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We investigate the photon emission in pion-pion and pion-proton scattering in the soft-photon limit
where the photon energy ω → 0. The expansions of the π−π0 → π−π0γ and the π�p → π�pγ amplitudes,
satisfying the energy-momentum relations, to the orders ω−1 and ω0 are derived. We show that these terms
can be expressed completely in terms of the on-shell amplitudes for π−π0 → π−π0 and π�p → π�p,
respectively, and their partial derivatives with respect to s and t. The structure term which is nonsingular for
ω → 0 is determined to the order ω0 from the gauge-invariance constraint using the generalized Ward
identities for pions and the proton. For the reaction π−π0 → π−π0γ we discuss in detail the soft-photon
theorems in the versions of both Low andWeinberg. We show that these two versions are different and must
not be confounded. Weinberg’s version gives the pole term of a Laurent expansion in ω of the amplitude for
π−π0 → π−π0γ around the phase-space point of zero radiation. Low’s version gives an approximate
expression for the above amplitude at a fixed phase-space point, corresponding to nonzero radiation.
Clearly, the leading and next-to-leading terms in theses two approaches must be, and are indeed, different.
We show their relation. We also discuss the expansions of differential cross sections for π−π0 → π−π0γ
with respect to ω for ω → 0.

DOI: 10.1103/PhysRevD.109.094042

I. INTRODUCTION

In this article we shall discuss the production of soft
photons in ππ and πp scattering. In particular, we shall
study the following reactions:

π−ðpaÞ þ π0ðpbÞ → π−ðp1Þ þ π0ðp2Þ; ð1:1Þ

π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðk; εÞ; ð1:2Þ

and

π�ðpaÞ þ pðpb; λbÞ → π�ðp1Þ þ pðp2; λ2Þ; ð1:3Þ

π�ðpaÞþpðpb;λbÞ→ π�ðp0
1Þþpðp0

2;λ
0
2Þþ γðk;εÞ: ð1:4Þ

Here pa; pb; p1; p2; p0
1; p

0
2 and k are the momenta of the

particles, λb; λ2; λ02 are the spin indices of the protons, and ε
is the polarization vector of the photon. Let ω ¼ k0 be the
photon energy in the overall c.m. system. We are interested
in soft-photon production, ω → 0.
In a seminal paper Low [1] derived the theorem that the

leading term for ω → 0 in the soft-photon-production
amplitudes comes from the emission of photons from
the external particles of the reaction. In [1] this was shown
explicitly for the scattering of a charged scalar on an
uncharged scalar particle, that is, for a reaction like (1.2),
and for the scattering of a charged spin 1=2 fermion on a
neutral scalar boson. In [2,3] a soft-photon theorem was
derived for general reactions with an arbitrary number of
external particles. In the following soft-photon production
was studied by many authors; see, e.g., [4–19].
In [1] also an expression for a next-to-leading term, of

order ω0, is given for the scattering of scalars. In our study
of soft-photon production in π−π0 scattering we recalculated
the next-to-leading term and found a different result [20]. In
the present paper, we reconsider the leading and next-to-
leading terms in the soft-photon expansion of (1.2). We shall
show that Low’s version [1] and Weinberg’s version [3] of
the soft-photon theorem are different and should not be
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confused. We also shall show how they are related. In this
way, we shall also give the clear reason why there must be a
difference between the formulas for the next-to-leading
terms in Low’s paper [1] and in our paper [20] and how the
two results are related. These results have already been
presented in a short form at a conference in October 2023;
see [21]. There, also our misunderstanding of the results
of [1] which led us to an error in [20] was corrected. This
will be discussed in detail below.
Our paper is organized as follows. In Sec. II we discuss

the phase space and the kinematics for the reactions (1.1)
and (1.2). Section III deals with the reactions (1.1) and (1.2)
from a general point of view. In Sec. IV we recall the
expansion of the amplitude for π−π0 → π−π0γ around the
phase-space point p1; p2; k ¼ 0 as presented in [20], where
the leading term is precisely given by the soft-photon
theorem of [3]. Section V deals with Low’s version of
the soft-photon theorem [1] and its relation to the results
of [3,20]. In Sec. VI we discuss cross sections for
π−π0 → π−π0γ. In Sec. VII we give an outline of the
calculation for the leading and next-to-leading terms of
the π�p → π�pγ reactions (1.4). Section VIII contains a
summary and our conclusions. Some details of our analysis
are given in Appendixes A and B.
In our paper we use the following theoretical framework

for the calculations. We consider the reactions (1.1)–(1.4)
in QCD plus leading order in electromagnetism. We use
only exact quantum field theory (QFT) methods in this
framework:

(i) energy-momentum conservation,
(ii) gauge invariance,
(iii) parity (P), charge conjugation (C), and time-reversal

(T) invariance,
(iv) the generalized Ward identity for the pion and the

proton fields, which in QCD are composite local
fields,

(v) analyticity properties of amplitudes, in particular the
Landau conditions.

It turned out that the evaluation of the ω0 term for the
amplitude of (1.4) involved a lengthy and complex analy-
sis. Therefore, we present in this paper only the basic
ingredients of the calculation and the results. All details can
be found in Ref. [22].

II. KINEMATICS AND PHASE SPACE FOR ππ → ππ
AND ππ → ππγ

Let us start with the elastic reaction

π−ðpaÞ þ π0ðpbÞ → π−ðp1Þ þ π0ðp2Þ;
pa þ pb ¼ p1 þ p2: ð2:1Þ

We set as usual

s ¼ ðpa þ pbÞ2 ¼ ðp1 þ p2Þ2;
t ¼ ðpa − p1Þ2 ¼ ðpb − p2Þ2: ð2:2Þ

Let us look at the reaction (2.1) in the c.m. system and
consider a given value of the c.m. energy squared s. Then
the energies and absolute values of the momenta are fixed,

p0
a ¼ p0

b ¼ p0
1 ¼ p0

2 ¼
ffiffiffi
s

p
2

;

jpaj ¼ jpbj ¼ jp1j ¼ jp2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

π

r
: ð2:3Þ

For a given initial configuration we can vary only
p̂1 ¼ p1=jp1j, the unit vector in direction of p1; see
Fig. 1. The phase space is the unit sphere.
Now we go to the reaction with photon radiation,

π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðk; εÞ;
pa þ pb ¼ p0

1 þ p0
2 þ k: ð2:4Þ

Here we set

s ¼ ðpa þ pbÞ2 ¼ ðp0
1 þ p0

2 þ kÞ2;
t1 ¼ ðpa − p0

1Þ2 ¼ ðpb − p0
2 − kÞ2;

t2 ¼ ðpb − p0
2Þ2 ¼ ðpa − p0

1 − kÞ2: ð2:5Þ

We shall consider real and virtual photon emission and
require

k2 ≥ 0; k0 ≥ 0; ð2:6Þ

and k small, say jkμj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

p
(μ ¼ 0;…; 3) in the

c.m. system. We consider a given value of s and ask what
are the free parameters of the reaction (2.4). In the c.m.
system (Fig. 2) a convenient set of such parameters is given
by the four-vector k plus the unit vector p̂01 ¼ p01=jp01j:

Phase space of ð2.4Þ ¼ fðk; p̂01Þ; k∈ part of R4; jp̂01j ¼ 1g:
ð2:7Þ

We can easily see this by considering the reaction (2.4)
for given k in the rest system of the four-vector

FIG. 1. The reaction π−π0 → π−π0 (2.1) in the c.m. system.
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pa þ pb − k. In this system p01 and p
0
2 are back to back with

fixed jp01j and jp02j. The only freedom left is to vary p01 in any
direction. The same is then also true in the c.m. system if k
is small enough.

III. GENERAL ANALYSIS OF ππ → ππ AND ππ →
ππγ

We consider first the reaction

π−ðp̃aÞ þ π0ðp̃bÞ → π−ðp̃1Þ þ π0ðp̃2Þ ð3:1Þ

off shell and on shell. We have always energy-momentum
conservation

p̃a þ p̃b ¼ p̃1 þ p̃2: ð3:2Þ

In relations which hold off shell and on shell we denote
momenta with a tilde. The diagram for (3.1) is shown
in Fig. 3.
As kinematic variables we have the masses of the, in

general off-shell, pions, an energy variable, and a t variable:

ν̃¼ p̃a · p̃b þ p̃1 · p̃2;

t̃¼ ðp̃a − p̃1Þ2 ¼ ðp̃b − p̃2Þ2;
m2

a ¼ p̃2
a; m2

b ¼ p̃2
b; m2

1 ¼ p̃2
1; m2

2 ¼ p̃2
2: ð3:3Þ

We use here, following Low, ν̃ as energy variable. For the
Mandelstam s̃ variable we get

s̃ ¼ ðp̃a þ p̃bÞ2 ¼ ν̃þ 1

2
ðm2

a þm2
b þm2

1 þm2
2Þ: ð3:4Þ

The scattering amplitude for (3.1) can only depend on the
variables (3.3):

