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Hadronic light-by-light scattering contributions to (g —2) ,, from axial-vector
and tensor mesons in the holographic soft-wall model
Pietro Colangelo ,* Floriana Giannuzzi ,T and Stefano Nicotri®*
INFN—Istituto Nazionale di Fisica Nucleare—Sezione di Bari Via Orabona 4, 70125, Bari, Italy

® (Received 16 February 2024; accepted 6 May 2024; published 23 May 2024)

We compute the light axial-vector and tensor meson two-photon transition form factors in the soft-wall
holographic model of quantum chromodynamics (QCD) in the flavor-symmetric case. They are used to
evaluate the axial-vector and tensor meson contributions to the anomalous magnetic moment of the muon
via the hadronic light-by-light scattering process. As expected, these contributions are smaller than the one
from pseudoscalar mesons. The result for axial-vector mesons is higher than the value found in other

approaches.
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I. INTRODUCTION

One of the most interesting observables currently under
investigation is the anomalous magnetic moment of the
muon, a, = (g, —2)/2, which is challenging the Standard
Model (SM) of fundamental interactions. The puzzle deals
with the current tension between the measurements [1] and
a SM prediction [2]. The most precise measurement has
been recently provided by the Muon g — 2 experiment at
Fermilab [1], which has improved the precision of the
experimental world average by a factor of 2. From the
theoretical point of view, a comprehensive prediction for
the SM value has been presented in the white paper of the
Muon g — 2 Theory Initiative in 2020 [2]. The Fermilab
result and the expectation quoted in Ref. [2] deviate at a
level of about 56. Considering all available data a smaller
discrepancy is found [1].

In the SM the largest contribution to a, comes from QED
processes, and is very precisely known. Electroweak
corrections have also been precisely determined [3].
Then, two kinds of QCD contributions are involved: the
leading one corresponds to the hadronic vacuum polariza-
tion (HVP) [4], the subleading one is due to hadronic light-
by-light scattering (HLbL) [5]. New discussions can be
found in [6].

QCD contributions are the most interesting to look at,
since the theoretical uncertainty is dominated by hadronic
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effects. A tension exists between the HVP contribution
computed from the ete™ — hadrons cross section data,
used in [2], and the lattice QCD result obtained by the
BMW collaboration [7]. If the latter value is used to obtain
the SM q,,, the discrepancy with the experimental result
is reduced to 1.6¢ [8]. Moreover, there is a discrepancy
between the measurements of the ete™ — ztz~ cross
section obtained from the BABAR [9] and KLOE [10]
collaborations. In this respect, a recent determination by the
CMD-3 collaboration [11] is larger than the previous
measurements in the energy range up to /s ~ 1.2 GeV.
The latter value would increase the HVP contribution deter-
mined in [2], reducing the tension between the experi-
mental value of a, and the SM expectation. On the other
hand, the confirmation of the discrepancy between exper-
imental and theoretical values of a, by forthcoming data
and theoretical studies would open exciting perspectives for
revealing new physics effects [12].

The theoretical prediction of the HLbL contribution
needs to be improved as well in order to meet the precision
of 16 x 107! for a, projected for the Fermilab experi-
ment [13]. The HLbL contribution has been computed in a
series of studies summarized in Ref. [2] using a dispersive
approach. This allows a model-independent evaluation but
fails in reproducing short-distance constraints (SDCs) [14],
an issue that has been debated in recent years [15-17], so a
strategy should be found in order to incorporate them. The
dominant contribution comes from the poles of the light
pseudoscalar mesons. The contributions from other states
(scalar, tensor and axial-vector states) are smaller, but need
to be computed to improve the theoretical accuracy.

In this paper we compute the axial-vector and tensor
meson contributions to the HLbL term in the soft-wall
model, a QCD phenomenological holographic approach
briefly described in Section II [18]. Axial-vector mesons
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play an essential role since they are expected to solve the
SDC puzzle reproducing the correct large-Q? behavior of
the longitudinal four-point function. In this respect, holo-
graphic computations in the hard-wall model with different
mechanisms of breaking chiral symmetry have proven to
be useful in providing an analytical tool for computing
the relevant four-point functions, showing how the sum
over the infinite tower of axial-vector states can give the
expected result [19,20]. This is discussed in Sec. III.

Tensor meson contributions are expected to be smaller
than contributions from pseudoscalar exchange. However,
in view of improving the theoretical precision it is impor-
tant to correctly estimate this contribution, for which
there are only a few theoretical studies. We compute it
by studying the two-photon transition form factor for the
helicity-2 meson component in the holographic soft-wall
model, obtaining an analytic expression as a function of
the photon virtualities. The computation is presented in
Sec. IV, with a few technical details collected in the
Appendix A and B.

