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We compute the light axial-vector and tensor meson two-photon transition form factors in the soft-wall
holographic model of quantum chromodynamics (QCD) in the flavor-symmetric case. They are used to
evaluate the axial-vector and tensor meson contributions to the anomalous magnetic moment of the muon
via the hadronic light-by-light scattering process. As expected, these contributions are smaller than the one
from pseudoscalar mesons. The result for axial-vector mesons is higher than the value found in other
approaches.
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I. INTRODUCTION

One of the most interesting observables currently under
investigation is the anomalous magnetic moment of the
muon, aμ ¼ ðgμ − 2Þ=2, which is challenging the Standard
Model (SM) of fundamental interactions. The puzzle deals
with the current tension between the measurements [1] and
a SM prediction [2]. The most precise measurement has
been recently provided by the Muon g − 2 experiment at
Fermilab [1], which has improved the precision of the
experimental world average by a factor of 2. From the
theoretical point of view, a comprehensive prediction for
the SM value has been presented in the white paper of the
Muon g − 2 Theory Initiative in 2020 [2]. The Fermilab
result and the expectation quoted in Ref. [2] deviate at a
level of about 5σ. Considering all available data a smaller
discrepancy is found [1].
In the SM the largest contribution to aμ comes from QED

processes, and is very precisely known. Electroweak
corrections have also been precisely determined [3].
Then, two kinds of QCD contributions are involved: the
leading one corresponds to the hadronic vacuum polariza-
tion (HVP) [4], the subleading one is due to hadronic light-
by-light scattering (HLbL) [5]. New discussions can be
found in [6].
QCD contributions are the most interesting to look at,

since the theoretical uncertainty is dominated by hadronic

effects. A tension exists between the HVP contribution
computed from the eþe− → hadrons cross section data,
used in [2], and the lattice QCD result obtained by the
BMW collaboration [7]. If the latter value is used to obtain
the SM aμ, the discrepancy with the experimental result
is reduced to 1.6σ [8]. Moreover, there is a discrepancy
between the measurements of the eþe− → πþπ− cross
section obtained from the BABAR [9] and KLOE [10]
collaborations. In this respect, a recent determination by the
CMD-3 collaboration [11] is larger than the previous
measurements in the energy range up to

ffiffiffi
s

p
≃ 1.2 GeV.

The latter value would increase the HVP contribution deter-
mined in [2], reducing the tension between the experi-
mental value of aμ and the SM expectation. On the other
hand, the confirmation of the discrepancy between exper-
imental and theoretical values of aμ by forthcoming data
and theoretical studies would open exciting perspectives for
revealing new physics effects [12].
The theoretical prediction of the HLbL contribution

needs to be improved as well in order to meet the precision
of 16 × 10−11 for aμ projected for the Fermilab experi-
ment [13]. The HLbL contribution has been computed in a
series of studies summarized in Ref. [2] using a dispersive
approach. This allows a model-independent evaluation but
fails in reproducing short-distance constraints (SDCs) [14],
an issue that has been debated in recent years [15–17], so a
strategy should be found in order to incorporate them. The
dominant contribution comes from the poles of the light
pseudoscalar mesons. The contributions from other states
(scalar, tensor and axial-vector states) are smaller, but need
to be computed to improve the theoretical accuracy.
In this paper we compute the axial-vector and tensor

meson contributions to the HLbL term in the soft-wall
model, a QCD phenomenological holographic approach
briefly described in Section II [18]. Axial-vector mesons
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play an essential role since they are expected to solve the
SDC puzzle reproducing the correct large-Q2 behavior of
the longitudinal four-point function. In this respect, holo-
graphic computations in the hard-wall model with different
mechanisms of breaking chiral symmetry have proven to
be useful in providing an analytical tool for computing
the relevant four-point functions, showing how the sum
over the infinite tower of axial-vector states can give the
expected result [19,20]. This is discussed in Sec. III.
Tensor meson contributions are expected to be smaller

than contributions from pseudoscalar exchange. However,
in view of improving the theoretical precision it is impor-
tant to correctly estimate this contribution, for which
there are only a few theoretical studies. We compute it
by studying the two-photon transition form factor for the
helicity-2 meson component in the holographic soft-wall
model, obtaining an analytic expression as a function of
the photon virtualities. The computation is presented in
Sec. IV, with a few technical details collected in the
Appendix A and B.

II. THE SOFT-WALL MODEL

The soft-wall (SW) holographic model of QCD is
defined in the 5D space with background anti–de Sitter
(AdS) geometry, the bulk, with line element

ds2 ¼ gMNdxMdxN ¼ R2

z2
�
ημνdxμdxν − dz2

�
: ð1Þ

R is the radius of curvature of the AdS space and ημν ¼
diagð1;−1;−1;−1Þ. We use Greek letters for Minkowski
(4D) indices, and capital letters for AdS (5D) indices. The
fifth z (bulk) coordinate runs in the range ε < z < ∞with ε
a small (ε → 0) positive UV cutoff. The defining feature of
the model is a background (i.e. nondynamical) dilaton field
ϕðzÞ which only depends on the bulk coordinate z and
appears in the Lagrangian as e−ϕðzÞ [18]. A minimal choice
is ϕðzÞ ¼ c2z2, where the dimensionful constant c, linked
to ΛQCD, breaks conformal invariance and is responsible
for color confinement. Such a choice for ϕðzÞ allows to
recover linear Regge trajectories for the spectra of light
vector mesons [18], light scalar mesons [21], 0þþ and 0−−

glueballs [22,23], and 1−þ hybrid mesons [24]. According
to the AdS/CFT dictionary, the global UðnfÞL ×UðnfÞR
symmetry of QCD is dual to a local (gauge) sym-
metry in the 5D theory, where the fields dual to the
QCD left- and right-handed currents q̄L=RγμTaqL=R are
the massless 1-forms BLðx; zÞ and BRðx; zÞ.1 Such gauge
fields are expressed as BM

fL;Rgðx; zÞ ¼ BM;a
fL;Rgðx; zÞTa,

where Ta ¼ λa=2 (a ¼ 0;…; n2f − 1) are the generators

of UðnfÞ, with T0 ¼ 1ffiffiffiffiffiffi
2nf

p 1nf (1nf is the nf × nf identity

matrix), and TrðTaTbÞ ¼ δab=2 for a; b ¼ 0;…; n2f − 1.
Vector and axial-vector fields are defined as V ¼ ðBL þ
BRÞ=2 and A ¼ ðBL − BRÞ=2, respectively. The q̄RqL
operator is dual to a tachyon field Xðx; zÞ ¼
X0ðzÞeiπaðx;zÞTa

, πa describing the nonet of pseudoscalar
mesons and X0 parametrized as X0ðzÞ ¼

ffiffiffi
2

p
vðzÞ1nf . We

consider the case of nf ¼ 3 light quarks. The covariant
derivative acts on Xðx; zÞ as

