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We study the features of low energy strong interactions for a system at zero temperature and finite baryon
and isospin chemical potentials, in the framework of a Nambu–Jona-Lasinio-like model that includes
nonlocal four-point interactions. We analyze the phase transitions corresponding to chiral symmetry
restoration and pion condensation, comparing our results with those obtained from local NJL-like models
and lattice QCD calculations.
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I. INTRODUCTION

Over the past few decades, there has been a significant
amount of research focused on the study of quark and
hadronic matter under conditions of finite temperature T
and baryon chemical potential μB. At high temperatures
and low densities, it is well known that quantum chromo-
dynamics (QCD) predicts the formation of a quark-gluon
plasma (QGP) [1], in which quarks and gluons are expected
to be weakly coupled. In this limit, strong interactions can
be described through perturbative calculations based on
expansions in powers of the QCD coupling constant. In the
region of intermediate temperatures one can rely on lattice
QCD (LQCD) calculations, which indicate that at vanish-
ing chemical potential the transition from the hadronic
phase to the QGP occurs in the form of a smooth cross-
over [2]. On the other corner of the μB − T phase diagram,
at sufficiently high densities and low temperatures, one
expects to find a “color-flavor locked” phase, in which the
existence of strongly correlated quark pairs is predicted [3].
At moderate densities, however, the situation is much
more uncertain. The main reason for this is that first-
principle nonperturbative QCD calculations at nonzero μB
are hardly accessible by Monte Carlo simulations, due to
the presence of a complex fermion determinant in the
corresponding partition function (the so-called “sign prob-
lem”) [4]. In this region most theoretical analyses of the

phase structure rely on the predictions from effective
models for strong interactions.
In addition to T and μB, the system may show an

imbalance in the isospin charge, which can be characterized
by an isospin chemical potential μI . This situation, which can
be applicable, e.g., to the study of the physics of heavy ion
collisions and the structure of stellar objects, is worth
considering in order to get more insight into the properties
of strongly interacting matter. In general, the QCD
phase diagram in the T-μB-μI thermodynamic space is
expected to show a rich structure that can be addressed both
from LQCD techniques and effective approaches to strong
interactions [5–25]. In the case of systems at μB ¼ 0 and
finite μI , LQCD calculations are not affected by the sign
problem [26]; thus, the corresponding phase diagram in the
T − μI plane has been studied in several works that use
different lattice techniques [21,27–31]. In particular, one
important feature confirmed by these calculations is that at
μI ≃mπ one finds the onset of a Bose-Einstein pion con-
densation phase [5,32], which could enable the existence of
pion stars [33].
In the case of nonzero μB and μI , LQCD analyses are not

free from the sign problem and require some extrapolations.
Hence, it is remarkably important to get definite predictions
from effective models. In this work we study the properties
of quark matter under finite μB and μI conditions consid-
ering quark models in which the fermions interact through
covariant nonlocal four-point couplings [34]. These models
can be viewed as improved versions of the standard (local)
Nambu–Jona-Lasinio (NJL) scheme [35,36]. In fact, the
nonlocal character of the interactions arises naturally in the
context of several successful approaches to low-energy
quark dynamics, such as the instanton liquid model [37]
and the Schwinger-Dyson resummation techniques [38,39].
It is also seen that this approach leads to a momentum
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dependence in the quark propagator that can be consistently
matched [40] to LQCD results [41,42]. Moreover, it has
been found that it is possible to derive the main features of
this type of model starting directly from QCD [43]. The so-
called “nonlocal NJL” (nlNJL) models have the virtue of
avoiding some of the drawbacks observed in the local
approach. For example, through the usage of well-behaved
nonlocal form factors, it is possible to regularize ultraviolet
loop integrals while preserving anomalies [44] and ensur-
ing proper charge quantization. In addition, the absence of
sharp cutoffs implies that model predictions are more stable
against changes in the input parameters [45].
Within this framework, in a previous work [46] we have

studied the phase diagram in the μI − T plane for μB ¼ 0,
finding a good agreement with LQCD calculations. In the
present article our aim is to complement this previous
research, considering now a system at finite μI and μB. We
study in detail the condensate formation and the corre-
sponding phase transitions, and compare our findings with
those obtained from the local NJL model [47–50]. For the
moment we restrict ourselves to zero temperature. It is
worth mentioning that a further extension to finite temper-
ature systems should require the incorporation of thermo-
dynamic aspects of confinement, which are usually
implemented by including the interaction between the
quarks and the Polyakov loop [51,52]. The local NJL is
extended in this way to a Polyakov–Nambu–Jona-Lasinio
(PNJL) model [53–59], where chiral restoration and
deconfinement transitions can be addressed through a
common framework. A similar extension can be carried
out in the case of the nonlocal approach, assuming that the
quarks interact with a background color field (see, e.g.,
Refs. [60–65]). It has to be remarked that the new
interactions also involve an effective Polyakov-loop
potential, which introduces some additional uncertainty
in the theoretical predictions. To complete the general
picture, we also mention that effective NJL-type models
predict the presence of several distinct regions in the phase
diagram [66]. For instance, one may encounter inhomo-
geneous phases characterized by vacuum expectation
values that break translational invariance [67–70].
Additionally, one can find regions populated by “quar-
kyonic” matter, in which chiral symmetry is approxi-
mately restored while quarks still remain subject to
confining interactions [71–73].
Within the above described nlNJL model, we also