II. THE SOFT-WALL MODEL

The soft-wall (SW) holographic model of QCD is
defined in the 5D space with background anti—de Sitter
(AdS) geometry, the bulk, with line element

RZ
ds? = gy ydxMdxV = = (mpdxtdx” —dz?). (1)

R is the radius of curvature of the AdS space and 7,, =
diag(1,—1,—-1,—-1). We use Greek letters for Minkowski
(4D) indices, and capital letters for AdS (5D) indices. The
fifth z (bulk) coordinate runs in the range ¢ < z < oo with ¢
a small (¢ — 0) positive UV cutoff. The defining feature of
the model is a background (i.e. nondynamical) dilaton field
¢(z) which only depends on the bulk coordinate z and
appears in the Lagrangian as e~#(%) [18]. A minimal choice
is ¢(z) = c*z%, where the dimensionful constant ¢, linked
to Agcp, breaks conformal invariance and is responsible
for color confinement. Such a choice for ¢(z) allows to
recover linear Regge trajectories for the spectra of light
vector mesons [18], light scalar mesons [21], 07 and 07~
glueballs [22,23], and 1~F hybrid mesons [24]. According
to the AdS/CFT dictionary, the global U(ny); x U(ns)g
symmetry of QCD is dual to a local (gauge) sym-
metry in the 5D theory, where the fields dual to the
QCD left- and right-handed currents g gy*T“q; /i are
the massless 1-forms B, (x,z) and Bg(x,z)." Such gauge
fields are expressed as BZ{”L’R}(x, 7) = Bj{"i’f}e}(x, 7)T,
where 79 =19/2 (a=0,..., njz, — 1) are the generators

'The relation between the 5D mass of a p-form and the con-
formal dimension A of its dual 4D operator is mZR* =
(A—=p)(A+ p—4), for aspin 2 it is miR*> = A(A —4) [25].

of U(ny), with T° = ﬁ“”f (1,, is the ny x n; identity
matrix), and Tr(T*T?) = 6/2 for a,b =0, ..., n]% -1
Vector and axial-vector fields are defined as V = (B, +
Br)/2 and A = (B; — Bg)/2, respectively. The Grq;
operator is dual to a tachyon field X(x,z)=
Xo(z)e™*3T 7% describing the nonet of pseudoscalar
mesons and X, parametrized as X,(z) = \/iv(z)ﬂnf. We
consider the case of ny =3 light quarks. The covariant
derivative acts on X(x,z) as

DyX = 0yX + i[X, Vy] — i{X. Ay} (2)

III. AXTAL-VECTOR MESON
CONTRIBUTION TO aﬁ’LbL

The quadratic action for the axial-vector field Ay, (x, z)
is [18]

R 2.2 1 41}(2)2
S, =— dS —c°z _ FafFa aa_AaZ ,
" k/ xe ( 4—ggz +—Z3 (om )

(3)

where Fyy = 0yAy —OyAy. The prefactors R/k =
N./167* and g2 = 3/4 are fixed by matching the two-
point correlation functions of the vector and scalar quark
currents to the perturbative QCD expressions [22]. We set
the AdS radius R = 1.

The coupling of the axial field to two vector fields,
contributing to (g — 2),,, is provided by the Chern-Simons
action [26-28]

Scs = Sés - Slés (4)

where

L/R _ Nc i 1
SCS —24”2/TY(BF2—563f—EBS>, (5)

B = Bydx" and F = (04Bp)dx* A dxB. We emphasize
that, differently from Ref. [28], we are considering a flavor-
symmetric model, and we are not including terms related to
the U(1), anomaly. In the gauge B, = 0 and keeping only
VVA terms, we find, as in the hard-wall model [20],

NC a a
Scs = 62 Tr(Qz,, T)e"? / dx(3(9.V)(0,V5)A;

+0:(45(0,V5)Vy))- (6)

V, is the electromagnetic field, proportional to the light-
quark electromagnetic charge matrix Q,,, and dual to the
electromagnetic current.
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A, can be split in a transverse and a longitudinal
component: Aj = Aﬁl +d,¢“. The longitudinal compo-
nent of the axial-vector field (¢?) mixes with the field z¢
dual to the pseudoscalar current, and they describe pseu-
doscalar mesons. The equations of motion for the trans-
verse and longitudinal components of the axial-vector field
come from the quadratic action (3) and in the Fourier space
they read:

L a0 =0 )

e~ () 20(z)2e~?()
(0 @) + I (o) - () =0
®

The eigenvalues g> = m?2 for the transverse component
are found requiring A%+(0) =0 and 0,A%(z) =0 for
7 — o0, and the eigenfunction normalization condition is

R © —¢(2)
o / dzs—— A2 = 1. (10)
kgs 0 Z
If we use
v(z) = myz + 02, (11)

with m, = 3.47 MeV, 6 = 0.149 GeV and ¢ = 0.388 GeV,
fixed from the pion mass, the pion decay constant and the p
mass [28], respectively, we find my = 1.679 GeV for the
ground-state mass. In this flavor-symmetric model, m,, is
matched to the up and down quark mass. The axial-vector
decay constant, defined as

<0|Z]yﬂ75Taq|An> :fzmngﬂv (12)
can be computed from the expression

. e_‘f)(z) n
S :kigzmill—{% p 0.A5-(2). (13)
51y <

For the ground state we find f§ = 221 MeV. These results
are independent of the flavor index a.

The contribution to muon g — 2 from the longitudinal
component of the axial-vector field in the soft-wall model
has been analyzed in [28], where the #' meson has been

included considering the mixing between pseudoscalar
mesons and pseudoscalar glueballs [29].

