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Correlation functions are important probes for the behavior of quantum field theories. Already at tree-
level, the refined Gribov-Zwanziger (RGZ) effective action for Yang-Mills theories provides a good
approximation for the gluon propagator, as compared to that calculated by nonperturbative methods such as
lattice field theory and Dyson-Schwinger equations. However, the study of higher correlation functions of
the RGZ theory is still at its beginning. In this work we evaluate the ghost-gluon vertex function in Landau
gauge at one-loop level, in d ¼ 4 space-time dimensions for the gauge groups SU(2) and SU(3). More
precisely, we extend the analysis conducted in [1] for the soft-gluon limit to an arbitrary kinematic
configuration. We introduce renormalization group effects by means of a toy model for the running
coupling and investigate the impact of such a model in the ultraviolet tails of our results. We find that RGZ
results match fairly closely those from lattice simulations, Schwinger-Dyson equations and the Curci-
Ferrari model for three different kinematic configurations. This is compatible with RGZ being a feasible
theory for the strong interaction in the infrared regime.

DOI: 10.1103/PhysRevD.109.094039

I. INTRODUCTION

Since the proposal of quantum chromodynamics (QCD)
as the theory of strong interactions, a long path was
constructed to connect the fundamental degrees of free-
dom—quarks and gluons—to the observed physical states
and processes. At high energies, asymptotic freedom allows
for a perturbative approach that, supplemented by essential
nonperturbative information in particle distribution func-
tions and fragmentation phenomena, agrees with a plethora
of experimental output from high-energy particle colliders.
The infrared (IR) regime however is much less amenable.
Monte Carlo simulations that solve the Euclidean version
of QCD on a discretized space-time lattice have by now and
with great effort established that this non-Abelian theory
can quantitatively describe several hadronic observables

[2–5]. Nevertheless, the mechanism of color confinement is
still an open question, calling for the development of
continuum approaches and (semi)analytical descriptions
of the infrared behavior of strong interactions. Among the
well-developed continuum methods that try to tackle this
nonperturbative regime, Schwinger-Dyson equations [6–
15] stand out in different hadronic applications, but also the
functional renormalization group [16–21] and effective
models [22–26] have been employed with partial success.
Other approaches, such as the Curci-Ferrari (CF) model in
Landau gauge [27–37] and the screened massive expansion
[38–42] have successfully described some aspects of the IR
of Yang-Mills theory by employing perturbation theory.
Here we adopt another continuum approach to the

nonperturbative regime of Yang-Mills theories: the refined
Gribov-Zwanziger (RGZ) theory [43,44]. This framework,
as the other continuummethods, adopts a gauge-fixed setup
and is formulated from first-principles as a gauge path
integral modified in the infrared by the existence of Gribov
gauge copies. This idea follows the seminal work by
Gribov himself [45] and the development of local actions
attained by Zwanziger [46] and complemented by the
emergence of dimension two condensates [43,44,47]. For
comprehensive reviews, the reader is referred to [48–50]
and references therein.
The presence of this nonperturbative background stem-

ming from the Gribov horizon and the condensates seems
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to carry plenty of information from the interacting theory,
so that the remaining interaction corrections might be
supposed to be small, i.e., perturbative. Even at tree-level
(but also at 1-loop level, as discussed in [51]), the RGZ
gluon propagator is compatible with the deep IR behavior
observed on Landau-gauge Lattice QCD data [43], while
reducing to pure Yang-Mills at large energies [52] in a fully
self-consistent formulation that would include solving the
Gribov gap equation and the effective potential for the
different condensates. Gauge-parameter independence of
gauge-invariant quantities in this setup is under control
within linear covariant gauges through a nilpotent Becchi-
Rouet-Stora–Tyutin (BRST) symmetry, and the predictions
for the gluon propagator in general covariant gauges are
also compatible with available lattice results [53–56].
In this paper, the aim is to take a step forward in the

direction of establishing predictions of the RGZ theory by
including radiative corrections and confronting them with
lattice data and other nonperturbative approaches. This is
crucial for further understanding whether this theory can be
a consistent model of infrared Yang-Mills and eventually
QCD. One-loop corrections to the RGZ gluon propagator
have been recently reported in [51], while a corrected
propagator for a scalar field coupled to the RGZ action has
been studied in [57]. Previous results on the vertices of the
(R)GZ action in the Landau gauge may be found in
Ref. [58]. Here, in particular, we compute the general
kinematics of the ghost-gluon vertex at one loop order
within the RGZ framework, extending previous work on
the soft gluon limit of the same correlation function [1].
The present study enables the investigation of the role
played by auxiliary fields in quantitative results in RGZ. In
this specific correlation function, we show that the con-
tribution of auxiliary fields, in the form of new vertices and
mixed propagators, represents a smaller effect—less than
10% percent—as compared to that of the presence of
nonzero pole masses for the gluon. Moreover, we include
running effects via an infrared model, with a freezing
coupling constant. Even though this is not self-consistently
obtained within RGZ, this may be a reasonable approxi-
mation, because of the presence of the massive parameters
from the horizon and the condensates. Overall we show that
the RGZ results are fully compatible with available lattice
data for SU(2) and SU(3), as well as other continuum
approaches, such as the infrared-safe Curci-Ferrari model
in Landau gauge [29,35] and the Dyson-Schwinger equa-
tions [15].
This paper is organized as follows. In Sec. II, the

formalism of the refined Gribov-Zwanziger framework is
presented. In Sec. III, the ghost-gluon vertex is defined and
its general structure in the RGZ theory is discussed. Our
computation of generic momentum configurations of the

one-loop ghost-gluon vertex is presented in Sec. IV, includ-
ing the IR running coupling model adopted. Section V
collects our results along with the corresponding analysis
and comparisons with alternative approaches. In Sec. VI we
discuss the potential influence of the IR running coupling
model on the ultraviolet (UV) tails of our results. We have
included perspectives and final remarks in Sec. VII.

II. THE REFINED GRIBOV-ZWANZIGER ACTION
IN LANDAU GAUGE

The Gribov-Zwanziger theory is a framework for making
sense of the gauge fixed Yang-Mills theory in the non-
perturbative regime. It grew from Gribov’s observation that
gauge fixing in the Landau Gauge fails in the strongly
coupled regime [45,46] (see also [48–50] for reviews), in the
sense that gauge copies still exist after the fixing. These are
called Gribov copies and they appear in fact in any covariant
gauge. The solution proposed by Gribov was to restrict the
integration region of the gauge field path integral to the
neighborhood containing the perturbative vacuum and
bounded by the field configurations associated with the first
Gribov copies, called the Gribov horizon. In the Landau
gauge ∂μAa

μ ¼ 0 the Gribov horizon is defined by the set of
fields Aa

μ for which the equation MabðAÞαb ¼ 0 has a
solution, where

MabðAÞð•Þ ¼ −δab∂2ð•Þ þ gfabc∂μðAc
μ•Þ: ð1Þ

stands for the Faddeev-Popov operator in the Landau gauge.
Zwanziger [46] was able to recast Gribov’s construction

in the form of an effective theory whose restriction to the
Gribov horizon is implemented at the level of the action.
The resulting action is known as the nonlocal Gribov-
Zwanziger action and defined in the Landau gauge in
dimension D by

SnlGZ ¼
Z

dDx

�
1

4
Fa
μνFa

μν þ iba∂μAa
μ − c̄aMðAÞabcb

�

þ γDHðAÞ − γDVDðN2 − 1Þ ð2Þ
where γ has dimension of mass, V is the space-time volume
(formally infinite) and HðAÞ is known as the horizon
function and given by

HðAÞ¼ g2
Z

dDp
Z

dDq½fabdÃd
μð−pÞðM−1ÞbcpqfcaeÃe

μðqÞ�

ð3Þ
The mass scale γ is not arbitrary, but fixed by a self
consistent equation known as the gap equation, which can
be written as a condition on a vacuum condensate. Defining