analyze here the behavior of the speed of sound cs in
the presence of nonzero isospin chemical potential. Recent
LQCD calculations [31] have found that c2s reaches a
maximum at intermediate values of μI (μI ∼ 2mπ) and then
decreases slowly towards the limit predicted by duality for
4D conformal field theories [74]. This result has been
discussed in the framework of several effective models; see
Refs. [75–79]. We also consider the relation between the
speed of sound and the trace anomaly [80], which measures

the amount of violation of conformal symmetry. A previous
analysis of the behavior of the trace anomaly in this context
has been presented in Ref. [46].
This article is organized as follows. In Sec. II we present

the general formalism to describe two-flavor nlNJL models
at zero temperature and finite baryon and isospin chemical
potential, including theoretical expressions for chiral and
pion condensates and for the speed of sound. In Sec. III we
discuss our numerical results for condensates and phase
transitions, for both vanishing and nonvanishing μB.
Finally, in Sec. IV we summarize our results and present
our main conclusions.

II. THEORETICAL FORMALISM

We consider a two-flavor quark model that includes
nonlocal scalar and pseudoscalar quark-antiquark currents.
The Euclidean action reads [46]

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂þ m̂ÞψðxÞ −G

2
jaðxÞjaðxÞ

�
; ð1Þ

where ψ ¼ ðψuψdÞT stands for the u, d quark field doublet,
and m̂ ¼ diagðmu;mdÞ is the current quark mass matrix.
For simplicity, we assume that the current quark massesmu
and md are equal, and we denote them generically by mc.
The nonlocal currents jaðxÞ in Eq. (1) are given by

jaðxÞ ¼
Z

d4z GðzÞ ψ̄
�
xþ z

2

�
Γa ψ

�
x −

z
2

�
; ð2Þ

where we have defined Γa ¼ ð1; iγ5τ⃗Þ, with τi being Pauli
matrices that act on flavor space. The function GðzÞ is a
form factor responsible for the nonlocal character of the
four-point interactions. The action for the standard (local)
two-flavor quark version of the NJL model is recovered by
taking GðzÞ ¼ δð4ÞðzÞ.
To study strongly interacting matter in a system at

nonzero chemical potential, we introduce the partition
function Z ¼ R

Dψ̄Dψ exp½−SE�. As stated, we are inter-
ested in studying isospin asymmetric matter; this can be
effectively implemented by introducing quark chemical
potentials μu and μd that, in general, are different from each
other. Thus, we consider the effective action in Eq. (1) and
perform the replacement

�
∂4 0

0 ∂4

�
→

�
∂4 − μu 0

0 ∂4 − μd

�
: ð3Þ

In fact, it is convenient to write the quark chemical
potentials in terms of average and isospin chemical
potentials denoted by μ (¼ μB=3) and μI, respectively.
One has

μu ¼ μþ μI
2
; μd ¼ μ −

μI
2
: ð4Þ
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In addition, owing to the nonlocal character of the inter-
actions, to obtain the appropriate conserved currents, one has
to complement the replacement inEq. (3)with amodification
of the nonlocal currents in Eq. (2). This procedure is similar
to the one used, e.g., in Refs. [46,81,82].
We proceed now by carrying out a standard bosonization

of the effective theory, introducing bosonic degrees of
freedom σ and πi, i ¼ 1, 2, 3, and integrating out the
fermionic fields. Then we consider a mean field approxi-
mation (MFA) in which the bosonic fields are replaced by
their vacuum expectation values (VEVs) σ̄ and π̄i. As is
well known, in the chiral limit (mc ¼ 0), for μI ¼ 0 the
action is invariant under global Uð1ÞB ⊗ SUð2ÞI ⊗
SUð2ÞIA transformations. The group Uð1ÞB is associated
with baryon number conservation, while the chiral group
SUð2ÞI ⊗ SUð2ÞIA corresponds to the symmetries under
isospin and axial-isospin transformations. Now, in the
presence of a nonzero isospin chemical potential, the full
symmetry group is explicitly broken down to the Uð1ÞI3 ⊗
Uð1ÞI3A subgroup. If σ develops a nonzero VEV, the
Uð1ÞI3A symmetry gets spontaneously broken. Moreover,
while even for finite current quark masses one has π̄3 ¼ 0
[83], for μI ≠ 0 it can happen that π1 and π2 develop
nonvanishing VEVs, leading to a spontaneous breakdown
of the remaining Uð1ÞI3 symmetry. Since the action is still
invariant under Uð1ÞI3 transformations, without loss of
generality one can choose π̄i ¼ δi1π̄.
We consider the above described general situation in