Let us compute the contribution of axial-vector mesons
(transverse component) to the correlation function of four
vector currents, the Hﬁma tensor. As in Ref. [20], we
consider it as the sum of the product of two three-point
amplitudes times a propagator over all intermediate axial-
vector states [30]:

Hﬁy}m’(Ql » 42,43, CI4)

iP(q3 + q4)
=M, (0. 0) 55
et 2 g5 + qu)? — M3
iP(qy + q4)
5 M,5(q2, q3)
(g1 + q4)* — M3 A
iP*(qy + q3)

M,o5(q2. q4), (14)
(g1 +g3)* M5 " /

M}m’/}(q_% q4)
+ Myo’a(ql ’ CI4)

+ M/Ma(Ql ’ Q3)

where M, is the mass of the axial-vector meson, P,, =

Muw — % is the projector for spin 1 mesons, and ¢, ¢,, g3,
A

q4 are the momenta of the incoming photons.
Following [20,30], the amplitude y*y* — A¢ is written as

Mﬂya(‘]h QZ) = ezgpt/a‘r(q%g‘li - q/I)QIﬂ)qEFA}/*y* (q%’ q%)
- ezgﬂpa‘r (q%%) - ngh)q‘iFAy*y* (CI%, q%)
(15)

where F,. is the two-photon transition form factor
(T FF).2 In the soft-wall model the three-point function
of an axial-vector current and two vector currents is
obtained from the Chern-Simons action (6). The eigen-
functions A% (z) vanish both at z =0 and for z — oo,
so the last term in Eq. (6) does not contribute. Then,
the TFF of the axial-vector meson AL to two photons is
given by [20]:

N, 2 [
Fagpy (0. Q) = zTr(QﬁmT“)@/ dz A (2)

iy 4 1J0
x0,V(z,0)V(z. 03), (16)

where Q7 = —¢7 and V(z, Q%) is the bulk-to-boundary
propagator (BTBP) of the vector field

V(z, 0%) —Q—2F<Q—2)U<—2 0, c2z2>, (17)

402 \4¢? 4c%°

In general, for axial-vector mesons three form factors appear
in the decomposition of M,,,(q;.g,) [31], while in the holo-
graphic model one obtains the amplitude as in Eq. (15) involving
only two form factors. The origin of this mismatch is currently
under investigation.
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with U the Tricomi confluent hypergeometric function
[18,27]. In the model the light quark masses coincide
and we do not distinguish among mesons with a = 3,8, 0.
In the TFF the only difference between the states is in
the factor Tr(Q2,, 7). We find that the form factors of
the lowest-lying axial-vector mesons with a = 8,0 to
two real photons are F Ay = —0.170 GeV~? and F Ay =

—0.480 GeV~2. The amplitude for the decay in two real
photons vanishes, satisfying the Landau-Yang theorem. An
equivalent two-photon decay width for an axial-vector
meson to decay in one quasireal longitudinal photon and
a real photon can be defined as [32]

2 2.5
- omgl _matmy o,
Paiory = Jim G2 Taiorr =13 Fage (18)

where Q7 is the virtuality of the photon y*. We find I’ Ay =
5.4 keV and ngﬂ, = 43 keV. In the hard-wall (HW) model
F s, = —0.154 GeV~? and F,, = —0.435 GeV~2 have
0 0
been found [20]. Experimental data for f;(1285) and
f1(1420) are: T',, =3.5(8) keV for f,(1285) [33] and
[, =3.2(9) keV for f(1420) [34].
Figure 1 shows the Q? dependence of the axial-vector
TFF with one real photon compared to the result in the

hard-wall model [20] and to the dipole parametrization
of Ref. [30]

Fan(Q1.Q3) _ 1 1
Fap(0,0) (14 07/A%)* (14 Q3/A%)?

(19)

with A = 1040 £ 78 MeV determined from phenomenol-
ogy for f1(1285) [33]. A similar plot is shown in Fig. 2 for

QQFon*v/FAow

o
=

Q? [GeV?]

FIG. 1. Axial-vector two-photon transition form factor for one
real photon. The blue curve (SW) shows the result obtained in the
soft-wall model; the orange curve (HW) shows the result obtained
in the hard-wall model with bi-fundamental scalar, denoted as
HW1 in [20]; the magenta band shows the dipole-parametrization
expression (DP) in Eq. (19) including the uncertainty on the
parameter A.
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FIG. 2. Axial-vector transition form factor for two virtual
photons. Line colors are the same as in Fig. 1.

Fya,+(Q%, Q%). The high-Q behavior in the holographic
models is the same as in the dipole parametrization for the
TFF with one real photon. For two virtual photons the
holographic models still find a Q~* decrease of the TFF,
while the parametrization in [30] produces a Q=% decrease.
As noticed in [20,35], defining Q? = (Q? + Q3)/2 and
w= (07— 03)/(0} + Q3). the asymptotic behavior of the
axial-vector TFF for Q? — oo in both the soft-wall and
hard-wall models is

FAS?/*}/* (Q%, Q%) Qz_) —NCTI'( nga)% V 1—-w

xlmdxx“KO(xx/l —|—w)K1(x\/1 —w)

+%(w+3)(1—w)log:;r}v>, (20)

a result which agrees with the expansion in [36]. K ,(x) is
the modified Bessel function of the second kind. The hard-
wall and soft-wall models give the same result in this limit
since the leading behavior of vector meson BTBP in both
models is V(z, 0%) = z/02K,(z0/0Q%) [27]. To obtain
Eq. (20) we have used the expansion of the axial wave
function at small z and the definition of the axial-vector
decay constant f§ in (13):

R\!fim
A (D) — () 2222 21
6 () = (kg§> 5 ¢ (1)

The hadronic light-by-light (HLbL) pole contribution
from axial-vector mesons to (g — 2), can be computed from

[ By 1
a;{LbL_A dQ‘/o sz/_ldTpa(Q1,Q2,T), (22)

094036-4



HADRONIC LIGHT-BY-LIGHT SCATTERING CONTRIBUTIONS ...

PHYS. REV. D 109, 094036 (2024)

TABLE L.