Zðλ̃Þ ¼
Z

DADbDc̄Dce−
R

dDxð1
4
Fa
μνFa

μνþiba∂μAa
μ−c̄aMðAÞabcbÞþλ̃HðAÞ−λ̃VDðN2−1Þ ð4Þ
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The gap equation reads

∂Zðλ̃Þ
∂λ̃

����
λ̃¼γD

¼ 0 ⇒ hHðAÞi ¼ VDðN2 − 1Þ: ð5Þ

The theory as it is is highly non-local due to explicit
expression of HðAÞ. In order to have a workable quantum
field theory we need to put the action in a local form. This
entails the introduction of new, auxiliary fields. We
note that

Z
DφDφ̄DωDω̄ e−

R
d4xðφ̄ac

μ MðAÞabφbc
μ −ω̄ac

μ MðAÞabωbc
μ þigγ

D
2 fabcAa

μðφbc
μ þφ̄bc

μ ÞÞ ∼ e−γ
DHðAÞ ð6Þ

where the symbol ∼ means “up to a prefactor” and ðφ; φ̄Þ
are complex bosonic fields and ðω; ω̄Þ are fermionic fields.
Therefore we obtain the local formulation as

ZGZ ¼
Z

DADc̄DcDbDφ̄DφDω̄Dω e−SGZ ð7Þ

where

SGZ ¼
Z

dDx

�
1

4
Fa
μνFa

μν þ iba∂μAa
μ − c̄aMðAÞabcb

�

þ
Z

dDxðφ̄ac
μ MðAÞabφbc

μ − ω̄ac
μ MðAÞabωbc

μ Þ

þ
Z

dDxðigγD
2fabcAa

μðφbc
μ þ φ̄bc

μ Þ − γDDðN2 − 1ÞÞ

ð8Þ

and γ is such that it satisfies the gap equation (5), which
now reads

ghfabcAa
μðφbc

μ þ φ̄bc
μ Þi ¼ γ

D
2DðN2 − 1Þ ð9Þ

where translation invariance of the vacuum was used
to factor out the volume

R
dDxhfabcAa

μðφbc
μ þ φ̄bc

μ Þi ¼
VhfabcAa

μðφbc
μ þ φ̄bc

μ Þi.
The vacuum defined by the gap equation is unstable and

favors the formation of new condensates [43] that are
related to mass scales of the gauge fields hA2i ∼m2 and
auxiliary fields hϕ̄ϕi ∼ μ2. The incorporation of these
condensates in the effective action formulation leads to a
modified theory known as the refined Gribov-Zwanziger
theory, defined by

SRGZ ¼
Z

dDx

�
1

4
Fa
μνFa

μν þ iba∂μAa
μ − c̄aMðAÞabcb

�

þ
Z

dDxðφ̄ac
μ MðAÞabφbc

μ − ω̄ac
μ MðAÞabωbc

μ Þ

þ
Z

dDxðigγD
2fabcAa

μðφbc
μ þ φ̄bc

μ Þ− γDDðN2 − 1ÞÞ

þ
Z

dDx
m2

2
Aa
μAa

μ þ
Z

dDxM2ðφ̄bc
μ φbc

μ − ω̄bc
μ ωbc

μ Þ:

ð10Þ

It is worth pointing out the remarkable fact discovered in
[55] that it is possible to recast this theory making it
suitable for any linearly covariant gauge, so that the
resulting RGZ theory can be made BRST invariant. This
is done by replacing the gauge field A by a gauge invariant
composite field Ah [55,59]

Ah
μ ¼ h†Aμhþ i

g
h†∂μh; ð11Þ

with

h ¼ eigξ
aTa ≡ eigξ; ð12Þ

where ξa is the Stueckelberg field discussed in [53–
56,59,60]. One also needs to impose a transversality
constraint on Ah,

∂μA
h;a
μ ¼ 0; ð13Þ

so that the h field is not really independent, but is an
auxiliary field. This leads to a consistent renormalizable
and BRST invariant formulation. This enlarged formulation
reduces to the Landau gauge if ξ ¼ 0. In this work we will
only consider the Landau gauge.

III. THE THREE-POINT GHOST-GLUON
CORRELATION FUNCTION

Let us now start discussing the ghost-gluon correlation
function and establish some notation. We first make some
general remarks about the connected gluon-antighost-ghost
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three-point function in the RGZ theory and how the mixed
propagators affect its building blocks. Next, for complete-
ness, we quote the results obtained in [1] for the soft-gluon
limit. Our original results for the gluon-antighost-ghost
correlation function for arbitrary momenta are left for the
next section.

A. General structure of the Ac̄c vertex

The relevant Feynman rules for the calculation of the
ghost-gluon vertex at one-loop order can be derived from
the action (10) and are listed in Appendix A.
With these rules at hand, one can calculate the connected

correlation function

hAa
μðkÞc̄bðpÞccðqÞiq¼−p−k

¼ δ3Zc½JA; Jc̄; Jc�
δðJĀÞaμðkÞδJbc̄ðpÞδJccðqÞ

����
q¼−p−k; Ji¼0

ð14Þ

at one-loop order, where Zc is the generator of connected
correlation functions and Ji (i ¼ c̄; c; A) are external

sources linearly coupled to the fields i. As usual, the
sources are taken to zero at the end of the calculation.
Before proceeding, let us remark that since theRGZaction

contains bilinear couplings between fields, the theory con-
tains mixed propagators, such as hAφi and hAφ̄i. Therefore,
the relation between connected and 1PI functions has to take
suchmixed propagators into account. This ismade explicit in
the Feynmandiagrams of Fig. 1. Suchmixedpropagators and
vertices involving Zwanziger’s auxiliary fields φ and φ̄ as
well as their fermionic counterparts ω and ω̄, arise as a
consequence of the local formulation of the Gribov horizon.1

We give further details for the interested reader in
Appendix B.
Since the tree-level mixed propagator is such that

hAa
μðpÞφbc

ν ð−pÞi

¼ −igγ2fabc

p4 þp2ðm2 þM2Þ þm2M2 þ 2Ng2γ4
P⊥
μνðpÞ; ð15Þ

the one-loop connected function (14) can then be decom-
posed as2

hAa
νðkÞc̄bðpÞccðqÞi ¼ GðpÞGðqÞDAAðkÞP⊥

μνðkÞ
�
ΓAa

μ c̄bccðk; p; rÞ −
2igγ2fade

k2 þM2
Γc̄bccφde

μ
ðk; p; rÞ

�
q¼−p−k

; ð16Þ

where

FIG. 1. Feynman diagram expansion up to one-loop order for the ghost-gluon vertex in the refined Gribov-Zwanziger theory. Dashed
lines represent ghosts and antighosts, while the curly lines stand for gluons. Full simple and double lines, that only appear in mixed
propagators, correspond to the auxiliary fields φ and φ̄, respectively. Of course, vertices are evaluated at tree-level order by employing
the expressions provided in Appendix A. Note that as for the diagrams (IV.1) and (IV.2) the external leg involving the gluon corresponds
to a mixed propagator of the form hAφi. The roman numbers identifying the one-loop diagrams will be used as reference in the results
section and in the appendices. The diagrams were generated by means of the JAXODRAW interface [61].

1Another possible formulation of the theory would include nonlocal, momentum-dependent vertices instead of the auxiliary fields.
However, for the sake of using standard quantum field theory techniques, we employ the local version of the theory.