T ðp̃1; p̃2; p̃a; p̃bÞ ¼ Mðν̃; t̃; m2
a; m2

b; m
2
1; m

2
2Þ: ð3:5Þ

The on-shell amplitude is obtained setting

p̃a → pa; p̃b → pb; p̃1 → p1; p̃2 → p2;

m2
a ¼ m2

b ¼ m2
1 ¼ m2

2 ¼ m2
π;

ν̃ → ν; t̃ → t; ð3:6Þ

and we get

T ðp1; p2; pa; pbÞjon shell ¼ Mðν; t; m2
π; m2

π; m2
π; m2

πÞ
≡MðonÞðν; tÞ: ð3:7Þ

Next we come to the photon-emission reaction (1.2):

π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðk; εÞ; ð3:8Þ

where energy-momentum conservation reads

pa þ pb ¼ p0
1 þ p0

2 þ k: ð3:9Þ

Note that for four-vector k ≠ 0 we must have p0
1 ≠ p1,

p0
2 ≠ p2 with p1, p2 from (2.1). The amplitude for (3.8) is

hπ−ðp0
1Þ; π0ðp0

2Þ; γðk; εÞjT jπ−ðpaÞ; π0ðpbÞi
¼ ðελÞ�Mλðp0

1; p
0
2; k; pa; pbÞ: ð3:10Þ

In the following we consider Mλ for real and also for
virtual, timelike, photons, that is, for (2.6).
There are three diagrams for the reaction (3.8) as shown

in Fig. 4, two one-particle reducible ones, (a) and (b), and
one which is one-particle irreducible (c).
To calculate the diagrams (a) and (b) we need the off-

shell ππ → ππ amplitude which we have already intro-
duced, the pion propagator ΔFðp2Þ, and the pion-photon

vertex function Γ̂ðγππÞ
λ ðp0; pÞ:

ð3:11Þ

ð3:12Þ

We denote by e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
> 0 the πþ charge.

We get

Mλ ¼ MðaÞ
λ þMðbÞ

λ þMðcÞ
λ ; ð3:13Þ

FIG. 2. The reaction π−π0 → π−π0γ (2.4) in the c.m. system.

FIG. 3. Diagram for the off-shell and on-shell reaction (3.1).
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where

MðaÞ
λ ¼ −eMðaÞΔF½ðpa − kÞ2�Γ̂ðγππÞ

λ ðpa − k; paÞ;
MðaÞ ¼ T ðp0

1; p
0
2; pa − k; pbÞjoff shell

¼ M½ðpa − k; pbÞ þ p0
1 · p

0
2;

ðpb − p0
2Þ2; ðpa − kÞ2; m2

π; m2
π; m2

π�; ð3:14Þ

MðbÞ
λ ¼ −eΓ̂ðγππÞ

λ ðp0
1; p

0
1 þ kÞΔF½ðp0

1 þ kÞ2�MðbÞ;

MðbÞ ¼ T ðp0
1 þ k; p0

2; pa; pbÞjoff shell
¼ M½ðpa · pbÞ þ ðp0

1 þ k; p0
2Þ;

ðpb − p0
2Þ2; m2

π; m2
π; ðp0

1 þ kÞ2; m2
π�: ð3:15Þ

We shall now use one of the best tools from QFT which
we have: gauge invariance. This gives us the generalized
Ward identity [23,24]

ðp0 − pÞλΓ̂ðγππÞ
λ ðp0; pÞ ¼ Δ−1

F ðp02Þ − Δ−1
F ðp2Þ ð3:16Þ

and the condition

kλMλ ¼ kλðMðaÞ
λ þMðbÞ

λ þMðcÞ
λ Þ ¼ 0: ð3:17Þ

From these two conditions we get an exact relation between

MðcÞ
λ , and MðaÞ, MðbÞ:

kλMðcÞ
λ ¼ −eMðaÞ þ eMðbÞ; ð3:18Þ

cf. (2.22) of [20]. These are the QFT relations which we
shall use in the following.

IV. SOFT PHOTON THEOREM I

In this section we shall give the expansion of the
amplitude Mλ around the phase-space point ðk ¼ 0;
p̂01 ¼ p̂1Þ. In a small neighborhood of this phase-space
point we set, assuming jl1⊥j ¼ OðωÞ,

p̂01 ¼ p̂1 −
l1⊥
jp1j

; l1⊥ · p̂1 ¼ 0þOðω2Þ: ð4:1Þ

This neighborhood has six dimensions, schematically we
represent it as shown in Fig. 5.
For ðk ¼ 0; l1⊥ ¼ 0Þ we have the kinematics of

π−π0 → π−π0, the reaction without radiation (2.1). For
ðk; l1⊥Þ we have

p0
1 ¼ p1 − l1; p0

2 ¼ p2 − l2; ð4:2Þ

where in the c.m. framewe get after a simple calculation, up
to order ω, the following result. We have in the overall c.m.
system of (2.1) and (2.4) with p̂1 ¼ p1=jp1j,

ðpμ
1Þ ¼

 
p0
1

jp1jp̂1

!
; ðpμ

2Þ ¼
 
p0
2

−jp2jp̂1

!
;

ðkμÞ ¼
 
k0

kkp̂1 þ k⊥

!
; k⊥ · p̂1 ¼ 0; ð4:3Þ

where k0 ¼ ω, and p0
1;2, jp1;2j are as in (2.3). We find then

[see (3.21) of [20]]

FIG. 4. Diagrams for the reaction π−π0 → π−π0γ (3.8). The
diagrams (a) and (b) describe the photon emission from the
external charged lines, the diagram (c) corresponds to the photon
emission from internal lines, the structure term. The blobs in (a)
and (b) stand for the full pion propagator, the full γππ vertex
function, and the off-shell ππ scattering amplitude.

FIG. 5. Schematic representation of the six-dimensional neigh-
borhood of the phase-space point ðk ¼ 0; p̂01 ¼ p̂1Þ; see (4.1).
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ðlμ1Þ ¼
0
@ 1ffiffi

s
p ðp2 · kÞ
p0
1

jp1j
ffiffi
s

p ðp2 · kÞp̂1 þ l1⊥

1
A;

ðlμ2Þ ¼
0
@ 1ffiffi

s
p ðp1 · kÞ

k − p0
1

jp1j
ffiffi
s

p ðp2 · kÞp̂1 − l1⊥

1
CA: ð4:4Þ

We have written (4.4) in such a way that it holds, of course,
for ππ scattering, inserting for s, p1;2, jp1j, and p̂1 ¼
p1=jp1j the expressions from (2.2), (2.3), and (4.3). We
shall see in Sec. VII that for the πp scattering case the
analogous quantities l1;2 are again given by (4.4) with the
appropriate expressions for s, p1;2, jp1j, and p̂1 inserted;
see Eq. (7.11) and the discussion following it.
We illustrate the situation in the overall c.m. system

in Fig. 6.
We have the important relations (up to order ω)

l1 þ l2 ¼ k;

p1 · l1 ¼ p2 · l2 ¼ 0: ð4:5Þ

Now we come to the expansion of the amplitudeMλ for
ω → 0. To be precise we set, in the c.m. system,

ðkμÞ ¼ ω

�
1

k̃

�
; ω ≥ 0; k̃2 ≤ 1: ð4:6Þ

In this way we have always

k2 ¼ ω2ð1 − k̃2Þ ≥ 0: ð4:7Þ

Furthermore we set

l1⊥ ¼ ωl̃1⊥; jl̃1⊥j ¼ Oð1Þ: ð4:8Þ

We keep k̃ and l̃1⊥ fixed and consider the expansion of the
radiative amplitude for ω → 0. That is, we considerMλ on
a line starting from the origin in the phase space shown
schematically in Fig. 5. Of course, this will be a Laurent
expansion.

Note that when constructing this expansion we have to
count k2 ¼ Oðω2Þ due to (4.7). In theoretical consider-
ations we certainly can consider kμ (4.6) and k2 (4.7) for
fixed k̃ and ω → 0. If we want to realize k2 > 0 in nature by
virtual photon γ� production with γ� → eþe− we have, of
course, the limit

ω ≥ 2me;

k2 ¼ ω2ð1 − k̃2Þ ≥ 4m2
e; ð4:9Þ

whereme is the electron mass. But the electron mass is very
small on a hadronic scale. Thus, in γ� production with the
decay γ� → eþe− we can reach very low values of ω and k2

where the soft-photon expansion has a good chance to
be valid.
Now we illustrate the construction of the Laurent

expansion for the term MðaÞ
λ ; see Fig. 4(a) and (3.14).

