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We present a succinct formulation of the energy-momentum tensor of the glasma characterizing the
initial color fields in relativistic heavy-ion collisions in the color glass condensate effective theory.
We derive concise expressions for the ð3þ 1ÞD dynamical evolution of symmetric nuclear collisions in
the weak field approximation employing a generalized McLerran-Venugopalan model with nontrivial
longitudinal correlations. Utilizing Monte Carlo integration, we calculate in unprecedented detail non-
trivial rapidity profiles of early time observables at RHIC and LHC energies, including transverse energy
densities and eccentricities. For our setup with broken boost invariance, we carefully discuss the placement
of the origin of the Milne frame and interpret the components of the energy-momentum tensor. We find
longitudinal flow that deviates from standard Bjorken flow in the ð3þ 1ÞD case and provide a geometric
interpretation of this effect. Furthermore, we observe a universal shape in the flanks of the rapidity profiles
regardless of collision energy and predict that limiting fragmentation should also hold at LHC energies.
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I. INTRODUCTION

Relativistic heavy-ion collisions are studied experimen-
tally at the Large Hadron Collider (LHC) and Relativistic
Heavy Ion Collider (RHIC) as a method to probe QCD
at extreme energies [1–3], where quarks and gluons are
liberated from color confinement and form the quark gluon
plasma. The intricate spacetime evolution of the system,
coupled with changing degrees of freedom, presents a
difficult challenge to first principles calculations and
phenomenological model building. The current state-of-
the-art understanding of the creation and evolution of the
medium relies on sophisticated multistage modeling, typ-
ically split into a preequilibrium stage, a hydrodynamic
stage, and a hadron gas stage [4]. Bayesian analysis in the
context of multistate examination reveals correlations
between initial conditions and medium properties [5–7],

but it is not clear to what extent the properties of the
initial state of a heavy-ion collision can be deduced from
experimentally measured final state observables.
Despite these efforts, our current knowledge of the initial

conditions in three spatial dimensions for high-energy
heavy-ion collisions remains notably limited. The color
glass condensate (CGC) [8,9] emerges as a promising
theoretical framework for providing first principles insight
into the initial state, wherein the initial interaction of nuclei
is characterized in terms of large and small Bjorken-x
partons, leading to a dense state of gluonic matter known as
the glasma [10]. Due to high gluon occupancy, the leading-
order dynamics are governed by the classical Yang-Mills
(CYM) equations. The glasma is thus characterized by
strong classical color fields.
In contrast to phenomenological models, such as e.g.

Monte Carlo Glauber-type models [11], which aim to
directly model the energy density of the collision medium,
the CGC/glasma approach provides a description for nuclei
before the collision, as well as the collision itself, and the
subsequent preequilibrium evolution of the glasma. Since
the properties of the glasma are fully determined by the
CYM dynamics and the cold nuclear matter properties of
atomic nuclei before the collisions, the modeling aspect
of the preequilibrium stage is relegated to the distribution of
color charge of high-energy nuclei. The impact parameter
dependent (IP)-glasma [12–14] is one such nuclear model
with notable phenomenological success.
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Most CGC-based initial state models neglect the longi-
tudinal dynamics of the medium due to the assumption
of boost invariance at high energies, effectively rendering
the glasma a ð2þ 1ÞD system. While boost invariance
provides a good approximation for central collisions at
midrapidity, recent experimental measurements carried out
at the LHC, such as the observation of flow decorrelations
[15,16] present a challenge to the assumption of boost
invariance in the initial state. Consequently, it becomes
essential to delve into the longitudinal dynamics of high-
energy collisions. Over the years, various implementations
of ð3þ 1ÞD initial state models have been developed,
employing either static [17–19] or dynamical sources
[20–26] in the CGC framework, or phenomenologically
by considering constituent quarks, color flux tubes or
strings of varying lengths [27–31]. However, these
approaches are either phenomenological in nature or
severely constrained by the computational resources
required.
In this paper, we present the extension of the first

analytical calculation of energy deposition in high-energy
heavy-ion collisions obtained by solving the ð3þ 1ÞD
CYM equations within the weak field approximation
[32]. The results exhibit excellent agreement with fully
nonperturbative lattice simulations that share a similar
origin of rapidity dependence [32,33]. We now employ
the derived analytic expressions for the perturbative
gauge fields on the future light cone to formulate the
energy-momentum tensor of the glasma. A key focus of
this study lies in presenting a concise expression for
the field strength tensor of the glasma, wherein we
rigorously reduce the number of integrals from six to
three, optimizing efficiency for Monte Carlo integration.
Subsequently, we employ these expressions in conjunc-
tion with a three-dimensional generalization of the
McLerran-Venugopalan (MV) model at two different
collision energies corresponding to RHIC and LHC
ranges to examine the rapidity profiles of the energy-
momentum tensor, local rest frame (LRF) energy density
and flow.
In Sec. II we discuss the weak field approximation in the

CGC and show how to obtain the glasma field strength
tensor and glasma energy-momentum tensor up to leading
order in the sources. The resulting integrals need to be
solved numerically, for which we explain our Monte Carlo
integration method. Next, we introduce a shifted Milne
frame for evaluating the energy-momentum tensor of the
dilute glasma and derived observables in the future light
cone. In Sec. III we explain the details of our three-
dimensional nuclear model, which includes a correlation
length parameter that allows us to set the scale of
longitudinal fluctuations in our nuclei. In Sec. IV we
discuss our numerical results for several observables of
the dilute glasma. We summarize our findings and give a
brief outlook in Sec. V.

II. WEAK FIELD APPROXIMATION

The CGC is an effective field theory for high energy
QCD applicable to relativistic heavy-ion collisions [8,9].
The hard degrees of freedom within the two nuclei are
modeled as classical currents of color charge moving at the
speed of light. In contrast, the soft gluon fields are sourced
by the nuclei and determined by the classical Yang-Mills
equations. While the classical approximation is warranted
due to the high gluon occupation numbers and weak
coupling at high energies, it should also be noted that it
agrees with the quantum treatment to leading order in
perturbation theory.
We use the CGC to describe the initial states and

collision of two relativistic nuclei. The geometry of our
setup is shown in Fig. 1. First, consider a single nucleus A
moving in negative z direction through the (precollision)
region I at the speed of light. The corresponding color
current in light cone coordinates x� ¼ ðx0 � x3Þ= ffiffiffi

2
p ¼

ðt� zÞ= ffiffiffi
2

p
is

J μ
Aðxþ;xÞ ¼ δμ−ρAðxþ;xÞ: ð1Þ

The boldface symbol x refers to the transverse coordinates
x ¼ ðx1; x2Þ ¼ ðx; yÞ and ρAðxþ;xÞ is the color charge
density, which takes values in the Lie algebra suðNcÞ. Due
to Lorentz contraction, the charge density is localized in a
thin sheet around xþ ¼ 0. We allow for a finite longitudinal
thickness of the nucleus as opposed to the ultrarelativistic
(boost-invariant) case, where the nucleus is considered to

FIG. 1. Spacetime diagram of a relativistic heavy-ion collision
showing time t and beam axis z. The tracks of nuclei A (B) are
marked in orange (blue). The diamond-shaped region where they
overlap is the interaction region, and together with its causal
future, it is called region II. The complement region, which
represents the system before the collision, is called region I.
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be infinitesimally thin. Within our treatment, the nucleus is
still considered a static source, i.e., the current does not
depend on x− and propagates at the fixed speed of light.
Corrections to this behavior provide another source of
subeikonal corrections [34–38].
In Eq. (1) and in the following, we always assume

covariant gauge, which for the gauge field Aμ
A reads

∂μA
μ
A ¼ 0. The Yang-Mills (YM) equations are

DμF
μν
A ¼ ∂μF

μν
A − ig½AA

μ ;F
μν
A � ¼ J ν

A; ð2Þ

with the field strength tensor

F μν
A ¼ ∂

μAν − ∂
νAμ − ig½Aμ;Aν�: ð3Þ

Using the boundary conditions

Aþ
A ¼ Ai

A ¼ 0; ð4Þ

where i ¼ x, y labels the two transverse components, the
YM equations are solved by

A−
Aðxþ;xÞ ¼ −ð∇2⊥Þ−1ρAðxþ;xÞ≕ϕAðxþ;xÞ; ð5Þ

with∇⊥ acting in the transverse plane. This gauge field and
the current satisfy the continuity equation

DμJ
μ
Aðxþ;xÞ ¼ 0: ð6Þ

Analogously, introducing a nucleus B moving in the
opposite direction with current