2This expression has already been derived in [1]. However, the result showed here differs from it by a factor of (-2i) in the coefficient
of Γc̄bccφde

μ
as a consequence of a different choice for the Feynman rules. Of course, this is just a matter of convention and does not impact

on the evaluation of the vertex function.
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P⊥
μνðpÞ ¼ δμν −

pμpν

p2
ð17Þ

is the transverse projector, and the relevant 1PI functions are

ΓAa
μ c̄bccðk; p; rÞ ≔

δ3Γ
δAa

μð−kÞδc̄bð−pÞδccð−qÞ
ð18Þ

and

Γc̄bccφde
μ
ðk; p; rÞ ≔ δ3Γ

δc̄bð−pÞδccð−qÞδφde
μ ð−kÞ : ð19Þ

Note the presence of the Γc̄cφ and Γc̄cφ̄ vertex functions
in the RGZ theory, which are zero at tree-level order. In the
case of Γc̄cφ its first nontrivial terms are given by diagrams
(IV.1) and (IV.2) of Fig. 1, where the external leg involving
the gluon field corresponds to a propagator of the type hAφi
connected to a φ̄φA tree level vertex. In contrast, the vertex
functions Γc̄cω and Γc̄cω̄ do not contribute to the ghost-
gluon vertex due to the absence of mixed propagators of the
type hAωi within the RGZ theory. Notice also that, since
Γc̄cφ ¼ Γc̄cφ̄, in Fig. 1 we have included the diagrams
associated with the former quantity only. The contribution
of Γc̄cφ̄ to hAa

νðkÞc̄bðpÞccðqÞi is introduced by multiplying

the contribution of Γc̄cφ by a factor of two, as can be
observed in Eq. (16).
The tensorial structure of the ghost-gluon 1PI vertex

function is given by

ΓAa
μ c̄bccðk;p;rÞ¼−igfabc½pμB1ðk;pÞþkμB2ðk;pÞ�; ð20Þ

where we adopt the same notation as in [15] and consider
all momenta as incoming. At tree-level, the scalar structure
functions are B1ðk; pÞ ¼ 1 and B2ðk; pÞ ¼ 0.
On the other hand, the contraction of the Γφc̄c function

with the antisymmetric color structure constant tensor can
be decomposed as

fadeΓc̄bccφde
μ
ðk; p; rÞ ¼ gfabcðpμC1ðk; pÞ þ kμC2ðk; pÞÞ

þ gdabcðpμC0
1ðk; pÞ þ kμC0

2ðk; pÞÞ
ð21Þ

Since this combination must be antisymmetric in the color
indices b and c (due to the fact that the ghost fields are
Grassmannian), the coefficient of the totally symmetric
tensor dabc must vanish identically, i.e., C0

1 ¼ C0
2 ¼ 0. As a

result, we may write the one-loop connected three-point
function as

hAa
μðkÞc̄bðpÞccðqÞi ¼ −igpνfabcGðpÞGðpþ kÞDAAðkÞP⊥

μνðkÞ
�
B1ðk; pÞ þ

2gγ2

k2 þM2
C1ðk; pÞ

�
; ð22Þ

where the longitudinal scalar functions B2 and C2 are no longer present (in the Landau gauge) due to the transversality of
the gluon propagator.
In order to make contact with results from Monte Carlo lattice simulations, let us consider the scalar quantity [62]

GCCAðp; kÞ≡ Γabc
ðAc̄c;treeÞ μðk; p;−k − pÞhAa

μðkÞc̄bðpÞccð−k − pÞi
Γabc
ðAc̄c;treeÞ μðk; p;−p − kÞΓabc

ðAc̄c;treeÞ νðk; p;−p − kÞPμνðkÞGðpÞGðpþ kÞDAAðkÞ

¼ B1ðk; pÞ þ
2gγ2

k2 þM2
C1ðk; pÞ; ð23Þ

which from now on we denote as the ghost-gluon vertex
dressing function.
There are clearly some differences between perturbative

YM and RGZ calculations of the vertex function. The first
of them is the modification of the gluon propagator brought
about by the restriction to the Gribov horizon, which
can be understood as the appearance of a pair of generally
complex conjugate poles. A second difference is the
presence of the tree-level Aφ̄φ vertex, which couples the
gluon to the auxiliary Zwanziger fields. This allows not
only diagrams with auxiliary fields running in the internal
loops, but also in the external legs, as long as the external
propagator is a mixed one like, for example, hAφi. This

possibility is realized in (16), giving rise to the contribu-
tions Γφc̄c and Γφ̄ c̄ c, not present in perturbative YM theory.
Furthermore, note that these mixed contributions only
appear from one-loop order onward, as such vertices are
absent from the classical action (10). Being finite, they do
not spoil the stability of the action, in agreement with the
quantum action principle [63]. Finally, we note that the
presence of such vertices involving the auxiliary Zwanziger
fields can be thought as effective momentum-dependent
gluonic interaction terms. This claim can be explicitly
shown to be true, starting from the tree level action, by
considering the nonlocal version of the RGZ theory (whose
action can be obtained from (10) by integrating out the
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Zwanziger auxiliary fields) and expanding the inverse of
the Faddeev-Popov operator in powers of the coupling. In
this regard, we note that it is reasonable to consider the
RGZ effective action not simply as an effective model with
propagators given by a ratio of polynomials, but rather a
renormalizable effective theory with nontrivial gluonic
propagators and self-interactions, which are related to each
other.
As a final remark, let us note that all diagrams contrib-

uting to the ghost-gluon vertex are finite in the RGZ theory,
just as in the perturbative Yang-Mills theory. In fact, the
mixed propagators present in diagrams III and IV make the
diagrams even more ultraviolet convergent than the usual
YM diagrams I and II. This can be easily seen from the
form of the hAφi propagator (15).

B. The soft gluon limit

The calculation of the ghost-gluon vertex for any
momentum requires the calculation of the diagrams shown

in Fig. 1. Since this calculation is rather long to be
performed manually, in a previous work some of us
considered the soft-gluon limit of ΓAc̄c, i.e., the limit in
which the gluon momentum k → 0 [1].
In the soft gluon limit, each diagram takes a simplified

form. Moreover, diagrams IV.1 and IV.2 vanish. In reality,
as for the soft gluon limit, these contributions vanish at all
orders of perturbation theory. In the case of Γc̄bccφde

μ
, this is

due to the derivative nature of the φφ̄A vertex and the
transversality of the gluon propagator, as well as all
propagators involving the φ field (see Appendix A).
This property could also be inferred by looking at the
function Γc̄bccφ̄de

μ
which is identical to Γc̄bccφde

μ
. As Γc̄bccφ̄de

μ
is

always proportional to the momentum of the external
gluon, it vanishes as this momentum goes to zero.3

In this limit, the one-loop correction for the vertex, which
has been explicitly calculated in [1], reads

½Γð1Þ
Ac̄cð0; p;−pÞ�abcμ ¼ ig3

Nfabc

2

�
RþJμðaþ;pÞ þ R−Jμða−;pÞ þ 2R2þKμðaþ; aþ;pÞ þ 2R2

−Kμða−; a−;pÞ

þ4RþR−Kμðaþ; a−;pÞ þ
N
2

�
gγ2

a2þ − a2−

�
2

½Kμðaþ; aþ;pÞ þ Kμða−; a−;pÞ

− 2Kμðaþ; a−;pÞ�
�
; ð24Þ

where

a2þ ≡m2 þM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

;

a2− ≡m2 þM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

;

with λ4 ≡ 2Ng2γ4, and the integral

Jμðm1;pÞ≡
Z

ddq
ð2πÞd

1

q2
1

q2 þm2
1

p2q2 − ðp · qÞ2
½ðq − pÞ2�2 ðq − pÞμ;

ð25Þ

is related to diagram (I) while

Kμðm1; m2;pÞ≡
Z

ddq
ð2πÞd

1

ðqþ pÞ2
1

q2 þm2
1

1

q2 þm2
2

×

�
q2p2 − ðp · qÞ2

q2

	
qμ ð26Þ

appears in diagrams II and III.4 The incoming antighost
momentum is given by p. Therefore, the ghost momentum
is −p, since k ¼ 0 in the soft-gluon limit. The massive
parameters −a2� are the, generally complex, poles of the
RGZ gluon propagator (A1) andR� are their corresponding
residues. It is worth pointing out that the last terms in
eq. (24) come from diagram III in Fig. 1 which is absent in
standard YM theories, being proportional to the Gribov
parameter.
As a last remark, let us note an important feature of the

ΓAc̄c vertex function in the RGZ theory: it explicitly
respects the so-called Taylor kinematics, i.e.,

ðΓAc̄cÞabcμ ðp; 0;−pÞ ¼ 0; ð27Þ

3In both cases of Γc̄bccφde
μ
and Γc̄bccφ̄de

μ
we are considering loop

corrections to be regular as k → 0. This is indeed the case of the
RGZ framework, owing to the fact that the parametersm,M and γ
act as natural IR regulators of the theory.