DMX ¼ ∂MX þ i½X; VM� − ifX; AMg: ð2Þ

III. AXIAL-VECTOR MESON
CONTRIBUTION TO aHLbL

μ

The quadratic action for the axial-vector field AMðx; zÞ
is [18]

SA ¼ R
k

Z
d5 xe−c

2z2
�
−

1

4g25z
FaFa þ 4vðzÞ2

z3
ð∂πa −AaÞ2

�
;

ð3Þ

where FMN ¼ ∂MAN − ∂NAM. The prefactors R=k ¼
Nc=16π2 and g25 ¼ 3=4 are fixed by matching the two-
point correlation functions of the vector and scalar quark
currents to the perturbative QCD expressions [22]. We set
the AdS radius R ¼ 1.
The coupling of the axial field to two vector fields,

contributing to ðg − 2Þμ, is provided by the Chern-Simons
action [26–28]

SCS ¼ SLCS − SRCS ð4Þ

where

SL=RCS ¼ Nc

24π2

Z
Tr

�
BF 2 −

i
2
B3F −

1

10
B5

�
; ð5Þ

B ¼ BMdxM and F ¼ ð∂ABBÞdxA ∧ dxB. We emphasize
that, differently from Ref. [28], we are considering a flavor-
symmetric model, and we are not including terms related to
the Uð1ÞA anomaly. In the gauge Bz ¼ 0 and keeping only
VVA terms, we find, as in the hard-wall model [20],

SCS ¼ −
Nc

6π2
TrðQ2

emTaÞεμβγδ
Z

d5x
�
3ð∂zVβÞð∂γVδÞAa

μ

þ ∂z

�
Aa
βð∂γVδÞVμ

��
: ð6Þ

Vμ is the electromagnetic field, proportional to the light-
quark electromagnetic charge matrix Qem and dual to the
electromagnetic current.

1The relation between the 5D mass of a p-form and the con-
formal dimension Δ of its dual 4D operator is m2

5R
2 ¼

ðΔ − pÞðΔþ p − 4Þ, for a spin 2 it is m2
5R

2 ¼ ΔðΔ − 4Þ [25].
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Aμ can be split in a transverse and a longitudinal
component: Aa

μ ¼ Aa⊥
μ þ ∂μφ

a. The longitudinal compo-
nent of the axial-vector field ðφaÞ mixes with the field πa

dual to the pseudoscalar current, and they describe pseu-
doscalar mesons. The equations of motion for the trans-
verse and longitudinal components of the axial-vector field
come from the quadratic action (3) and in the Fourier space
they read:

∂z

�
e−ϕðzÞ

z
∂zAa⊥

μ ðzÞ
�
þ q2

e−ϕðzÞ

z
Aa⊥
μ ðzÞ

−
8g25vðzÞ2e−ϕðzÞ

z3
Aa⊥
μ ðzÞ ¼ 0 ð7Þ

∂z

�
e−ϕðzÞ

z
∂zφ

aðzÞ
�
þ 8g25vðzÞ2e−ϕðzÞ

z3
�
πaðzÞ − φaðzÞ� ¼ 0

ð8Þ

∂z

�
e−ϕðzÞvðzÞ2

z3
∂zπ

aðzÞ
�

þ e−ϕðzÞvðzÞ2
z3

q2
�
πaðzÞ − φaðzÞ� ¼ 0: ð9Þ

The eigenvalues q2 ¼ m2
n for the transverse component

are found requiring Aa⊥
n ð0Þ ¼ 0 and ∂zAa⊥

n ðzÞ ¼ 0 for
z → ∞, and the eigenfunction normalization condition is

R
kg25

Z
∞

0

dz
e−ϕðzÞ

z
Aa⊥
n ðzÞ2 ¼ 1: ð10Þ

If we use

vðzÞ ¼ mqzþ σz3; ð11Þ

withmq ¼ 3.47MeV, σ ¼ 0.149 GeV3 and c¼ 0.388 GeV,
fixed from the pion mass, the pion decay constant and the ρ
mass [28], respectively, we find m0 ¼ 1.679 GeV for the
ground-state mass. In this flavor-symmetric model, mq is
matched to the up and down quark mass. The axial-vector
decay constant, defined as

h0jq̄γμγ5TaqjAni ¼ fanmnεμ; ð12Þ

can be computed from the expression

fan ¼
R
kg25

1

mn
lim
z→0

e−ϕðzÞ

z
∂zAa⊥

n ðzÞ: ð13Þ

For the ground state we find fa0 ¼ 221 MeV. These results
are independent of the flavor index a.
The contribution to muon g − 2 from the longitudinal

component of the axial-vector field in the soft-wall model
has been analyzed in [28], where the η0 meson has been

included considering the mixing between pseudoscalar
mesons and pseudoscalar glueballs [29].
Let us compute the contribution of axial-vector mesons

(transverse component) to the correlation function of four
vector currents, the ΠA

μνλσ tensor. As in Ref. [20], we
consider it as the sum of the product of two three-point
amplitudes times a propagator over all intermediate axial-
vector states [30]:

ΠA
μνλσðq1; q2; q3; q4Þ

¼ Mμναðq1; q2Þ
iPαβðq3 þ q4Þ

ðq3 þ q4Þ2 −M2
A
Mλσβðq3; q4Þ

þMμσαðq1; q4Þ
iPαβðq1 þ q4Þ

ðq1 þ q4Þ2 −M2
A
Mνλβðq2; q3Þ

þMμλαðq1; q3Þ
iPαβðq1 þ q3Þ

ðq1 þ q3Þ2 −M2
A
Mνσβðq2; q4Þ; ð14Þ

where MA is the mass of the axial-vector meson, Pμν ¼
ημν −

qμqν
M2

A
is the projector for spin 1 mesons, and q1, q2, q3,

q4 are the momenta of the incoming photons.
Following [20,30], the amplitude γ�γ� → Aa

n is written as

Mμναðq1; q2Þ ¼ e2ερνατ
�
q21g

ρ
μ − qρ1q1μ

�
qτ2FAγ�γ�

�
q21; q

2
2

�
− e2εμρατ

�
q22g

ρ
ν − qρ2q2ν

�
qτ1FAγ�γ�

�
q22; q

2
1

�
ð15Þ

where FAγ�γ� is the two-photon transition form factor
(TFF).2 In the soft-wall model the three-point function
of an axial-vector current and two vector currents is
obtained from the Chern-Simons action (6). The eigen-
functions Aa⊥

n ðzÞ vanish both at z ¼ 0 and for z → ∞,
so the last term in Eq. (6) does not contribute. Then,
the TFF of the axial-vector meson Aa⊥

n to two photons is
given by [20]:

FAa
nγ

�γ� ðQ2
1; Q

2
2Þ ¼

Nc

4π2
TrðQ2

emTaÞ 2

Q2
1

Z
∞

0

dzAa⊥
n ðzÞ

× ∂zVðz;Q2
1ÞVðz;Q2

2Þ; ð16Þ

where Q2
i ¼ −q2i and Vðz;Q2Þ is the bulk-to-boundary

propagator (BTBP) of the vector field

Vðz;Q2Þ ¼ Q2

4c2
Γ
�
Q2

4c2

�
U
�
Q2

4c2
; 0; c2z2

�
; ð17Þ

2In general, for axial-vector mesons three form factors appear
in the decomposition of Mμναðq1; q2Þ [31], while in the holo-
graphic model one obtains the amplitude as in Eq. (15) involving
only two form factors. The origin of this mismatch is currently
under investigation.
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with U the Tricomi confluent hypergeometric function
[18,27]. In the model the light quark masses coincide
and we do not distinguish among mesons with a ¼ 3; 8; 0.
In the TFF the only difference between the states is in
the factor TrðQ2

emTaÞ. We find that the form factors of
the lowest-lying axial-vector mesons with a ¼ 8; 0 to
two real photons are FA8

0
γγ ¼ −0.170 GeV−2 and FA0

0
γγ ¼

−0.480 GeV−2. The amplitude for the decay in two real
photons vanishes, satisfying the Landau-Yang theorem. An
equivalent two-photon decay width for an axial-vector
meson to decay in one quasireal longitudinal photon and
a real photon can be defined as [32]

Γ̃Aa
0
→γγ ¼ lim

Q2
1
→0

m2
0

Q2
1

1

2
ΓAa

0
→γ�γ ¼

πα2m5
0

12
F2
Aa
0
γγ; ð18Þ

whereQ2
1 is the virtuality of the photon γ

�. We find Γ̃A8
0
γγ ¼

5.4 keV and Γ̃A0
0
γγ ¼ 43 keV. In the hard-wall (HW) model

FA8
0
γγ ¼ −0.154 GeV−2 and FA0

0
γγ ¼ −0.435 GeV−2 have

been found [20]. Experimental data for f1ð1285Þ and
f1ð1420Þ are: Γ̃γγ ¼ 3.5ð8Þ keV for f1ð1285Þ [33] and
Γ̃γγ ¼ 3.2ð9Þ keV for f1ð1420Þ [34].
Figure 1 shows the Q2 dependence of the axial-vector

TFF with one real photon compared to the result in the
hard-wall model [20] and to the dipole parametrization
of Ref. [30]

FAγγðQ2
1; Q

2
2Þ

FAγγð0; 0Þ
¼ 1

ð1þQ2
1=Λ2Þ2

1

ð1þQ2
2=Λ2Þ2 ð19Þ

with Λ ¼ 1040� 78 MeV determined from phenomenol-
ogy for f1ð1285Þ [33]. A similar plot is shown in Fig. 2 for

FAa
0
γ�γ� ðQ2; Q2Þ. The high-Q2 behavior in the holographic

models is the same as in the dipole parametrization for the
TFF with one real photon. For two virtual photons the
holographic models still find a Q−4 decrease of the TFF,
while the parametrization in [30] produces a Q−8 decrease.
As noticed in [20,35], defining Q2 ¼ ðQ2

1 þQ2
2Þ=2 and

w ¼ ðQ2
1 −Q2

2Þ=ðQ2
1 þQ2

2Þ, the asymptotic behavior of the
axial-vector TFF for Q2 → ∞ in both the soft-wall and
hard-wall models is

FAa
0
γ�γ�
�
Q2

1;Q
2
2

�
⟶
Q2→∞

−NcTr
�
Q2

emTa
�fa0m0

Q4

ffiffiffiffiffiffiffiffiffiffiffi
1−w

p

×
Z

∞

0

dxx4K0

�
x
ffiffiffiffiffiffiffiffiffiffiffiffi
1þw

p �
K1

�
x
ffiffiffiffiffiffiffiffiffiffiffi
1−w

p �
¼ −NcTrðQ2

emTaÞ f
a
0m0

Q4w4

�
wð3− 2wÞ

þ 1

2
ðwþ 3Þð1−wÞ log 1−w

1þw

�
; ð20Þ

a result which agrees with the expansion in [36]. KnðxÞ is
the modified Bessel function of the second kind. The hard-
wall and soft-wall models give the same result in this limit
since the leading behavior of vector meson BTBP in both

models is Vðz;Q2Þ ¼ z
ffiffiffiffiffiffi
Q2

p
K1ðz

ffiffiffiffiffiffi
Q2

p
Þ [27]. To obtain

Eq. (20) we have used the expansion of the axial wave
function at small z and the definition of the axial-vector
decay constant fa0 in (13):

Aa⊥
0 ðzÞ⟶

z→0

�
R
kg25

�
−1 fa0m0

2
z2: ð21Þ

The hadronic light-by-light (HLbL) pole contribution
from axial-vector mesons to ðg − 2Þμ can be computed from

aHLbL
μ ¼

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτ ρaðQ1; Q2; τÞ; ð22Þ

FIG. 1. Axial-vector two-photon transition form factor for one
real photon. The blue curve (SW) shows the result obtained in the
soft-wall model; the orange curve (HW) shows the result obtained
in the hard-wall model with bi-fundamental scalar, denoted as
HW1 in [20]; the magenta band shows the dipole-parametrization
expression (DP) in Eq. (19) including the uncertainty on the
parameter Λ.

FIG. 2. Axial-vector transition form factor for two virtual
photons. Line colors are the same as in Fig. 1.
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where ρa is defined in the appendix of Ref. [20]. We
find aHLbL

μ;A3 ¼ 9.0 × 10−11, aHLbL
μ;A8 ¼ 3.0 × 10−11, aHLbL

μ;A0 ¼
24 × 10−11 [the difference is only due to the factor
TrðQ2

emTaÞ], the sum being aHLbL
μ ¼ 36 × 10−11. In

Table I other determinations are collected, showing that
a large uncertainty affects the size of this contribution. The
soft-wall model, as well as the hard-wall model [20], points
toward high values. Indeed, it has been noticed [14,15] that
higher aμ from axial-vector mesons are found in models
able to reproduce the SDCs on the longitudinal four-point
function.
Notice that, as stated in Ref. [30], when calculating

aHLbL
μ the sum over polarizations of spin-1 particles gives

the projector Pμν ¼ ημν −
qμqν
M2

A
, containing both transverse

and longitudinal contributions. We can separate them as the
sum of a transverse P⊥

μν ¼ ημν −
qμqν
q2 and a longitudinal

projector Pjj
μν ¼ qμqν

q2
M2

A−q
2

M2
A
. Using the transverse projector,

we find aHLbL;⊥
μ ¼ 16 × 10−11, and using the longitudinal

one we find aHLbL;jj
μ ¼ 20 × 10−11, both values including

the contributions from a ¼ 3; 8; 0.
The contributions from the excited states are smaller.