HLDbL contribution to aM(XIOU) of the axial-vector mesons ay, f1, f in the indicated references. For

more results see Table 13 in [2]. All values refer to the ground states, with the exception of the one quoted as
Ref. [19] corresponding to the whole meson tower. In [20] the same model (called HW?2) of Ref. [19] is considered,
with flavor-symmetric normalizations, and the ground state contributions are 80% of the whole meson tower.

Ref. a’ £1(1285) £1(1420) Sum
White Paper [2] 6+6
Bijnens et al. [37] 2541
Hayakawa et al. [38] 1.738 +0.003
Melnikov et al. [14] 5.7 15.6 0.8 22+5
Pauk et al. [30] 5.0+£2.0 1.4+0.7 6.4+2.0
Roig et al. [31] 0.21 +0.04 0.58 +0.11 0.015 £ 0.008 0,8j3_'§
Leutgeb et al. [20,35] 29.8-33.2
Cappiello et al. [19] 8 8 12 28
Masjuan et al. [15] 5.89 10.52 1.97 18.38
Leutgeb et al. [39] 7.1-7.8 4.3-5.7 13.6-14.3 25.0-27.8
Radzhabov er al. [40] 3.6+ 1.8
This work 36

where p, is defined in the appendix of Ref. [20]. We

find aHLbL —90x 10~ 11 HLbL =30x10" 11 HL(I))L
H.A M MA

24 x 10~!" [the difference is only due to the factor
Tr(Q%,T%)], the sum being aff**t =36 x107'". In
Table I other determinations are collected, showing that
a large uncertainty affects the size of this contribution. The
soft-wall model, as well as the hard-wall model [20], points
toward high values. Indeed, it has been noticed [14,15] that
higher a, from axial-vector mesons are found in models
able to reproduce the SDCs on the longitudinal four-point
function.

Notice that, as stated in Ref. [30], when calculating

aff"*L the sum over polarizations of spin-1 particles gives
the projector P,, =1, — qA’jé”, containing both transverse

and longitudinal contributions. We can separate them as the
_ q;lqb

sum of a transverse Plb =N -~ and a longitudinal
q
projector PH gy My " Using the transverse projector,
qZ MZ . .]
HLbL, L

=16 x 1071, and using the longitudinal
HLBL|

we find a,

one we find ay =20 x 107!, both values including
the contrlbutlons from a = 3,8, 0.

The contributions from the excited states are smaller.
Even though the soft-wall model is not able to correctly

TABLE IL

describe these states in the axial-vector sector, we have
computed their contributions to af/**" with the results
collected in the Table II. Moreover, following [20], we
have computed the Green’s function of the axial-vector
field and used it to determine the contribution to af/"*L
from the whole tower of axial-vector mesons. We find
alftPl = 41.3(18.1 +23.2) x 107'!, with the values in
parentheses corresponding to the transverse and longi-
tudinal contributions. This value is included also in
Table II, last column. This result agrees with the ones
obtained in Ref. [35] in the hard-wall model in the flavor
symmetric case, where, depending on the different descrip-
tion of the scalar sector and chiral symmetry breaking,
the contribution from the whole tower of axial-vector
mesons lies in the range 39.9(17.2+22.7)-—
43.3(18.3 +25.0) x 107!, In Ref. [39] different masses
for up/down and strange quarks have been considered and a
Witten-Veneziano mass has been included, finding that the
sum over the sectors for the whole meson tower is in the
range (30.5-33.7) x 10~!! depending on how the param-
eters are set.

Let us conclude this section with a comment on the
SDCs. The longitudinal component of the HLbL four-point
function can be expressed as

Mass of the excited axial-vector mesons in the soft-wall model (n = 0 corresponds to the ground state),

and their contribution to af/“?%(x10'"). The value of a/“*" in the last column is the contribution from the whole
tower of axial-vector mesons computed by the Green’s function. In the last row we have emphasized the transverse

(T) and longitudinal (L) contributions to af/t"L(x10').

n=0 n=1 n=2 n=3 n=+4 >
Mass (GeV) 1.7 2.7 35 4.2 4.9
HL”L 36 -0.5 3.7 -0.2 1.3 413
(T +L) (16 +20) (=04 -0.1) 1.8+ 1.9) (=0.13-0.07) (0.65 + 0.67) (18.1 +23.2)
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N =
Huvaﬁ(qh G2.93:q4) = T,(wzlﬁnl + T(y)a/}HZ + Tiw)a/}H3

(23)

with T4 0 = €upotaprr 019545 45 - and TG and T,
obtained by crossing operations [19]. The SDC conditions
are [14]:

S lim Q*0311,(0. 0. 0;) =

24
030 Q0 37[2 ( )

Qli—I>l;>loQ41:Il (Q’ Q’ Q) = - (25)

972
They have been checked in the hard-wall model in
Ref. [20,35] and they are also obtained in the soft-wall
model and agree with the considerations of Ref. [15]. The

factorized contribution from pions scales as 1/Q°, of

higher order in the Q%> — oo expansion than the result
from the OPE. The longitudinal contribution from axial—

quqb

vector mesons (obtained from the projector ) is

instead of the same order as the OPE result: 1t matches the
OPE result in the region Qf ~ Q3 > 03 > m2, while in the
region Q2 Q2 Qg > m the correct power behavior is

reproduced although the numencal factor is, both in the
hard-wall and soft-wall models, 81% of the value in (25):

0. 36
Jim n 0*111(Q.0.0) ~ —— (26)

IV. TENSOR MESON CONTRIBUTION TO abeL
Tensor mesons with JF€ = 2%+ can be described in
holographic models by a field dual to the j, =