which both σ̄ and π̄ can be nonvanishing. The mean field
grand canonical thermodynamic potential is found to be
given by

ΩMFA ¼ σ̄2 þ π̄2

2G
− Tr ln

�
=pu þMðpuÞ iγ5ρðp̄Þ
iγ5ρðp̄Þ =pd þMðpdÞ

�
;

ð5Þ

where

MðpÞ ¼ mc þ gðpÞσ̄; ρðpÞ ¼ gðpÞπ̄: ð6Þ

Here we have defined pf ≡ ðp⃗; p4 þ iμfÞ, with f ¼ u, d,
and p̄ ¼ ðpu þ pdÞ=2. The function gðpÞ is the Fourier
transform of the form factor GðzÞ in Eq. (2). It is worth
noticing that the presence of the covariant form factor gðpÞ

introduces an additional dependence on the chemical
potentials μ and μI , in comparison with the case of the
local NJL model.
As usual in this type of model, it is seen that ΩMFA turns

out to be divergent and has to be regularized. Here, we
adopt a prescription similar to the one considered, e.g., in
Refs. [46,84], in which one subtracts the thermodynamic
potential obtained for σ̄ ¼ π̄ ¼ 0 and adds it in a regular-
ized form. In this way, the regularized expression ΩMFA;reg

is given by

ΩMFA;reg ¼ σ̄2 þ π̄2

2G
− 2Nc

Z
d4p
ð2πÞ4 ln

�
Dðσ̄; π̄Þ
Dð0;0Þ

�
þΩfree;reg;

ð7Þ

where

Dðσ̄; π̄Þ ¼ E2
uE2

d − ρðp̄Þ2½ðMðpuÞ−MðpdÞÞ2 − ðμu − μdÞ2�;
ð8Þ

with E2
f ¼ MðpfÞ2 þ p2

f þ ρðp̄Þ2. The regularized form of
the free piece, after subtraction of divergent terms, reads

Ωfree;reg ¼ Nc

π2
X
f¼u;d

X
s¼�1

Z
∞

0

djp⃗jp⃗2ðϵþ sμfÞΘð−ϵ − sμfÞ;

ð9Þ

where ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

c

p
.

The mean field values σ̄ and π̄ can now be obtained from
a set of two coupled “gap equations” that follow from the
minimization of the regularized thermodynamic potential,
namely,

∂ΩMFA;reg

∂σ̄
¼ 0;

∂ΩMFA;reg

∂π̄
¼ 0: ð10Þ

Quark-antiquark and pion condensates are also relevant
quantities since they can be taken as order parameters of the
spontaneous symmetry breaking transitions. As usual, we
consider the scalar condensate Σ ¼ Σu þ Σd, where
Σf ¼ hψ̄fψfi; the latter can be obtained by differentiating
the thermodynamic potential with respect to the current up
and down current quark masses, i.e.,

Σf ¼
∂ΩMFA;reg

∂mf

¼ −2Nc

Z
d4p
ð2πÞ4

�E2
f0MðpfÞ − ρðp̄Þ2ðMðpfÞ −Mðpf0 ÞÞ

Dðσ̄; π̄Þ −
mc

m2
c þ p2

f

�

þ Ncmc

π2
X
s¼�1

Z
∞

0

djp⃗jp⃗2

�
1þ sμf

ϵ

�
Θð−ϵ − sμfÞ; ð11Þ
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where f0 ≠ f. For μI ≠ 0 one can also have nonvanishing pseudoscalar condensates. According to our choice π̄i ¼ δi1π̄, we
define the charged pion condensate Π ¼ hψ̄iγ5τ1ψi. The analytical expression for this quantity can be obtained by taking
the derivative of the thermodynamic potential with respect to an auxiliary parameter added to ρðp̄Þ in Eq. (5), and then set to
zero after the calculation [46]. One has

Π ¼ −4Nc

Z
d4p
ð2πÞ4

�ðρðp̄Þ þ λÞ½p2
u þ p2

d þ 2ðρðp̄Þ þ λÞ2 þ 2MðpuÞMðpdÞ þ μ2I �
ðEuðλÞ2EdðλÞ2 − ðρðp̄Þ þ λÞ2Þ½ðMðpuÞ −MðpdÞÞ2 − μ2I �

− λ
p2
u þ p2

d þ 2λ2 þ 2m2
c þ μ2I

ðm2
c þ p2

u þ λ2Þðm2
c þ p2

d þ λ2Þ þ λ2μ2I

�				
λ¼0

¼ −4Nc

Z
d4p
ð2πÞ4 ρðp̄Þ

E2
u þ E2

d − ðMðpuÞ −MðpdÞÞ2 þ μ2I
Dðσ̄; π̄Þ ; ð12Þ

where EfðλÞ2 ¼ MðpfÞ2 þ p2
f þ ðρðp̄Þ þ λÞ2.

Finally, as mentioned in the Introduction, it is interesting
to study, in this context, the speed of sound, cs. At zero
temperature, one has

c2s ¼
∂p
∂ε

; ð13Þ

where p ¼ −ΩMFA;reg, while the energy density ε is
given by

ε ¼ −pþ nIμI þ nBμB; ð14Þ

with nI ¼ ∂p=∂μI , nB ¼ ∂p=∂μB. It is also useful to
introduce the polytropic index γ [85], given by

γ ¼ ∂ lnp
∂ ln ε

¼ ε

p
c2s : ð15Þ

In addition, it is interesting to consider the trace anomaly,
which is closely related to cs. Following Ref. [80], we
introduce the normalized trace anomaly Δ given by

Δ ¼ 1

3
−
p
ϵ
: ð16Þ

In terms of this quantity, the sound velocity squared can be
decomposed as

c2s ¼ c2s;deriv þ c2s;nonderiv; ð17Þ

where

c2s;deriv ¼ −ε
dΔ
dε

; c2s;nonderiv ¼
1

3
− Δ: ð18Þ

It should be noted that, from the definition of the polytropic
index, these partial contributions can also be expressed as

c2s;deriv ¼
�
1 −

1

γ

�
c2s ; c2s;nonderiv ¼

1

γ
c2s : ð19Þ

The trace anomaly tends to vanish if conformal sym-
metry is approximately restored. Thus, in the conformal
limit one has dΔ=dε → 0, c2s ≃ c2s;nonderiv → 1=3, γ → 1.

III. NUMERICAL RESULTS

To fully define our model it is necessary to specify the
form factor entering the nonlocal fermion current given by
Eq. (2). In this work we consider an exponential momen-
tum dependence for the form factor (in momentum space),

gðpÞ ¼ expð−p2=Λ2Þ: ð20Þ

This form, which is widely used, guarantees a fast ultra-
violet convergence of quark loop integrals. Notice that the
energy scale Λ, which acts as an effective momentum
cutoff, has to be taken as an additional parameter of the
model. Other functional forms, such as, e.g., Lorentzian
form factors with integer or fractional momentum depend-
ence, have also been considered in the literature [82,86] (in
fact, as stated in the Introduction, the form factor can be
fitted to reproduce the momentum dependence of quark
propagators obtained from LQCD simulations [40]). In any
case, it is seen that the form factor choice, in general, does
not have a major impact on the qualitative predictions for
most relevant thermodynamic quantities [66].
Given the form factor shape, the model parameters mc,

G, and Λ can be fixed by requiring that the model
reproduce the phenomenological values of some selected
physical quantities. Here we take as inputs the empirical
values of the pion mass, mπ ¼ 138 MeV, and the pion
weak decay constant, fπ ¼ 92.4 MeV, together with phe-
nomenologically reasonable values of the quark-antiquark
condensates at μ ¼ μI ¼ 0, viz. Σu ¼ Σd ¼ −ð240 MeVÞ3.
This leads to mc ¼ 5.67 MeV, Λ ¼ 752 MeV, and GΛ2 ¼
20.67 [81]. In Ref. [46] this parametrization has been used
to study the features of this type of model for a system at
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finite temperature and isospin chemical potential, getting
good agreement with LQCD results for the T − μI phase
diagram. As mentioned in the Introduction, one of the aims
of this work is to confront the results obtained within the
nonlocal model with those obtained in the framework of the
standard, local version of the NJL model. For the latter we
use the parametrization mc ¼ 5.83 MeV, Λ0 ¼ 588 MeV,
andGΛ2

0 ¼ 4.88, which leads to Σu ¼ Σd ¼ −ð239 MeVÞ3
and quark effective masses Mu ¼ Md ¼ 400 MeV [87].

A. Results for μB = 0 and finite μI
We begin by stating the picture obtained from the

nonlocal NJL model at vanishing baryon chemical poten-
tial. It is interesting to compare our results with LQCD
calculations, which for μB ¼ 0 are free from the sign
problem, even for nonzero values of the isospin chemical
potential.