Even though the soft-wall model is not able to correctly

describe these states in the axial-vector sector, we have
computed their contributions to aHLbL

μ with the results
collected in the Table II. Moreover, following [20], we
have computed the Green’s function of the axial-vector
field and used it to determine the contribution to aHLbL

μ

from the whole tower of axial-vector mesons. We find
aHLbL
μ ¼ 41.3ð18.1þ 23.2Þ × 10−11, with the values in

parentheses corresponding to the transverse and longi-
tudinal contributions. This value is included also in
Table II, last column. This result agrees with the ones
obtained in Ref. [35] in the hard-wall model in the flavor
symmetric case, where, depending on the different descrip-
tion of the scalar sector and chiral symmetry breaking,
the contribution from the whole tower of axial-vector
mesons lies in the range 39.9ð17.2þ 22.7Þ−
43.3ð18.3þ 25.0Þ × 10−11. In Ref. [39] different masses
for up/down and strange quarks have been considered and a
Witten-Veneziano mass has been included, finding that the
sum over the sectors for the whole meson tower is in the
range ð30.5–33.7Þ × 10−11 depending on how the param-
eters are set.
Let us conclude this section with a comment on the

SDCs. The longitudinal component of the HLbL four-point
function can be expressed as

TABLE I. HLbL contribution to aμð×1011Þ of the axial-vector mesons a1; f1; f01 in the indicated references. For
more results see Table 13 in [2]. All values refer to the ground states, with the exception of the one quoted as
Ref. [19] corresponding to the whole meson tower. In [20] the same model (called HW2) of Ref. [19] is considered,
with flavor-symmetric normalizations, and the ground state contributions are 80% of the whole meson tower.

Ref. a01 f1ð1285Þ f01ð1420Þ Sum

White Paper [2] 6� 6
Bijnens et al. [37] 2.5� 1
Hayakawa et al. [38] 1.738� 0.003
Melnikov et al. [14] 5.7 15.6 0.8 22� 5
Pauk et al. [30] 5.0� 2.0 1.4� 0.7 6.4� 2.0
Roig et al. [31] 0.21� 0.04 0.58� 0.11 0.015� 0.008 0.8þ3.5

−0.8
Leutgeb et al. [20,35] 29.8–33.2
Cappiello et al. [19] 8 8 12 28
Masjuan et al. [15] 5.89 10.52 1.97 18.38
Leutgeb et al. [39] 7.1–7.8 4.3–5.7 13.6–14.3 25.0–27.8
Radzhabov et al. [40] 3.6� 1.8
This work 36

TABLE II. Mass of the excited axial-vector mesons in the soft-wall model (n ¼ 0 corresponds to the ground state),
and their contribution to aHLbL

μ ð×1011Þ. The value of aHLbL
μ in the last column is the contribution from the whole

tower of axial-vector mesons computed by the Green’s function. In the last row we have emphasized the transverse
(T) and longitudinal (L) contributions to aHLbL

μ ð×1011Þ.
n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

P
n

Mass (GeV) 1.7 2.7 3.5 4.2 4.9
aHLbL
μ 36 −0.5 3.7 −0.2 1.3 41.3

(Tþ L) (16þ 20) (−0.4 − 0.1) (1.8þ 1.9) (−0.13 − 0.07) (0.65þ 0.67) (18.1þ 23.2)
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Πjj
μναβðq1; q2; q3; q4Þ ¼ Tð1Þ

μναβΠ̄1 þ Tð2Þ
μναβΠ̄2 þ Tð3Þ

μναβΠ̄3

ð23Þ

with Tð1Þ
μναβ ¼ εμνρσεαβρ0σ0q

ρ
1q

σ
2q

ρ0
3 q

σ0
4 , and Tð2;3Þ and Π̄2;3

obtained by crossing operations [19]. The SDC conditions
are [14]:

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1ðQ;Q;Q3Þ ¼ −

2

3π2
ð24Þ

lim
Q→∞

Q4Π̄1ðQ;Q;QÞ ¼ −
4

9π2
: ð25Þ

They have been checked in the hard-wall model in
Ref. [20,35] and they are also obtained in the soft-wall
model and agree with the considerations of Ref. [15]. The
factorized contribution from pions scales as 1=Q6, of
higher order in the Q2 → ∞ expansion than the result
from the OPE. The longitudinal contribution from axial-

vector mesons (obtained from the projector qμqν
q2

M2
A−q

2

M2
A
) is

instead of the same order as the OPE result: it matches the
OPE result in the regionQ2

1 ∼Q2
2 ≫ Q2

3 ≫ m2
ρ, while in the

region Q2
1 ¼ Q2

2 ¼ Q2
3 ≫ m2

ρ the correct power behavior is
reproduced although the numerical factor is, both in the
hard-wall and soft-wall models, 81% of the value in (25):

lim
Q→∞

Q4Π̄1ðQ;Q;QÞ ∼ −
0.36
π2

: ð26Þ

IV. TENSOR MESON CONTRIBUTION TO aHLbL
μ

Tensor mesons with JPC ¼ 2þþ can be described in

holographic models by a field dual to the jμν ¼
q̄ 1

2
ðγμiD

↔

ν þ γνiD
↔

μÞq operator, i.e., by a symmetric tensor.
In [41,42] the spin-2 field hμν (graviton) has been intro-
duced as the 4d fluctuation of the metric (1):

ds2 ¼ gMNdxMdxN ¼ 1

z2
ðημν þ hμνÞdxμdxν −

1

z2
dz2: ð27Þ

The action for hμν is obtained from the Einstein-Hilbert
action:

SEH ¼ −2kT
Z

d5x
ffiffiffi
g

p ðRþ 2ΛÞ; ð28Þ

where R is the Ricci scalar and Λ the cosmological
constant. In the soft-wall model, in the quadratic approxi-
mation the action for the transverse traceless field hμν is
(see the Appendix A):

S ¼ −
kT
2

Z
d5x

e−ϕ

z3
ημαηνβ

�
∂zhμν∂zhαβ þ hμν□hαβ

�
: ð29Þ

The coefficient kT is fixed from the two-point correlation
function. The field hμν has helicity �2, and is a flavor
singlet (representing singlet tensor mesons).
Higher spin mesons have been studied in [18,43–47] in

holographic models, and a review on the description of
fields with arbitrary spin in light-front holographic QCD
can be found in [48]. In [18] a rank-2 symmetric tensor
field HAB is introduced, and, in the axial gauge HAz ¼ 0,
the field hμν, defined from Hμν ¼ hμν=z2, obeys the same
action (29).
From the action (29), the equation of motion in the

Fourier space is

∂z

�
e−ϕ

z3
∂zhμν

�
þ e−ϕ

z3
q2hμν ¼ 0: ð30Þ

The two-point correlation function is found from the on-
shell action:

Sos ¼ lim
z→0

kT
2

Z
d4x

e−ϕ

z3
ημαηνβhμν∂zhαβ ð31Þ

deriving it with respect to the sources of the 4D tensor
operator [49]. In the Fourier space the field hμν is related to
the source ĥμν by: hμνðz; q2Þ ¼ hBðz; q2Þĥμνðq2Þ, where hB
is the bulk-to-boundary propagator

hBðz; q2Þ ¼ Γ
�
2 −

q2

4c2

�
U

�
−

q2

4c2
;−1; c2z2

�
ð32Þ

obtained solving the equation of motion (30) with boundary
conditions hBð0; q2Þ ¼ 1 and finiteness of the action. The
two-point function reads

Πμνρσ ¼ δ2Sos
δĥμνδĥρσ

¼ kTPμνρσlim
z→0

e−ϕ

z3
hB∂zhB; ð33Þ

where Pμνρσ ¼ 1
2
ðημρηνσ þ ημσηνρ − 2

3
ημνηρσÞ is the trans-

verse projector. ForQ2 ¼ −q2 → ∞ one has (ν is an energy
scale)

Πμνρσ → −kTPμνρσ Q
4

8
logðQ2=ν2Þ ð34Þ

to be compared with [41,50]

Πμνρσ
QCD → −Pμνρσ

�
NcNf

160π2
þ N2

c − 1

80π2

�
Q4 logðQ2=ν2Þ: ð35Þ

This condition fixes kT ¼ �NcNf

20π2
þ N2

c−1
10π2

�
.