73 (v, iBD + yviBﬂ)q operator, i.e., by a symmetric tensor.
In [41,42] the spin-2 field h,, (graviton) has been intro-
duced as the 4d fluctuation of the metric (1):

1
ds® = gyndxMdxN = —2(77/“, + hy, ) dx*dx* ——dz (27)
The action for A, is obtained from the Einstein-Hilbert

action:

Sgn = —2kr / dPx\/g(R +2A), (28)

where R is the Ricci scalar and A the cosmological
constant. In the soft-wall model, in the quadratic approxi-
mation the action for the transverse traceless field £, is
(see the Appendix A):

_kr
s=-7 [ @

e ?
S 10 (0,1, 0.k + Py Olhgg). (29)

The coefficient k; is fixed from the two-point correlation
function. The field &, has helicity +2, and is a flavor
singlet (representing singlet tensor mesons).

Higher spin mesons have been studied in [18,43—47] in
holographic models, and a review on the description of
fields with arbitrary spin in light-front holographic QCD
can be found in [48]. In [18] a rank-2 symmetric tensor
field H4p is introduced, and, in the axial gauge H,, = 0,
the field 4, defined from H,, = h,,/ z2, obeys the same
action (29).

From the action (29), the equation of motion in the
Fourier space is

¢ -
P (e azh,w> e3 Ph,, = 0. (30)

The two-point correlation function is found from the on-
shell action:

S, = hm / d*x

deriving it with respect to the sources of the 4D tensor
operator [49]. In the Fourier space the field £, is related to

”ﬂa ﬂh;wazhaﬂ (3 1)

the source ,,, by: h,,(z.¢*) = hg(z.¢*)h,, (%), where hy
is the bulk-to-boundary propagator

hB(z,qz):F<2—4q;>U( fz,—lc ) (32)

obtained solving the equation of motion (30) with boundary
conditions 45(0, ¢*) = 1 and finiteness of the action. The
two-point function reads

828,
Sh, h

" po

-9
[IHere — = kTP/‘”P"lime—3 hgd_ hg, (33)
=0 7

where P;wp(i = %(”ﬂpﬂya + MueMup — %77;41/77/){:) is the trans-
verse projector. For Q> = —g? — oo one has (v is an energy

scale)

I1#re — — kT PHvpo

o 2.2
?log(Q /v°) (34)
to be compared with [41,50]

. N.N; N?-
H/éézD _Pyupo<]60ﬂ-]; 4 02 )Q4 log(Qz/l/ ) (35)

. . NN -
This condition fixes ky = (20ﬂ_f + 10”21)-

Eigenvalues and eigenfunctions are found by solving
Eq. (30) requiring £, (0) = 0 and normalization

094036-6
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(¢ e_¢(z)
/ dz—5—h,(2)* = 1. (36)
0 Z

The spectrum is m2 = 4c*(n + 2) and the wave functions
are [42]

h,(2) = SALL(AR2),  (37)

(n+ 1)(n+2)

in terms of the generalized Laguerre polynomials L}(z).
The residues of the poles of the two-point function are
R, = k;8c%(n+1)(n+2). From R, = f2m} we find
the decay constants f, = c\/kp(n+1)/(2(n+2)). For
¢ =0.388 GeV we obtain m;, = 1.097 GeV and f;, =
69 MeV (corresponding to n = 0), while the first excitation
(n=1) has mass m; = 1.344 GeV and decay constant
f1 =80 MeV. The decay constant g, = f /m; =
M/ (87) = 0.063 can be compared to Ref. [51] where
g5 = 0.040 is found, while in the hard-wall model one
has g, = 0.024 [41].

The decay f, — y*y* can be studied from the quadratic
action of the electromagnetic field considering the fluc-
tuation of the metric:

sz},y D _Afz / dsx ge_¢Tr(FMNFMN) (38)

with Fyy = 0y Vy —0yVy and Ay, = 1/4. The obtained
interaction is of the kind: 1/2h,,T*, where T* is the
electromagnetic stress-energy tensor.

In the Fourier space, after introducing the source V,(q)
and the BTBP V(z, g) (17) of the vector field, we find:

sz}’YzzAszr( ng‘l)/d4Q1/d46]2

dz
X /?e_"’hf;ﬁ(z, a1+ 32)Vu(q1)Vo(92)

X (=n“n?0.V (2, q1)0.V (2. ¢)

+ (q1 - @0 — g5 gsn” + qighn™

- ")V (z.q1)V(z. q2)). (39)
For a singlet field 7¢ = T°. To find the amplitude, we

derive the action with respect to the three sources of the
fields, and write the BTBP of the tensor field as the sum

bew?) = S0PV, (40)

Identifying one transition form factor, the amplitude for
fr=rirtis

Mﬂua/)’ = 4Af2Tr( nga) (ql “G2MNualvp — 91a492Mup

(s dZ _
+ Qa92pMuw — q1uq2ﬁ77/m) A ? e (phO(Z)

1
X | — 0.V(z,q,)0.V(z,
(-t o aovea

n v<z,q1>v<z,qz>), (41)

where hy(z) is the wave function of the ground state,
obtained from (37) for n = 0. The amplitude in (41) has the
same Lorentz structure given in [52]. In [30] a different
form of the amplitude has been proposed. From Eq. (41)
the two-photon transition form factor can be extracted

(¢} = -0

4 o dz —bra
Frr( %’Q%):ﬁAﬁTr( ng“)A ¢ ?h(z)

=2
X (m@"(a 01)0,V(z.03)

Vo)V Q%)). (42)