4Analytic expressions of Jμðm;pÞ and Kμðm1; m2;pÞ are
provided in Appendix C.
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and the so-called nonrenormalization theorem of the ghost-
gluon vertex

ðΓAc̄cÞabcμ ð−p; p; 0Þ ¼ −igfabcpμ; ð28Þ

which are the same in the RGZ framework as in perturba-
tive YM theory [64]. These are direct consequences of the
Ward identities of the action (10).

IV. THE ONE-LOOP RGZ GHOST-GLUON
VERTEX FOR GENERIC MOMENTUM

CONFIGURATIONS

A. Feynman diagrams

It is clear from Eq. (23) that the ghost-gluon vertex
dressing function relates to two 1PI structures. Diagrams
I–III from Fig. 1 contribute to ΓAc̄c, while the fourth
diagram contributes to Γφc̄c.
Their expressions in terms of the Feynman rules from

Appendix A, following the numbering from Fig. 1, are

DðIÞ ¼ −ig3
N
2
fabcpνðpþ kÞρ

Z
ddq
ð2πÞd qμP

⊥
νρðqþ pÞDAAðqþ pÞDc̄cðq − kÞDc̄cðqÞ;

DðIIÞ ¼ −ig3
N
2
fabcpηðpþ kÞω

Z
ddq
ð2πÞd ð−2kρδμν þ 2kνδμρ þ ð2q − kÞμδνρÞP⊥

νηðqÞP⊥
ρωðq − kÞ

×DAAðqÞDAAðq − kÞDc̄cðqþ pÞ;

DðIIIÞ ¼ ig3
N2

4
fabcðgγ2Þ2pνðpþ kÞρ

Z
ddq
ð2πÞd ð2q − kÞμP⊥

ρηðq − kÞP⊥
νηðqÞDAφðq − kÞDAφðqÞDc̄cðqþ pÞ;

fadeDðIV:1Þ ¼ ig3
N2

4
fabcðgγ2Þpηkωðpþ kÞσ

Z
ddq
ð2πÞd P

⊥
σμðq − kÞP⊥

ηωðqÞDAφðq − kÞDAAðqÞDc̄cðqþ pÞ;

fadeDðIV:2Þ ¼ −ig3
N2

4
fabcðgγ2Þpσkωðpþ kÞη

Z
ddq
ð2πÞd P

⊥
σμðqÞP⊥

ηωðq − kÞDAφðqÞDAAðq − kÞDc̄cðqþ pÞ; ð29Þ

where DXYðqÞ designates the propagator of momentum q
between the fields X and Y.
The above Feynman integrals depend on two external

momenta, p and k, and feature only one Lorentz index
which is not contracted, μ. As a result, all of them can be
expressed as Fðp2;k2;p ·k;M2;m2;λÞpμþHðp2;k2;p ·k;
M2;m2;λÞkμ, where F andH are scalar integrals. In the first
stage of our computation we found the corresponding
scalar integrals for each diagram5 and evaluated the color
factors by means of the COLORMATH package [65].
In a second stage, we reduced the scalar integrals to one-

loop master integrals [66] of the type

Ax ≡
Z
q
Gxðq2Þ; ð30Þ

Bxyðp2Þ≡
Z
q
Gxðq2ÞGyððp − qÞ2Þ; ð31Þ

Cxyzðp2; k2; p · kÞ≡
Z
q
Gxðq2ÞGyððp − qÞ2ÞGzððk − qÞ2Þ;

ð32Þ

where

Z
q
≡
Z

16π2μ2ϵ
ddq
ð2πÞd ; ð33Þ

with ϵ ¼ 4−d
2

≥ 0 and

Gxðq2Þ≡ 1

q2 þ x
; ð34Þ

where x is a “mass” squared (which may be complex, in our
case). In the case of the RGZ theory x∈ f0;M2; a2þ; a2−g.
The mass dimension of the gauge coupling, defined as μϵ, is
absorbed into the definition of the master integrals. More
specifically, as the dressing function GCCA is proportional
to g2, we include the respective mass dimension, μ2ϵ, in the
definition given by Eq. (33).
We implemented the reduction to master integrals using

an algorithm in Mathematica based on the FIRE package
[67]. The reduction for each diagram is presented in a
supplementary material [68]. The analysis is performed for
an arbitrary number of colors N with the purpose of
comparing with alternative approaches, both for the SU(2)
and SU(3) gauge groups.
Once the reduction is finished we need to compute the

one-loop master integrals. For both A and B there are

5The contributions for the dressing function GCCA come from
the pμ component entirely.
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well-known analytic results (see, for instance, Ref. [69]). In
the case of the master integral C, when needed, we
evaluated it numerically.
We note here that since all one-loop diagrams are finite

no renormalization factors are needed.

B. Kinematic configurations

Concerning the particular kinematic configurations we
will address in this article, it is convenient to recall that
three-point correlation functions depend on two external
momenta. Because of translational and rotational invari-
ance such dependence can be described by means of three
independent kinematic variables. We choose the magni-
tudes of the antighost and gluon momentum, p and k, along
with the scalar product p · k.
In this paper we aim at extending the analysis of the ghost-

gluonvertexwithin theRGZ framework, initially explored in
[1], beyond the soft gluon limit, to include arbitrary kin-
ematic configurations. We focus on the specific kinematic
setups for which we have access to lattice simulations,
namely the symmetric and orthogonal configurations.
The symmetric configuration is characterized by equal

momentummagnitudes for the external antighost and gluon
legs, p ¼ k, forming an angle of θ ¼ π=3. On the other
hand, the orthogonal configuration refers to external
momenta perpendicular to each other, θ ¼ π=2. Within
this work, our reference to the orthogonal configuration
includes the additional condition p ¼ k.

C. Numerical values of the RGZ parameters

Within the RGZ framework, there are four parameters:
M and m, that are mass parameters associated with
dimension two condensates, the Gribov parameter γ and
the gauge coupling g. For the sake of convenience, we
introduce the parameter λ4 ¼ 2Ng2γ4, which we will
employ in place of γ.
In principle, the three massive parameters could be

determined self-consistently using the Gribov gap equation
and minimizing the effective potential of the theory with
respect to two condensates. Here, however, we shall fix these
parameters using lattice input. The parametersM,m and λ at
tree-level were determined for SU(2) in [70] and for SU(3) in
[71], by fitting the lattice data of the gluon propagator from
YM theory with an analytic expression of the form:

Dðp2Þ ¼ p2 þ a
p4 þ bp2 þ c

; ð35Þ

where a, b, and c are constants. This analytic form coincides
with the tree-level gluon propagator of the RGZ framework,

Dðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þM2m2 þ λ4
; ð36Þ

allowing for the extraction ofm,M, and λ from Eq. (35). The
obtained values are displayed in Table I.

D. Toy model of the running coupling

The gauge coupling g is to be determined by fitting the
RGZ ghost-gluon vertex to available lattice simulations. To
that end, it is useful to introduce the relative error between
the RGZ output and the lattice data,

χ2 ≡ 1

N2
latt

XNlatt

i

�
GRGZðpiÞ −GlattðpiÞ

GlattðpiÞ
�

2

; ð37Þ

where Nlatt is the number of lattice data points, GRGZ
and Glatt refer to the RGZ and the numerical results,
respectively.
First, we simply investigate at a qualitative level the

variation of the dressing function GCCA as we change fixed
values of g. As we will see, this is enough to reproduce
either the IR or the UV but not both regimes at the same
time. Most likely this is due to the presence of large
logarithms in the UV domain, which spoils the validity of
perturbation theory. This problem can be overcome by
introducing the running of the various parameters of the
RGZ framework and choosing a renormalization scale of
the same order of the external momentum: μ ∼ p. To
achieve this we would need to evaluate the two-point
functions of the theory by introducing an infrared-safe
scheme, of the type introduced in [29] for instance.
However, this sort of approach exceeds the scope of the

present article. Instead, we keep the constant values
provided in table I and make use of a toy model for the
renormalization group (RG) flow of the gauge coupling,
motivated by the standard Yang-Mills one loop β-function
in the modified minimal subtraction scheme,

g2ðμÞ ¼ g20

1þ 11
3
N g2

0

16π2
log

�
μ2þΛ2

Λ2

� ; ð38Þ

and choose μ ¼ p. The parameter Λ is introduced to
regularize the IR6 by freezing the running of the gauge
coupling for momentum scales much smaller thanΛ, where
we expect the effects of the renormalization flow to be less

TABLE I. RGZ parameters fitted from lattice results for SU(2)
[70] and SU(3) [71].