Eigenvalues and eigenfunctions are found by solving
Eq. (30) requiring hnð0Þ ¼ 0 and normalization
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Z
∞

0

dz
e−ϕðzÞ

z3
hnðzÞ2 ¼ 1: ð36Þ

The spectrum is m2
n ¼ 4c2ðnþ 2Þ and the wave functions

are [42]

hnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðnþ 1Þðnþ 2Þ

s
c3z4L2

nðc2z2Þ; ð37Þ

in terms of the generalized Laguerre polynomials Lλ
nðzÞ.

The residues of the poles of the two-point function are
Rn ¼ kT8c6ðnþ 1Þðnþ 2Þ. From Rn ¼ f2nm4

n we find
the decay constants fn ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTðnþ 1Þ=ð2ðnþ 2ÞÞp

. For
c ¼ 0.388 GeV we obtain mf2 ¼ 1.097 GeV and ff2 ¼
69 MeV (corresponding to n ¼ 0), while the first excitation
(n ¼ 1) has mass m1 ¼ 1.344 GeV and decay constant
f1 ¼ 80 MeV. The decay constant gf ¼ ff2=mf2 ¼ffiffiffiffiffiffiffiffi
5=2

p
=ð8πÞ ¼ 0.063 can be compared to Ref. [51] where

gf ¼ 0.040 is found, while in the hard-wall model one
has gf ¼ 0.024 [41].
The decay f2 → γ�γ� can be studied from the quadratic

action of the electromagnetic field considering the fluc-
tuation of the metric:

Sf2γγ ⊃ −Af2

Z
d5x

ffiffiffi
g

p
e−ϕTr

�
FMNFMN

� ð38Þ

with FMN ¼ ∂MVN − ∂NVM and Af2 ¼ 1=4. The obtained
interaction is of the kind: 1=2hμνTμν, where Tμν is the
electromagnetic stress-energy tensor.
In the Fourier space, after introducing the source VαðqÞ

and the BTBP Vðz; qÞ (17) of the vector field, we find:

Sf2γγ ¼ 2Af2TrðQ2
emTaÞ

Z
d4q1

Z
d4q2

×
Z

dz
z
e−ϕhaαβðz; q1 þ q2ÞVμðq1ÞVνðq2Þ

× ð−ημαηνβ∂zVðz; q1Þ∂zVðz; q2Þ
þ �q1 · q2ημαηνβ − qα1q

μ
2η

νβ þ qα1q
β
2η

μν

− qν1q
β
2η

μαÞVðz; q1ÞVðz; q2Þ
�
: ð39Þ

For a singlet field Ta ¼ T0. To find the amplitude, we
derive the action with respect to the three sources of the
fields, and write the BTBP of the tensor field as the sum

hðz; q2Þ ¼
X
n

hnðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn=kT

p
−q2 þm2

n
: ð40Þ

Identifying one transition form factor, the amplitude for
f2 → γ�γ� is

Mμναβ ¼ 4Af2Tr
�
Q2

emTa
��
q1 · q2ημαηνβ − q1αq2μηνβ

þ q1αq2βημν − q1νq2βημα
� Z ∞

0

dz
z
e−ϕh0ðzÞ

×

�
−

1

q1 · q2
∂zVðz; q1Þ∂zVðz; q2Þ

þ Vðz; q1ÞVðz; q2Þ
�
; ð41Þ

where h0ðzÞ is the wave function of the ground state,
obtained from (37) for n ¼ 0. The amplitude in (41) has the
same Lorentz structure given in [52]. In [30] a different
form of the amplitude has been proposed. From Eq. (41)
the two-photon transition form factor can be extracted
(q2i ¼ −Q2

i ):

Ff2γ�γ� ðQ2
1;Q

2
2Þ ¼

4ffiffiffiffiffi
kT

p Af2TrðQ2
emTaÞ

Z
∞

0

dz
z
e−ϕha0ðzÞ

×
�

−2
m2

0 þQ2
1 þQ2

2

∂zVðz;Q2
1Þ∂zVðz;Q2

2Þ

þVðz;Q2
1ÞVðz;Q2

2Þ
�
: ð42Þ

Equation (42) can also be used to compute the TFF in the
hard-wall model with some modifications: the upper limit
of the integral is z0 ¼ ð322 MeVÞ−1, the dilaton vanishes,
the tensor wave function is [41]

hHW
0 ðzÞ ¼ 3.51

z2

z0
J2ðm0zÞ ð43Þ

with the tensor massm0¼1.23GeV, the vector BTBP is [20]

VHWðz;Q2Þ ¼
ffiffiffiffiffiffi
Q2

p
z

 
K1

� ffiffiffiffiffiffi
Q2

p
z
�

þ I1
� ffiffiffiffiffiffi

Q2
p

z
�K0ð

ffiffiffiffiffiffi
Q2

p
z0Þ

I0ð
ffiffiffiffiffiffi
Q2

p
z0Þ

!
: ð44Þ

If one photon is real, only the second term in (42)
contributes to Ff2γ�γ , and its behavior in the soft-wall and
hard-wall models is shown in Fig. 3 together with data for
the helicity-2 component of f2ð1270Þ from Belle collabo-
ration [53]. The curve obtained in the hard-wall model has a
better agreement with the experimental points, and this is
due to the fact that the ground-state mass prediction of the
HW is closer to the experimental f2ð1270Þ mass than the
SW prediction. Indeed, if the f2ð1270Þ mass is used to fix
the mass scale c in the soft-wall model, the TFF in the SW
and HW models are similar. In Fig. 4 the results from [54]
and two determinations from [32] are also shown. In Fig. 5
Ff2γ�γ� ðQ2; Q2Þ for two photons with equal virtualities is
shown. The f2ð1270Þ → γγ decay width is Γγγ ¼ 2.6�
0.5 keV [55], and it is related to the form factor by
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Γγγ ¼
πα2