J μ
Bðx−;xÞ ¼ δμþρBðx−;xÞ; ð7Þ

yields

Aþ
B ðx−;xÞ ¼ −ð∇2⊥Þ−1ρBðx−;xÞ≕ϕBðx−;xÞ: ð8Þ

A. Dilute limit of the glasma field

We now review our treatment of the collision of nuclei A
and B in terms of the dilute approximation (see [32,33]
for details). In the interaction region, where the two nuclei
overlap, and its causal future, denoted together in Fig. 1 as
region II, the solutions in Eqs. (5) and (8) are no longer
valid and neither is a superposition. Instead, the solution to
the full collision problem has to be obtained from the
classical Yang-Mills equations

DμFμν ¼ Jν: ð9Þ

Here, noncalligraphic symbols refer to the interacting
solutions of the field equations. The corresponding gauge
field and current

Aμðxþ; x−;xÞ ¼ Aμ
Aðxþ;xÞ þAμ

Bðx−;xÞ þ aμðxÞ; ð10Þ

Jμðxþ; x−;xÞ ¼ J μ
Aðxþ;xÞ þ J μ

Bðx−;xÞ þ jμðxÞ; ð11Þ

are defined in terms of the noninteracting solutions before
the collision plus additional correction terms aμ and jμ,
which are zero prior to the collision and depend on
x ¼ ðxþ; x−;xÞ. Therefore, in the asymptotic past

lim
t→−∞

aμðxÞ ¼ 0; ð12Þ

lim
t→−∞

jμðxÞ ¼ 0: ð13Þ

To make further progress, we consider an expansion
of Eqs. (10) and (11) in powers of ρA and ρB. Since wework
in the covariant gauge, ∂μaμ ¼ 0. Note that the single
nuclei gauge fields Aμ

A=B are linear functionals of ρA=B as
expressed in Eqs. (5) and (8); i.e. they are of order ρA=B.
Similarly, the currents J μ

A=B are also of order ρA=B.
If ρB ¼ 0, then Aμ ¼ Aμ

A and Jμ ¼ J μ
A solve Eq. (9) to

all orders in ρA. The analog is true for Aμ ¼ Aμ
B and

Jμ ¼ J μ
B if ρA ¼ 0. Therefore, aμ and jμ capture correc-

tions of order ρnAρ
m
B with n, m ≥ 1 in the full collision

problem. Expanding Eq. (9) in orders of ρA and ρB the
contributions of order ρAρB are

∂μð∂μaν− ig½Aμ
A;A

ν
B�þ ig½Aν

A;A
μ
B�Þ− ig½AA

μ ;∂μAν
B−∂

νAμ
B�

− ig½AB
μ ;∂μAν

A−∂
νAμ

A� ¼ jν; ð14Þ

where we take aν to be of order ρAρB with all higher order
terms removed. Dropping terms of higher order in ρA=B, we
implicitly assume weak sources. Therefore, we refer to this
approximation as the dilute limit or weak field approxi-
mation. Considering only the contributions of order ρAρB to
DμJμ ¼ 0 yields

∂μjμ ¼ ig½AA
μ ;J

μ
B� þ ig½AB

μ ;J
μ
A�: ð15Þ

As the nuclei are in recoilless, lightlike motion, their
trajectory does not change. Therefore, jμ only represents
a rotation in color space of the nucleus’ currents and is
limited to j− and jþ components, which are localized in the
same region as ρA and ρB, respectively. Equation (15) then
splits into two contributions

∂−j− ¼ ig½AB
μ ;J

μ
A�; ð16Þ

∂þjþ ¼ ig½AA
μ ;J

μ
B�: ð17Þ

Given the initial conditions in Eq. (13) they are solved by

j−ðxÞ ¼ ig
Z

x−

−∞
dv−½ϕBðv−;xÞ; ρAðxþ;xÞ�; ð18Þ
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jþðxÞ ¼ ig
Z

xþ

−∞
dvþ½ϕAðvþ;xÞ; ρBðx−;xÞ�; ð19Þ

where ϕA=B correspond to the gauge fields of nuclei A=B in Eqs. (5) and (8). These expressions can be used in Eq. (14) to
solve for aμðxÞ, which we identify as the glasma field. We recite the solutions from [32]:

aþðxÞ ¼ g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ−vþ;pÞϕ̃b

Bðx− −v−;qÞ ð−ðpþqÞ2þ 2q2Þvþ
jpþqjτ0 J1ðjpþqjτ0Þe−iðpþqÞ·x; ð20Þ

a−ðxÞ ¼ g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ−vþ;pÞϕ̃b

Bðx− −v−;qÞ ðþðpþqÞ2 − 2p2Þv−
jpþqjτ0 J1ðjpþqjτ0Þe−iðpþqÞ·x; ð21Þ

aiðxÞ ¼ i
g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ−vþ;pÞϕ̃b

Bðx− −v−;qÞðpi−qiÞJ0ðjpþqjτ0Þe−iðpþqÞ·x: ð22Þ

Here, fabc are the structure constants of the suðNcÞ
Lie algebra and tc are its generators. The symbol jpj
denotes the modulus of the transverse vector p, and
p · x ¼ pixi ¼ pixi. Quantities with a tilde are understood
as Fourier transforms in the transverse plane, e.g.

ϕa
Aðxþ − vþ;xÞ ¼

Z
p
ϕ̃a
Aðxþ − vþ;pÞe−ip·x; ð23Þ

where
R
p ¼ R d2p

ð2πÞ2. Also, τ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2vþv−

p
, and Jm are the

Bessel functions of the first kind. We note that these
solutions are only correct inside the future light cone,
i.e. outside the tracks of the nuclei, as there are additional
corrections inside the tracks. However, these are comoving
with the color fields of the single nuclei, such that these
corrections do not contribute to the color field of the glasma
in the future light cone and thus can be ignored.

B. Field strength tensor

The next step is to compute the leading order contribu-
tion to the field strength tensor fμν from the leading order
gauge fields aμ. In general, the non-Abelian field strength
tensor [cf. Eq. (3)] contains an Abelian part ∂μaν − ∂

νaμ

and a commutator term ½aμ; aν�. In the dilute limit, the
perturbative glasma fields aμ are of order ρAρB, and the
commutator term only contributes to higher-order correc-
tions. Thus, to leading order, the glasma field strength
tensor can be defined as1

fμν ≡ ∂
μaν − ∂

νaμ: ð24Þ

After a lengthy derivation, which can be found in
Appendix A, we arrive at a remarkably simple result.
The components of the leading order field strength tensor
are given by

fþ−ðxÞ¼−
g
2π

Z
η0;v

Vðx;η0;vÞ; ð25Þ

fþiðxÞ¼ g
2π

Z
η0;v

ðVijðx;η0;vÞ−δijVðx;η0;vÞÞwje
þη0ffiffiffi
2

p ; ð26Þ

f−iðxÞ¼ g
2π

Z
η0;v

ðVijðx;η0;vÞþδijVðx;η0;vÞÞwje
−η0ffiffiffi
2

p ; ð27Þ

fijðxÞ ¼ −
g
2π

Z
η0;v

Vijðx; η0; vÞ; ð28Þ

where the rapidity-like integration variable η0 ∈ ð−∞;∞Þ,
and the v integral spans the entire transverse plane,R
v ¼

R
d2v. The symbols V and Vij are defined as

Vðx; η0; vÞ ¼ fabctcβ
i;a
A ðx; η0; vÞβi;bB ðx; η0; vÞ; ð29Þ

Vijðx; η0; vÞ ¼ fabctcðβi;aA ðx; η0; vÞβj;bB ðx; η0; vÞ
− βj;aA ðx; η0; vÞβi;bB ðx; η0; vÞÞ; ð30Þ

where βi are the gradients of the color potentials ϕ,

βi;aA=Bðx; η0; vÞ ¼ ∂
i
ðxÞϕ

a
A=B

�
x� −

jvjffiffiffi
2

p e�η0 ;x − v

�
: ð31Þ

1This definition of fμν differs from the one given in [32], where
contributions from the background fields were included. How-
ever, these contributions vanish outside the overlap region of the
nuclei.
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In covariant gauge, these gradients may be identified with
the only nontrivial components of the field strength tensors
of the single nuclei,