We have

MðaÞ
λ ¼ −eT ðp0

1; p
0
2; pa − k; pbÞjoff shell

× ΔF½ðpa − kÞ2�Γ̂ðγππÞ
λ ðpa − k; paÞ: ð4:10Þ

Note that our off-shell amplitude satisfies energy-
momentum conservation:

pa − kþ pb ¼ p0
1 þ p0

2: ð4:11Þ

From the generalized Ward identity (3.16) we find for
ω → 0 [see (3.13) of [20]]

ΔF½ðpa − kÞ2�Γ̂ðγππÞ
λ ðpa − k; paÞ

¼ ð2pa − kÞλ
−2pa · kþ k2 þ iε

þOðωÞ: ð4:12Þ

This shows that in order to get the expansion forMðaÞ
λ to the

orders ω−1 and ω0 we have to calculate the expansion of

T ðp0
1; p

0
2; pa − k; pbÞjoff shell

¼ T ðp1 − l1; p2 − l2; pa − k; pbÞjoff shell
¼ M½ðpa − k; pbÞ þ ðp1 − l1; p2 − l2Þ;
ðpb − p2 þ l2Þ2; ðpa − kÞ2; m2

π; m2
π; m2

π� ð4:13Þ

to the ordersω0 andω. Note that, of course, l1 and l2 have to

be taken into account. Treating in this way MðaÞ
λ and MðbÞ

λ

and determining MðcÞ
λ to the required order in ω from the

gauge invariance condition (3.18) we get for the case of real
photon emission, k2 ¼ 0, the following [see (3.27)
of [20]], where we neglect gauge terms ∝ kλ:

FIG. 6. The final states of (2.1) and (2.4) for jl1⊥j ¼ OðωÞ in
the c.m. system.
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Mλðp0
1; p

0
2; k; pa; pbÞ ¼ e

��
paλ

pa · k
−

p0
1λ

p0
1 · k

�
MðonÞðν; tÞ − 2

�
paλ

pb · k
pa · k

− pbλ

�
∂

∂ν
MðonÞðν; tÞ

− 2

�
paλ

pa · k
−

p1λ

p1 · k

��
ðpa − p1; kÞ − pa · l1

�
∂

∂t
MðonÞðν; tÞ

�
þOðωÞ;

ν ¼ s − 2m2
π; t ¼ ðpa − p1Þ2 ¼ ðpb − p2Þ2: ð4:14Þ

Here MðonÞðν; tÞ is the on-shell π−π0 → π−π0 amplitude (3.7). We can, for consistency, still expand (cf. Appendix A)

p0
1λ

p0
1 · k

¼ ðp1 − l1Þλ
ðp1 − l1; kÞ

¼ p1λ

p1 · k
þ 1

ðp1 · kÞ2
�
p1λðl1 · kÞ − l1λðp1 · kÞ

�
þOðωÞ: ð4:15Þ

In this way we get [see (A1) of [20]]

Mλðp0
1; p

0
2; k; pa; pbÞ ¼ e

��
paλ

pa · k
−

p1λ

p1 · k

�
MðonÞðν; tÞ − 1

ðp1 · kÞ2
�
p1λðl1 · kÞ − l1λðp1 · kÞ

�
MðonÞðν; tÞ

− 2

�
paλ

pb · k
pa · k

− pbλ

�
∂

∂ν
MðonÞðν; tÞ − 2

�
paλ

pa · k
−

p1λ

p1 · k

��
ðpa − p1; kÞ − pa · l1

�

×
∂

∂t
MðonÞðν; tÞ

�
þOðωÞ: ð4:16Þ

We leave it to the readers to insert in (4.16) l1, l2 and k from
(4.4)–(4.8) and to convince themselves that in this way we
have given the terms of order ω−1 and ω0 in the Laurent
expansion of the amplitude Mλ for the reaction (3.8)
for ω → 0.
The first term on the rhs of Eq. (4.16) is the pole term

∝ ω−1 and this is exactly Weinberg’s soft-photon term. He
writes in [3]: “Hence the effect of attaching one soft-photon
line to an arbitrary diagram is simply to supply an extra
factor,

X
n

enηn
pμ
n

pn · q − iηnε
; ð4:17Þ

the sum running over all external lines in the original
diagram.” Here q is the photon four-momentum and
ηn ¼ þ1 for an outgoing charged particle, ηn ¼ −1 for
an incoming charged particle. In our work, [20] and (4.16)
here, we have given the next-to-leading term to Weinberg’s
pole term for the reaction (3.8).

V. SOFT PHOTON THEOREM II

Now we want to discuss Low’s version of soft-photon
theorem [1]. Of course, as a starting point he considers
again the diagrams (a), (b), and (c) of Fig. 4 forMλ. He also
uses the generalized Ward identity which gave us (4.12) for

ΔFΓ̂
ðγππÞ
λ . Considering only real photon emission we have

then for the termMðaÞ
λ [see Eq. (2.11) of [1] but note that a

different metric convention is used there]

MðaÞ
λ ðp0

1; p
0
2; k; pa; pbÞ ¼ eM½ðpa − k; pbÞ þ p0

1 · p
0
2;

ðpb − p0
2Þ2; m2

a ¼ ðpa − kÞ2; m2
π; m2

π; m2
π�

paλ

pa · k
:

ð5:1Þ

Now Low expands M with respect to k keeping p0
1 and p

0
2

fixed. That is, he only expands with respect to k which is
explicit in the parametrization chosen. In this way we get

MðaÞ
λ ðp0

1; p
0
2; k; pa; pbÞ ¼ e

paλ

pa · k

�
MðonÞ½pa · pb þ p0

1 · p
0
2; ðpb − p0

2Þ2�

− ðpb · kÞ
∂

∂ν
MðonÞ½pa · pb þ p0

1 · p
0
2; ðpb − p0

2Þ2�

− 2ðpa · kÞ
∂

∂m2
a
M½pa · pb þ p0

1 · p
0
2; ðpb − p0

2Þ2; m2
a; m2

π; m2
π; m2

π�jm2
a¼m2

π

�
þOðkÞ: ð5:2Þ
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Note an important point: Whereas the expansion of the
scalar function M on the rhs of (5.1) with respect to k,
keeping p0

1 and p
0
2 fixed, is completely standard, this is not

the case for MðaÞ
λ . Keeping in MðaÞ

λ ðp0
1; p

0
2; k; pa; pbÞpa,

pb, p0
1, and p0

2 fixed and expanding in k, in the usual sense
with varying k, we go outside the physical region where we
must have pa þ pb ¼ p0

1 þ p0
2 þ k (3.9). Thus, the rhs of

(5.2) should, in our opinion, be considered as giving an

approximate expression forMðaÞ
λ making sense only for the

physical value of k satisfying (3.9).
Now we can treat MðbÞ

λ in a similar way and then

determine MðcÞ
λ approximately from the gauge-invariance

condition (3.18). The result is Low’s formula [see (1.7)
of [1]]

Mλðp0
1; p

0
2; k; pa; pbÞ ¼ e

��
paλ

pa · k
−

p0
1λ

p0
1 · k

�
MðonÞðνL; t2Þ

−
�
paλ

pb · k
pa · k

þ p0
1λ

p0
2 · k

p0
1 · k

− pbλ − p0
2λ

�
∂

∂νL
MðonÞðνL; t2Þ

�
þOðkÞ; ð5:3Þ

where

νL ¼ pa · pb þ p0
1 · p

0
2 ¼ ν − ðpa þ pb; kÞ;

t2 ¼ ðpb − p0
2Þ2 ¼ ðpa − p0

1 − kÞ2: ð5:4Þ

Note that the amplitudeMðonÞ is evaluated at values of the
momenta appropriate to the radiative process.
Again we emphasize that (5.3) is not the expansion of

Mλ around some phase-space point. The rhs of (5.3) gives
an approximate expression for Mλ at a given phase-space
point p0

1; p
0
2; k. Also, the leading approximation in (5.3)

does not give what is frequently called Low’s theorem, but
really is Weinberg’s version of the soft-photon theorem;
see (4.17). We see this best by considering the reactions

π−ðpaÞ þ πþðpbÞ → π−ðp1Þ þ πþðp2Þ; ð5:5Þ

and

π−ðpaÞ þ πþðpbÞ → π−ðp0
1Þ þ πþðp0

2Þ þ γðk; εÞ: ð5:6Þ

The leading term according to Low for (5.6) is

Mλðp0
1; p

0
2; k; pa; pbÞ

¼ e

��
paλ

pa · k
−

p0
1λ

p0
1 · k

�
MðonÞðνL; t2Þ

þ
�
−

pbλ

pb · k
þ p0

2λ

p0
2 · k

�
MðonÞðνL; t1Þ

�
þOðω0Þ; ð5:7Þ

where t1 and t2 are defined in (2.5). According to
Weinberg, see (4.17), we have, on the other hand,

Mλðp0
1; p

0
2; k; pa; pbÞ

¼ e

��
paλ

pa · k
−

p1λ

p1 · k
−

pbλ

pb · k
þ p2λ

p2 · k

�
MðonÞðν; tÞ

�
þOðω0Þ: ð5:8Þ

In (5.7) we have an approximate expression forMλ valid at
the given phase-space point p0

1, p
0
2, k. In (5.8) we have the

pole term of the Laurent expansion of Mλ around the
phase-space point p0

1 ¼ p1, p0
2 ¼ p2, k ¼ 0.

