þð1 − 2z4 þ cosh 2ηÞ2 Δ̇Δ

þ 2cosh2ηðPΔ0Δ
0 ðzÞ þ PΔ0Δ

2 ðzÞ cosh 2ηþ PΔ0Δ
4 ðzÞ cosh 4ηÞ

zð1 − 2z4 þ cosh 2ηÞ3 Δ0Δ

−
cosh2ηðPΔΔ

0 ðzÞ þ PΔΔ
2 ðzÞ cosh 2ηþ PΔΔ

4 ðzÞ cosh 4ηþ PΔΔ
6 ðzÞ cosh 6ηÞ

2z2ð1 − 2z4 þ cosh 2ηÞ4 Δ2

	
; ðB8Þ

where we have denoted, for brevity,

PΔ0Δ
0 ðzÞ ¼ 3ð1 − 4z4 þ 9z8 − 4z12Þ;

PΔ0Δ
2 ðzÞ ¼ 4ð1 − 3z4 − z8 þ z12Þ;

PΔ0Δ
4 ðzÞ ¼ 1þ z8;

PΔΔ
0 ðzÞ ¼ 30 − 146z4 þ 32z8ð10 − 17z4 þ 4z8Þ;

PΔΔ
2 ðzÞ ¼ ð45 − 193z4 þ 290z8 þ 176z12 − 32z16Þ;

PΔΔ
4 ðzÞ ¼ −2ð−9þ 23z4 þ 8z8ð2þ z4ÞÞ;

PΔΔ
6 ðzÞ ¼ ð3þ z4 − 2z8Þ: ðB9Þ

The first thing to note is the presence of linear terms in δ,
Δ in the action. These terms are, naturally, total derivatives,
and do not contribute to the equations of motion. However,
they could, as written, contribute to the on-shell value of the
action. This is not expected nor acceptable on physical
grounds, as a nonvanishing contribution at linear order in
the perturbations would mean that, first, the action was not
at an extremum to begin with, and second, it would
generate a nonvanishing one-point function of the chromo-
electric field on the field theory side of the duality (which
is unacceptable because TrEi ¼ 0 where the trace also
includes summation over colors). Such considerations
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imply that consistent solutions for the mode functions of δ,
Δ will cancel these contributions.
Nonetheless, there is a simpler approach to deal with this

potential issue. Geometrically, one can interpret the linear
terms in the action for the fluctuations as deformations that
are nonorthogonal to the background surface (if they were
orthogonal, the action would start at quadratic order).
Moreover, the physical perturbations, i.e., those that cor-
respond to a genuine deformation of the surface, are exactly
the ones that are orthogonal to the extremal surface.
Consequently, the linear terms are associated with the
reparametrization invariance of the string world sheet.
Consistently with reparametrization invariance, one can
check that the Euler-Lagrange equations derived from
extremizing Sð0–2ÞNG with respect to δ and Δ are equivalent.
Therefore, we can isolate the physical perturbations by
setting

Δ0 ¼ 2

z
cosh2η − ð3 − cosh2ηÞz4 þ z8

ð1 − z4Þð1 − z4sech2ηÞcosh2ηΔ

þ z2 tanh η
1 − z4sech2η

1 − z4
δ0: ðB10Þ

This makes the perturbations orthogonal to the world sheet
along z. The y perturbations are already orthogonal. As a
side note, one may wonder what happens with the δ̇ term,
which we have not canceled by this choice. As it turns out,
this can be dealt with in the same way if we had included
perturbations for the time component of the world sheet,
i.e., tð1− iϵÞ−FðzÞ→ tð1− iϵÞ−FðzÞþ τðt;zÞ. Including
the temporal perturbations τðt; zÞ generates a linear term in
the action, which can be chosen to compensate the δ̇ term,
thus maintaining the perturbations orthogonal to the world
sheet. One can also verify that the equations of motion for
τðt; zÞ are trivial (i.e., all terms in the action that involve this
perturbation are total derivatives).
It turns out one can integrate (B10) analytically. Because

of local time translation invariance, from here on we
Fourier transform δ and Δ from functions of time t to
functions of frequency ω [also, whenever we write ω, we
actually mean ωð1þ iϵÞ due to the slight tilt of the
Schwinger-Keldysh contour]. The result is