F i−
A ¼ ∂

iA−
A ¼ βiA; ð32Þ

F iþ
B ¼ ∂

iAþ
B ¼ βiB: ð33Þ

The vector components wj are given by

wj ¼ −∂jðvÞjvj ¼
vj

jvj : ð34Þ

These concise expressions for the glasma field strength
tensor are our main analytical result and we stress that the
boost-invariant limit βi;aA=Bðx�;xÞ ¼ δðx�Þαi;aA=BðxÞ of our
expressions is consistent with previous boost-invariant
results [39,40].
Our solutions for the field strength tensor have an

intuitive geometric interpretation illustrated in Fig. 2.
Given the spacetime point x, at which we evaluate fμν,
the integration is restricted to the causal past of x along
lightlike paths emitted from the collision region. To see
this, we note that the modulus of v in Eqs. (25)–(28) can be
interpreted as a time coordinate τ0 ¼ jvj analogous to Milne
proper time τ. Together with the rapidity-like coordinate η0,
we find that the pair ðτ0; η0Þ can be viewed as Milne
coordinates for a slice with fixed jvj of the past light cone
attached to the spacetime point x. We emphasize that the
displacement four-vector vμ

v� ¼ τ0ffiffiffi
2

p e�η0 ; v ¼
�
vx

vy

�
ð35Þ

measures the spacetime distance between the source of
emission and the point x. Since this vector is lightlike, i.e.
vμvμ ¼ 0, it is apparent that the three-dimensional integrals
in Eqs. (25)–(28) only sum over lightlike paths ending at x.
Furthermore, we note that the integrands are nonzero only
in the four-dimensional spacetime volume where the two
colliding nuclei overlap. Intuitively, this region corresponds
to points in spacetime from which gluons are emitted due to
interactions among the colliding color fields. These gluons
then propagate along lightlike paths into the future light
cone until they arrive at x, forming the glasma field strength
at that particular point.
Compared to the gauge fields in Eqs. (20)–(22), the

components of the field strength tensor fμν are much easier
to evaluate numerically. Firstly, the gauge fields are six-
dimensional integrals, whereas the field strength tensor
only involves three-dimensional integrals. This simplifica-
tion is possible by exploiting the closure relation of the
Bessel functions Jm, see Eq. (A19) in the Appendix for
details. Secondly, having eliminated the Bessel functions,
the integrands of fμν are now free of oscillating terms.
This way, the numerical evaluation and convergence of
Eqs. (25)–(28) is greatly simplified.

C. Monte Carlo integration

Despite the relatively simple structure of the expressions,
the integrals for the components of the field strength tensor
have to be solved numerically in practical computations
of the ð3þ 1ÞD glasma. In this work, we focus on a
Monte Carlo integration approach. We consider the proto-
typical integral

Iðxþ; x−;xÞ ¼
Z þ∞

−∞
dη0

Z
d2v hðuþ; u−;uÞ; ð36Þ

u� ¼ x� − v� ¼ x� −
jvjffiffiffi
2

p e�η0 ; ð37Þ

u ¼ x − v; ð38Þ

wherewe assume that the function hðuþ; u−;uÞ has compact
support along the two light cone directions, u�min < u� <
u�max with longitudinal widths u�max − u�min > 0. Imposing
compact support introduces a slight error because the color
fields ϕA=Bðx�;xÞ, which enter the function h, generally
only exhibit exponential decay in both longitudinal and
transverse directions. The constants u�max =min can nonethe-
less be chosen large enough such that our numerical results
are barely affected by such a cutoff. Similarly, we restrict the
transverse integration domain over u to a rectangular region
uimin < ui < uimax with uimax > uimin, where the color fields
overlap. Furthermore, we evaluate the integral I only in the
region where Eqs. (25)–(28) are valid, that is for x� > u�max.

FIG. 2. Geometric illustration of the integration paths for the
field strength tensor fμν. The integration domain is the past light
cone of the spacetime point ðxþ; x−;xÞ, parametrized by the
Milne coordinates ðτ0 ¼ jvj; η0; vÞ. For a slice at fixed transverse
displacement τ0 ¼ const, we highlight the conic section inside the
collision region that contributes to the integral (orange solid line).
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With these strong assumptions, the integrals are guaranteed
to converge.2

Our integration strategy is based on rewriting the integral
in Eq. (36) using a coordinate transformation and making
use of the restricted integration domain. Since Monte Carlo
integration relies on random sampling, suboptimal sam-
pling strategies can lead to unnecessary evaluations of the
integrand in regions where it is zero. We can increase
efficiency by determining strict bounds on the coordinate
ranges. First, we use polar coordinates ðv; θÞ for the
transverse integration over v,

Iðxþ;x−;xÞ¼
Z þ∞

−∞
dη0

Z
∞

0

dvv
Z

2π

0

dθ

×h

�
xþ−

vffiffiffi
2

p eþη0 ;x−−
vffiffiffi
2

p e−η
0
;x−v

�
; ð39Þ

where v ¼ veðθÞ with the unit vector in the v direction
eðθÞ ¼ ðcos θ; sin θÞ. Second, the aforementioned restric-
tions imposed on the integration domain allow us to put
bounds on the integrals over η0, v, and θ. Considering only
the restrictions on uþ, we find that η0 is restricted to
ðηþminðvÞ; ηþmaxðvÞÞ with

ηþmin =maxðvÞ ¼ þ ln

ffiffiffi
2

p ðxþ − uþmax =minÞ
v

ð40Þ

for a given value of v > 0. Analogously, we find a
restriction from u− as η0 ∈ ðη−minðvÞ; η−maxðvÞÞ with

η−min =maxðvÞ ¼ − ln

ffiffiffi
2

p ðx− − u−min =maxÞ
v

: ð41Þ

Combining both inequalities for η0, the integration
domain must be restricted to η0 ∈ ðηmin; ηmaxÞ with

ηmin ¼ maxðηþmin; η
−
minÞ and ηmax ¼ minðηþmax; η−maxÞ. We

also deduce bounds on the integration variable v. From
Eq. (37) it follows that

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ − uþÞðx− − u−Þ

p
: ð42Þ

Saturating the restrictions on u�, we find that
v∈ ðvmin; vmaxÞ with

vmin =max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ − uþmax =minÞðx− − u−max =minÞ

q
: ð43Þ

The angle θ is also restricted. Given valid choices of η0
and v, the angular integration corresponds to a circle of
radius v with center x in the transverse plane, intersect-
ing the rectangular integration domain only at certain
points. Only those segments of the circle that lie inside
the restricted integration domain contribute to the inte-
gral, as illustrated in Fig. 3, where the intersection of
the circle with the integration domain is a single arc.
Determining these arcs then allows for more efficient
sampling of θ.
We perform random sampling as follows: we first choose

a radius v with probability density pðvÞ ∝ v inside the
bounds ðvmin; vmaxÞ. Given v, we evaluate the bounds on η0
and sample uniformly from the interval given by ηminðvÞ
and ηmaxðvÞ. Finally, we determine where the circle defined
by v and x intersects the rectangular domain and obtain the
segments from which we sample θ uniformly. Drawing M
samples for all three coordinates, we approximate the
integral by

FIG. 3. Illustration of two partially overlapping nuclei (orange
blobs) separated by the impact parameter b in the transverse
plane spanned by u. To evaluate the field strength tensor at x, we
restrict the angular integration with radius v to the arc (thick blue)
within the rectangular region where the two nuclei overlap.

2The conditions for convergence can be weakened if we
assume that the color potentials ϕA=Bðu�;uÞ are not compact
along the light cone directions, but merely decay to zero for
ju�j → ∞. In this case, the overlap of the two nuclei shown in
Fig. 2 is unbounded and the evaluation point x is always inside
the overlap region. The convergence of fþ− and fij is
guaranteed if the color fields do not exhibit any singularities
and decay faster than ju�j−s with s > 1 as ju�j → ∞. On the
other hand, the components f�i in Eqs. (26) and (27) impose a
stronger decay due to the presence of the exponential factors
e�η0 . Rewriting these integrals using light cone coordinates v�

yields e�η0 ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�=v∓

p
(see Appendix A). To ensure conver-

gence for v∓ → ∞, the color potentials ϕA=B have to asymp-
totically decrease as ju�j−s with s > 3=2. Since nuclear
models impose at least exponential decay, these conditions
are always fulfilled. Nonetheless, we stress that the derivation
of Eqs. (25)–(28) in principle assumes compact support.
Evaluating the integrals inside the overlap yields an incomplete
result for the glasma field strength.
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Iðxþ; x−;xÞ

≈
C
M

XM
i¼1

h

�
xþ −

vðiÞffiffiffi
2

p eþη0ðiÞ ; x− −
vðiÞffiffiffi
2

p e−η
0ðiÞ
;x − vðiÞ

�
;

ð44Þ

where vðiÞ ¼ vðiÞðcos θðiÞ; sin θðiÞÞ and C is a Jacobian
factor, which is proportional to the integration volume.