1. Order parameters and phase transitions

In Fig. 1 we show the behavior of the above introduced Σ
and Π condensates at μB ¼ 0 and finite μI. Although these
results have been previously presented in Ref. [46], we find
it convenient to include a brief review for the sake of
comparison with the case of nonzero μB.
For μI < mπ one finds the usual low energy situation in

which chiral symmetry is spontaneously broken, which is
reflected in a large value Σ ¼ Σ0 for the quark-antiquark
condensate, while the pion condensate vanishes
(Π ¼ Π0 ¼ 0). Then, it can be analytically shown that at
μI ¼ mπ the model predicts the onset of a phase in which

one has pion condensation. For μI > mπ, as seen in Fig. 1,
the chiral condensate decreases monotonically, and the
charged pion condensate strongly increases. Thus, one has
a second order phase transition in which the isospin
symmetry Uð1ÞI3 gets spontaneously broken, whereas
one finds a smooth partial restoration of the Uð1ÞI3A
symmetry when reaching large values of μI. It can be seen
that the results from local and nonlocal versions of the NJL
model are similar to each other, and they are found to be in
good qualitative agreement with lattice QCD calculations
(also shown in the figure) [33]. In addition, as discussed in
Ref. [46], for this range of values of μI , the results are
consistent with the relation

�
Σ
Σ0

�
2

þ
�
Π
Π0

�
2

¼ 1; ð21Þ

which can be obtained from lowest-order chiral perturba-
tion theory [88].

2. Speed of sound and related quantities

As mentioned above, the speed of sound cs has been
studied within various effective models. For the case of
systems at nonzero isospin chemical potential, recent
LQCD calculations [24,31] have found that the curve of
c2s as a function of μI shows a maximum for μI=mπ ∼ 2.
This maximum is shown to be well above the conformal
limit c2s ¼ 1=3. It is worth noticing that a similar behavior
has been obtained in the framework of two-color QCD
[77,89,90] and quarkyonic models for dense quark matter
[91–94].
Our numerical results for the speed of sound c2s and the

polytropic index γ are shown in the upper and lower panels
of Fig. 2, respectively. For comparison, we also include in
both panels the results arising from the local NJL model
and those obtained from LQCD in Refs. [24,31]. The
calculation of c2s has been carried out by performing the
numerical derivative ∂ε=∂μI and using c2s ¼ nI=ð∂ε=∂μIÞ,
as follows from Eq. (13) for μB ¼ 0. To provide an estimate
of the dependence on model parametrizations (to be
interpreted as a systematic theoretical error of the model),
we show gray bands that correspond to the results arising
from the nonlocal NJL model for parameters corresponding
to quark-antiquark condensates lying within a range from
−ð260 MeVÞ3 to −ð230 MeVÞ3 (dark gray band), and
similarly for the local NJL model, taking in this case a range
from −ð250 MeVÞ3 to −ð240 MeVÞ3 (light gray band). It
can be seen that the results obtained within the nonlocal
model do not show a strong dependence on the parametriza-
tion. Moreover, they reproduce, with good qualitative agree-
ment, the behavior observed by the most recent LQCD
analysis (see Ref. [31]), where a large range of values of μI is
covered. In the case of the speed of sound, we see that nlNJL
results exceed the conformal limit c2s ¼ 1=3 at μI=mπ ≈ 1.3,

FIG. 1. Normalized Σ and Π condensates as functions of the
isospin chemical potential. Lattice results from Ref. [33] are
included for comparison.
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increasing to a maximum of c2s ≈ 0.7 at μI=mπ ≈ 2.5 before
starting to decrease back towards the conformal value for
large values μI . On the other hand, in agreement with the
results in Ref. [79], it is seen that, for the local NJLmodel, c2s
does not show a clear peak at intermediate values of the
isospin chemical potential. In fact, in Ref. [79] it is found that
such a peak can be obtained once the coupling constants are
allowed to have an explicit dependence on μI . In the case of
the polytropic index γ, we observe that the results from the
nonlocal model are in relatively good agreement with those
arising from the LQCD simulation of Ref. [31], which are
compatible with values of γ that go below 1 at μI=mπ ≳ 4,
before approaching the conformal limit for larger values
of μI .
The behavior of the normalized trace anomaly Δ and the

contributions to c2s defined by Eqs. (16)–(18), for both NJL
and nlNJL models, are shown in Fig. 3. Here the results
correspond to a quark-antiquark condensate −ð240 MeVÞ3.