Equation (42) can also be used to compute the TFF in the
hard-wall model with some modifications: the upper limit
of the integral is 7y = (322 MeV)~!, the dilaton vanishes,
the tensor wave function is [41]

2
iV (z) =351 i—ojz(moz) (43)

with the tensor mass my = 1.23 GeV, the vector BTBP is [20]

e ) VK (VDD

Io(v/0%z)

If one photon is real, only the second term in (42)
contributes to F Forys and its behavior in the soft-wall and
hard-wall models is shown in Fig. 3 together with data for
the helicity-2 component of f,(1270) from Belle collabo-
ration [53]. The curve obtained in the hard-wall model has a
better agreement with the experimental points, and this is
due to the fact that the ground-state mass prediction of the
HW is closer to the experimental f,(1270) mass than the
SW prediction. Indeed, if the f,(1270) mass is used to fix
the mass scale ¢ in the soft-wall model, the TFF in the SW
and HW models are similar. In Fig. 4 the results from [54]
and two determinations from [32] are also shown. In Fig. 5
Fy,-+(Q% Q?) for two photons with equal virtualities is
shown. The f,(1270) — yy decay width is I',, = 2.6 £
0.5 keV [55], and it is related to the form factor by

+11(\/@Z) LJ_Q_ZZO)) (44)
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FIG. 3. f, TFF with one real and one virtual photon in the soft-

wall (blue curve) and hard-wall (orange curve) models. Belle data
are from Ref. [53].
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FIG. 4. f, TFF with one real and one virtual photon in the soft-
wall model (blue curve), compared with results found in other
models: Ref. [54] (orange curve), [32] (green and red curves).
Belle data are from Ref. [53].
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FIG. 5. f, TFF with two virtual photons in the soft-wall model

(blue curve), hard-wall (orange curve) model and computed in
Ref. [54] (magenta curve).

2
Ly = S5 miF,, (45)
which fixes Fp,, = 0.387 GeV~!'. From Eq. (42), the
form factor for two real photons is F,, =4A./
VkrTr(Q2,T°)/2¢ in the soft-wall model. Using Ay, =
1/4 we find F ,, = 0.986 GeV~'. In the hard-wall model
one has Fy, =4A; /\kTr(Q2,T°)(2.084 GeV™'),
hence Ay, = 1/4 produces Fy,,, = 1.594 GeV~".
The results can be extended to non-singlet tensor
mesons. As previously noticed, the action (29) is used to
describe also a generic tensor field dual to the operator

Jou=1a% (y,,il%,, + y,,il%,,)q, without considering the fluc-
tuations of the metric. Assuming its coupling to two
photons is described by the action (39), we consider the
product A 5, =Ap,Tr(Q2,T%) as a free parameter and we
fix it from F;,, = 0.387 GeV~'. We get Afz = 0.0267 in
the soft-wall model and Afz = 0.0165 in the hard-wall

model. We shall use such values of A , to compute the
contribution to a, from f,(1270).

As done for axial-vector mesons, the asymptotic large-
0? behavior of the f, TFF can be analytically obtained
from Eq. (42) defining the variables Q% = (03 + 03)/2
and w = (07 — 03)/(0F + 03), noticing that in the soft-

wall model V(z,0%) — z1/0?K,(z/Q%) [27] and
Q>0
ho(z) = fom3/(4vkr)z*. We find:

Fs . ——>F ZCM/WdXXS
far'y 0o fary 4\/EQ4 0

x [—(1 =w?)Ko(xv/T +w)Ko(xvVT —w)
+ V1=wK (xvV1+w)K,(xV1-w)]
_ Fryy fomg

4/2kr O*w?

x log 1~ W) : (46)

<4w(6 —5w?) +2(6 = Tw? + w?)

In [36] this expansion has been computed in perturbative
QCD. The form factor multiplying the tensor

[
T = 2q, - @' n” = 2455 + 245 ™ — 244 b
(47)

at large Q7 is

_ 4 . CuFymy

Filat. a3) = o' fiw) (48)

with
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5(1 —w?) 35-3w?). 1-w
Tw) =22 ") (15 _ 42 1
filw) 8wo ( W 2w %87 +w

(49)

having the same Q2 but a different w behavior than
in Eq. (46).

The results for the TFF can be used to compute the
HLbL pole contribution of tensor mesons to muon g — 2
using Eq. (B9) in Appendix B. We find that the f,(1270)
contribution to muon g — 2 is af/*"L ~ 0.61 x 107'" in the
soft-wall model and af/“*% ~ 0.63 x 10~'! in the hard-wall
model. They agree with the result in [30] aff**t =
(0.79 £0.09) x 107", In Ref. [56] afftPL = (0.50 +
0.13) x 107" and afPt = (0.21 £ 0.05) x 10~'" are
obtained for f,(1270) and f,(1565), respectively.

V. CONCLUSIONS

Holographic bottom-up models, despite their simplicity,
provide a good qualitative description of QCD observables
in different sectors, and in some case succeed in quanti-
tative predictions. This also holds for the two-photon
transition form factors of axial-vector and tensor mesons.
The TFF of tensor mesons in the soft-wall model is smaller
than experimental values but the differences are within the
experimental errors. A better agreement is found between
the hard-wall model and experimental data, since the mass
prediction better reproduces the measured f,(1270) mass.
The results for axial-vector and tensor meson contributions
to the anomalous magnetic moment of the muon confirm
the decreasing hierarchy from pseudoscalar, axial-vector
and tensor meson poles. The values we have found in the
soft-wall model are aff“*L =36 x 10~'! for axial-vector

mesons and af/“? = 0.61 x 10~!" for tensor mesons. The
contribution from the pion computed in [28] in a model that
for pions is identical to the one considered in this paper is
alftPl =752 x 107" for the ground state and af“Pt =

1.68 x 10~!! for the first excited state. It would be
interesting to extend the present analysis considering the
model of Ref. [28] with the strange quark mass and the
U(1), anomaly. This is left to a future study.