Gauge group M2 (GeV2) m2 (GeV2) λ (GeV)

SU(2)—Ref. [70] 2.51 −1.92 1.52
SU(3)—Ref. [71] 4.47 −3.77 2.04

6The Λ parameter is crucial so that the toy model is Landau
pole free.
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relevant. The fits of GCCA from the RGZ framework to
lattice data are carried out by selecting the parameters g0
and Λ that minimize χ.

V. RESULTS

In this section we show the results for the ghost-gluon
vertex dressing function, GCCA, for both the gauge groups
SU(2) and SU(3) in four spacetime dimensions. We
compare our results with lattice simulations and outcomes
from the CF model and DSE. Additionally, we show the
contributions of each Feynman diagram to the final results.

A. SU(2)

We begin by analyzing the ghost-gluon vertex dressing
function GCCA for the SU(2) gauge group in the symmetric
and orthogonal kinematic configurations, as well as in the
case of the soft gluon limit. The latter case was previously
investigated in [1]. However, for completeness and because
the analysis we perform in this article differs slightly from
the one developed in [1], we include those results here
as well.

1. Fitting the ghost-gluon vertex dressing function

In Fig. 2 we see the dressing function GCCA for various
fixed values of the gauge coupling g at one-loop order from
the RGZ framework. As for the symmetric and orthogonal
kinematic configurations it is clear that, although we find

values of the coupling that show a very good agreement
with lattice data either at the IR (pink curve) or the UV
(purple curve), we are unable to reconcile both regions
simultaneously. This is reasonable, as we are not taking into
account the RG effects.
Interestingly, in the case of the soft gluon limit it seems

that it is possible to describe the lattice data for the whole
range of momenta with a constant value of gauge coupling
(red curve). The quality of the fit, though, must be taken
carefully due to the relatively large dispersion of the lattice
data, specially at low momenta.
To investigate to which extent the RG flow is capable of

reducing the discrepancy between the lattice data and the
RGZ fit, we incorporate the toy model of the running
coupling shown in Eq. (38). The level curves illustrating the
dependence of the relative error defined in Eq. (37) on the
parameters g0 and Λ are depicted in Fig. 3. We notice that
the regions minimizing χ are very similar for the symmetric
and orthogonal configurations. These regions are also
compatible with the level curves of χ observed in the soft
gluon limit, though the area of minimum error appears
more extensive. This discrepancy could stem from a greater
uncertainty and dispersion of the lattice data in the soft
gluon limit compared to the data from the symmetric and
orthogonal setups.
The parameters that minimize χ in each kinematic

configuration are displayed in Table II. Additionally, we
incorporate the values of g0 and Λ that minimize the

FIG. 2. The SU(2) scalar function GCCA as a function of the antighost external momentum in three distinct configurations: the
symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom) for various values of a fixed gauge coupling. Blue and black
points refer to lattice data extracted from Refs. [72,73], respectively.
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deviation between the lattice data and the RGZ output
across all kinematic configurations simultaneously. These
values are computed by minimizing the collective error,
χjoint, which we define as

χ2joint ≡
χ2sym þ χ2orth þ χ2soft

3
; ð39Þ

where χsym, χorth, and χsoft refer to the relative error of the
symmetric, orthogonal, and the soft gluon configurations,
respectively.
The parameters that minimize χjoint are g0 ¼ 3.90 and

Λ ¼ 2.75 GeV. Using these parameter values, we collect in
Table III the χ values for each kinematic configuration,
which indicate that the deterioration of the individual fits
for each configuration is minimal when performing the
collective fit. The corresponding plots are shown in Fig. 4.
We observe that the fit of Fig. 4 exhibits a strong

agreement with lattice simulations across all kinematic
configuration. However, the UV tails of the RGZ curves
consistently fall above the lattice data points. This discrep-
ancy could arise from the larger number of lattice points in
the IR region compared to the UV domain, emphasizing the
agreement between the RGZ result and lattice data in the

low momentum zone at the expense of deteriorating the fit
in the UV.
In Fig. 4 we include also the results of the Curci-Ferrari

(CF) model in Landau gauge at one- and two-loop
accuracy. The outcomes from both frameworks, CF and
RGZ, are consistent. Nonetheless, within this analysis,
comparing both approaches must be done with care due to
two reasons. First, concerning the symmetric and orthogo-
nal configurations, the CF curves of GCCA are pure
predictions of the model, while the RGZ curves represent
a global fit of the lattice data. This renders the comparison
fairer in the case of the soft-gluon limit, where the results
from the CF approach come from a global fit of the two-
point functions andGCCA. Second, due to the complexity of
the RGZ approach, we employ a simplified model for the
RG flow of the gauge coupling, disregarding the RG effects
of other parameters of the theory, which could potentially
alter the final result.

2. Contribution of each diagram to the GCCA fit

We now examine the contribution of each diagram to the
full result of GCCA in the symmetric and orthogonal
configurations, as well as in the soft-gluon limit. The
result is presented in Fig. 5, where we follow the numbering
from Fig. 1. As for the quantity we denote as diagram IV, it

FIG. 3. Level curves of the relative error χ, defined in Eq. (37), as a function of the parameters Λ and g0, for the symmetric (left) and
orthogonal (center) configurations as well as the soft gluon limit (right) for the SU(2) case.

TABLE II. Values of the parameters g0 and Λ that minimize the
discrepancy between the RGZ outcome of the function GCCA and
the corresponding lattice data for various kinematic configura-
tions in the SU(2) case. The last row refers to the values that
minimize the joint error χjoint, defined in Eq. (39).

SU(2) fits for different configurations

Kinematic configuration g0 Λ (GeV) χ

Symmetric 3.90 2.40 0.0029
Orthogonal 3.85 2.90 0.0028
Soft gluon 3.95 3.90 0.0044
Symþ Orthþ Soft 3.90 2.75 0.0036

TABLE III. Values of the parameters χ of each kinematic
configuration corresponding to the parameters that minimize the
joint error χjoint, g0 ¼ 3.90 and Λ ¼ 2.75 GeV, in the SU(2) case.

SU(2) joint fit

Kinematic configuration χ

Symmetric 0.0031
Orthogonal 0.0028
Soft gluon 0.0046
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corresponds to the full contribution 2gγ2fade

k2þM2 Γc̄bccφde
μ
ðk; p; rÞ,

see Eq. (16).
We note that genuinely RGZ diagrams, III and IV,

represent a small contribution at one-loop order as com-
pared to the largest contribution of diagram II and, to a
lesser degree, diagram I. This is in agreement with the
results obtained by CF model [27–37] where only QCD-
like diagrams with massive gluons are taken into account.
Interestingly, as for the symmetric and orthogonal con-
figurations, the effect of diagrams III and IV is a reduction
of the peak of GCCA, at around p ¼ 1.5 GeV. In the case of
the soft gluon limit, we observe that the contributions
coming from diagrams I and II are of similar order whereas
the contribution of diagram IV vanishes, as already pointed
out in Sec. III B.

B. SU(3)

In this section we replicate the analysis performed for the
SU(2) gauge group but for the case of the SU(3) gauge
group. Yet, the conclusions derived from this analysis will
be more restricted compared to the SU(2) case due to the
lack of lattice data available in kinematic configurations
other than the soft gluon scenario.

