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We analyze the confinement/deconfinement transition of pure Yang-Mills theories within the framework
of the center-symmetric Landau gauge supplemented by a Curci-Ferrari mass term that models the effect of
the associated Gribov copies in the infrared. In addition to providing details for earlier one-loop
calculations in that framework, we explore how the results depend on the renormalization scale and/or on
the renormalization scheme. We find that the predicted values for the transition temperatures of SU(2) and
SU(3) Yang-Mills theories are similar in both schemes and are little sensitive to the renormalization scale μ
over a wide range of values including the standard range μ∈ ½πT; 4πT�. These values are also close both to
those obtained from a minimal sensitivity principle and to those of lattice simulations, especially in the
SU(3) case. These results further confirm the good behavior of perturbative calculations within the Curci-
Ferrari model and support the adequacy of the latter as an effective description of Yang-Mills theories in the
infrared. We perform a similar analysis for the spinodal temperatures in the SU(3) case and for the
Polyakov loop, the order parameter associated with the breaking of center symmetry.
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I. INTRODUCTION

The Landau gauge is a very popular choice within the
corpus of functional approaches to non-Abelian gauge
theories [1–14]. In particular, this gauge can be imple-
mented within the framework of Monte Carlo importance
sampling techniques and has thus opened the way to an
active and fruitful cooperation between continuum and
discrete approaches.
The practical implementation of the Landau gauge is

hindered, however, by the Gribov ambiguity [15] which,
although not relevant at high energies, is believed to play a
role in the study of the infrared properties of non-Abelian
gauge theories. There exist various ways by which one can
try to take into account the ambiguity [16–18]. Among them,
the one based on the Curci-Ferrari (CF) action [19] is a
phenomenological approach [20] that capitalizes on the
results of Landau gauge-fixed lattice simulations obtained
over the past decades [21–29]. Most notably, in the zero-
momentum limit, the lattice gluon propagator saturates to a
finite nonzerovalue. Thismass scale is accommodatedwithin
the CF model by adding a gluon mass term to the usual, but
incomplete,1 Landau-gauge Faddeev-Popov (FP) action. The

same lattice simulations also show that, in the pureglue sector,
the coupling never becomes too large,2 which points to the
idea that, at least for applications to pure Yang-Mills (YM)
theories, the CF model can be considered at a perturbative
level. This approach has been quite successful in describing
YM correlation functions in the vacuum, in good agreement
with the lattice data [30–34].3
When extending these considerations to the finite

temperature case, one needs to pay special attention to
the center symmetry which controls the confinement/
deconfinement transition in the case of pure Yang-Mills
theories. Unfortunately, the Landau gauge is not very
efficient in this respect, in particular, in the presence of
approximations [37]. A better choice consists in upgrading
the Landau gauge to the class of background Landau
gauges [38,39] and to consider the associated background
field effective action [40,41]. As the latter is center-
symmetric, its absolute minima allow one to distinguish
between the Wigner-Weyl and Nambu-Goldstone realiza-
tions of the symmetry.
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1Given that it disregards the Gribov copies.

2By coupling, we here mean the rescaled coupling g2N=ð16π2Þ
which is the actual expansion parameter of perturbative calcu-
lations in the vacuum.

3In the QCD case, the infrared coupling that can be extracted
from the vertex functions in the matter sector is larger than the
one that can be extracted from the vertex functions in the glue
sector. This calls for the use of nonperturbative methods.
Interestingly enough, however, this hierarchy in the infrared
couplings allows one to devise a nonperturbative expansion with
good control on the error [35,36].
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The background field effective action is not a Legendre
transform, however, and the very rationale for extracting
physical information from its absolute minima relies on one
additional property [37] which is only approximately
satisfied in practice, thus introducing a potential bias in
the results. Recently, to cope with this limitation, we have
proposed a different approach. It is also set up within the
class of background Landau gauges but it uses a genuine
Legendre transform, computed for a particular class of
backgrounds known as center-symmetric. Within these
“center-symmetric Landau gauges,” the effective action
is center-symmetric and its minima allow again for the
identification of explicitly realized or broken symmetry
phases, the major difference being that the very use of the
minima does not rely in this case on any extra assumption.
As in the case of the standard Landau gauge, however,

the center-symmetric Landau gauges suffer from the
Gribov ambiguity, and it is necessary to try to take the
latter into account in one way or another. One possibility is
to extend the CF model in the presence of a center-
symmetric background [37]. In Ref. [42], the confine-
ment/deconfinement transition has been studied using this
extension to one-loop accuracy, with predictions for the
SU(2) and SU(3) transition temperatures in pretty good
agreement with the results of lattice simulations, especially
in the SU(3) case.
It should be stressed, however, that those results have