D. Energy-momentum tensor

From the glasma field strength tensor given in
Eqs. (25)–(28), it is straightforward to obtain the glasma
energy-momentum tensor

Tμν ¼ 2Tr

�
fμρfρν þ

1

4
gμνfρσfρσ

�
ð45Þ

in the future light cone. In addition to the energy-
momentum tensor, we compute the LRF energy density
ϵLRF and fluid velocity uμ by solving the Landau condition

Tμ
νuν ¼ ϵLRFuμ ð46Þ

with uμ the only timelike eigenvector of Tμ
ν and ϵLRF its

eigenvalue.
We parametrize the future light cone in Milne

coordinates

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ð47Þ

ηs ¼
1

2
ln
tþ z
t − z

; ð48Þ

where τ and ηs are proper time and spacetime rapidity,
respectively. Contrary to the boost-invariant setup, it is
a priori not clear where the origin of the Milne frame
should be placed. As depicted in Fig. 4, putting the origin at
the center of the interaction region (S) will lead to some of
the τ ¼ const hyperbolas cutting into the tracks of the
nuclei. In order to avoid this, we shift the origin of our
Milne frame forward in time by some offset δt that is
slightly larger than the nuclear radius in the longitudinal
direction. None of the τ̄ ¼ const hyperbolas with respect to
the new origin S̄ cross the trajectories of the nuclei. We
evaluate all observables in terms of this shifted Milne
frame, but we omit the bars in τ̄ and η̄s from now on to
reduce clutter.

III. NUCLEAR MODEL

We study a three-dimensional generalization of the MV
model [41,42]. We assume a Gaussian probability func-
tional for the color charges of our nuclei, propagating either

in xþ or in x− direction, which is completely fixed by the
1- and 2-point functions. The 1-point function in our model
vanishes,

hρaðx�;xÞi ¼ 0: ð49Þ

The 2-point function is given by

hρaðx�;xÞρbðy�; yÞi ¼ g2μ2δab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðx�;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðy�; yÞ

q
×Uξðx� − y�Þδð2Þðx − yÞ ð50Þ

with the MV scale μ, which, in the nonperturbative case, is
related to the saturation momentum Qs ≈ g2μ. Here,

Tðx�;xÞ ¼ c

1þ exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðγbeamx�Þ2þx2
p

−R
d

� ð51Þ

is a boosted Woods-Saxon (WS) profile with WS radius R
and skin depth parameter d. The Lorentz contraction factor
γbeam is determined by the beam velocity and the normali-
zation constant c ensuresZ

∞

−∞
dx�Tðx�; 0Þ ¼ 1: ð52Þ

The function T determines the overall shape of the nuclei.
On the other hand, fluctuations within the nuclei are
controlled by the function

Uξðx� − y�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πξ2

p e
ðx�−y�Þ2

8R2
l e

−ðx�−y�Þ2
2ξ2 ; ð53Þ

where ξ is the longitudinal correlation length with 0 ≤ ξ ≤
2Rl and Rl ¼ R=ð ffiffiffi

2
p

γbeamÞ is the boosted WS radius.

FIG. 4. Constant proper time hyperbolas for two different
choices of the Milne frame origin separated by the distance δt.
For the origin S (orange), the hyperbola enters the trajectories of
the nuclei (gray). This is never the case for the Milne frame
centered at S̄ (blue).
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A similar model was used for single nucleons in [25].
The Rl dependent factor in Eq. (53) guarantees consistency
with two limiting cases with respect to the longitudinal
correlation length ξ.
In the limit ξ → 0, Eq. (53) becomes

lim
ξ→0

Uξðx� − y�Þ ¼ δðx� − y�Þ: ð54Þ

and thus the correlator in Eq. (50) can be written as

hρaðx�;xÞρbðy�; yÞi
¼ g2μ2δabTðx�;xÞδðx� − y�Þδð2Þðx − yÞ: ð55Þ

In this limit, our model is similar to the traditional MV
model with longitudinal extent (see e.g. [43,44]).
Introducing a transverse charge density

ρa⊥ðxÞ ¼
Z þ∞

−∞
dx�ρaðx�;xÞ; ð56Þ

we can integrate out the longitudinal dependence in
Eq. (55) and obtain

hρa⊥ðxÞρb⊥ðyÞi ¼ g2μ2δabδð2Þðx − yÞ
Z þ∞

−∞
dx�Tðx�;xÞ:

ð57Þ

The normalization in Eq. (52) now ensures that we recover
the two-dimensional MV model [41,42] at the center of our
nuclei, x ¼ 0. We refer to this limit as the MV model limit.
On the other hand, we may take ξ → 2Rl and obtain

lim
ξ→2Rl

Uξðx� − y�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
8πR2

l

q ¼ const: ð58Þ

In this case, the charge densities can be written as

ρaðx�;xÞ ∝ gμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðx�;xÞ

q
χa⊥ðxÞ; ð59Þ

where the two-dimensional Gaussian random field χ⊥ is
given by

hχa⊥ðxÞi ¼ 0; hχa⊥ðxÞχb⊥ðyÞi ¼ δabδð2Þðx − yÞ: ð60Þ

The charge density does not fluctuate along the longi-
tudinal coordinate and is merely modulated by the envel-
oping profile

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðx�;xÞ

p
. This is the coherent limit of our

model. Initial conditions with these particular longitudinal
correlations have been previously studied using ð3þ 1ÞD
lattice simulations [20,21], albeit without the nontrivial
transverse structure imposed by Tðx�;xÞ.

To sample charge distributions from our nuclear model
for arbitrary ξ, we first generate random Gaussian noise
χaðx�;xÞ, which fulfills

hχaðx�;xÞi ¼ 0; ð61Þ

hχaðx�;xÞχbðy�; yÞi ¼ δabδðx� − y�Þδð2Þðx − yÞ: ð62Þ

We then move to Fourier space with respect to x� and
introduce a new field

ζ̃aðk�;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ũξðk�Þ

q
χ̃aðk�;xÞ: ð63Þ

After transforming back to position space, we obtain the
single nucleus color charge densities as

ρaðx�;xÞ ¼ gμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðx�;xÞ

q
ζaðx�;xÞ: ð64Þ

Note that the individual color components ρa are sta-
tistically independent. Once we have sampled charge
densities ρA=B for both nuclei, we obtain the corresponding
single nucleus color fields by solving the transverse
Poisson equations (5) and (8) in momentum space. We
obtain

ϕa
A=Bðx�;xÞ ¼

Z
k

ρ̃aA=Bðx�;kÞ
k2 þm2

e−k
2=ð2Λ2

UVÞe−ik·x; ð65Þ

where we have introduced an infrared (IR) cutoff m and an
ultraviolet (UV) cutoff ΛUV. In practice, we sample the
nuclear model on a discrete lattice. The sampling procedure
can be carried out numerically using the fast Fourier
transform algorithm, see e.g. [24,25].
In Fig. 5 we show one component of the color field

ϕðx�;xÞ of a single nucleus sampled from our nuclear
model. We cut along the center of one transverse direction
and compare different values of the IR cutoff m and
longitudinal correlation length ξ, showing positive values
in orange and negative values in blue. While the magnitude
of m governs the size of transverse fluctuations, ξ deter-
mines the longitudinal structure of our nuclei. The right
panels show the coherent limit ξ ¼ 2Rl.

IV. NUMERICAL RESULTS FOR THE ð3 + 1ÞD
STRUCTURE OF THE GLASMA

We now discuss the ð3þ 1ÞD spacetime structure of the
glasma emerging from our model. We compute the inte-
grals in Eqs. (25)–(28) using the Monte Carlo approach
outlined in Sec. II C. From the Monte Carlo integration, we
obtain estimates for the glasma field strength tensor fμν and
energy-momentum tensor Tμν given in Eq. (45). The raw
data files for Tμν are published in [45,46]. We solve the
Landau condition Eq. (46) to find the local rest frame
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energy density ϵLRF and flow velocity uμ. We obtain
estimates for the magnitude of the Monte Carlo errors
by performing standard jackknife analysis and we choose
the number of Monte Carlo samples large enough to make
them negligible. In practice, we found that M ¼ 105

samples are sufficient.
Table I shows the physical parameters of our calculations

and the values they are allowed to take. We consider two
different collision energies, comparable to Pbþ Pb colli-
sions at LHC and Auþ Au collisions at RHIC. The choice
of collision energy enters our computations through the
beam Lorentz contraction factor γbeam. Furthermore, we
adapt the parameters of our Woods-Saxon model to the
different nuclei in the same way as [13]. The values for the
correlation length ξ correspond to longitudinal fluctuations
at the scale of the nucleon size, ξ ¼ 0.1Rl, the coherent
limit, ξ ¼ 2Rl, and an intermediate value, ξ ¼ 0.5Rl. We
use Nev ¼ 10 independent collision events to compute
event averages of our observables. As shown in Fig. 4,
we use a collision origin shifted by δt ¼ ðRþ dÞ=γbeam to
avoid contributions from the background fields at larger
rapidities.
We note that the dilute limit differs from the non-

perturbative glasma in one key aspect: due to the pertur-
bative expansion, we find that the MV scale parameter μ, or
more generally the energy scale g2μ, appears in our analytic