Let us go back to the π−π0 → π−π0γ case. In (5.3) we
have Low’s formula which gives us an approximate
expression for Mλ at a given phase-space point. We can
construct, as we did in Sec. IV, the corresponding expan-
sion of this approximate expression around the phase-space
point ðk ¼ 0; p̂1Þ. Inserting in (5.3) p0

1 ¼ p1 − l1, p0
2 ¼

p2 − l2 from (4.2) we get

MðonÞðνL; t2Þ ¼ MðonÞ½ν − ðpa þ pb; kÞ;
t − 2ððpa − p1; kÞ − pa · l1Þ� þOðω2Þ

¼ MðonÞðν; tÞ − ðpa þ pb; kÞ
∂

∂ν
MðonÞðν; tÞ

− 2ððpa − p1; kÞ − pa · l1Þ
∂

∂t
MðonÞðν; tÞ

þOðω2Þ: ð5:9Þ

Furthermore, we find

−
�
paλ

pa · k
−

p0
1λ

p0
1 · k

�
ðpa þpb; kÞ

∂

∂ν
MðonÞðν; tÞ

−
�
paλ

pb · k
pa · k

þp0
1λ

p0
2 · k

p0
1 · k

−pbλ −p0
2λ

�
∂

∂νL
MðonÞðνL; t2Þ

¼ −2
�
paλ

pb · k
pa · k

−pbλ

�
∂

∂ν
MðonÞðν; tÞ þOðωÞ: ð5:10Þ

From (5.3), (5.9), and (5.10) we get the result for Mλ

identical to our result (4.14). We can go on to (4.16) using
(4.15). In this way we have given the relation between
Low’s theorem (5.3) and the Laurent series (4.16) where
the pole term ∝ ω−1 is given by Weinberg’s soft-photon
theorem and the next-to-leading term ∝ ω0 by our calcu-
lation, (3.27) and (A1) of [20].

VI. CROSS SECTION FOR π −π0 → π −π0γ

Here we consider the cross section for π−π0 scattering
with real photon emission and summed over the photon
polarizations. We get
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dσðπ−ðpaÞ þ π0ðpbÞ→ π−ðp0
1Þ þ π0ðp0

2Þ þ γðkÞÞ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2

πÞ
p d3k

ð2πÞ32k0
d3p0

1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

× ð2πÞ4δð4Þðp0
1 þ p0

2 þ k− pa − pbÞ
× ð−1ÞMλðp0

1; p
0
2; k; pa; pbÞMλ�ðp0

1; p
0
2; k; pa; pbÞ

ð6:1Þ

with Mλ from (3.10). We are interested here in small ω,
where we found that the phase space can be parametrized
by ðk; p̂01Þ; see (2.7). Here we have for real photons, of
course,

ðkμÞ ¼ ω

�
1

k̂

�
; jk̂j ¼ 1: ð6:2Þ

We can, as well, choose ðk; p̂02Þ as phase-space variables.
Below we shall discuss the following cross sections:

σ1 ¼
ωdσ

dωdΩk̂dΩp̂0
1

; σ2 ¼
ωdσ

dωdΩk̂dΩp̂0
2

; σ3 ¼
ωdσ
dω

;

ð6:3Þ

where dΩk̂, dΩp̂0
1
, and dΩp̂0

2
are the solid-angle elements to

k̂, p̂01, and p̂02 in the overall c.m. system, respectively. For
calculating the expansions in ω of the cross sections (6.3) it
is important to choose the appropriate expansion of
Mλðp0

1; p
0
2; k; pa; pbÞ. For calculating the cross section

with respect to ðk̂; p̂01Þ, we shall use the expansion around
ðk̂ ¼ 0; p̂01Þ keeping p̂01 constant. Similarly, for the cross
section with respect to k̂ and p̂02 it will be convenient to use
the expansion where p̂02 is kept constant. We illustrate this
in Fig. 7. We set

p̂001 ¼ −p̂02 ð6:4Þ

and get, after a simple calculation,

p̂01 ¼ p̂001 −
ω

jp1j
�
k̂ðp̂001Þ2 − ðp̂001 · k̂Þp̂001

�
þOðω2Þ: ð6:5Þ

The next point to realize is, that in expanding
Mλðp0

1; p
0
2; k; pa; pbÞ we have the freedom to choose

the starting point of the expansion appropriately, of course,
always staying with ðp1; p2Þ close to ðp0

1; p
0
2Þ as sketched

in Fig. 6. Referring always to the phase-space variables
ðk; p̂01Þ we choose as a starting point for expanding σ1 from
(6.3) the point ðk ¼ 0; p̂01Þ, for σ2 the point ðk ¼ 0; p̂001Þ.
Then, σ3 from (6.3) should be independent of these two
choices and this is indeed what we shall see below. We can,
therefore, write the following expansions:

ωMλðp0
1; p

0
2; k; pa; pbÞ

¼ M̂ð0Þ
λ ðs; p̂a; p̂01; k̂Þ þ ωM̂ð1Þ

λ ðs; p̂a; p̂01; k̂; p̂01Þ þOðω2Þ
¼ M̂ð0Þ

λ ðs; p̂a; p̂001; k̂Þ þ ωM̂ð1Þ
λ ðs; p̂a; p̂01; k̂; p̂001Þ þOðω2Þ:

ð6:6Þ

Here we indicate by the last variable in M̂ð1Þ
λ the starting

point of the expansion, ðk ¼ 0; p̂01Þ or ðk ¼ 0; p̂001Þ, respec-
tively; see Fig. 8. The precise definitions of M̂ð0Þ

λ and M̂ð1Þ
λ

following from (4.16) are given below.
Now we come to the calculation of the expansion of

σ1 (6.3).
The cross section with respect to the phase-space

variables ω, k̂, p̂01 reads (see Appendix B of [20])

dσðπ−π0 → π−π0γÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5

× ωdωdΩk̂dΩp̂0
1
Jðs;ω; p̂01; k̂Þ

× ð−MλMλ�Þ: ð6:7Þ

Here J is a kinematic function given in (B7) of [20] and we
consider Mλ as a function of the independent initial
variables s, p̂a and the phase-space variables (2.7)

Mλðp0
1; p

0
2; k; pa; pbÞ≡Mλðs; p̂a;ω; k̂; p̂01Þ: ð6:8Þ

FIG. 7. Sketch of the momentum configuration for the final
state of π−ðpaÞπ0ðpbÞ → π−ðp0

1Þπ0ðp0
2ÞγðkÞ with the definition

of the unit vectors p̂01 and p̂001 ¼ −p̂02.

FIG. 8. Sketch for the two expansions (6.6) of
Mλðp0

1; p
0
2; k; pa; pbÞ in the phase space ðk; p̂01Þ.
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We are interested in the cross section (6.7) for ω → 0.
The expansion of the phase-space factor J is easily obtained
from (B3)–(B8) of [20]

Jðs;ω; p̂01; k̂Þ¼Jð1Þðs;ω; p̂01; k̂ÞþOðω2Þ;

Jð1Þðs;ω; p̂01; k̂Þ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r
−

ωffiffiffi
s

p
�

2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs−4m2
πÞ

p þ p̂01 · k̂
�
:

ð6:9Þ

The expansion in ω ofMλ (6.8) was the topic of Sec. IV.
Now we consider given values for k̂ and p̂01 and vary ω.
Therefore, in the schematic diagrams of Figs. 5 and 8, we
move for fixed p̂01 ¼ p̂1, that is, for fixed l1⊥ ¼ 0 [see (4.1)]
along the line k ¼ ωð1; k̂Þ⊤. The expansion ofMλ (6.8) on
this line is given in (4.16), of course, inserting l1 and l2

from (4.4) with l1⊥ ¼ 0. We denote the corresponding
values of li by l0i (i ¼ 1, 2) in the following. In this way we
obtain with p̂01 ¼ p̂1 [see (B12)–(B14) of [20]] for the first
line on the rhs of (6.6)

Mλðs; p̂a;ω; k̂; p̂01Þ ¼
1

ω
M̂ð0;1Þ

λ þ M̂ð1;1Þ
λ þOðωÞ; ð6:10Þ

where

M̂ð0;1Þ
λ ¼ M̂ð0Þ

λ ðs; p̂a; p̂01; k̂Þ

¼ eω

�
paλ

pa · k
−

p1λ

p1 · k

�
MðonÞðν; tÞ; ð6:11Þ

M̂ð1;1Þ
λ ¼ M̂ð1Þ

λ ðs; p̂a; p̂01; k̂; p̂01Þ

¼ e

�
−

1

ðp1 · kÞ2
�
p1λðl01 · kÞ − l01λðp1 · kÞ

�
MðonÞðν; tÞ − 2

�
paλ

pb · k
pa · k

− pbλ

�
∂

∂ν
MðonÞðν; tÞ

− 2

�
paλ

pa · k
−

p1λ

p1 · k

��
ðpa − p1; kÞ − ðpa · l01Þ

�
∂

∂t
MðonÞðν; tÞ

�
: ð6:12Þ

Note that both M̂ð0;1Þ
λ and M̂ð1;1Þ

λ are independent of ω and they are unambiguously defined inserting l01 and l
0
2 which are the

values of l1 and l2 from (4.4) with l1⊥ ¼ 0 and ν ¼ s − 2m2
π, t ¼ ðpa − p1Þ2 from (3.4)–(3.6). Note also that the expansion