Interestingly, it is seen that for both models the derivative
contribution c2s;deriv shows a clear peak located close to the
point where the conformal relation Δ ¼ 0 is satisfied, i.e.,
μI=mπ ≃ 1.75. It should be noticed, however, that the
behavior of this quantity for larger values of μI is different
for both schemes. In the case of the nlNJL model, it
decreases rather fast, even becoming slightly negative
for the larger values of μI considered, a fact that—see
Eq. (19)—is consistent with the behavior of the polytropic
index γ mentioned above. On the other hand, the decrease is
slower in the case of the NJL model, with c2s;deriv always
remaining positive. The behavior of the nonderivative
contribution, although similar for low values of the isospin
chemical potential, also differs in the region of large μI. We
see that while in the case of the nlNJL model this con-
tribution starts to decrease after passing a maximum at
μI=mπ ≃ 4, in the case of the NJL model such a decrease is
not observed in the range ofμI considered. These differences
in the behavior of the partial contributions may be attributed

FIG. 3. Contributions to the squared speed of sound for μB ¼ 0.
Upper and lower panels correspond to nonlocal and local NJL
models, respectively, for parametrizations that lead to
Σf ¼ −ð240 MeVÞ3. The green dashed-dotted lines stand for
the normalized trace anomaly Δ.

FIG. 2. Squared speed of sound (upper panel) and the poly-
tropic index (lower panel) for μB ¼ 0. Dark and light gray bands
correspond to the results for local and nonlocal NJL models,
respectively, for some ranges of model parameters (see text). The
dashed lines within the gray bands correspond to model para-
metrizations that lead to a quark-antiquark condensate of
−ð240 MeVÞ3. LQCD data from Refs. [24,31] are also included
for comparison. The bands correspond, in this case, to statistical
errors from lattice simulations.
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to the extra suppression that appears in the nlNJLmodel due
to the presence of μI in the argument of the form factor [see
Eq. (6) and the paragraph below]. In turn, they explain why,
contrary to the situation in the nlNJL model, for the NJL
model the speed of sound does not exhibit a clear peak at
intermediate values of μI .

B. Phase transitions for finite baryon chemical potential

Let us consider a more general situation in which both
the quark chemical potential μ ¼ μB=3 and the isospin
chemical potential are nonzero. To describe the picture
obtained in the ðμ; μIÞ thermodynamic space, we take some
representative values of μ and study how the order
parameters Σ and Π evolve with μI . This is shown in
Fig. 4. The left and right panels correspond to the results
from nonlocal and local NJL models, respectively.
For low values of μ the situation is similar to the one

described in the previous section for μ ¼ 0. In the left and
right upper panels of Fig. 4, we show the behavior of Σ and
Π for μ ¼ 100 MeV; at μI=mπ ¼ 1 one finds the onset of a
pion condensation phase (a second order phase transition),
while chiral symmetry gets smoothly restored when μI is
increased. Notice that, in the case of the nonlocal model, for
large values of μI there is a significant deviation from the
chiral relation in Eq. (21); this deviation is not observed for
the local model (at least for values of μI up to 5mπ).

To get a better understanding of the transitions, let us also
show contour plots that describe the behavior of the mean
field thermodynamic potential ΩMFA;reg as a function of the
VEVs σ̄ and π̄ for particular values of μI . In Fig. 5 we
consider the case μ ¼ 100 MeV, μI=mπ ¼ 2. The left and
right panels correspond to the nonlocal and local models,
respectively. It is seen that, for both models, at ðσ̄=σ̄0;
π̄=σ̄0Þ ≃ ð0.25; 1Þ one finds a solution of the gap equa-
tions (10) thatminimizes the thermodynamic potential, while
amaximumofΩMFA;reg is obtained at ðσ̄=σ̄0; π̄=σ̄0Þ ¼ ð0; 0Þ.
The situation is found to be qualitatively similar for larger
values of μI.
Next, in Fig. 6 we show contour plots for μ ¼ 200 MeV,

considering the values μI=mπ ¼ 2 and μI=mπ ¼ 4ð5Þ for
the nonlocal (local) model. Comparing the top and bottom
panels, it is seen that the maximum located at the axis
π̄ ¼ 0 moves to large values of σ̄, and a second local
minimum arises close to the origin. In addition, a saddle
point is shown to arise between both local minima. The
second minimum represents a metastable point for which
there is no pion condensation (Π ¼ 0); it corresponds to the
dashed lines in the central panels of Fig. 4. The onset of this
metastable solution occurs at some critical isospin chemical

potential that we denote by μðspÞI ; for the chosen para-

metrizations, it is seen that μðspÞI ðμ ¼ 200 MeVÞ ≃ 2mπ

and 4mπ for the nonlocal and local models, respectively.