results only as a prefactor in fμν or Tμν. The scale g2μ does
not appear as a transverse momentum scale in the dilute
limit. Instead, the transverse structure of the nuclei and the
resulting glasma is determined solely by the infrared
regulator m. We thus interpret m as the analog of the
saturation momentum Qs in the nonperturbative glasma,
and g2μ as an energy scale that requires calibration using
either experimental results or a fit to a nonperturbative
lattice simulation. For example, using the dilute glasma as
an initial stage for a full simulation of a heavy-ion collision,
the parameter g2μ may be fixed such that the charged
particle multiplicity at midrapidity is correctly reproduced
at either RHIC or LHC. In the present work, we simply set
g2μ ¼ 1 GeV, keeping in mind that phenomenological
applications require a properly chosen value.
Figure 6 shows a perspective plot of the three-

dimensional local rest frame energy density ϵLRF for a
single Auþ Au collision event with an impact parameter
b ¼ R at RHIC energy at τ ¼ 0.4 fm=c. We show trans-
verse and longitudinal slices of the energy distribution in
Fig. 7. In the left panel, we observe the typical almond
shape induced by the nonzero impact parameter. The right
panel depicts elongated, approximately boost-invariant
structures with varying transverse extents reminiscent of
glasma color flux tubes [10,47]. These structures are
analogous to the flux tube structure employed in several
initial state models for describing longitudinal correlations
in the initial stage of heavy-ion collisions [48,49].

A. Longitudinal structure and flow

The three-dimensional glasma generated in collisions of
longitudinally extended nuclei has a particular longitudinal
structure and flow properties that are qualitatively different

TABLE I. Physical model parameters and their values in our
calculations with R (L) denoting RHIC (LHC) setups. The
correlation length ξ and the impact parameter b are given as
multiples of the Woods-Saxon radius and are therefore different
for RHIC and LHC setups. Without loss of generality, we always
put the impact parameter in transverse x direction.

Param Name Value(s) Unit

Nc Number of colors 3 � � �
γbeam Lorentz factor 100 (R), 2700 (L) � � �ffiffiffiffiffiffiffiffi
sNN

p
c.m. energya 200 (R), 5400 (L) GeV

R WS radius 6.38 (R), 6.62 (L) fm
d WS skin depth 0.535 (R), 0.546 (L) fm
g YM coupling 1 � � �
μ MV scale 1 GeV
m IR cutoff 0.2, 2.0 GeV
ΛUV UV cutoff 10 GeV
ξ Correlation length 0.1, 0.5, 2.0 Rl
b Impact parameter 0, 1 R
τ Proper time 0.2, 0.4, 0.6, 0.8, 1.0 fm=c

aAssuming a nucleon mass of m0 ≈ 1 GeV.

FIG. 5. Slices through the center of a single component of a
nucleus’ color field for different values of infrared cutoff m and
longitudinal correlation length ξ. Positive (negative) values are
shown in orange (blue).

ENERGY-MOMENTUM TENSOR OF THE DILUTE ð3þ 1ÞD … PHYS. REV. D 109, 094040 (2024)

094040-9



from the boost-invariant scenario. For practical reasons,
we compute the energy-momentum tensor in a (shifted)
Milne frame, parametrized by proper time τ and spacetime
rapidity ηs, as discussed in Sec. II D. We find that the
longitudinal flow uη of the collision medium, i.e. the
rapidity component of the four-velocity uμ, deviates from
the idealized Bjorken case, particularly at large rapidities.
This is in contrast to the boost-invariant glasma, where uη

exhibits only local fluctuations [51] and thus Tττ can be
considered as a reasonable measure for the energy density
of the glasma. The Milne frame centered at the collision
point is naturally adapted to the symmetries of the boost-
invariant glasma, which (assuming negligible dynamics in
the transverse direction) expands with uτ ¼ 1 and uη ¼ 0,
known as free streaming. As argued in Sec. II D, there is
no unique Milne frame for a collision of longitudinally
extended nuclei. The shifted origin of the Milne frame
compared to the collision center, along with the extended
collision region leads to a violation of the free streaming
behavior. The three-dimensional glasma picks up a consid-
erable longitudinal velocity uη in regions of large rapidity. To
avoid ambiguity due to the choice of frame, it is therefore
sensible to study frame-independent quantities such as the
LRF energy density ϵLRF, or the transverse pressure
Txx þ Tyy, which is unaffected by longitudinal boosts.
In Fig. 8 we investigate the rapidity dependence of

various notions of energy density in the dilute glasma. We
see that the LRF energy density ϵLRF is in almost perfect
agreement with the sum of transverse pressures Txx þ Tyy.
However, note that the Tττ profiles differ fundamentally
from the ϵLRF profiles at large ηs. In addition to the
aforementioned energy densities and pressures, we also
show γϵLRF, which is the LRF energy density, weighted by
the local flow component γðτ; ηs;xÞ≡ uτðτ; ηs;xÞ. This
quantity is interesting because γϵLRF is used to determine
the transverse geometric structure of the collision medium
in terms of eccentricity coefficients (see Sec. IV D).
We find that its rapidity profile is typically wider, but
similarly well behaved at large rapidities as ϵLRF and
transverse pressure.
Figure 8 reveals a considerable difference between Tττ,

which is the energy density reported by an observer moving

FIG. 7. Transverse (left) and longitudinal (right) slices through the local rest frame energy density ϵLRF of a single collision event at
τ ¼ 0.4 fm=c with impact parameter b ¼ R. RHIC nuclear parameters with ξ ¼ 0.5Rl, m ¼ 0.2μ are used. The white lines represent R
and Rþ d boundaries of both nuclei.

FIG. 6. Perspective view of the local rest frame energy density
ϵLRF of a single collision event at τ ¼ 0.4 fm=c with impact
parameter b ¼ R. RHIC nuclear parameters with ξ ¼ 0.5Rl,
m ¼ 0.2μ are used. Lighter colors correlate with larger ϵLRF.
A movie showing different viewing angles is included in the
Supplemental Material [50].
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with uτ ¼ 1 and uη ¼ 0, and ϵLRF at large rapidities.
Intuitively, this means that the flow of the three-
dimensional glasma differs from longitudinal Bjorken flow,
which makes the Milne frame an ill-adapted coordinate
system. Consequently, the Milne frame energy-momentum
tensor Tμν picks up sizeable off-diagonal components at
large rapidities. Upon diagonalization and consequential
transformation to the LRF, ϵLRF becomes much smaller
than Tττ and we find significant contributions to the
local uη. In addition to longitudinal flow, the mismatch
Tττ ≫ ϵLRF also arises from longitudinal pressure, as
shown in Fig. 9. Particularly for small ξ and m, we find
that the longitudinal pressure τ2Tηη dominates over the
transverse pressure at large rapidities. This is consistent
with the fact that the energy-momentum tensor is traceless.
Similar to Tττ, it is apparent that longitudinal pressure is
strongly affected by the choice of coordinate system.
We study longitudinal flow by computing an ϵLRF-

weighted average of uη in the transverse plane, i.e.

huηiϵLRF ¼
	R

x u
ηðτ; ηs;xÞϵLRFðτ; ηs;xÞR

x ϵLRFðτ; ηs;xÞ



events

: ð66Þ

In Fig. 10 we show this weighted average over ηs for
constant τ ¼ 0.4 fm=c. Regions of positive ηs correspond
to negative uη and vice versa. This indicates a longitudinal

expansion that is slower than Bjorken flow, to which the
Milne frame is naturally adapted, and leads to the strong
deviations of Tττ from the rest frame energy density ϵLRF.
We find that the shape of the longitudinal flow can be
explained in a simple model, depicted by the solid curves,
where we assume that the resulting four-velocity at a given
point in the forward light cone can be obtained by a
superposition of Bjorken flows starting from each point in
the collision region taking into account our forward-shifted
coordinate system. This model is derived in Appendix B.
Since the data fit the analytic results extraordinarily well,
we conclude that the longitudinal flow can mostly be
attributed to the extended collision region and the shifted
origin of our coordinate system. This reinforces the role of
ϵLRF and Txx þ Tyy as the more fundamental and physical
notions of energy density in the three-dimensional glasma,
as compared to the Milne frame energy density Tττ.

B. Time and energy dependence

In addition to the rapidity dependence of the energy
density, we also study its time and collision energy
dependence. In Fig. 11 we show the rapidity profiles of
the transverse energy per unit spacetime rapidity dE⊥=dηs
for different values of proper time τ. These data are
obtained by integrating the sum of transverse pressures

FIG. 9. Comparison of the components of the energy-
momentum tensor Tμν and the local rest frame energy density
ϵLRF integrated over the transverse plane as a function of
spacetime rapidity ηs at fixed proper time τ ¼ 0.4 fm=c. The
results are normalized to Tττðηs ¼ 0Þ and are averages over 10
central collision events at RHIC energy. Tracelessness of Tμν is
manifest with the longitudinal pressure τ2Tηη (red triangles)
rising and compensating for the large Tττ (yellow triangles) at
extreme ηs. For small m (top row) τ2Tηη is negative at central ηs.