(4.15) which is used here is, for our case l1⊥ ¼ 0, alright for ω ≪ jp1j and all values of p̂1 and k̂; see (A3).
Now we define

Að0;1Þðs; p̂a; p̂01; k̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p 1

24ð2πÞ5
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
ð−M̂ð0;1Þ

λ M̂ð0;1Þλ�Þ; ð6:13Þ

Að1;1Þðs; p̂a; p̂01; k̂; p̂01Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p 1

24ð2πÞ5
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r �
−M̂ð1;1Þ

λ M̂ð0;1Þλ� − M̂ð0;1Þ
λ M̂ð1;1Þλ�

�

−
1ffiffiffi
s

p
�

2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p þ p̂01 · k̂
��

−M̂ð0;1Þ
λ M̂ð0;1Þλ�

��
: ð6:14Þ

Inserting (6.9)–(6.12) in (6.7) and using (6.13) and (6.14) we get

ωdσðπ−π0 → π−π0γÞ
dωdΩk̂dΩp̂0

1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5 J
ð1Þðs;ω; p̂01; k̂Þ

× ð−1Þ
�
M̂ð0;1Þ

λ þ ωM̂ð1;1Þ
λ

��
M̂ð0;1Þλ þ ωM̂ð1;1Þλ

��
þOðω2Þ

¼ Að0;1Þðs; p̂a; p̂01; k̂Þ þ ωAð1;1Þðs; p̂a; p̂01; k̂; p̂01Þ þOðω2Þ: ð6:15Þ

Integrating (6.15) over the solid angles of k̂ and p̂01, we find the expansion of the cross section ωdσ=dω for ω → 0,
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ω
dσ
dω

ðπ−π0 → π−π0γÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5
Z

dΩk̂dΩp̂0
1
Jð1Þðs;ω; p̂01; k̂Þ

× ð−1Þ
	
M̂ð0;1Þ

λ þ ωM̂ð1;1Þ
λ


	
M̂ð0;1Þλ þ ωM̂ð1;1Þλ


� þOðω2Þ

¼
Z

dΩk̂dΩp̂0
1
Að0;1Þðs; p̂a; p̂01; k̂Þ þ ω

Z
dΩk̂dΩp̂0

1
Að1;1Þðs; p̂a; p̂01; k̂; p̂01Þ þOðω2Þ: ð6:16Þ

Note that in the expansions (6.15) and (6.16) all terms are unambiguously defined. The expansion coefficients are
independent of ω, as it should be.
Next we consider the cross section σ2 from (6.3), that is, the cross section with respect to ω, k̂, and p̂02. For this we define

here [see (6.4)–(6.6)] the pion momenta p00
1 and p

00
2 of the now appropriate nonradiative starting point of the expansion (see

Figs. 7 and 8). We have

p001 ¼ −p002 ¼ p̂001jp1j ¼ p̂001

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

π

r
;

p000
1 ¼ p000

2 ¼
ffiffiffi
s

p
2

;

t00 ¼ ðpa − p00
1Þ2: ð6:17Þ

We get then the following matrix elements for the second line on the rhs of (6.6) using (4.16):

M̂ð0;2Þ
λ ¼ M̂ð0Þ

λ ðs; p̂a; p̂001; k̂Þ

¼ eω

�
paλ

pa · k
−

p00
1λ

p00
1 · k

�
MðonÞðν; t00Þ; ð6:18Þ

M̂ð1;2Þ
λ ¼ M̂ð1Þ

λ ðs; p̂a; p̂01; k̂; p̂001Þ

¼ e

�
−

1

ðp00
1 · kÞ2

�
p00
1λðl001 · kÞ − l001λðp00

1 · kÞ
�
MðonÞðν; t00Þ

− 2

�
paλ

pb · k
pa · k

− pbλ

�
∂

∂ν
MðonÞðν; t00Þ

− 2

�
paλ

pa · k
−

p00
1λ

p00
1 · k

��
ðpa − p00

1; kÞ − ðpa · l001Þ
�

∂

∂t00
MðonÞðν; t00Þ

�
: ð6:19Þ

Here we have to set in (4.16) l1 ¼ l001 and l2 ¼ l002 according to (4.4) but with the replacements

p1 → p00
1; p̂1 → p̂001; p2 → p00

2;

l1⊥ → l001⊥ ¼ kðp̂001Þ2 − ðk · p̂001Þp̂001: ð6:20Þ

We get then l002⊥ ¼ 0, that is, p̂02 ¼ p̂002 , as we require here.
For the cross section σ2 of (6.3) we obtain

ωdσðπ−π0 → π−π0γÞ
dωdΩk̂dΩp̂0

2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5 J
ð1Þðs;ω; p̂02; k̂Þ

× ð−1Þ
	
M̂ð0;2Þ

λ þ ωM̂ð1;2Þ
λ


	
M̂ð0;2Þλ þ ωM̂ð1;2Þλ


� þOðω2Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
−

ωffiffiffi
s

p
�

2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p þ p̂02 · k̂
��

× ð−1Þ
	
M̂ð0;2Þ

λ þ ωM̂ð1;2Þ
λ


	
M̂ð0;2Þλ þ ωM̂ð1;2Þλ


� þOðω2Þ; ð6:21Þ

and finally
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ωdσðπ−π0 → π−π0γÞ
dωdΩk̂dΩp̂0

2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r 	
−M̂ð0;2Þ

λ M̂ð0;2Þλ�



þ ω

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r 	
−M̂ð1;2Þ

λ M̂ð0;2Þλ� − M̂ð0;2Þ
λ M̂ð1;2Þλ�




−
1ffiffiffi
s

p
�

2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p þ p̂02 · k̂
�	

−M̂ð0;2Þ
λ M̂ð0;2Þλ�


��
þOðω2Þ: ð6:22Þ

Now we turn to σ3 in (6.3). In (6.16) we have obtained ωdσ=dω by integrating over the solid angles of k̂ and p̂01. We can,
however, also integrate (6.21) over the solid angles of k̂ and p̂02. Will we get the same result up to order ω? From (6.21)
we get

ω
dσ
dω

ðπ−π0 → π−π0γÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5
Z

dΩk̂dΩp̂0
2
Jð1Þðs;ω; p̂02; k̂Þ

× ð−1ÞðM̂ð0;2Þ
λ þ ωM̂ð1;2Þ

λ ÞðM̂ð0;2Þλ þ ωM̂ð1;2ÞλÞ� þOðω2Þ: ð6:23Þ

In Appendix B we give the result for the change of measure
under the variable transformation p̂01 → p̂001 ¼ −p̂02 from
(6.5) for fixed k̂. We find from (B9)

dΩp̂0
1
Jð1Þðs;ω; p̂01; k̂Þ

¼ dΩp̂00
1
Jð1Þðs;ω;−p̂001; k̂Þ þOðω2Þ

¼ dΩp̂0
2
Jð1Þðs;ω; p̂02; k̂Þ þOðω2Þ: ð6:24Þ

Inserting (6.24) in (6.23) and using (6.6), (6.10)–(6.12),
(6.18), and (6.19), we find, indeed, that the expansions of
the cross sections ωdσ=dω from (6.16) and (6.23) are the
same up to order ω which is the order up to which we
calculate here.
To conclude this chapter, we emphasize that for the

discussions of cross sections in (6.3) it was essential to have
at our disposal the general expansion of the radiative
amplitude Mλ around a phase-space point ðk ¼ 0; p̂1Þ,
respectively ðk ¼ 0; l1⊥ ¼ 0Þ; see Fig. 5. The expansion
parameters were ðk; l1⊥Þ. We found that in calculating σ1
and σ2 of (6.3) we had to use the general expansion (4.16)
ofMλ but with different starting points and different values
of l1⊥, respectively; see Fig. 8.

VII. OUTLINE OF THE CALCULATION
FOR πp → πpγ

We use the framework of QCD and treat electromag-
netism to lowest relevant order. In QCD we have the
symmetries: parity (P), charge conjugation (C), and time
reversal (T). These give us restrictions for the propagators,
vertices, and amplitudes. Furthermore, we use the gener-
alized Ward identities for pions and the proton [23,24] and
the Landau conditions for determining the singularities in
amplitudes [25,26]. All our results are derived using only
these rigorous methods.