In what follows we present results for the same con-
figurations analyzed in the previous section, i.e., the
symmetric and orthogonal configurations as well as in
the soft gluon limit. Although the only configuration with
available lattice data is the latter, the other configurations
are valuable for comparison with alternative approaches in
the continuum.

1. Fitting the ghost-gluon vertex dressing function

In Fig. 6 we see GCCA as a function of the antighost
momentum for the symmetric and orthogonal configura-
tions as well as in the soft gluon limit. Similarly to what we
observed in the case of the SU(2) gauge group, as for the
soft gluon limit it seems that we are capable of reproducing
the lattice data by using a fixed value of the gauge coupling
g, as was already pointed out in [1].
It is worth examining how the deviation between the

RGZ outcome and lattice data is modified as we change the
parameters Λ and g0 when using the simplified model
[Eq. (38)]. The level curves illustrating this dependence are
depicted in Fig. 7, displaying an error χ independent of the
scale Λ as long as the values of g0 remain moderate. This
reinforces our previous observation that, within the soft
gluon limit, the RGZ framework effectively reproduces

FIG. 4. The scalar function GCCA for the SU(2) case as a function of the antighost external momentum in three distinct configurations:
the symmetric (top left), orthogonal (top right), and the soft gluon limit (bottom). The red curve represents the RGZ fit of the lattice data
by using the toy model of Eq. (38) for the gauge coupling. The values of the parameters, Λ ¼ 2.75 GeV and g0 ¼ 3.9, are chosen to
minimize the joint relative error χjoint. Regarding the symmetric and orthogonal configurations, the blue curve is the prediction from the
CF model at one-loop order [29]. In the soft gluon limit, the CF results are global fits of the gluon and ghost propagators along with the
dressing function GCCA at one- and two-loop order [35]. Blue and black points refer to lattice data extracted from Refs. [72,73],
respectively.
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FIG. 5. Contribution of each diagram to GCCA for the SU(2) case in three distinct configurations: the symmetric (top left), orthogonal
(top right) and the soft gluon limit (bottom), using the gauge coupling described by Eq. (38). The values of the parameters, Λ ¼
2.75 GeV and g0 ¼ 3.90, are chosen to minimize the joint relative error χjoint. The convention of colors and line-styles in the orthogonal
and soft configurations is the same as the symmetric case. The red curve is the sum of all diagrams. The numbering of the diagrams is

provided in Fig. 1. Diagram IV refers to the full contribution 2gγ2fade

k2þM2 Γc̄bccφde
μ
ðk; p; rÞ.

FIG. 6. The scalar function GCCA for the SU(3) case as a function of the antighost external momentum in three distinct configurations:
the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom) for various values of a fixed gauge coupling. The lattice
data were extracted from the plots in [74] using WebPlotDigitizer [75]. We estimated the error of the extraction procedure to be
at most 0.8%.
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lattice data with a fixed value of g. Nevertheless, as we aim
to analyze the symmetric and orthogonal configurations as
well, which are likely sensitive to RG effects, in what
follows we continue employing the scale-dependent gauge
coupling defined by Eq. (38).

In analogy to our analysis for the SU(2) case, in order to
find the best fit to lattice data, we find the parameters Λ and
g0 that minimize the relative error χ. In the soft gluon setup,
the minimum of χ corresponds to Λ ¼ 0.70 GeV and
g0 ¼ 2.15, with a relative error of χ ¼ 0.0040. The result-
ing plots are depicted in Fig. 8.
We note that our results for GCCA are consistent with the

outcomes of the CF model [29,35] and DSE [15].
Furthermore, the RGZ fit shows a strong agreement with
simulations, resembling the results obtained with a fixed
value of the gauge coupling. Interestingly, while the UV
tails of the DSE and CF curves overlap in the UV, the UV
tails from the RGZ curves fall more rapidly in comparison.

2. Contribution of each diagram to the GCCA fit

To conclude this section, we investigate the contribution
of each diagram to ghost-gluon vertex dressing function,
which is illustrated in Fig. 9. Proceeding similarly to the
SU(2) case, the quantity we call diagram IV corresponds to
the full contribution 2gγ2fade

k2þM2 Γc̄bccφde
μ
ðk; p; rÞ, see (16).

We observe that in the case of the symmetric and
orthogonal configurations the behavior of GCCA is domi-
nated by diagram II, while the contribution of diagram I is
counterbalanced by the contributions of the genuine RGZ

FIG. 7. Level curves of the relative error χ, defined in Eq. (37),
as a function of the parameters Λ and g0, as for the soft gluon
limit in the SU(3) case.

FIG. 8. The scalar function GCCA for the SU(3) case as a function of the antighost external momentum in three distinct configurations:
the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom). The red curve corresponds to the RGZ fit of the lattice
data, by utilizing the toy model of Eq. (38) for the gauge coupling. Parameters Λ ¼ 0.70 GeV and g0 ¼ 2.15 were chosen to minimize
the joint relative error with the lattice data in the case of the soft gluon limit. Lattice data are extracted from [74]. We compare the results
with other approaches in the continuum. Specifically with GCCA obtained from DSE, considering the bare (DSE—I) and the dressed
three-gluon vertex (DSE—II) [15] and GCCA from the CF model at one- and two-loop order [29,35].
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diagrams III and IV. In the case of the soft gluon limit,
diagrams I and II both significantly contribute to the
function GCCA, whereas diagram IV vanishes, as explained
in Sec. III B. Overall, the relative weights of these con-
tributions do not significantly differ from the SU(2) case.

VI. INFLUENCEOF THE TOYMODELON THE UV
BEHAVIOR OF THE FUNCTION GCCA

As mentioned earlier, when comparing the UV tails of
the dressing function GCCA obtained from the RGZ
framework with other approaches, cf. Figs. 4 and 8, we
observe differences. Particularly striking is the observation
in the case of SU(3), where a simultaneous comparison
between the RGZ, the CF model and DSE results reveals a
convergence in the tails from the latter approaches, starting
from p ¼ 4 GeV onward. In contrast, the UV tails of the
curves from the RGZ framework decrease more rapidly. It
is legitimate then to ask for the potential causes of this
discrepancy in the UV. In this section we explore the extent
to which this difference may derive from the toy model of
the RG flow, as presented in Eq. (38), and its associated
parameters Λ and g0.
With that purpose we compare in Fig. 10 the running of

the gauge coupling employed for the CF prediction ofGCCA

at one-loop order in Figs. 4 and 8,7 denoted as gCFðμÞ, with
the running of the gauge coupling from Eq. (38), gtoyðμÞ,
with parameters Λ and g0, obtained from the fits for the
gauge groups SU(2) and SU(3). We observe that gCFðμÞ and
gtoyðμÞ differ at all scales and, although the difference tends
to diminish at high momenta, it is not negligible in the UV
region.
An interesting analysis involves assessing how the

differences among the UV tails of GCCA vary when we
minimize the discrepancy between gCFðμÞ and gtoyðμÞ in the
UV domain. For this purpose, it is convenient to introduce
the quantity χg;UV, as a way to estimate that discrepancy:

χ2g;UV ≡ Xpi¼10 GeV

pi¼6 GeV

�
gtoyðpiÞ − gCFðpiÞ

gCFðpiÞ
�

2

: ð40Þ

To carry out the summation we used uniform steps of
length Δp ¼ pnþ1 − pn ¼ 0.5 GeV. The parameters that
minimize χg;UV areΛ ¼ 1.05 GeV, g0 ¼ 6.75 for the SU(2)

FIG. 9. Contribution of each diagram to GCCA for the SU(3) case in three distinct configurations: the symmetric (top left), orthogonal
(top right) and the soft gluon limit (bottom), using the gauge coupling described by Eq. (38). Parameters, Λ ¼ 0.70 GeV and g0 ¼ 2.15,
are chosen to minimize the relative error χ in the soft gluon limit. The convention of colors and line-styles in the orthogonal and soft
configurations is the same as the symmetric case. The solid, red curve is the sum of all diagrams. The numbering of the diagrams is

provided in Fig. 1. Diagram IV refers to the full contribution 2gγ2fade

k2þM2 Γc̄bccφde
μ
ðk; p; rÞ.