FIG. 8. Different formulations of energy density integrated over
the transverse plane as a function of spacetime rapidity ηs at fixed
proper time τ ¼ 0.4 fm=c. The results are normalized at ηs ¼ 0
and are averages over 10 central collision events at RHIC energy.
The local rest frame energy density ϵLRF (emerald dots) agrees
with the transverse pressure Txx þ Tyy (blue triangles). For small
ξ and m (upper left) the Tττ component increases for large ηs.
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Txx þ Tyy over the transverse plane and multiplying with τ
to correct for the expected leading order time dependence:

dE⊥
dηs

¼ τ

Z
x
ðTxxðτ; ηs;xÞ þ Tyyðτ; ηs;xÞÞ: ð67Þ

We see that the transverse energy per unit rapidity stabilizes
on a time scale of ∼1.0 fm=c. This is a well-known result
for the boost-invariant case [52,53], where the energy
density exhibits a characteristic 1=τ behavior associated
with free streaming for τ ≳ 0.2 fm=c. We find that this
holds for the three-dimensional glasma as well, even at
extreme rapidities. For LHC energy we observe a stable
plateau of roughly �3.5 units in rapidity around ηs ¼ 0,
which can be identified with the boost-invariant regime.
This plateau is absent at RHIC energy, where the profiles
appear to be approximately Gaussian. A similar plateau for
LHC energy appears in the curves of the longitudinal flow
in Fig. 10.

C. Limiting fragmentation

In Fig. 12 we investigate rapidity profiles of the differ-
ential transverse energy dE⊥=dηs for different collision
energies

ffiffiffiffiffiffiffiffi
sNN

p
. After shifting the profiles by the respective

beam rapidity Ybeam ¼ arcoshðγbeamÞ, we see remarkable
agreement between LHC and RHIC setups regarding the
shape of the flanks at large rapidities. In other words, for
extreme rapidities (the fragmentation region) the rapidity

FIG. 11. Differential transverse energy dE⊥=dηs as a function
of spacetime rapidity ηs for different values of proper time τ. The
points represent the average of 10 central collision events. The
rapidity profiles stabilize at late times τ ≳ 0.6 fm=c. For colli-
sions at LHC energy, we observe a plateau around midrapidity,
which is absent at RHIC energy.

FIG. 12. Differential transverse energy as a function of space-
time rapidity ηs at fixed proper time τ ¼ 0.4 fm=c. The curves are
normalized to the respective LHC values at ηs ¼ 0 and are offset
by the respective LHC and RHIC beam rapidities Ybeam. The
results are averaged over 10 central collision events with error
bands for one standard deviation. We find that the flanks of the
rapidity profiles coincide irrespective of the collision energy,
known as limiting fragmentation.

FIG. 10. Longitudinal flow uη weighted with local rest frame
energy density and integrated over the transverse plane as a
function of spacetime rapidity ηs at τ ¼ 0.4 fm=c. Discrete points
represent the average of 10 central collision events. Lines are
analytic predictions from simple model considerations (see
Appendix B).
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distribution of the transverse energy is independent of
the collision energy. This is an indication of limiting
fragmentation, first observed experimentally for charged
particle distributions in the context of proton-antiproton
collisions [54], after a theoretical description was given
in [55]. It was subsequently studied experimentally e.g. for
pþ A collisions [56], dþ Au collisions [57], and Auþ Au
collisions at RHIC [58,59]. From our results, we expect
limiting fragmentation to hold for LHC energies as well.
We can confirm limiting fragmentation also for the local
rest frame energy density ϵLRF as well as Tττ. Therefore, we
conclude that it is truly a universal effect that governs the
overall scaling behavior of the energy-momentum tensor in
the dilute approximation.

D. Eccentricity

Up until now, we have highlighted the longitudinal
structure of the three-dimensional glasma, but our approach
allows us to study the transverse structure as well, namely
in the form of (transverse) eccentricity coefficients. From
the local rest frame energy density ϵLRFðτ; ηs;xÞ we obtain
the nth eccentricity via the standard formula

εnðτ; ηsÞ ¼
R
x γϵLRFr̄

n expðinϕ̄ÞR
x γϵLRFr̄

n ð68Þ

with ϵLRF¼ ϵLRFðτ;ηs;xÞ and γ ¼ γðτ; ηs;xÞ ¼ uτðτ; ηs;xÞ
the local Lorentz factor. In the above, r̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
and ϕ̄¼ arctanððy−y0Þ=ðx−x0ÞÞ

are polar coordinates in the center of mass frame in the
transverse plane. We evaluate the transverse center of mass,

x0 ¼
R
x xϵLRFðxÞγðxÞR
x ϵLRFðxÞγðxÞ

; ð69Þ

at midrapidity, ηs ¼ 0.
In Fig. 13 we show the rapidity dependence of the

eccentricities
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε2j2i

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε4j2i

p
for both RHIC and

LHC energies and different combinations of ξ and m. We
choose a large impact parameter of b ¼ R and conse-
quently see significant contributions to ε2 and ε4. The
eccentricities are independent of rapidity except for the
most forward and backward bins, where they fall off. We
note that the central plateau is narrower for RHIC than for
the LHC setup. The fourth eccentricity ε4 exhibits similar
qualitative behavior to the second eccentricity ε2 but has a
lower overall value. In any case, ε2 and ε4 show only minor
dependence on the longitudinal correlation length ξ.
Evidently, it would also be interesting to study the

longitudinal decorrelation of the event geometry in the
dilute glasma by considering unequal rapidity correlations
of the eccentricities (see e.g. [17,60,61]). However, the
fluctuations of the eccentricities εnðηsÞ are largely driven by
fluctuations in nucleon positions, which are currently not

included in our model and we therefore defer this analysis
to a forthcoming study.
In Fig. 14 we show the real part of the first eccentricity

ε1 obtained from Eq. (68) for n ¼ 1. Since the impact
parameter lies in the x direction we only get negligible
contributions to the imaginary part. Figure 14 shows how

FIG. 14. Real part of the eccentricity ε1 at τ ¼ 0.4 fm=c for an
impact parameter b ¼ R. The points represent the average of
10 events and the error bands represent the standard deviation of
the event-by-event statistics.

FIG. 13. Eccentricities
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε2j2i

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjε4j2i

p
at τ ¼ 0.4 fm=c

as a function of spacetime rapidity ηs. The impact parameter
b ¼ R and h·i refers to an average over 10 events with the error
bands representing one standard deviation in the event-by-event
statistics.
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the glasma is skewed in the transverse plane. Specifically,
for longitudinal fluctuations at the scale of the nucleon size,
ξ ¼ 0.1Rl, regions of positive rapidity feature more energy
density for positive x. This is what one would expect
from the collision geometry in the sense that nucleus B is
shifted to positive x and moves in positive z direction.
Interestingly, in the coherent limit ξ ¼ 2.0Rl, the opposite
is the case and we see more energy in regions of positive x
for negative rapidity. In our results, the energy distribution
appears to depend strongly on the longitudinal structure of
the nuclei—even changing signs for different ξ.
Generically, we find that the dilute ð3þ 1ÞD glasma

exhibits both nontrivial longitudinal flow huηi ≠ 0 and a
skewed energy distribution in the transverse plane, ε1 ≠ 0.
In [62] it was demonstrated, using a parametrized Glauber
model, that longitudinal flow and skewness may both
contribute to the directed flow of pions in off-central
Auþ Au collisions. We find that these features also arise
naturally in the dilute ð3þ 1ÞD glasma. Thus, an interest-
ing prospect would be to study the impact of the longi-
tudinal structure on observables such as directed flow.
Finally, we remark that the RHIC and LHC curves’

shapes are similar for large rapidities, but around mid-
rapidity, a plateau becomes visible for LHC that is absent in
the RHIC curves.