4 1 1 1
R.=-—5+1 (_ d:h— —05}’) o (i 0.(h% 0. hyp)
Z

2z 2
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APPENDIX A: TENSOR MESON ACTION

Let us compute the Einstein-Hilbert action for the metric

1
ds* = gyndx"dx" = — (n,, + Ah,,)dx*dx* — ?dzz,

1
2
(A1)

where h,, is a small fluctuation of the metric and 1 a
parameter. We consider a transverse symmetric tensor,
hence 0"h,, =0 and h,, = h,,. The Einstein-Hilbert
action is

Sen = —2k7 / dx\/9(R +2A), (A2)

where R is the Ricci scalar and A the cosmological
constant. At O(A°) the metric describes a 5D AdS space,
with R(Y) =20 and A = —6. To O(4?) we find:

4 4 3 1 1
Rm/ = ?7]}” + ﬂ<? h;w - 2_Zazhﬂy + Edghm — _Dh/w — Eaﬂﬁl,h - —ﬂﬂbazl’l>

2z 4

1 1 1 1
+ 22 (_ Ao h/wazh +- (azh)(azh/w) + Tznﬂvhaﬂazhaﬁ - 4 (a/fh)(yh/w

1 g 1 1o 1 a
- E (azhﬂﬁ)azh{/ - Z (aﬂh ﬂ)auha/)’ + 5 (a/}hy)aﬁhm> + 0(13)

¢ =2 = A 4+ 2PRRs) + O(2%)  (A3)
-5 A 2 1 1 1 2 3
Vo=1z 1+§h+/1 _Zh h,w+gh + O(4%),
(A4)
where W = n®n/*h,s and h = n**h,,,
1 af 1 aff 3
- Z (azh )(azhaﬁ) - 2—Zh azhaﬁ + O(ﬂ ) (AS)
1 1
2 2z
(A6)
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In R the h,, and h decouple. Since we are interested in a spin-2 field, we do not consider terms depending on /:

Z2

2 2
R =20+ 12 <4zh"/’azhaﬁ - ZZ (0.1 (0:hup) + 7 () (0 hop) = %haﬁaghaﬁ

z z
+5 hPOhys — 5 0,(h"0,hy5) | + O(A).

Finally, we expand the Lagrangian:

8

4 1 1
\/E(R + 2A> = Z_5 + 2 (Z_4 haﬂazhaﬂ - 4_23 (azhaﬂ) (azhaﬂ) + 4_23 (aﬂhaﬂ) (aﬂhaﬁ)

8

1
— o, <Z—3 haﬁazhaﬂ» +OP).

The Gibbons-Hawking-York boundary term is:

SGHY = _4kT/ d4x\/77K,
7]

where y is the determinant of the induced metric on the
boundary 0 of the spacetime and K the extrinsic curvature.
At O(2?) it reads:

2 1
s@ = —2k; / d*x (- =1, + —3h””01h,w> . (A10)
9 z 2

(A7)
! h*0%h ! h*Ch ! 0.(h*%0.h 2 h*h o’
BpE] Zaﬁ+2—z3 @573 . zaﬁ)_z_5 ap | T O@)
1 1 1
_ 2 ap a a
=5 + A (8Z (2—Z4h /h(,/)w) + i3 (0,h ﬁ)(azh,l/;) + Eh ﬂDh(,ﬁ
(A8)
[
JHIDL — _ ieb / d*q, / d*q, 1
g 48m, ) (2n)*) (2n)*qigz(k—q1—a)?
(A9) 1 1
(p=a1)* =mi(p—aq1—q2)* —my
< Tr((# +m,) [y’ v} (P + m,)r"
X (ﬁ - ql + mu)yy(ﬁ - gl - gZ + mﬂ))”)
0
Xﬁnﬂmg(ﬂh,%’k—% _‘12)‘](_)0, (B1)
where p denotes the initial muon momentum, m, is the

The total action at O(4?) is then:

1 1
S@ = 2k, / dx (4—Z3 (0,h°P)(0.hyp) + 4—Z3haﬂmhaﬂ)

1
+ 3kTAd4x—4h"”hW. (All)

<

Neglecting the last (boundary) term, the action considered
in the soft-wall model in Sec. IV is

k L !
S — _ET/dS xe? <z_3 (0Zh“ﬂ)(0zhaﬂ) + ;haﬂDhaﬂ)

(Al12)

APPENDIX B: a,’f"b" FROM TENSOR
MESON POLES

The HLbL contribution to the anomalous magnetic
moment of the muon is computed from [3]:

i
muon mass, ¢, ¢», ¢3, 44 are the momenta of the incoming

photons, and k = —g,. Let us consider the contribution to
I1,,,, from tensor-meson exchange [30]:

(ie)‘ln,fm(ﬂhy 92 93)

iP“ (k - q)
(CErAEmTAS A
iPanﬂﬂl(k -q1)
(k=q1)* = M7
iP* M (k - g5)
(k= q2)* = M7

= M;wml’ (QI ’ QZ)

+ M/maa’(ql s _k) Mwlﬂﬂ’(‘]% Q?a)