7In this section, when discussing the running coupling of the
CF model for SU(2), we refer to the running coupling employed
for the symmetric and orthogonal configurations, which differs
from the one utilized in the soft gluon limit.
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gauge group and Λ ¼ 0.90 GeV, g0 ¼ 4.85 for SU(3).
These parameters lead to an excellent agreement between
gtoyðμÞ and gCFðμÞ in the UV, as is illustrated in Fig. 11
(black curve). Unfortunately, these values do not feature
good compatibility with the lattice data of GCCA.
To assess the potential for enhancing agreement between

the results from the CF model and DSE with the RGZ
framework without significantly compromising the IR
description of lattice data, we introduce the following
collective error

χ2g;GCCA ¼ 1

2
ðχ2g;UV þ χ2GCCAÞ; ð41Þ

where χGCCA is defined according to Eq. (39) and Eq. (37)
for the SU(2) and SU(3) gauge groups, respectively. The
quantity χg;GCCA takes into account both the discrepancy
between gCFðμÞ and gtoyðμÞ in the UV as well as the
discrepancy between the dressing function GCCA from the
RGZ theory and the corresponding lattice data.
The parameters Λ and g0, derived from minimizing

χg;GCCA , would in principle generate a gauge coupling

gtoyðμÞ that balances both the UV alignment with gCFðμÞ
and the consistency with lattice data across all momentum
scales. Such running coupling is also depicted in Fig. 11
(red curve). In the case of the SU(2) gauge group, we notice
an enhancement in the agreement in the UV region between
RGZ and CF/DSE. Notably, this improvement does not
imply a significant deterioration in the IR description. This
is evident when comparing Fig. 12 with Fig. 4.
In the case of SU(3), the minimization of χGCCA leads to a

running of the gauge coupling which is essentially constant.
This is consistent with the plots of Figs. 4 and 8, where a
fixed value of g was capable of describing the lattice data
for the entirety range of momentum. However, the afore-
mentioned running does not reduce the disagreement
between the results from the CF model and DSE with
the RGZ framework outcomes in the UV, being the quality
of the fits similar to the ones presented in Figs. 4 and 8. This
is reasonable, since we are essentially neglecting the
dependence of g with the scale. Still, the results for
SU(3) should be taken with care due to the dispersion of
lattice data in the soft gluon limit and the lack of data in
alternative kinematic setups.

FIG. 10. The running coupling gtoy and gCF for the SU(2) (left) and SU(3) (right) gauge groups. As for the toy model, the values of the
parameters are Λ ¼ 2.4, GeV, g0 ¼ 3.9 and Λ ¼ 0.70 GeV, g0 ¼ 2.15, for SU(2) and SU(3), respectively.

FIG. 11. The running coupling gtoy and gCF for the SU(2) (left) and SU(3) (right) gauge groups. The black curve corresponds to the
parameters that minimize χ2g;UV. These are Λ ¼ 1.05 GeV, g0 ¼ 6.75 and Λ ¼ 0.90 GeV, g0 ¼ 4.85, for SU(2) and SU(3) respectively.
The red curve corresponds to the parameters that minimize χg;GCCA . These are Λ ¼ 1.65 GeV, g0 ¼ 4.15 and Λ ¼ 5.05 GeV, g0 ¼ 1.85,
for SU(2) and SU(3) respectively.
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We can conclude that the specific toy model we
employed has an impact on the differences between the
RGZ framework and other approaches in the UV region.
However, these discrepancies probably have other sources
as well such as the neglect of the RG flow of the remaining
parameters of the theory and the specific choice of the
renormalization scheme.

VII. SUMMARY AND FINAL REMARKS

In this work we evaluated the one-loop ghost-gluon
correlation function within the RGZ framework for an
arbitrary kinematic configuration and investigated the role
of the running coupling. We performed the calculation for
the pure gauge theory in a four dimensional Euclidean
spacetime. With the purpose of comparing with other
approaches, we specifically focused on three distinct
kinematic configurations: the symmetric and orthogonal
configurations and the soft gluon limit.
This calculation is important since it serves as a bench-

mark to assess how well the RGZ framework describes the
behavior of YM theory in the low momentum regime. In
this sense this paper comes to complement previous
investigations on the two-point functions at tree-level order
[43,44] and the analysis of the ghost-gluon vertex in the
case of the soft-gluon limit at one-loop order [1].
The only parameter of the theory we used to fit our

results to the available lattice data for the ghost-gluon

vertex was the gauge coupling. All the other parameters
were extracted from Refs. [70,71], where they were
determined by fitting lattice results for the gluon propagator
using the RGZ tree level expression. This choice reduces
the number of free parameters to the minimum, making the
present analysis a more strict test of the RGZ framework.
As already pointed out in [1], as for the soft gluon limit

the results are compatible with lattice simulations for both
SU(2) [72,73] and SU(3) [74] by simply considering a
constant value of the gauge coupling, i.e., independent of
the momentum scale. However, this is not the case of the
symmetric and orthogonal configurations, where the
renormalization group effects seem to be significant.
Indeed, when introducing a toy model for the running of
the gauge coupling, our outcomes are quantitatively com-
patible with available lattice data.
Our results also display qualitative agreement with other

continuum approaches, specifically the dynamical DSE
solutions in two different truncation schemes [15] and the
RG-improved CF model [29,35]. Additionally, we show
that quantitative differences between the RGZ results and
alternative continuum approaches in the UV region can be
accounted for by the particularities of the model for the RG
flow of the gauge coupling.
Overall, these results support the RGZ theory as a valid

description of the infrared YM dynamics. There are several
ways, nevertheless, in which the present analysis can be
improved. A fully dynamical calculation of the two-point

FIG. 12. The scalar function GCCA as a function of the antighost external momentum in three distinct configurations: the symmetric
(top left), orthogonal (top right) and the soft gluon limit (bottom) in the case of the SU(2) theory. The gauge coupling is described by the
toy model of Eq. (38) with parameters that minimize χg;GCCA , Λ ¼ 1.65 GeV and g0 ¼ 4.15.
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functions of the RGZ framework, most likely in an infrared
safe scheme, would allow us to determine the running
parameters of the theory by fitting the two-point functions
to lattice data. Another potential study concerning this
correlation function could investigate its dependence on the
gauge parameter within the context of linear covariant
gauges, utilizing the BRST invariant version of the RGZ
action [55].
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APPENDIX A: RELEVANT FEYNMAN RULES
(LANDAU GAUGE)

Given its many fields and interactions, the RGZ theory
has a large number of propagators and vertices. However,
for the calculation of the ghost-gluon vertex at one-loop
level (and in the Landau gauge), only a few of them are
required. The Feynman rules corresponding to these
propagators and vertices are shown below.

1. Tree-level propagators

In order to calculate the ghost-gluon vertex function in
the refined Gribov-Zwanziger theory, only a subset of the
propagators of the theory are needed. These are

hAa
μðpÞAb

νð−pÞi ¼ δab
�

p2 þM2

p4 þ ðm2 þM2Þp2 þm2M2 þ 2Ng2γ4
P⊥
μνðpÞ

	
≡ δabP⊥

μνðpÞDAAðpÞ ðA1Þ

hAa
μðpÞφbc

ν ð−pÞi ¼ −igγ2fabc

p4 þ p2ðm2 þM2Þ þm2M2 þ 2Ng2γ4
P⊥
μνðpÞ ¼ −igγ2fabcP⊥

μνðpÞ
DAAðpÞ
p2 þM2

ðA2Þ

hAa
μðpÞφ̄bc

ν ð−pÞi ¼ −igγ2fabc

p4 þ p2ðm2 þM2Þ þm2M2 þ 2Ng2γ4
P⊥
μνðpÞ ¼ hAa

μðpÞφbc
ν ð−pÞi ðA3Þ

hc̄aðpÞcbð−pÞi ¼ 1

p2
δab ≡ δabDc̄cðpÞ ðA4Þ

where

P⊥
μνðpÞ ¼ δμν −

pμpν

p2
ðA5Þ

is the transverse projector, such that pμP⊥
μνðpÞ ¼ pνP⊥

μνðpÞ ¼ 0.
It is often convenient to write the DAA form factor as a sum of massive propagators, i.e.,

DAAðp2Þ ¼ p2 þM2

ðp2 þm2Þðp2 þM2Þ þ λ4
≡ Rþ

p2 þ a2þ
þ R−

p2 þ a2−
; ðA6Þ

with
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a2þ ¼ m2 þM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

;

a2− ¼ m2 þM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

;

Rþ ¼ m2 −M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p ;

R− ¼ −m2 þM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4λ4

p ¼ 1 − Rþ; ðA7Þ

with λ4 ¼ 2Ng2γ4.
Note that either the poles aþ and a− are complex, or the residues Rþ and R− have opposite signs (so that one of them is

negative). This property can be directly related to positivity violation of the gluon propagator in the RGZ theory.