V. CONCLUSION

We presented the semianalytical treatment of the three-
dimensional, dilute glasma in the weak field approxima-
tion. Starting from the expressions for color fields obtained
in [32] within the dilute limit of the color glass condensate
effective field theory, we derived concise expressions for
the field strength tensor and energy-momentum tensor of
the dilute glasma. We found that our analytical results have
a transparent geometric interpretation in terms of integrat-
ing over the causal past of the specific spacetime point at
which we evaluate the energy-momentum tensor.
The main advantage of the dilute approximation is that it

leads to analytic results for the glasma field strength tensor.
The corresponding integrals have to be solved numerically,
but, compared to nonperturbative real-time ð3þ 1ÞD lattice
simulations [23–26], the numerical evaluation using
Monte Carlo methods can be implemented much more
efficiently than previous simulations at comparable space-
time volumes and enables system sizes that were not
achievable previously. As such, we are able to describe
in unprecedented detail the energy-momentum tensor and
derived observables of the three-dimensional glasma,
accounting for both transverse and longitudinal structure
within the colliding nuclei. Furthermore, our calculation of
the field strength tensor does not require numerical time-
stepping common to traditional simulation approaches.
Instead, the field strengths can be evaluated at arbitrary
points in the future light cone. This allows the direct
evaluation of the energy-momentum tensor at arbitrary

hypersurfaces and simplifies the coupling to hydrodynam-
ics or kinetic theory. Especially for situations where many
independent events have to be considered to obtain a given
observable, we believe that the dilute glasma offers a novel
and economic approach to the preequilibrium stage of
relativistic heavy-ion collisions.
By introducing a generalized McLerran-Venugopalan

model with a fully three-dimensional structure for the color
charge distributions of our nuclei we were able to para-
metrize longitudinal correlations within the nuclei. This led
to a longitudinally extended overlap region for symmetric
nuclear collisions and required us to shift the Milne frame
origin into the future light cone outside of the overlap
region. Within this setup, we explored the longitudinal and
transverse structures of Pbþ Pb and Auþ Au collisions at
LHC and RHIC energies. We carefully discussed how to
interpret the Milne frame components of the energy-
momentum tensor of the resulting glasma. We found that
the energy distribution of the glasma exhibits broken boost-
invariance and nontrivial longitudinal flow at large rap-
idities. Remarkably, we recovered limiting fragmentation
as a generic feature of the dilute approximation. We believe
that this can be demonstrated analytically, as will be
detailed in a forthcoming manuscript. We also studied
the preequilibrium, transverse structure in terms of eccen-
tricity coefficients εn. In particular, we find that off-central
collisions lead to a rapidity-odd first-order eccentricity
coefficient ε1.
There are multiple possible extensions to this work. As a

direct application of our approach, the dilute glasma can be
used as fully ð3þ 1ÞD initial conditions for effective
kinetic theory [63–66] or hydrodynamic simulations of
the quark gluon plasma [2,19,67,68]. Proceeding through
these later stages of heavy-ion collisions would allow us to
compute observables directly comparable to those mea-
sured in experiments and study their dependence on our
fully three-dimensional nuclear model. Furthermore, we
are actively working on improving our nuclear model,
for example by considering nucleons [25] or nucleon hot
spots [69–71] as additional substructures within the nuclei.
We are excited to explore the implications of such
improved models on the various different aspects of the
ð3þ 1ÞD spacetime structure of the initial state of high-
energy heavy-ion collisions in the future.
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APPENDIX A: DERIVATION OF THE DILUTE
GLASMA FIELD STRENGTH TENSOR

To compute the dilute glasma field strength tensor given
in Eq. (24) we require first derivatives of the glasma gauge
fields aμðxÞ. For the fþ− component, we start by working
out ∂þa− ¼ ∂−a−

∂−a− ¼ g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ∂
ðxÞ
− ϕ̃b

Bðx− − v−;qÞ ððpþ qÞ2 − 2p2Þv−
jpþ qjτ0

× J1ðjpþ qjτ0Þe−iðpþqÞ·x; ðA1Þ

which can be simplified by first rewriting the ∂ðxÞ− as −∂ðvÞ− .
Integrating by parts then gives

∂
þa− ¼ g

2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞððpþ qÞ2 − 2p2Þ

×
J0ðjpþ qjτ0Þ

2
e−iðpþqÞ·x: ðA2Þ

We dropped the boundary terms because ϕ̃b
Bðx− − v−;qÞ is

zero for finite x− if v− → ∞ and goes to zero if v− ¼ 0 and
x− is sufficiently far away from the tracks of the nuclei,
which we already assumed. In a similar fashion,

−∂−aþ ¼ g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞððpþ qÞ2 − 2q2Þ

×
J0ðjpþ qjτ0Þ

2
e−iðpþqÞ·x; ðA3Þ

which gives

fþ− ¼ gfabctc
Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞðp · qÞJ0ðjpþ qjτ0Þe−iðpþqÞ·x:

ðA4Þ

To find an expression for fþi we compute

∂−ai ¼ −i
g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞðpi − qiÞ jpþ qjvþ

τ0

× J1ðjpþ qjτ0Þe−iðpþqÞ·x; ðA5Þ

which is obtained by partial integration as above.
Furthermore, we use −∂iaþ ¼ ∂iaþ to get

∂iaþ ¼ −i
g
2
fabctc

Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞðpi þ qiÞ ð−ðpþ qÞ2 þ 2q2Þvþ

jpþ qjτ0
× J1ðjpþ qjτ0Þe−iðpþqÞ·x: ðA6Þ

Combining these two expressions yields

fþi ¼ −igfabctc
Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞ vþ

jpþ qjτ0 ½p
iq2 − qiðp2 þ 2ðp · qÞÞ�

× J1ðjpþ qjτ0Þe−iðpþqÞ·x: ðA7Þ

Analogously, one finds

f−i ¼ −igfabctc
Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞ v−

jpþ qjτ0 ½p
iðq2 þ 2ðp · qÞÞ− qip2�

× J1ðjpþ qjτ0Þe−iðpþqÞ·x: ðA8Þ

Finally, it is straightforward to compute

fij ¼ −gfabctc
Z
p;q

Z
∞

0

dvþ
Z

∞

0

dv−ϕ̃a
Aðxþ − vþ;pÞ

× ϕ̃b
Bðx− − v−;qÞðqipj − qjpiÞJ0ðjpþ qjτ0Þe−iðpþqÞ·x:

ðA9Þ

This provides the components of the field strength tensor
expressed as six-dimensional integrals. These integrals can
be computed numerically, but the performance of such a
computation is greatly enhanced by reducing the number of
integrals. Fortunately, we can reduce all components of the
field strength tensor to three-dimensional integrals, as we
will show in the following. Starting with fþ− we introduce

β̃i;aA ðxþ − vþ;pÞ ¼ ipiϕ̃a
Aðxþ − vþ;pÞ; ðA10Þ

β̃i;bB ðx− − v−;qÞ ¼ iqiϕ̃b
Bðx− − v−;qÞ; ðA11Þ
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or, equivalently,

βi;aA ðxþ − vþ;uÞ ¼ ∂
i
ðuÞϕ

a
Aðxþ − vþ;uÞ; ðA12Þ

βi;bB ðx− − v−; sÞ ¼ ∂
i
ðsÞϕ

b
Bðx− − v−; sÞ ðA13Þ

to write

fþ− ¼ −gfabctc
Z
p;q

Z
vþ

Z
v−
β̃i;aA ðxþ − vþ;pÞ

× β̃i;bB ðx− − v−;qÞJ0ðjpþ qjτ0Þe−iðpþqÞ·x: ðA14Þ

Transforming back to coordinate space

fþ− ¼ −gfabctc
Z
p;q

Z
vþ

Z
v−

Z
u;s

βi;aA ðxþ − vþ;uÞ

× βi;bB ðx− − v−; sÞJ0ðjpþ qjτ0Þeiðp·uþq·sÞe−iðpþqÞ·x

ðA15Þ

we can write

p ·uþq ·s¼1

2
ðpþqÞ ·ðuþsÞþ1

2
ðp−qÞ ·ðu−sÞ: ðA16Þ

Now we use k ¼ pþ q and Δk ¼ 1
2
ðp − qÞ to integrate

out Δk (fixing s ¼ u) and s, which yields

fþ− ¼ −gfabctc
Z
k

Z
vþ

Z
v−

Z
u
βi;aA ðxþ − vþ;uÞ

× βi;bB ðx− − v−;uÞJ0ðjkjτ0Þe−ik·ðx−uÞ: ðA17Þ

Next, we use k · ðx − uÞ ¼ kjx − uj cos θ (where
k ≔ jkj) and integrate out θ, which gives another Bessel
function

fþ− ¼ −gfabctc
Z

∞

0

dk k
2π

Z
vþ

Z
v−

Z
u
βi;aA ðxþ − vþ;uÞ

× βi;bB ðx− − v−;uÞJ0ðkτ0ÞJ0ðkjx − ujÞ: ðA18Þ

Using the closure relation

Z
∞

0

dk kJνðkaÞJνðkbÞ ¼
δða − bÞ

a
ðA19Þ

we get

fþ− ¼ −
g
2π

fabctc
Z
vþ

Z
v−

Z
u
βi;aA ðxþ − vþ;uÞ

× βi;bB ðx− − v−;uÞ δðτ
0 − jx − ujÞ

τ0
: ðA20Þ

Note that

Z
∞

0

dvþ
Z

∞

0

dv− ¼
Z

∞

−∞
dη0

Z
∞

0

dτ0 τ0 ðA21Þ

with η0 ¼ lnðvþ=v−Þ=2 and τ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2vþv−

p
as before.