Consider now the reactions (1.3) where energy-
momentum conservation reads

pa þ pb ¼ p1 þ p2: ð7:1Þ

Thus, there are only three independent momenta which we
choose as

ps ¼ pa þ pb ¼ p1 þ p2;

pt ¼ pa − p1 ¼ p2 − pb;

pu ¼ pa − p2 ¼ p1 − pb: ð7:2Þ

We have

s ¼ p2
s ; t ¼ p2

t ; u ¼ p2
u: ð7:3Þ

The amplitude for (1.3) has the general structure

hπ�ðp1Þ; pðp2; λ2ÞjT jπ�ðpaÞ; pðpb; λbÞi

¼ ūðp2; λ2Þ
�
AðonÞ�ðs; tÞ þ 1

2
ð=pa þ =p1ÞBðonÞ�ðs; tÞ

�
× uðpb; λbÞ; ð7:4Þ

with invariant functions AðonÞ� and BðonÞ�; see, e.g., [26]. In
the calculation of the amplitude for (1.4) we need, however,
the off-shell amplitude for πp → πp which is much more
complicated than (7.4). Writing for the on- or off-shell
momenta of the general reaction (1.3) p̃a, p̃b, p̃1, p̃2 and
defining p̃s, p̃t, p̃u; s̃, t̃ in analogy to (7.2) and (7.3) we find
for the off-shell amplitudes

DIFFERENT VERSIONS OF SOFT-PHOTON THEOREMS … PHYS. REV. D 109, 094042 (2024)

094042-11



Mð0Þ�ðp̃1; p̃2; p̃a; p̃bÞ¼M�
1 þ =̃psM

�
2 þ =̃ptM

�
3 þ =̃puM

�
4

þ iσμνp̃s
μp̃t

νM�
5 þ iσμνp̃s

μp̃u
νM�

6

þ iσμνp̃t
μp̃u

νM�
7

þ iγμγ5εμνρσp̃sνp̃tρp̃uσM�
8 : ð7:5Þ

We use the convention ε0123 ¼ 1. Here the invariant
amplitudes M�

j (j ¼ 1;…; 8) can only depend on s̃, t̃
and the invariant squared masses,

M�
j ¼M�

j ðs̃; t̃;m2
1;m

2
2;m

2
a;m2

bÞ;
m2

a ¼ p̃2
a; m2

b ¼ p̃2
b; m2

1 ¼ p̃2
1; m2

2 ¼ p̃2
2: ð7:6Þ

Specializing (7.5) for the on-shell case we get back (7.4)
with s̃ → s, t̃ → t, m2

a ¼ m2
1 ¼ m2

π , m2
b ¼ m2

2 ¼ m2
p, and

AðonÞ�ðs; tÞ ¼ MðonÞ�
1 þmpM

ðonÞ�
2 −mpM

ðonÞ�
4

þ ð−sþm2
p þm2

πÞMðonÞ�
5

þ ðsþ t −m2
p −m2

πÞMðonÞ�
7

−mpð2sþ t − 2m2
p − 2m2

πÞMðonÞ�
8 ; ð7:7Þ

BðonÞ�ðs; tÞ ¼ MðonÞ�
2 þMðonÞ�

4

þ 2mpM
ðonÞ�
5 − 2mpM

ðonÞ�
7

þ ð4m2
p − tÞMðonÞ�

8 : ð7:8Þ

On shell the amplitudes M�
3 and M�

6 are zero from C and
T invariance.
Next we consider the reactions (1.4). We have

five diagrams for π−p → π−pγ as shown in Fig. 9. For
πþp → πþpγ the diagrams are analogous.
Let M�

λ be the amplitude without spinors for (1.4). We
define a matrix amplitude N �

λ by

N �
λ ðp0

1; p
0
2; k; pa; pbÞ

¼ ð=p0
2 þmpÞM�

λ ðp0
1; p

0
2; k; pa; pbÞð=pb þmpÞ: ð7:9Þ

The T matrix element for (1.4) is then

hπ�ðp0
1Þ; pðp0

2; λ
0
2Þ; γðk; εÞjT jπ�ðpaÞ; pðpb; λbÞi

¼ ðελÞ� 1

ð2mpÞ2
ūðp0

2; λ
0
2ÞN �

λ ðp0
1; p

0
2; k; pa; pbÞuðpb; λbÞ:

ð7:10Þ

The advantage of working with N �
λ instead of M�

λ ,
sandwiched between spinors, is that we do not have to
specify any particular spin basis for the protons.
For real photon emission we have k2 ¼ 0 in (7.10) and

this is what we consider here. In [22] we treat the amplitude
N �

λ (7.9) also for virtual photons, that is, for k2 ≠ 0. The
discussion of the kinematics of the reactions (1.3) and (1.4)
is analogous to the one for (1.1) and (1.2) in Sec. II. We
work again in the c.m. system where we have for (1.3)

FIG. 9. Diagrams for the π−p → π−pγ reaction. Photon emis-
sion from external particles is shown in (a)–(d), the structure term
(e) is nonsingular for k → 0. The blobs in (a)–(d) represent the
full propagators and vertices and the off-shell π−p → π−p
amplitude.
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p0
a ¼ p0

1 ¼
1

2
ffiffiffi
s

p ðsþm2
π −m2

pÞ;

p0
b ¼ p0

2 ¼
1

2
ffiffiffi
s

p ðs −m2
π þm2

pÞ;

jpaj ¼ jpbj ¼ jp1j ¼ jp2j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

aÞ2 −m2
π

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

bÞ2 −m2
p

q
: ð7:11Þ

Given the initial state the phase space of the final state for
(1.3) is parametrized by p̂1 ¼ p1=jp1j and for (1.4) by
ðk; p̂01Þ, where p̂01 ¼ p01=jp01j. For small ω (ω ≪ jp1j) p̂01 can
vary over the whole unit sphere.
We consider again a neighborhood of a phase-space

point ðk ¼ 0; p̂1Þ and set there p̂01 ¼ p̂1 − l1⊥=jp1j with
jl1⊥j ¼ OðωÞ; see (4.1). This neighborhood is then para-
metrized by ðk; l1⊥Þ; see Fig. 5. For the momenta of the
reaction (1.4) at this phase-space point we set again p0

1 ¼
p1 − l1 and p0

2 ¼ p2 − l2, where l1;2 are determined up to
order ω with the same result as in (4.4) but inserting for s,
p1;2, jp1j, and p̂1 ¼ p1=jp1j, the appropriate values for πp
scattering; see (7.1)–(7.3) and (7.11).
Our aim is to derive the expansion of N �

λ ðp1 − l1; p2 −
l2; k; pa; pbÞ from (7.9) for ω → 0 and to give the terms of
order ω−1 and ω0 explicitly. Note that l1, l2, and k are all of
order ω; see (4.4). Thus, we have to expand N �

λ with
respect to all these momenta. Setting l1 ¼ l2 ¼ 0 and
expanding then only in kmakes no sense since this violates
energy-momentum conservation and leads outside the
physical region of the amplitude. In the following we shall
give the analog of the Laurent expansion for π−π0 → π−π0γ
as discussed in Sec. IV.
In Figs. 9(a)–9(d), the combinations of propagator times

photon vertex occur for pion and proton. Using the
generalized Ward identities we find for the pion (4.12),
see Fig. 9(a), and for the proton in Fig. 9(c)

SFðpb − kÞΓ̂ðγppÞμðpb − k; pbÞð=pb þmpÞ

¼ =pb þmp − =k

−2pb · kþ k2 þ iε

�
γμ −

i
2mp

σμνkνF2ð0Þ
�

× ð=pb þmpÞ þOðωÞ: ð7:12Þ

Here F2ð0Þ ¼ μp=μN − 1 with μp the magnetic moment of
the proton and μN the nuclear magneton. Expressions
similar to (4.12) and (7.12) apply for the vertex times
propagator terms in Figs. 9(b) and 9(d), respectively.
We see from (4.12) and (7.12) that for the determination

of the amplitudes N �
λ to the orders ω−1 and ω0 we have

to know the off-shell amplitudes for π�p → π�p in
Figs. 9(a)–9(d) to the orders ω0 and ω1. Thus, we have
to use (7.5) and make this expansion for the terms =̃ps, =̃pt,
etc. as well as for the amplitudes M�

1 ;…;M�
8 . This

expansion is different for the terms corresponding to the
diagrams of Fig. 9(a)–9(d). Finally, the structure term
corresponding to Fig. 9(e) can be determined from the
gauge-invariance constraint

kλN λ ¼ kλðN ðaÞ
λ þN ðbÞ

λ þN ðcÞ
λ þN ðdÞ

λ þN ðeÞ
λ Þ ¼ 0:

ð7:13Þ

After a long and rather complicated calculation, we find
that the result for the amplitudes N �

λ (7.9) for π�p →
π�pγ to the orders ω−1 and ω0 can be expressed completely
in terms of the on-shell amplitudes AðonÞ�ðs; tÞ and
BðonÞ�ðs; tÞ for π�p → π�p and their partial derivatives
with respect to s and t,

A;ðonÞ�s ðs; tÞ ¼ ∂

∂s
AðonÞ�ðs; tÞ;

A;ðonÞ�t ðs; tÞ ¼ ∂

∂t
AðonÞ�ðs; tÞ;

B;ðonÞ�s ðs; tÞ ¼ ∂

∂s
BðonÞ�ðs; tÞ;