2. Tree-level vertices

The only vertices needed for the computation of the ghost-gluon at one-loop in the RGZ theory are

tree½ΓAAAðk; p; qÞ�abcμνρ ¼ −
δ3Stree

δAa
μðkÞδAb

νðpÞδAc
ρðqÞ

����
Φ¼0

¼ igfabc½ðkν − qνÞδρμ þ ðpρ − kρÞδμν þ ðqμ − pμÞδνρ�;

tree½ΓAc̄cðk; p; qÞ�abcμ ¼ −
δ3Stree

δAa
μðkÞδc̄bðpÞδccðqÞ

����
Φ¼0

¼ −igfabcpμ;

tree½ΓAφ̄φðk; p; qÞ�abcdeμνρ ¼ −
δ3Stree

δAa
ρðkÞδφ̄bc

μ ðpÞδφde
ν ðqÞ

����
Φ¼0

¼ −igfabdδceδνρpμ: ðA8Þ

Note that, for higher orders in the perturbative expan-
sion, or for a general linear covariant gauge, or for other
correlation functions, extra correlators and vertices will be
needed.

APPENDIX B: ON THE RELATION BETWEEN
CONNECTED AND 1PI CORRELATION

FUNCTIONS IN THE PRESENCE OF MIXED
PROPAGATORS

Let us denote the generating functional of connected
correlation functions asW½J⃗�, where Ji are external sources
associated with the different elementary fields, and let Γ½ϕ⃗�
be the quantum action, that is, the generating functional of
1PI correlation functions. Using this notation, we start from
the well-known relation

δ2Γ½ϕ⃗�
δϕjδϕl

����
ϕ⃗¼Φ⃗½J⃗�

δ2W½J⃗�
δJlδJk

¼ −δjk ðB1Þ

Taking a further derivative with respect to the source Ji, one
finds

δ3W½J⃗�
δJiδJpδJk

¼ −
δ2W½J⃗�
δJpδJj

�
δ3Γ½ϕ⃗�

δϕjδϕlδϕm

����
ϕ⃗¼Φ⃗½J⃗�

�

×
δ2W½J⃗�
δJiδJm

δ2W½J⃗�
δJlδJk

: ðB2Þ

For the present calculation of the ghost-gluon vertex, we
are specifically interested in the choice

i ¼ Ae
μðkÞ

p ¼ c̄aðpÞ
k ¼ cbðqÞ: ðB3Þ

Since there are no mixed propagators involving the
Faddeev-Popov ghosts c and c̄, the only nonvanishing
contributions are such that j ¼ c and l ¼ c̄. Therefore,
running the remaining sum for m ¼ A;φ; φ̄, we have
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δ3W½J⃗�
δJAδJc̄δJc

¼ −
δ2W½J⃗�
δJcδJc̄

��
δ3Γ½ϕ⃗�
δcδc̄δA

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJA

þ
�
δ3Γ½ϕ⃗�
δcδc̄δφ

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJφ

þ
�
δ3Γ½ϕ⃗�
δcδc̄δφ̄

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJφ̄

�
δ2W½J⃗�
δJc̄δJc

; ðB4Þ

which, at the one-loop level, can be written as

hAa
νðkÞc̄bðpÞccðqÞi ¼ Dc̄cðpÞDc̄cðqÞDAAðkÞP⊥

μνðkÞ
�

δ3Γ
δAa

μð−kÞδc̄bð−pÞδccð−qÞ
−
2igγ2fade

k2 þM2

δ3Γ
δcbð−pÞδc̄cð−qÞδφde

μ ð−kÞ
�
;

ðB5Þ

where we used the fact that the correlation functions obey hAφi ¼ hAφ̄i, and also δ3Γ=δcδc̄δφ ¼ δ3Γ=δcδc̄δφ̄.
In a shorthand notation, one can conveniently write

hAc̄cic
ðhc̄cicÞ2hAAic

¼ ΓAc̄c þ
hAφic
hAAic

Γc̄cφ þ
hAφ̄ic
hAAic

Γc̄cφ̄: ðB6Þ

Therefore, besides the contribution ΓAc̄c, that would be present at pure Yang-Mills, there are also contributions from 1PI
functions involving the auxiliary fields φ and φ̄, as well as the respective mixed propagators. Such contributions can be
thought as momentum-dependent contributions to the ghost-gluon vertex, which are present starting from the tree level of
the RGZ action.

APPENDIX C: ANALYTIC EXPRESSION FOR THE GHOST-GLUON
VERTEX IN THE SOFT-GLUON LIMIT

In the soft-gluon limit (i.e., when the gluon momentum k → 0), the expression (20) for the ghost-gluon vertex is relatively
simpler than in a general kinematic regime. Given the absence of IR-divergences, the soft-gluon limit for the ghost-gluon
vertex reads

ΓAa
μ c̄bccð0; p;−pÞ ¼ −igfabcpμB1ð0; pÞ: ðC1Þ

The scalar function B1ð0; pÞ has been calculated (with a slightly different notation) to one-loop order in [1]. The result
can be written as8

B1ð0; pÞ ¼ 1þ Ng2

2
½RþJðaþ;pÞ þ R−Jða−;pÞ� − Ng2½R2þKðaþ; aþ;pÞ þ R2

−Kða−; a−;pÞ þ 2RþR−Kðaþ; a−;pÞ�

þ Ng2

2

Ng2γ4

ða2þ − a2−Þ2
½Kðaþ; aþ;pÞ þ Kða−; a−;pÞ − 2Kðaþ; a−;pÞ�; ðC2Þ

where the poles a� and residues R� of the tree-level gluon propagator are given by Eq. (A7), and the scalar functions J and
K above are given by

Jðm1;pÞ ¼
1

64π2
×
2m2

1p
2ðp2 þm2

1Þ þ p6 log ð1þ m2
1

p2Þ − ð3p2 þ 2m2
1Þm4

1 log ð1þ p2

m2
1

Þ
m2

1p
4

; ðC3Þ

8There is a typo in the corresponding result from [1], which is corrected in this expression.
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Kðm1; m2;pÞ ¼
1

256π2
1

m2
1m

2
2p

4ðm2
1 −m2

2Þ
�
2m2

1m
6
2p

2 − 2m6
1m

2
2p

2 þ 3m2
1m

4
2p

4 − 3m4
1m

2
2p

4

þ 2m8
1m

2
2 log

�
1þ p2

m2
1

�
− 2m2

1m
8
2 log

�
1þ p2

m2
2

�
þ 4m6

1m
2
2p

2 log

�
1þ p2

m2
1

�

− 4m2
1m

6
2p

2 log

�
1þ p2

m2
2

�
þ 4m2

1m
2
2p

6 log

�
p2 þm2

2

p2 þm2
1

�

þ2m2
1p

8 log

�
1þm2

2

p2

�
− 2m2

2p
8 log

�
1þm2

1

p2

��
; ðC4Þ

as for m1 ≠ m2, and

Kðm;m;pÞ ¼
−6p2m6 − 5p4m4 − 2p6m2 þ ð8p2m6 þ 6m8Þ log ð1þ p2

m2Þ þ 2p8 log ð1þ m2

p2Þ
256π2p4m4

: ðC5Þ
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