ΔωðzÞ ¼ z2 tanh η
1 − z4sech2η

1 − z4
½δωðzÞ þ aω�; ðB11Þ

where aω is an integration constant. Then, replacing this
constraint in the equation of motion for δ (or Δ, they are
equivalent) to eliminate δ in favor of Δ, one obtains

Δ00
ωðzÞ −

2

z
3 − z4

1 − z4
Δ0

ωðzÞ þ
2

z2
5 − z4

1 − z4
ΔωðzÞ þ

ω2

ð1 − z4Þ2 Δω

¼ aωz2ω2 tanh η
ð1 − z4Þ2 : ðB12Þ

One may directly verify that the particular solution to this
equation is simply aωz2 tanh η. It follows that we can write

ΔωðzÞ ¼ aω tanh ηz2 þ Az2Δ̃ωðzÞ; ðB13Þ

where A is a normalization constant and Δ̃ωðzÞ obeys

Δ̃00
ωðzÞ −

2

z
1þ z4

1 − z4
Δ̃0

ωðzÞ þ
ω2

ð1 − z4Þ2 Δ̃ωðzÞ ¼ 0: ðB14Þ

Remarkably, this is the same equation that the perturbations
satisfy in the case where the direction of the Wilson lines
coincide with the rest frame of the medium. The only
qualitative difference is the position of the horizon, which
here is at z ¼ ðπT ffiffiffiffiffiffiffiffiffiffiffiffi

cosh η
p Þ−1 (where we have temporarily

restored units). The solutions to this equation at arbitrary ω
have been studied in [47]. Because of the iϵ prescription,
the physical, regular solution to the equations of motion is
given by only one of the mode functions that solve the
homogeneous equation above, which, in the notation
of [47], corresponds to Δ̃ωðzÞ ∝ ð1 − z4Þ−ijωj=4F−

jωjðzÞ.
Consequently, we have fully determined the mode func-
tions for the fluctuations Δ, δ. Including the normalization
constant A for the above mode solutions, we find

δωðzÞ¼−
aωtanh2ηz4

1− z4sech2η
þA

ð1− z4Þ1−ijωj=4
1− z4sech2η

F−
jωjðzÞ; ðB15Þ

ΔωðzÞ ¼ aω tanh ηz2 þ Az2ð1 − z4Þ−ijωj=4F−
jωjðzÞ: ðB16Þ

Similarly, the mode functions for the transverse fluctuations
y are given by

yωðzÞ ¼ Bð1 − z4Þ−ijωj=4F−
jωjðzÞ; ðB17Þ

where B is a normalization constant.
Finally, as discussed in [47], the time-ordered correlator

as a function of ω is obtained by evaluating the action
on the solution with boundary conditions specified by
Fourier mode deformations yðt;z¼0Þ;δðt;z¼0Þ¼e−iωt.
Specifically, in position space the correlator is obtained
by extracting the quadratic part of the action

½gTadj�ijðt2 − t1Þ ¼
g2TF

3Nc
hT̂ Ea

i ðt2ÞWab
½t2;t1�E

b
j ðt1ÞiT

¼ −
i
12

δ2SNG½C; h�
δhiðt2Þδhjðt1Þ

����
h¼0

: ðB18Þ

Integrating by parts and using the equations of motion, the
on-shell boundary action in the presence of nonvanishing
deformations at z ¼ 0 is given by
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Sð0–2ÞNG − S0 ¼
ffiffiffi
λ