B;ðonÞ�t ðs; tÞ ¼ ∂

∂t
BðonÞ�ðs; tÞ: ð7:14Þ

We find for real photon emission

N�
λ ¼ 1

ω
N̂ ð0Þ�

λ þ N̂ ð1Þ�
λ þOðωÞ; ð7:15Þ

where with j ¼ 0, 1

N̂ ðjÞ�
λ ¼ N̂ ðaþbþe1ÞðjÞ�

λ þ N̂ ðcþdþe2ÞðjÞ�
λ ; ð7:16Þ

N̂ ðaþbþe1Þð0Þ�
λ ¼ �eð=p2 þmpÞ

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞω

�
−

paλ

pa · k
þ p1λ

p1 · k

�
; ð7:17Þ

N̂ ðaþbþe1Þð1Þ�
λ ¼ �eð=p2 þmpÞ

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞ

1

ðp1 · kÞ2
�
p1λðl1 · kÞ − l1λðp1 · kÞ

�

� eð−=l2Þ
�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ��ð=pb þmpÞ

�
−

paλ

pa · k
þ p1λ

p1 · k

�
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� eð=p2 þmpÞ
1

2
ð−=l1ÞBðonÞ�ð=pb þmpÞ

�
−

paλ

pa · k
þ p1λ

p1 · k

�

� eð=p2 þmpÞ
��

A;ðonÞ�s þ 1

2
ð=pa þ =p1ÞB;ðonÞ�s

��
2ðps · kÞ

paλ

pa · k
− 2psλ

�

þ
�
A;ðonÞ�t þ 1

2
ð=pa þ =p1ÞB;ðonÞ�t

�
2ðpt · l2Þ

�
paλ

pa · k
−

p1λ

p1 · k

�

þ BðonÞ�
�
1

2
=k

�
paλ

pa · k
þ p1λ

p1 · k

�
− γλ

��
ð=pb þmpÞ; ð7:18Þ

N̂ ðcþdþe2Þð0Þ�
λ ¼ eð=p2 þmpÞ

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞω

�
−

pbλ

pb · k
þ p2λ

p2 · k

�
; ð7:19Þ

N̂ ðcþdþe2Þð1Þ�
λ ¼ eð=p2 þmpÞ

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞ

1

ðp2 · kÞ2
�
p2λðl2 · kÞ − l2λðp2 · kÞ

�

þ eð−=l2Þ
�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞ

�
−

pbλ

pb · k
þ p2λ

p2 · k

�

þ eð=p2 þmpÞ
1

2
ð−=l1ÞBðonÞ�ð=pb þmpÞ

�
−

pbλ

pb · k
þ p2λ

p2 · k

�

þ eð=p2 þmpÞ
�
A;ðonÞ�s þ 1

2
ð=pa þ =p1ÞB;ðonÞ�s

�
ð=pb þmpÞ

�
2ðps · kÞ

pbλ

pb · k
− 2psλ

�

þ eð=p2 þmpÞ
�
A;ðonÞ�t þ 1

2
ð=pa þ =p1ÞB;ðonÞ�t

�
ð=pb þmpÞ2ðpt · l1Þ

�
−

pbλ

pb · k
þ p2λ

p2 · k

�

þ eð=p2 þmpÞ
�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ðkλ − =kγλÞð=pb þmpÞ

1

ð−2pb · kÞ

− e
1

ð2p2 · kÞ
ð=p2 þmpÞðkλ − γλ=kÞ

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞ

þ eð=p2 þmpÞ
�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

��
mpðkλ − =kγλÞ þ ðpbλ=k − ðpb · kÞγλÞ

�
ð=pb þmpÞ

×
F2ð0Þ
mp

1

ð−2pb · kÞ
− e

F2ð0Þ
mp

1

ð2p2 · kÞ
ð=p2 þmpÞ

�
mpðkλ − γλ=kÞ þ

	
p2λ=k − ðp2 · kÞγλ


�

×

�
AðonÞ� þ 1

2
ð=pa þ =p1ÞBðonÞ�

�
ð=pb þmpÞ: ð7:20Þ

When our calculations for the amplitudes for π�p →
π�pγ in the soft-photon limit were finished we learned
about Refs. [7,8,27–29]. There, as in our work, it is
emphasized that one has to make a consistent expansion of
all terms in the amplitude for ω → 0. But our results rely
on more general premisses. We consider, for instance, the
most general off-shell πp → πp amplitudes which contain
eight invariant amplitudes; see (7.5). In [28] only
two invariant off-shell amplitudes are considered. A
detailed comparison of our methods and results with
those of [27–29] shall be given in an update of [22].

For π0p → π0pγ we are left with the diagrams (c), (d),
and (e) of Fig. 9 with π− → π0. Therefore, in our method,
the amplitudeN 0

λ for π
0p → π0pγ to the orders ω−1 and ω0

for real photon emission can be expressed as

N 0
λ ¼

1

ω
N̂ ð0Þ0

λ þ N̂ ð1Þ0
λ þOðωÞ; ð7:21Þ

with

N̂ ðjÞ0
λ ¼ N̂ ðcþdþe2ÞðjÞ0

λ ; j ¼ 0; 1; ð7:22Þ
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using expressions analogous to (7.19) and (7.20) replacing,
of course, the π�p by the π0p amplitudes. Again we
emphasize that Low’s formula, (3.16) of [1], for the
radiative amplitude for π0p → π0pγ gives an approximate
result valid at the fixed phase-space point (p0

1, p
0
2, k), while

our result (7.22) corresponds to the Laurent expansion in ω
around the phase-space point (p1, p2, k ¼ 0).

VIII. CONCLUSIONS

In this article we have first discussed π−π0 elastic
scattering and soft-photon radiation in this reaction. We
have shown that the soft-photon theorems of Low [1] and
Weinberg [2,3] have a different meaning. In [1] an
approximate expression for the radiative amplitude at a
given phase-space point (p0

1, p
0
2, k) is presented. In [3] the

pole term of the radiative amplitude in a Laurent expansion
in the photon energy ω around the phase-space point (p1,
p2, k ¼ 0) is given, where p1, p2 are the momenta of the
nonradiative reaction. We have recalled and discussed our
calculation of [20] where we presented the ω0 term in the
above Laurent expansion. We have discussed in detail that
the next-to-leading terms presented in [1] and [20],
respectively, must be different, since their meaning is
different. We have then constructed the Laurent expansion
of Low’s formula (5.3) around the phase-space point (p1,
p2, k ¼ 0) and found complete agreement with our results
of [20]. We emphasized that Low’s formula (5.3) for the
radiative amplitude Mλ is only valid for the one physical
value of k ¼ pa þ pb − p0

1 − p0
2. In contrast, in (4.16) we

give a Laurent expansion of Mλ around the phase-space
point (p1, p2, k ¼ 0) where, of course, we can vary the
expansion parameters ðk; l1⊥Þ which are defined at the
beginning of Sec. IV.
In [20] we wrongly interpreted Low’s formula as an

expansion ofMλ around (p1, p2, k ¼ 0). With this premiss
we came to the conclusion that Low’s formula violates
energy-momentum conservation. We have now discussed in
detail that the above premiss does not hold. Thus, also our
above conclusion does not hold. Therefore, the part of
Sec. III of [20] after Eq. (3.29) is obsolete since it was based
on a wrong premiss. This was already explained in [21] and
will be subject of a forthcoming erratum to [20]. We were
confused by the fact that in the literature frequently
Weinberg’s formula (4.17) is referred to as Low’s formula.
But, as we hope to have demonstrated in the present paper,
these two formulas have a different meaning. This was the
subject of our Secs. IV and V.
In Sec. VI we discussed the expansions of different cross

sections of π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðkÞ
for ω → 0. We found that for calculating these expansions
for ωdσ=ðdωdΩk̂dΩp̂0

1
Þ and ωdσ=ðdωdΩk̂dΩp̂0

2
Þ it was

necessary to have at our disposal the expansion of the
radiative amplitude in all directions ðk; p̂01Þ of the phase
space around the nonradiative point ðk ¼ 0; p̂1Þ. We

calculated then the expansion in ω for ω → 0 of the cross
section ωdσ=dω from the above two differential cross
sections. As it must be, we found the same result using
these two ways.
Finally, we have discussed in Sec. VII the soft-photon

expansion of the amplitudes for the reactions π�p → π�pγ.
We have presented a strict theorem of QCD. Given the
amplitudes for π�p → π�p scattering the amplitudes for
soft-photon production, π�p → π�pγ, have been calculated
exactly to the orders ω−1 and ω0. These two orders of the
expansion of the π�p → π�pγ amplitudes are completely
determined by the π�p → π�p on-shell amplitudes. For
real photon emission the result is given in (7.15)–(7.20).
The results for soft virtual photon emission and conse-
quences for cross sections are given in [22].
The derivation of our results, especially for the π�p →

π�pγ reaction, involved lengthy calculations. Thus, we
found it convenient to check our general results in a model
which satisfies the QFT constraints for these reactions as
listed at the end of Sec. I. Such a model is the tensor-
Pomeron model of [30] but improved for reactions
involving photons as shown in Sec. IVA of [20] for
π−π0 → π−π0γ and in [31,32] for pp → ppγ. Applying
this model as done in [20] to π−π0 → π−π0γ and expanding
the resulting expressions [Eqs. (4.19), (4.22)–(4.24)
from [20]] in ω for ω → 0 we get indeed the result
expected from (3.27), (3.28), and (A1), of [20] which,
for real photon emission, we reproduce in (4.14)–(4.16) of
the present paper. We also checked that this improved
tensor-Pomeron model gives amplitudes for π�p → π�pγ
where the expansion in ω agrees with the general results
(7.14)–(7.20) in our present paper. The details for this will
be discussed elsewhere.
To summarize, we hope to have clarified the meaning of

the soft-photon expansions in the versions of Low [1] and
Weinberg [2,3]. These expansions must not be confounded,
as they have a differentmeaning. We have shown how these
two expansions are related. We have discussed the Laurent
expansions in the photon energy ω for ω → 0 for the
reactions π−π0 → π−π0γ and π�p → π�pγ to the orders
ω−1 (the pole term of [3]) and ω0. Our results are strict
consequences of QCD. We hope that they will be helpful
also for experimentalists who are embarked to check soft-
photon theorems. For π�p → π�pγ this could be done
perhaps at COMPASS and for π�p → π�pγ�ð→ eþe−Þ in
HADES at GSI [33]. For ALICE 3 [34] we would need the
corresponding theoretical calculations for pp → ppγ. Our
methods are suited to calculate in a rigorous way the
expansion of the amplitude to the orders ω−1 and ω0. These
calculations certainly will not be easy.