+ M;Marf (ql’ QB) Muaﬁﬂ’(QZ’ _k) (B2)

with M7 the mass of the tensor meson. We only consider
the dominant contribution from helicity A =2 [30], for
which the amplitude of the f, production from two photons
1s written as [52]

M#P(qy, qy) = €*(qr1 - g™ 0P — a{dn*? + g5 g
— ") Frpy (41, q3). (B3)
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where a,  are f, indices. The projection operator for J = 2 has the form:

(( Yoy + Papy/ PP (=95 + PpPs/ P*) + (=9us + PaPs/ P*) (=9p, + PpP,/ P?))

l\)l'—‘

Pa[)’y(s(p)
-3 (_gaﬁ + Papp/ P*)(=9,5 + PyPs/ P?). (B4)

We define the momenta Q; = ig; and P = ip, obtaining:

GHLbL — _© / d*0, / d'Q, 1 1 1

. 48m, | (2x)* ] (27)* Q203(Q) + 02)* (P + 0))> + m2 (P — Q,)* + m?
Fryy (0 (Q1 + 02)*)Fryy (03,0)

X <T1(Q17Q27P) Irr L IQ%—Q—ZZVI% Iry 2

Fr o« —+ 2’ 2 Fovs 2’0
+T5(Q1, 01, P) rrr (1 322)_'_ AQ;%) (071, 0)
1

%’ Q%)FTV*;'*((QI + Q2)2’0>> (BS)
(014 0,)* + M3 ’

Fro(
+T5(01. 0,. P) as
with

32
35;: ((P-02)%(-6(Q1 - ©2)* +20303) + Q3((8m2 — 4P - 0,)(Q; - 0>)?
b

+2(=2(P- Q))? + m2Q? +2P- 0,003 + 5(2m2 — P- 0,)Q, - 0,03)
+P-0(4(Q1- 02)* +2(9P- 01 —20})0Q; - 0,03 +5(Q1 - 0,)*Q3 + 10P - 0,03)) (B6)

1=

T, - 32m
(Q1 + 0,)?
+(P-01)*(6(Q) - 0:)* + 80, - 0,03 — 2(0} - 203)03)
—3P-0,(01 + Q- 2)(Q}(50, - Q> +203) + 01 - 0:(80; - 0, +503))
+2m%(01(501 - Q2 +403) +207(8(Q1 - 02)* + 901 - 0203 +203)
+01-0,(12(Q; - 02)* +160; - 0,03 +503))
+P-Qi(2P- 0>(501 + 18(Q; - 05)* + 160, - 0,0} + 503 + 401 (40, - O, + 03))
+3(Q1- 02+ Q3)(Q}(50: - Q> +203) + Q1 - 0>(80; - 0> +503))))- (B7)

5 ((P-0,)*(401 +6(Q1 - 02)* + 01(80, - 0, —203))

The second term in (B5) coincides with the first one after changing variables Q; — —(Q», and Q, — —Q;. To eliminate the
dependence on the direction of the muon momentum P, we average over all spatial directions of P

aHLbL 1 / dQ( ) bL‘ (Bg)

# 27>

The integrals can be done analytically expressing the propagators in terms of Gegenbauer polynomials [3]. Defining
t = cos 0, with 0 the angle between the four vectors Q; and Q,, and Q; = |Q,| and Q, = |Q,|, we obtain

N2 2 (02
GHLbL — / dQl/ sz/ dthlQ2< (0, 00.1) Fryp( 1’2Q3)FT77(Q2,0))

: 24n°m, 03} + M3

L Q3)Fp, (3,

+(1 (01,05 0) 1@
2

094036-11



COLANGELO, GIANNUZZI, and NICOTRI

PHYS. REV. D 109, 094036 (2024)

with
8
1,(Q1,0,.1) = 3—nQ12 (—10Q% - 6Q1Q%t - 4mI24(5Q2 +90,1) + 4Q%Q2(_5 + 3;2)
y2
+ O3(=27 + 11£%) = 20320, + 7011) (=2 + )R, + Q}t(—1 + 3R}
+20,R, (503 + 20,051 + Q}(6 — 47) + 01 0a1R,) + 80,0, (2m2(Qy + 5051 4 40,1)
+ 01 (Q3(=2+ 1) +20,0:1(=2 + 12) + 03(-3 + 21%)) ) X(0y. 01, 1)) (B10)
L(Q,0,.1) = %QZ (2(508 + 508 + 3207051 4 320,051 + Q7 031(65 + 5172) + Q1 03(14 + 7172)
n=3
+ 010314 + 717%) + 2m2 (501 + 503 + 1603 0,1 + 160,031 + 201 03(2 + 972)))
—203(501 + 330301 + 603(1 + 21%) + 0, 031(32 + 271%) + Q1 03(8 + 617)) R,
+ 010:1(207 + 400,14 Q3(—1 4 31) )R} 4+ 02 (Q2R (—2(503 + 330,031 + 601(1 + 272)
+ 010,1(32 4+ 271%) + Q303 (8 + 617)) + Q1 0,1(203 4+ 40,051 + 03 (-1 + 31%))R,)
+801(01 + 03 +20,051) (—2m} (40,05 + 5(01 + 03)1 + 60, 0,1%)
+3010,(0} + 03 +60,0:1 +2(0% + 03)2))X(Q1. 0>.1))) (B11)

and Q% = Q% +2Q1Q2t+ Q%, X(Ql? Qz,t) = marctan(%), = %]TQ{<1 —Rl)(l —Rz), R[ =1/ 1 —|—4m§/Q12
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