p ð1 − iϵÞ
π

Z
dt lim

z→0

�
−
ð1 − z4Þ
2z2

yy0 −
ð1 − z4Þ
2z2

δδ0 −
sinh 2ηð1 − z4Þ

2ð1 − 2z4 þ cosh 2ηÞ ðδΔ
0 þ δ0ΔÞ

−
ð1 − z4Þð1þ 2z4 þ cosh 2ηÞ sinh 2η

zð1 − 2z4 þ cosh 2ηÞ2 δΔ −
2z2ð1 − z4Þcosh2η sinh2η
ð1 − 2z4 þ cosh 2ηÞ2 ΔΔ0

þ
cosh2η

�
PΔ0Δ
0 ðzÞ þ PΔ0Δ

2 ðzÞ cosh 2ηþ PΔ0Δ
4 ðzÞ cosh 4η

�
z3ð1 − 2z4 þ cosh 2ηÞ3 Δ2

	
; ðB19Þ

where the upper limit of integration z ¼ 1 gives a vanishing
contribution, provided we set aω ¼ 0. The reason why the
upper limit of integration for the fluctuations is z ¼ 1 and
not z ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

cosh η
p

is the following: in the parametrization we
have chosen for this calculation, z ¼ 1 lies on the past
infinity hypersurface in the Poincaré patch, because the
z-dependent shift −FðzÞ in the time coordinate [determined
by Eq. (B7)] goes to −∞ as z → 1−. This means that the
propagation of the perturbations we introduced at the AdS
boundary will go outside the Poincaré patch when z > 1,
and thus the action for the fluctuations will not receive
contributions from z > 1. [It is important to stress at this
point that the z ¼ 1 contribution to the on-shell value of the
action only vanishes if the mode solution is chosen as
in [47], i.e., with the iϵ prescription that singles out F−

jωjðzÞ.
The other solutions are discarded because they would give
a divergent contribution to the action.]
It would be interesting to study deformations on a

Wilson loop of finite extent T , where the way in which
the world sheet is closed at the temporal end points must be
accounted for explicitly, and see how our current consid-
erations change.

Finally, we are at the point where we can give our result.
Because the mode functions for Δ go as z2 near z ¼ 0, the

only nonvanishing contributions to Sð0–2ÞNG − S0 come from
the yy0 and δδ0 terms. By analogy with [47], it follows that

½gTadj�N¼4
ij ðωÞ ¼

ffiffiffi
λ

p
TFδij
12π

�
−i

F−
jωjð0Þ

∂
3F−

jωj
∂z3

ð0Þ
�
: ðB20Þ

Restoring units by inserting πT
ffiffiffiffiffiffiffiffiffiffiffiffi
cosh η

p
whenever a mass

dimension 1 quantity is appropriate recovers the result as
announced in the main text.

APPENDIX C: EVALUATION OF THE
SPECTRAL FUNCTION IN WEAKLY

COUPLED QCD

The spectral function for quarkonium transport in
weakly coupled QCD at positive frequencies was calcu-
lated in [23], and its negative frequency part was finally
elucidated in [61]. Up to order g4, it reads

ρþþ
adj ðωÞ ¼

g2TFðN2
c − 1Þω3

3πNc

×



1þ g2

ð2πÞ2
��

11Nc

12
−
Nf

6

�
ln

�
μ2

4ω2

�
þ Nc

�
149

36
−
π2

6
þ π2

2
sgnðωÞ

�
−
5Nf

9

	