Note added. Recently, there appeared on the arXiv the
paper [35] where our work of [20] was criticized. Some of
this criticism is acceptable, but we have already discussed
our misinterpretation of the soft-photon theorem of [1] in

DIFFERENT VERSIONS OF SOFT-PHOTON THEOREMS … PHYS. REV. D 109, 094042 (2024)

094042-15



Ref. [21]. In our present paper we again discuss extensively
this misinterpretation. But, in this connection, a main topic
of our paper is to show that the soft-photon theorems
of [2,3] (to which there is no reference in [35]) and of [1]
are different and should not be confounded. Of course, they
are related, as we have discussed in Sec. V.
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APPENDIX A: THE EXPANSION OF 1=p01 · k

In this Appendix we discuss the region of validity
of the expansion (4.15). For this we have to consider
jl1 · kj=jp1 · kj. Working in the c.m. system we have [see
(2.3), (4.4) and (4.8)]

p1 · k ¼ p0
1ω − p1 · k ¼ ωðp0

1 − jp1jp̂1 · k̂Þ

¼ ω

�
m2

π

p0
1 þ jp1j

þ jp1jð1 − p̂1 · k̂Þ
�
;

l1 · k ¼ l01ω − l1 · k ¼ ωðl01 − l1 · k̂Þ

¼ ω

�
p2 · k
2

�
1

p0
1

−
1

jp1j
p̂1 · k̂

�
− l1⊥ · k̂

�

¼ ω

�
p2 · k
2

jp1j − p0
1

p0
1jp1j

þ p2 · k
2jp1j

ð1 − p̂1 · k̂Þ − l1⊥ · k̂

�

¼ ω2

�
−
m2

πðp0
1 þ p̂1 · k̂jp1jÞ

2ðp0
1 þ jp1jÞp0

1jp1j
þ p0

1 þ p̂1 · k̂jp1j
2jp1j

ð1 − p̂1 · k̂Þ − l̃1⊥ · k̂

�
: ðA1Þ

From (A1) we get

jl1 · kj
jp1 · kj

≤
ω

jp1j
�

m2
π

p0
1 þ jp1j

ð2 − p̂1 · k̂Þ þ jp1jð1 − p̂1 · k̂Þ

þ jp1jjl̃1⊥ · k̂j
��

m2
π

p0
1 þ jp1j

þ jp1jð1 − p̂1 · k̂Þ
�
−1
:

ðA2Þ

For l̃1⊥ ¼ 0 we have, therefore,

jl1 · kj
jp1 · kj

¼ O
�

ω

jp1j
�

ðA3Þ

and the expansion (4.15) is valid for ω ≪ jp1j and all p̂1 · k̂.
For jl̃1⊥ · k̂j ≠ 0 and 1 − p̂1 · k̂ ¼ Oð1Þ we still get (A3).

But for p̂1 · k̂ ¼ 1 we find from (A2) only

jl1 · kj
jp1 · kj

≤ ω

�
1

jp1j
þ p0

1 þ jp1j
m2

π
jl̃1⊥ · k̂j

�
: ðA4Þ

In this case we have to require for the expansion (4.15) to
be valid

ω ≤
m2

πjp1j
m2

π þ jp1jðp0
1 þ jp1jÞjl̃1⊥ · k̂j ; ðA5Þ

which is very small for momenta jp1j ≫ mπ .
To conclude, for p0

1 ¼ p1 − l1 the expansion

1

ðp1 − l1; kÞ
¼ 1

p1 · k

�
1þ l1 · k

p1 · k
þOðω2Þ

�
ðA6Þ

and thus (4.15) is alright under the following conditions.
(i) For p̂01 ¼ p̂1 in the c.m. system we have to require

from (A3)

ω ≪ jp1j: ðA7Þ

(ii) For p̂01 ¼ p̂1 − l1⊥=jp1j and l̃1⊥ · k̂ ¼ 0 the require-
ment is again (A7). For l̃1⊥ · k̂ ≠ 0 we get here from
(A2) the condition
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ω ≪ jp1j
�

m2
π

p0
1 þ jp1j

þ jp1jð1 − p̂1 · k̂Þ
�

×

�
m2

π

p0
1 þ jp1j

ð2 − p̂1 · k̂Þ þ jp1jð1 − p̂1 · k̂Þ

þ jp1jjl̃1⊥ · k̂j
�
−1
: ðA8Þ

For 1 − p̂1 · k̂ ≠ 0 and of order 1 we get again (A7).
But for p̂1 · k̂ ¼ 1 (A8) gives (A5) which is very
small for jl̃1⊥ · k̂j ¼ Oð1Þ and jp1j ≫ mπ .

APPENDIX B: VARIABLE TRANSFORMATION

We consider here the variable transformation (6.5)
p̂01 → p̂001 for fixed k̂ and ω:

p̂0
1i ¼ p̂00

1i −
ω

jp1j
�
k̂ip̂00

1jp̂
00
1j − p̂00

1jk̂jp̂
00
1i

�
: ðB1Þ

We have

ðp̂01Þ2 ¼ ðp̂001Þ2 þOðω2Þ; ðB2Þ

∂p̂0
1i

∂p̂00
1e

¼ δie þ
ω

jp1j
�
p̂00
1ik̂e þ p̂001 · k̂δie − 2k̂ip̂00

1e

�
; ðB3Þ

det

�
∂p̂0

1i

∂p̂00
1e

�
¼ 1þ 2ω

jp1j
p̂001 · k̂þOðω2Þ: ðB4Þ

Now we consider an arbitrary function fðp̂01Þ setting

f̃ðp̂001Þ ¼ fðp̂01Þ: ðB5Þ

We are interested in the following integral and its variable
transformed:

Z
dΩp̂0

1
Jð1Þðs;ω; p̂01; k̂Þfðp̂01Þ ¼ 2

Z
d3p̂0

1δððp̂01Þ2 − 1ÞJð1Þðs;ω; p̂01; k̂Þfðp̂01Þ

¼ 2

Z
d3p̂00

1det

�
∂p̂0

1i

∂p̂00
1e

�
δððp̂001Þ2 − 1ÞJð1Þðs;ω; p̂01; k̂Þf̃ðp̂001Þ þOðω2Þ

¼ 2

Z
d3p̂00

1δððp̂001Þ2 − 1Þ
�
1þ 2ω

jp1j
p̂00
1 · k̂

�
Jð1Þðs;ω; p̂01; k̂Þf̃ðp̂001Þ þOðω2Þ: ðB6Þ

From (6.9) we find

�
1þ 2ω

jp1j
p̂001 · k̂

�
Jð1Þðs;ω; p̂01; k̂Þ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
−

ωffiffiffi
s

p
�

2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p þ p̂01 · k̂
�
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
2ω

jp1j
p̂001 · k̂þOðω2Þ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
−

ωffiffiffi
s

p 2m2
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p þ ωffiffiffi
s

p p̂001 · k̂þOðω2Þ

¼ Jð1Þðs;ω;−p̂001; k̂Þ þOðω2Þ
¼ Jð1Þðs;ω; p̂02; k̂Þ þOðω2Þ; ðB7Þ

where we use p̂02 ¼ −p̂001; see (6.4).
Inserting (B7) in (B6) we obtainZ

dΩp̂0
1
Jð1Þðs;ω; p̂01; k̂Þfðp̂01Þ ¼

Z
dΩp̂00

1
Jð1Þðs;ω;−p̂001; k̂Þf̃ðp̂001Þ þOðω2Þ: ðB8Þ

Since the function fðp̂01Þ was arbitrary, we get the following transformation of the measures:

dΩp̂0
1
Jð1Þðs;ω; p̂01; k̂Þ ¼ dΩp̂00

1
Jð1Þðs;ω;−p̂001; k̂Þ þOðω2Þ

¼ dΩp̂0
2
Jð1Þðs;ω; p̂02; k̂Þ þOðω2Þ: ðB9Þ
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