FIG. 4. Normalized values of the order parameters Σ and Π as functions of μI=mπ for nonlocal (left) and local (right) NJL models.
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We notice that a similar picture has been obtained in
Ref. [49] for the case of a three-flavor NJL model.
However, in that article the saddle point is interpreted as
maximum since only the dependence of the thermodynam-
ical potential with π̄ is analyzed.

Finally, in Fig. 7 we show how this picture evolves when
we go forward to larger values of the chemical potential μ.
To illustrate the situation we include some contour plots in
which we take μ ¼ 280 MeV and some representative
values of μI=mπ. As in the previous cases, the left (right)

FIG. 5. Contour plots for ΩMFA;regðσ̄; π̄Þ × 104 (in GeV4) for μ ¼ 100 MeV as functions of σ̄=σ̄0 and π̄=σ̄0. The left and right panels
correspond to NJL nonlocal and local models, respectively.

FIG. 6. Contour plots for ΩMFA;regðσ̄; π̄Þ × 104 (in GeV4) for μ ¼ 200 MeV as functions of σ̄=σ̄0 and π̄=σ̄0. The left and right panels
correspond to NJL nonlocal and local models, respectively.
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panels correspond to the nonlocal (local) NJL model. For
values or μI just above mπ , in the case of the nonlocal
model, the metastable solution already exists (in fact, there

is no critical value μðspÞI for values of μ larger than about
270 MeV), while for the local model the situation is similar
to the one shown in the upper panel of Fig. 6. For larger
values of μI=mπ (central panels of Fig. 7), in the case of the
nonlocal model, the second local minimum becomes
deeper, while this second solution also arises for the local
model. Then, if μI=mπ is further increased, at some critical

value μI;c a first order phase transition occurs: as illustrated
in the lower panels of Fig. 7, the minima for which one has
π̄ ¼ 0 are the ones that become energetically favored; thus,
the system jumps into a phase in which there is no pion
condensation and the Uð1ÞI3 symmetry gets restored. The
behavior of the order parameters for μ ¼ 280 MeV is
shown in the lower panels of Fig. 4. In the case of the
nonlocal model, it is seen that, at the first order transition,
the value of the quark-antiquark condensate Σ also shows a
jump that implies an approximate restoration of chiral

FIG. 7. Contour plots for ΩMFA;regðσ̄; π̄Þ × 104 (in GeV4) for μ ¼ 280 MeV as functions of σ̄=σ̄0 and π̄=σ̄0. Left and right panels
correspond to NJL nonlocal and local models, respectively.
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symmetry (in the case of the local model, the value of Σ is
already very low when the transition is reached).
For even larger values of μ, the region in which there is a

stable nonvanishing pion condensate is subsequently
reduced, until reaching a triple point in which three phases
coexist. The full phase diagrams in the μ − μI plane for
both nonlocal (upper panel) and local (lower panel) models
are shown in Fig. 8. Solid and dashed lines denote first and
second order phase transitions, respectively, while dotted
lines denote the spinodals [84]—boundaries of the region
in which energetically unfavored solutions exist as meta-
stable states.
The phase diagrams show a region of normal matter in

which one has Π ¼ 0 and the chiral symmetry is sponta-
neously broken (χSB), a phase in which Π ¼ 0 and the
chiral symmetry is approximately restored (χSR), and a
region in which one finds pion condensation (πC), char-
acterized by a nonvanishing value of Π. In this last region
the Uð1ÞI3A symmetry is progressively restored when μI is
increased. As discussed above, for low values of μ the onset
of the πC phase is found to occur at μI ¼ mπ as a second

order phase transition (dashed lines in the figure). The
progressive decrease of the chiral order parameter Σwith μI
[with the consequent partial restoration of the Uð1ÞI3A
symmetry] is illustrated through the dash-dotted lines,
which correspond to constant ratios Σ=Σ0 ¼ 0.5, 0.25,
and 0.05. In this way, for values of μI larger enough than
mπ , the first order transition indicated by the solid red line
occurs between a phase of (almost) massless asymptotically
free quarks and a phase of (almost) pure pion condensation.
The filled dots in the figure indicate triple points where

two transition lines meet. Notice that in the case of the
nonlocal model the second order and first order transition
lines meet exactly at μI ¼ mπ . In contrast, for the local
model, the second order transition line has a critical
endpoint (open dot in the lower panel of Fig. 8) where
it becomes of first order, and then, for μI > mπ, it smoothly
merges with the first order chiral restoration line. Thus, in a
narrow region 1.2 ≃ μI=mπ ≃ 1.6 one can find two first
order phase transitions when μ is increased: at μ ∼
350 MeV one has a transition from the πC phase to the
χSB phase, followed by a transition to the chiral restored
phase. In fact, these features of the phase diagram for the
local NJL model are in agreement with the results obtained
in Refs. [47,49] for two- and three-flavor (local) NJL
models.
In Fig. 8 we also show the spinodals, represented by blue