þ g2

ð2πÞ2
�Z

∞

0

dkNfnFðkÞ
�
−2kωþ ð2k2 þ ω2Þ ln

���� kþ ω

k − ω

����þ 2kω ln

���� k2 − ω2

ω2

����
�

þ
Z

∞

0

dk2NcnBðkÞ
�
−2kωþ ðk2 þ ω2Þ ln

���� kþ ω

k − ω

����þ kω ln

���� k2 − ω2

ω2

����þ P
�

k3ω
k2 − ω2

��

þ
Z

∞

0

dk
2NcnBðkÞ

k
P
�

ω2

ω2 − k2

��
k2ωþ ðk3 þ ω3Þ ln

���� k − ω

ω

����þ ð−k3 þ ω3Þ ln
���� kþ ω

ω

����
�	�

þ ρHTLðωÞ; ðC1Þ

where the hard thermal loop contribution (HTL) can be read off from the heavy quark transport spectral function, as the
HTL-resummed diagrams that contribute to them up to Oðg4Þ in perturbation theory are the same. Explicitly, it is given by
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ρHTLðωÞ ¼
g2TFðN2

c − 1Þm2
Dω

3πNc
×

(Z
∞

ω̂

dk̂ k̂
2

ω̂2
�
1 − ω̂2

k̂2

�
�
k̂2 − ω̂2 þ 1

2

h
ω̂2

k̂2
þ ω̂

2k̂

�
1 − ω̂2

k̂2

�
ln k̂þω̂

k̂−ω̂

i�
2 þ

�
ω̂π
4k̂

�
2
�
1 − ω̂2

k̂2

�
2

þ
Z

∞

0

dk̂k̂3

2

"
θðk̂ − ω̂Þ�

k̂2 þ 1 − ω̂
2k̂
ln k̂þω̂

k̂−ω̂

�
2 þ

�
ω̂π
2k̂

�
2
−

1

ðk̂2 þ 1Þ2
#

þ 2ω̂k̂3Tðω̂2 − k̂2TÞ
j3ðk̂2T − ω̂2Þ2 − ω̂2j

�����
k̂2T−ω̂2þ1

2

�
ω̂2

k̂2
T
þ ω̂

2k̂T


1−ω̂2

k̂2
T

�
lnω̂þk̂T

ω̂−k̂T

�
¼0

þ k̂3Eðω̂2 − k̂2EÞ
ω̂j3ðk̂2E − ω̂2Þ þ 1j

�����
k̂2Eþ1− ω̂

2k̂E
lnω̂þk̂E

ω̂−k̂E
¼0

−
ω2

m2
D
þ 1

2

�
ln

2ω

mD
− 1

�)
; ðC2Þ

where, following [63], we have denoted ω̂ ¼ ω=mD, and
we have written both the “naive” and the “resummed”
corrections (cf. [64]) in a single function.
The final step to evaluate this expression is to choose the

renormalization scheme, i.e., how to define μ. We choose it
following the notion that the best choice of μ is the one that
makes the result the least sensitive to higher order correc-
tions on g. In the UV regime, jωj ≫ T, we choose it to
compensate for the next-to-leading order correction to the

ω3 term of the spectral function. While mathematically we
could also choose μ to compensate the jωj3 term, it seems
unphysical to let the renormalization group scale depend on
the sign of the energy transferred in a physical process
(only its magnitude should set the scale). In the IR, we
follow [64] and use the electrostatic QCD result of [65] to
set the scale. Putting these together, we choose to inter-
polate and set the scale for each background temperature T
with the following formula:

μðω; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 exp

�
lnð4πÞ − γE −

Nc − 8 lnð2ÞNf

2ð11Nc − 2NfÞ
	
2

þ ω2 exp

�
lnð2Þ þ ð6π2 − 149ÞNc þ 20Nf

6ð11Nc − 2NfÞ
	
2

s
: ðC3Þ

We then choose the value of the coupling constant at the scale μ0 determined by ω ¼ 0, which means μ0 ≈ 8.1T, and evolve
the coupling constant to higher scales (i.e., jωj > 0) using the two-loop QCD beta function:

dαs
d ln μ

¼ −2αs
��

11Nc

3
−
2Nf

3

��
αs
4π

�
þ
�
34N2

c

3
−
10NcNf

3
−
ðN2

c − 1ÞNf

Nc

��
αs
4π

�
2
	
: ðC4Þ
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