Performing this change of variables, the delta function in
Eq. (A20) is removed by integrating over τ0, which gives
the result

fþ− ¼ −
g
2π

fabctc
Z

∞

−∞
dη0

Z
u
βi;aA

�
xþ −

jx − ujffiffiffi
2

p eþη0 ;u

�

× βi;bB

�
x− −

jx − ujffiffiffi
2

p e−η
0
;u

�
: ðA22Þ

Finally, we shift the integration variable u ¼ x − v,
which yields

fþ− ¼ −
g
2π

fabctc
Z

∞

−∞
dη0

Z
v
βi;aA

�
xþ −

jvjffiffiffi
2

p eþη0 ;x − v

�

× βi;bB

�
x− −

jvjffiffiffi
2

p e−η
0
;x − v

�
: ðA23Þ

To deal with fþi we can use the β̃i;aA=B defined before to
write the terms in Eq. (A7) as

ϕ̃a
Aϕ̃

b
Bp

iq2 ¼ iβ̃i;aA
g

∂
j
ðsÞβ

j;b
B ; ðA24Þ

ϕ̃a
Aϕ̃

b
Bð−qip2Þ ¼ −i g

∂
j
ðuÞβ

j;a
A β̃i;bB ; ðA25Þ

ϕ̃a
Aϕ̃

b
Bð−2qip · qÞ ¼ −2iβ̃j;aA

g
∂
i
ðsÞβ

j;b
B ; ðA26Þ

where gð…Þ refers to a Fourier transformation in the
transverse plane. We can then write fþi as

fþi ¼ gfabctc
Z
p;q;v

G̃i;abðxþ − vþ; x− − v−;p;qÞ

×
1

jpþ qj
vþ

τ0
J1ðjpþ qjτ0Þe−iðpþqÞ·x; ðA27Þ

with

G̃i;abðxþ − vþ; x− − v−;p;qÞ
≡ β̃i;aA

g
∂
j
ðsÞβ

j;b
B − g

∂
j
ðuÞβ

j;a
A β̃i;bB − 2β̃j;aA

g
∂
i
ðsÞβ

j;b
B : ðA28Þ
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Next, we can Fourier transform the terms in G̃i;ab to get

fþi¼ gfabctc
Z
p;q;v

Z
u;s

Gi;abðxþ−vþ;x− −v−;u;sÞ

×
1

jpþqj
vþ

τ0
J1ðjpþqjτ0Þeiðp·uþq·sÞe−iðpþqÞ·x ðA29Þ

with

Gi;ab ¼ βi;aA ∂
j
ðsÞβ

j;b
B − ∂

j
ðuÞβ

j;a
A βi;bB − 2βj;aA ∂

i
ðsÞβ

j;b
B : ðA30Þ

Now we are in a position to repeat the same steps as
before: introduce k ¼ pþ q and Δk ¼ 1

2
ðp − qÞ, integrate

outΔk (which sets s ¼ u) and s and finally integrate out the
angle θ between k and x − u to get another J0, which gives

fþi ¼ g
2π

fabctc
Z

∞

0

dk
Z
v

Z
u
Gi;abðxþ − vþ; x− − v−;u;uÞ

×
vþ

τ0
J0ðkjx−ujÞJ1ðkτ0Þ: ðA31Þ

At this point, a key observation is that we can rewrite
Gi;ab as

Gi;ab ¼ ∂
j
ðuÞðβi;aA βj;bB − βj;aA βi;bB − δijβk;aA βk;bB Þ;

≡ ∂
j
ðuÞG

ij;ab; ðA32Þ

where the derivative acts on the u dependence of βA and βB
(which now depends on u instead of s). Assuming that
Gij → 0 as juj → ∞ we can now partially integrate in u to
obtain

fþi ¼ g
2π

fabctc
Z

∞

0

dk
Z
v

Z
u
Gij;abðxþ−vþ; x− −v−;u;uÞ

×
vþ

τ0
kwjJ1ðkjx−ujÞJ1ðkτ0Þ: ðA33Þ

We have introduced the unit vector

wj ¼ ∂
j
ðuÞjx − uj ¼ xj − uj

jx − uj : ðA34Þ

The closure relation for the Bessel functions gives

fþi ¼ g
2π

fabctc
Z
v

Z
u
Gij;abðxþ − vþ; x− − v−;u;uÞ

×
vþ

τ0
wj δðτ0 − jx − ujÞ

τ0
: ðA35Þ

Integrating out the delta function and performing the shift
u ¼ x − v finally yields

fþi ¼ g
2π

fabctc
Z
η0

Z
v
Gij;ab

�
xþ −

jvjffiffiffi
2

p eþη0 ; x− −
jvjffiffiffi
2

p e−η
0
;x− v;x− v

�
eþη0ffiffiffi
2

p wj; ðA36Þ

where the η0 integral goes from −∞ to ∞. Note that
wj ¼ vj=jvj. We now write

fabctcGij;ab ¼ Vij − δijV; ðA37Þ

with V and Vij already defined in Eqs. (29) and (30).
The f−i component can be worked out in the same way
as fþi, while fij is analogous to fþ−. The results for all
independent components of the perturbative field strength
tensor are the expressions given in Eqs. (25)–(28) in the
main text.

APPENDIX B: LONGITUDINAL FLOW FROM
SUPERIMPOSED BJORKEN FLOW

We construct a simple model to predict the ηs depend-
ence of uη from basic considerations. Our setup is shown
in Fig. 15. Ignoring the transverse direction, we pick
an arbitrary point P in the forward light cone with

Minkowski coordinates ðt0; z0Þ. Note that the origin of
the corresponding coordinate system is shifted with
respect to the center of the collision region (the gray
diagonal bars represent the traces of the nuclei). We start
Bjorken flow at each point in the collision region and
look at the resulting four-velocity of the medium at P. We
show two such contributions uμ1 and uμ2 coming from
the points Q1 ¼ ð−Δt;−ΔzÞ and Q2 ¼ ð−Δt;ΔzÞ in the
collision region. We weigh these contributions with the
energy density ϵ1=2 ¼ ϵ0=τ1=2, with τ1=2 the proper time
elapsed between Q1=2 and P and find

ϵ1ut1=2 ¼ ϵ0
t0 þ Δt

ðt0 þ ΔtÞ2 − ðz0 � ΔzÞ2 ; ðB1Þ

ϵ2u
z
1=2 ¼ ϵ0

z0 � Δz
ðt0 þ ΔtÞ2 − ðz0 � ΔzÞ2 : ðB2Þ
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We now take the sum ϵuμ ¼ ϵ1u
μ
1 þ ϵ2u

μ
2 of these two

contributions at P. We only consider the ratio ut=uz, for
which we find

ut

uz
¼

t0þΔt
ðt0þΔtÞ2−ðz0þΔzÞ2 þ t0þΔt

ðt0þΔtÞ2−ðz0−ΔzÞ2
z0þΔz

ðt0þΔtÞ2−ðz0þΔzÞ2 þ z0−Δz
ðt0þΔtÞ2−ðz0−ΔzÞ2

>
t0
z0

ðB3Þ

for positive z. We used t0 > z0 and Δt > Δz to evaluate
this inequality. The case z < 0 is analogous with the
> replaced by <. What we find is that the sum from the
two (z symmetric) Bjorken flow contributions, properly
taking into account energy density, leads to a combined
flow where jut=uzj is larger than it would be for Bjorken
flow. This argument holds for any pair of points in the
collision region and we thus conclude that the total flow
at P must have negative uη at positive z0. If P were located
at negative z0 or, equivalently, at negative ηs, then uη

would be positive. Overall, the longitudinal expansion of
the system is slower than for Bjorken flow.
We can formalize this argument further and consider the

result of contributions from all over the collision region
diamond, that is, we consider the integral

ϵtotu
μ
tot ¼

Z
⋄
dΔt dΔz ϵðΔt;ΔzÞuμðΔt;ΔzÞ; ðB4Þ

where the ϵðΔt;ΔzÞuμðΔt;ΔzÞ are the analogues of
Eqs. (B1) and (B2) changing continuously over the collision
region ⋄. These velocities, and consequently the result of the
integral, depend on t0 and z0. After transforming to Milne
coordinates and normalizing the total velocity, we obtain a
result uηtotðηsÞ for fixed τ. We solve Eq. (B4) analytically and
show the resulting curve in Fig. 10.
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