dotted lines. As stated, these lines indicate the critical
isospin chemical potentials μðspÞI at which metastable
solutions are found to appear. For the local NJL model
we find spinodals on both sides of the first order transition
line—delimiting a band in the phase diagram where
metastable solutions exist—while in the case of the non-
local model no upper spinodal is found. In fact, for large
values of μ one can always find a metastable solution in
which quarks have a relatively large effective dynamical
mass. This is a well-known feature of nonlocal NJL
models; it is related to the fact that—depending on the
model parametrization—the quark propagators may not
have purely real poles in Minkowski space [95].
If one goes further to larger values of μI, the nlNJL and

NJL approaches show significant differences. For low
values of μ, the order parameter Π increases monotonically
for the nlNJL model, while for the local model (as shown in
Ref. [48]) it starts to decrease and goes to zero at some
point beyond μI ∼ 10mπ . We understand that these different
behaviors are artifacts that arise from the regularization of
the (nonrenormalizable) models, which become hardly
trustable in that limit. Therefore, we present our results
for more conservative values of μI , up to a few mπ.
The results are not found to show a significant qualitative

dependence on the model parametrization for parameter
ranges such as those considered in Sec. III A. The main
effect on the order parameters falls on Π, whose magnitude
can vary within about 15% for μI ≳ 3mπ. In fact, the effect
is similar to the one found at μB ¼ 0; see Ref. [46].

FIG. 8. QCD phase diagram in the μI − μ plane at zero
temperature for the nonlocal (upper panel) and local (lower
panel) NJL models. Solid (dashed) lines correspond to first
(second) order phase transitions. Here, χSB, πC, and χSR stand
for the chiral symmetry broken phase, pion condensation, and the
chiral symmetry restored phase, respectively.
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The changes have a minor incidence on the phase diagram,
which is not found to be significantly modified.

IV. SUMMARY AND CONCLUSIONS

The phase diagram of strongly interacting matter has
been examined in two-flavor NJL-type models, considering
zero temperature and nonzero baryon and isospin chemical
potentials. Specifically, we have investigated the transitions
related to the order parameters Σ and Π, which characterize
the spontaneous breakdowns of chiral and isospin sym-
metries, in models with local and nonlocal four-quark
interactions. We have also studied the behavior of the speed
of sound as a function of the isospin chemical potential.
Considering a μ − μI phase diagram, for baryon chemi-

cal potentials lower than about 280 MeVand μI < mπ , one
finds a region of hadronic matter in which chiral symmetry
is spontaneously broken. Then, at μI ¼ mπ there is a second
order phase transition into a region in which one has a
nonzero charged pion condensate. By increasing μI the
chiral condensate Σ is progressively reduced, implying a
smooth restoration of the Uð1ÞI3A symmetry. On the other
hand, by increasing μ one arrives at a first order transition to
a phase in which there is no pion condensation and the
chiral symmetry is approximately restored. In the nonlocal
NJL approach it is seen that the first and second order
transition lines meet at a triple point located at μI ¼ mπ ,
μ ≃ 300 MeV. In the case of the local model, in agreement
with previous works, we find that the second order
transition line has a critical endpoint where it becomes
of first order, and then, for μI > mπ, it smoothly merges
with the first order chiral restoration line. We have also
studied metastable phases, identifying saddle points for the
thermodynamic potential as a function of the order param-
eters; in general, it is seen that metastable phases cover a
larger region in the case of the nonlocal model. Concerning

the speed of sound cs, we find that for the nonlocal model
the behavior of c2s with μI for vanishing baryon chemical
potential shows a maximum at μI ∼ 2mπ , improving the
qualitative agreement with lattice QCD calculations in
comparison with the results obtained for the local NJL
approach. In the same way, we find some improvement in
the predictions for the polytropic index γ.
It would be interesting to extend these studies to systems

at finite temperature, with the aim of determining the
behavior of the triple point and the phase transition lines
(the case μ ¼ 0 has already been considered in Ref. [46]).
Typically, one would expect that at some critical temper-
ature the first order transition line between the χSB and
χSR phases turns into a smooth crossover. When extending
to the finite temperature case one should also consider
interactions that involve the Polyakov loop. In the context
of the nlNJL model, these interactions have the qualitative
effect of producing an increase of the critical transition
temperatures [61] and a shift of the critical points towards
higher T and lower μB in the phase diagram [96]. On the
other hand, the limited knowledge of the corresponding
Polyakov loop potential would imply a new source of
theoretical uncertainty. Finally, it would also be worthwhile
to consider the case of neutral matter conditions, to be
applied to the composition of compact objects like neutron
or pion stars.
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