20
m3

0F
2
f2γγ

; ð45Þ

which fixes Ff2γγ ¼ 0.387 GeV−1. From Eq. (42), the
form factor for two real photons is Ff2γγ ¼ 4Af2=ffiffiffiffiffi
kT

p
TrðQ2

emT0Þ=2c in the soft-wall model. Using Af2 ¼
1=4 we find Ff2γγ ¼ 0.986 GeV−1. In the hard-wall model
one has Ff2γγ ¼ 4Af2=

ffiffiffiffiffi
kT

p
TrðQ2

emT0Þð2.084 GeV−1Þ,
hence Af2 ¼ 1=4 produces Ff2γγ ¼ 1.594 GeV−1.
The results can be extended to non-singlet tensor

mesons. As previously noticed, the action (29) is used to
describe also a generic tensor field dual to the operator

jμν ¼ q̄ 1
2
ðγμiD

↔

ν þ γνiD
↔

μÞq, without considering the fluc-
tuations of the metric. Assuming its coupling to two
photons is described by the action (39), we consider the
product Ãf2 ¼ Af2TrðQ2

emTaÞ as a free parameter and we
fix it from Ff2γγ ¼ 0.387 GeV−1. We get Ãf2 ¼ 0.0267 in
the soft-wall model and Ãf2 ¼ 0.0165 in the hard-wall
model. We shall use such values of Ãf2 to compute the
contribution to aμ from f2ð1270Þ.
As done for axial-vector mesons, the asymptotic large-

Q2 behavior of the f2 TFF can be analytically obtained
from Eq. (42) defining the variables Q2 ¼ ðQ2

1 þQ2
2Þ=2

and w ¼ ðQ2
1 −Q2

2Þ=ðQ2
1 þQ2

2Þ, noticing that in the soft-

wall model Vðz;Q2Þ ⟶
Q2→∞

z
ffiffiffiffiffiffi
Q2

p
K1ðz

ffiffiffiffiffiffi
Q2

p
Þ [27] and

h0ðzÞ ¼ f0m2
0=ð4

ffiffiffiffiffi
kT

p Þz4. We find:

Ff2γ�γ� ⟶
Q2→∞

Ff2γγ2c
f0m2

0

4
ffiffiffiffiffi
kT

p
Q4

Z
∞

0

dx x5

×
�
−ð1 − w2ÞK0

�
x
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p �
K0

�
x
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
K1

�
x
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p �
K1

�
x
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p ��
¼ Ff2γγ

4
ffiffiffiffiffiffiffiffi
2kT

p f0m3
0

Q4w5

�
4wð6 − 5w2Þ þ 2ð6 − 7w2 þ w4Þ

× log
1 − w
1þ w

�
: ð46Þ

In [36] this expansion has been computed in perturbative
QCD. The form factor multiplying the tensor

Tμναβ
1 ¼ 2q1 · q2ημαηνβ − 2qα1q

μ
2η

νβ þ 2qα1q
β
2η

μν − 2qν1q
β
2η

μα

ð47Þ

at large Q2 is

F T
1 ðq21; q22Þ ¼

4
P

aCaFa
Am

3
T

Q4
fT1 ðwÞ ð48Þ

with

FIG. 3. f2 TFF with one real and one virtual photon in the soft-
wall (blue curve) and hard-wall (orange curve) models. Belle data
are from Ref. [53].

FIG. 4. f2 TFF with one real and one virtual photon in the soft-
wall model (blue curve), compared with results found in other
models: Ref. [54] (orange curve), [32] (green and red curves).
Belle data are from Ref. [53].

FIG. 5. f2 TFF with two virtual photons in the soft-wall model
(blue curve), hard-wall (orange curve) model and computed in
Ref. [54] (magenta curve).
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fT1 ðwÞ ¼
5ð1 − w2Þ

8w6

�
15 − 4w2 þ 3ð5 − 3w2Þ

2w
log

1 − w
1þ w

�
ð49Þ

having the same Q2 but a different w behavior than
in Eq. (46).
The results for the TFF can be used to compute the

HLbL pole contribution of tensor mesons to muon g − 2
using Eq. (B9) in Appendix B. We find that the f2ð1270Þ
contribution to muon g − 2 is aHLbL

μ ∼ 0.61 × 10−11 in the
soft-wall model and aHLbL

μ ∼ 0.63 × 10−11 in the hard-wall
model. They agree with the result in [30] aHLbL

μ ¼
ð0.79� 0.09Þ × 10−11. In Ref. [56] aHLbL

μ ¼ ð0.50�
0.13Þ × 10−11 and aHLbL

μ ¼ ð0.21� 0.05Þ × 10−11 are
obtained for f2ð1270Þ and f2ð1565Þ, respectively.

V. CONCLUSIONS

Holographic bottom-up models, despite their simplicity,
provide a good qualitative description of QCD observables
in different sectors, and in some case succeed in quanti-
tative predictions. This also holds for the two-photon
transition form factors of axial-vector and tensor mesons.
The TFF of tensor mesons in the soft-wall model is smaller
than experimental values but the differences are within the
experimental errors. A better agreement is found between
the hard-wall model and experimental data, since the mass
prediction better reproduces the measured f2ð1270Þ mass.
The results for axial-vector and tensor meson contributions
to the anomalous magnetic moment of the muon confirm
the decreasing hierarchy from pseudoscalar, axial-vector
and tensor meson poles. The values we have found in the
soft-wall model are aHLbL

μ ¼ 36 × 10−11 for axial-vector
mesons and aHLbL

μ ¼ 0.61 × 10−11 for tensor mesons. The
contribution from the pion computed in [28] in a model that
for pions is identical to the one considered in this paper is
aHLbL
μ ¼ 75.2 × 10−11 for the ground state and aHLbL

μ ¼
1.68 × 10−11 for the first excited state. It would be
interesting to extend the present analysis considering the
model of Ref. [28] with the strange quark mass and the
Uð1ÞA anomaly. This is left to a future study.
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APPENDIX A: TENSOR MESON ACTION

Let us compute the Einstein-Hilbert action for the metric

ds2 ¼ gMNdxMdxN ¼ 1

z2
ðημν þ λhμνÞdxμdxν −

1

z2
dz2;

ðA1Þ

where hμν is a small fluctuation of the metric and λ a
parameter. We consider a transverse symmetric tensor,
hence ∂

μhμν ¼ 0 and hμν ¼ hνμ. The Einstein-Hilbert
action is

SEH ¼ −2kT
Z

d5x
ffiffiffi
g

p ðRþ 2ΛÞ; ðA2Þ

where R is the Ricci scalar and Λ the cosmological
constant. At Oðλ0Þ the metric describes a 5D AdS space,
with Rð0Þ ¼ 20 and Λ ¼ −6. To Oðλ2Þ we find:

gμν ¼ z2ðημν − λhμν þ λ2hμαhναÞ þOðλ3Þ ðA3Þ

ffiffiffi
g

p ¼ z−5
�
1þ λ

2
hþ λ2

�
−
1

4
hμνhμν þ

1

8
h2
��

þOðλ3Þ;

ðA4Þ

where hμν ¼ ηαμηβνhαβ and h ¼ ημνhμν,

Rzz ¼ −
4

z2
þ λ

�
1

2z
∂zh −

1

2
∂
2
zh

�
þ λ2

�
1

2
∂zðhαβ∂zhαβÞ −

1

4
ð∂zhαβÞð∂zhαβÞ −

1

2z
hαβ∂zhαβ

�
þOðλ3Þ ðA5Þ

Rμν ¼
4

z2
ημν þ λ

�
4

z2
hμν −

3

2z
∂zhμν þ

1

2
∂
2
zhμν −

1

2
□hμν −

1

2
∂μ∂νh −

1

2z
ημν∂zh

�

þ λ2
�
−

1

2z
hμν∂zhþ 1

4
ð∂zhÞð∂zhμνÞ þ

1

2z
ημνhαβ∂zhαβ −

1

4
ð∂βhÞ∂βhμν

−
1

2
ð∂zhμβÞ∂zhβν −

1

4
ð∂μhαβÞ∂νhαβ þ

1

2
ð∂βhαμÞ∂βhνα

�
þOðλ3Þ: ðA6Þ
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In R the hμν and h decouple. Since we are interested in a spin-2 field, we do not consider terms depending on h:

R ¼ 20þ λ2
�
4zhαβ∂zhαβ −

z2

4
ð∂zhαβÞð∂zhαβÞ þ

z2

4
ð∂μhαβÞð∂μhαβÞ −

z2

2
hαβ∂2zhαβ

þ z2

2
hαβ□hαβ −

z2

2
∂zðhαβ∂zhαβÞ

�
þOðλ3Þ: ðA7Þ

Finally, we expand the Lagrangian:

ffiffiffi
g

p ðRþ 2ΛÞ ¼ 8

z5
þ λ2

�
4

z4
hαβ∂zhαβ −

1

4z3
ð∂zhαβÞð∂zhαβÞ þ

1

4z3
ð∂μhαβÞð∂μhαβÞ

−
1

2z3
hαβ∂2zhαβ þ

1

2z3
hαβ□hαβ −

1

2z3
∂zðhαβ∂zhαβÞ −

2

z5
hαβhαβ

�
þOðλ3Þ

¼ 8

z5
þ λ2

�
∂z

�
1

2z4
hαβhαβ

�
þ 1

4z3
ð∂zhαβÞð∂zhαβÞ þ

1

4z3
hαβ□hαβ

− ∂z

�
1

z3
hαβ∂zhαβ

��
þOðλ3Þ: ðA8Þ

The Gibbons-Hawking-York boundary term is:

SGHY ¼ −4kT
Z
∂

d4x
ffiffiffi
γ

p
K; ðA9Þ

where γ is the determinant of the induced metric on the
boundary ∂ of the spacetime and K the extrinsic curvature.
At Oðλ2Þ it reads:

Sð2ÞGHY ¼ −2kT
Z
∂

d4x
�
−

2

z4
hμνhμν þ

1

z3
hμν∂zhμν

�
: ðA10Þ

The total action at Oðλ2Þ is then:

Sð2Þ ¼ −2kT
Z

d5x

�
1

4z3
ð∂zhαβÞð∂zhαβÞ þ

1

4z3
hαβ□hαβ

�

þ 3kT

Z
∂

d4x
1

z4
hμνhμν: ðA11Þ

Neglecting the last (boundary) term, the action considered
in the soft-wall model in Sec. IV is

S ¼ −
kT
2

Z
d5 x e−ϕ

�
1

z3
ð∂zhαβÞð∂zhαβÞ þ

1

z3
hαβ□hαβ

�
:

ðA12Þ

APPENDIX B: aHLbL
μ FROM TENSOR

MESON POLES

The HLbL contribution to the anomalous magnetic
moment of the muon is computed from [3]:

aHLbL
μ ¼ −

ie6

48mμ

Z
d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4

1

q21q
2
2ðk − q1 − q2Þ2

×
1

ðp − q1Þ2 −m2
μ

1

ðp − q1 − q2Þ2 −m2
μ

× Tr
�ð =pþmμÞ½γρ; γσ�ð =pþmμÞγμ

× ð =p − =q1 þmμÞγνð =p − =q1 − =q2 þmμÞγλ
�

×
∂

∂kρ
Πμνλσ

�
q1; q2; k − q1 − q2

�			
k→0

; ðB1Þ

where p denotes the initial muon momentum, mμ is the
muon mass, q1, q2, q3, q4 are the momenta of the incoming
photons, and k ¼ −q4. Let us consider the contribution to
Πμνλσ from tensor-meson exchange [30]:

ðieÞ4ΠT
μνλσðq1; q2; q3Þ

¼ Mμναα0 ðq1; q2Þ
iPαα0ββ0 ðk − q3Þ
ðk − q3Þ2 −M2

T
Mλσββ0 ðq3;−kÞ

þMμσαα0 ðq1;−kÞ
iPαα0ββ0 ðk − q1Þ
ðk − q1Þ2 −M2

T
Mνλββ0 ðq2; q3Þ

þMμλαα0 ðq1; q3Þ
iPαα0ββ0 ðk − q2Þ
ðk − q2Þ2 −M2

T
Mνσββ0 ðq2;−kÞ ðB2Þ

with MT the mass of the tensor meson. We only consider
the dominant contribution from helicity Λ ¼ 2 [30], for
which the amplitude of the f2 production from two photons
is written as [52]

Mμναβðq1; q2Þ ¼ e2ðq1 · q2ημαηνβ − qα1q
μ
2η

νβ þ qα1q
β
2η

μν

− qν1q
β
2η

μαÞFTγ�γ�ðq21; q22Þ; ðB3Þ
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where α, β are f2 indices. The projection operator for J ¼ 2 has the form:

PαβγδðpÞ ¼
1

2

�ð−gαγ þ pαpγ=p2Þð−gβδ þ pβpδ=p2Þ þ ð−gαδ þ pαpδ=p2Þð−gβγ þ pβpγ=p2Þ�
−
1

3
ð−gαβ þ pαpβ=p2Þð−gγδ þ pγpδ=p2Þ: ðB4Þ

We define the momenta Qi ¼ iqi and P ¼ ip, obtaining:

aHLbL
μ ¼ e6

48mμ

Z
d4Q1

ð2πÞ4
Z

d4Q2

ð2πÞ4
1

Q2
1Q

2
2ðQ1 þQ2Þ2

1

ðPþQ1Þ2 þm2
μ

1

ðP −Q2Þ2 þm2
μ

×

�
T1ðQ1; Q2; PÞ

FTγ�γ� ðQ2
1; ðQ1 þQ2Þ2ÞFTγ�γ�ðQ2

2; 0Þ
Q2

2 þM2
T

þ T2ðQ1; Q2; PÞ
FTγ�γ�ððQ1 þQ2Þ2; Q2

2ÞFTγ�γ� ðQ2
1; 0Þ

Q2
1 þM2

T

þT3ðQ1; Q2; PÞ
FTγ�γ� ðQ2

1; Q
2
2ÞFTγ�γ� ððQ1 þQ2Þ2; 0Þ

ðQ1 þQ2Þ2 þM2
T

�
; ðB5Þ

with

T1 ¼
32mμ

3Q2
2

�ðP ·Q2Þ2ð−6ðQ1 ·Q2Þ2 þ 2Q2
1Q

2
2

�þQ2
2

�ð8m2
μ − 4P ·Q1ÞðQ1 ·Q2Þ2

þ 2ð−2ðP ·Q1Þ2 þm2
μQ2

1 þ 2P ·Q1Q2
1ÞQ2

2 þ 5ð2m2
μ − P ·Q1ÞQ1 ·Q2Q2

2

�
þ P ·Q2

�
4ðQ1 ·Q2Þ3 þ 2ð9P ·Q1 − 2Q2

1ÞQ1 ·Q2Q2
2 þ 5ðQ1 ·Q2Þ2Q2

2 þ 10P ·Q1Q4
2Þ
� ðB6Þ

T3 ¼ −
32mμ

3ðQ1 þQ2Þ2
�ðP ·Q2Þ2ð4Q4

1 þ 6ðQ1 ·Q2Þ2 þQ2
1ð8Q1 ·Q2 − 2Q2

2Þ
�

þ ðP ·Q1Þ2
�
6ðQ1 ·Q2Þ2 þ 8Q1 ·Q2Q2

2 − 2ðQ2
1 − 2Q2

2ÞQ2
2

�
− 3P ·Q2ðQ2

1 þQ1 ·Q2Þ
�
Q2

1ð5Q1 ·Q2 þ 2Q2
2Þ þQ1 ·Q2ð8Q1 ·Q2 þ 5Q2

2Þ
�

þ 2m2
μ

�
Q4

1ð5Q1 ·Q2 þ 4Q2
2Þ þ 2Q2

1ð8ðQ1 ·Q2Þ2 þ 9Q1 ·Q2Q2
2 þ 2Q4

2

�
þQ1 ·Q2

�
12ðQ1 ·Q2Þ2 þ 16Q1 ·Q2Q2

2 þ 5Q4
2Þ
�

þ P ·Q1

�
2P ·Q2ð5Q4

1 þ 18ðQ1 ·Q2Þ2 þ 16Q1 ·Q2Q2
2 þ 5Q4

2 þ 4Q2
1ð4Q1 ·Q2 þQ2

2Þ
�

þ 3ðQ1 ·Q2 þQ2
2ÞðQ2

1ð5Q1 ·Q2 þ 2Q2
2Þ þQ1 ·Q2ð8Q1 ·Q2 þ 5Q2

2Þ
���

: ðB7Þ

The second term in (B5) coincides with the first one after changing variables Q1 → −Q2 and Q2 → −Q1. To eliminate the
dependence on the direction of the muon momentum P, we average over all spatial directions of P

aHLbL
μ ¼ 1

2π2

Z
dΩðP̂ÞaHLbL

μ : ðB8Þ

The integrals can be done analytically expressing the propagators in terms of Gegenbauer polynomials [3]. Defining
t ¼ cos θ, with θ the angle between the four vectors Q1 and Q2, and Q1 ¼ jQ1j and Q2 ¼ jQ2j, we obtain

aHLbL
μ ¼ α3

24π2mμ

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Q1Q2

Q2
3

�
I1ðQ1; Q2; tÞ

FTγ�γ� ðQ2
1; Q

2
3ÞFTγ�γ� ðQ2

2; 0Þ
Q2

2 þM2
T

�

þ
�
I
2

ðQ1; Q2; tÞ
FTγ�γ� ðQ2

1; Q
2
2ÞFTγ�γ� ðQ2

3; 0Þ
Q2

3 þM2
T

�
; ðB9Þ
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with

I1ðQ1; Q2; tÞ ¼
8Q2

3mμ

�
−10Q3

2 − 6Q1Q2
2t − 4m2

μð5Q2 þ 9Q1tÞ þ 4Q2
1Q2ð−5þ 3t2Þ

þQ3
1tð−27þ 11t2Þ − 2Q2

1ð2Q2 þ 7Q1tÞð−2þ t2ÞR1 þQ3
1tð−1þ 3t2ÞR2

1

þ 2Q2R2

�
5Q2

2 þ 2Q1Q2tþQ2
1ð6 − 4t2Þ þQ1Q2tR2

�þ 8Q1Q2

�
2m2

μðQ1 þ 5Q2tþ 4Q1t2Þ
þQ1

�
Q2

2ð−2þ t2Þ þ 2Q1Q2tð−2þ t2Þ þQ2
1ð−3þ 2t2Þ��XðQ1; Q2; tÞ

� ðB10Þ

I2ðQ1; Q2; tÞ ¼
4

3mμQ2
3

�
2ð5Q6

1 þ 5Q6
2 þ 32Q5

1Q2tþ 32Q1Q5
2tþQ3

1Q
3
2tð65þ 51t2Þ þQ4

1Q
2
2ð14þ 71t2Þ

þQ2
1Q

4
2ð14þ 71t2Þ þ 2m2

μð5Q4
1 þ 5Q4

2 þ 16Q3
1Q2tþ 16Q1Q3

2tþ 2Q2
1Q

2
2ð2þ 9t2Þ��

− 2Q2
1

�
5Q4

1 þ 33Q3
1Q2tþ 6Q4

2ð1þ 2t2Þ þQ1Q3
2tð32þ 27t2Þ þQ2

1Q
2
2ð8þ 61t2Þ�R1

þQ3
1Q2t

�
2Q2

1 þ 4Q1Q2tþQ2
2ð−1þ 3t2Þ�R2

1 þQ2

�
Q2R2

�
−2ð5Q4

2 þ 33Q1Q3
2tþ 6Q4

1ð1þ 2t2Þ
þQ3

1Q2tð32þ 27t2Þ þQ2
1Q

2
2ð8þ 61t2Þ�þQ1Q2tð2Q2

2 þ 4Q1Q2tþQ2
1ð−1þ 3t2Þ�R2

�
þ 8Q1ðQ2

1 þQ2
2 þ 2Q1Q2tÞ

�
−2m2

μð4Q1Q2 þ 5ðQ2
1 þQ2

2Þtþ 6Q1Q2t2
�

þ 3Q1Q2ðQ2
1 þQ2

2 þ 6Q1Q2tþ 2ðQ2
1 þQ2

2Þt2Þ
�
XðQ1; Q2; tÞ

�� ðB11Þ

and Q2
3 ¼ Q2

1 þ 2Q1Q2tþQ2
2, XðQ1; Q2; tÞ ¼ 1

Q1Q2

ffiffiffiffiffiffiffi
1−t2

p arctanðz
ffiffiffiffiffiffiffi
1−t2

p
1−zt Þ, z ¼ Q1Q2

4m2
μ
ð1 − R1Þð1 − R2Þ, Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ=Q2
i

q
.
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