been obtained within one specific renormalization scheme
and for a fixed value of the renormalization scale, the same
one that was used to determine the parameters of the CF
model from the fits of Landau gauge lattice propagators. A
more complete analysis requires assessing how much the
results depend on the renormalization scale and/or on the
choice of the renormalization scheme.
In this paper, we combine the results of Ref. [42] with a

renormalization group analysis, following the lines of
Ref. [30] to test the renormalization scale dependence of
the results in two different renormalization schemes. While
the analysis of the renormalization scale dependence in a
given scheme will allow us to test the internal consistency
of perturbative calculations within the CF model, the
analysis of the scheme dependence will allow us to explore
the adequacy of that model for describing Yang-Mills
theories in the infrared. This is because the initializations
of the renormalization group (RG) flows will be taken from
fits to the Landau gauge correlators as simulated on the
lattice, that is, input external to the CF model itself. We
stress that our analysis will apply to the strict one-loop
calculation performed in Ref. [42]. Of course, one could
also use the RG to improve this calculation in various ways.
We leave this task, however, for a subsequent analysis.
The paper is organized as follows. In Sec. II, we briefly

review the framework that will be used in this work,
including the class of background Landau gauges, the
particular instances known as center-symmetric Landau

gauges, and the associated Curci-Ferrari model. In Sec. III,
we provide some details on the derivation of the formula for
the one-loop effective potential and discuss the symmetries
of the latter. Section IV is devoted to the renormalization of
the potential while Sec. V discusses its practical evaluation.
Finally, Sec. VI reviews the two renormalization schemes
and the associated RG flows that will be used in the results
section, Sec. VII. The appendixes gather further technical
details. Appendix A describes the steps that lead to the
one-loop expression for the effective potential while
Appendix B provides an alternative practical evaluation
of the latter, complementing the one presented in Sec. V.
Similarly, Appendix C discusses the evaluation of
Matsubara sum-integrals, especially in those cases not
adapted to the standard contour integration technique,
while Appendix D deals with the specific question of
interchanging the order between the Matsubara summation
and the continuum limit in dimensional regularization.

II. THE FRAMEWORK

A. Background Landau gauges

We consider the class of background Landau gauges
defined by the condition

D̄μðAa
μ − Āa

μÞ ¼ 0; ð1Þ
where Āa

μ is a given background gauge-field configuration
and D̄ac

μ ≡ ∂μδ
ac þ gfabcĀb

μ is the adjoint covariant deriva-
tive for that background. The associated Euclidean, FP
gauge-fixed action is

SĀ½A� ¼
Z
x

�
1

4
Fa
μνFa

μν þ D̄μc̄aDμca þ ihaD̄μðAa
μ − Āa

μÞ
�
;

ð2Þ
where Fa

μν ≡ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν is the non-Abelian
field-strength tensor while ca, c̄a, and ha denote the ghost,
anti-ghost, and Nakanishi-Lautrup fields. Note the presence
of Dμca ≡ ∂μca þ gfabcAb

μcc which does not involve the
background.
Here and in the following, we adopt a Euclidean setup

adapted to the finite temperature case, and we recall that the
gauge fields are periodic along the Euclidean time direction
with a period equal to the inverse temperature β≡ 1=T:

Aa
μðτ þ β; x⃗Þ ¼ Aa

μðτ; x⃗Þ: ð3Þ
Equivalently, they are defined over the compact time
interval ½0; β� and obey periodic boundary conditions.
The very choice of the class of gauges (1) relies on the

fact that the gauge-fixed action (2) is invariant under the
simultaneous “gauge” transformation of Aa

μ and Āa
μ, that is,

4

4It is implicitly understood that the other fields φa need to be
color-rotated as φU ¼ UφU†, where φ≡ φata.

VICTOR TOMAS MARI SURKAU and URKO REINOSA PHYS. REV. D 109, 094033 (2024)

094033-2



SĀU ½AU� ¼ SĀ½A�; ð4Þ
with

AU
μ ¼ UAμU† þ i

g
U∂μU†; ð5Þ

ĀU
μ ¼ UĀμU† þ i

g
U∂μU†; ð6Þ

and where we have defined Aμ ≡ Aa
μta and Āμ ≡ Āa

μta. The
identity (4) is known as background “gauge” symmetry
and plays a pivotal role in the following. We stress that this
relation does not reflect any gauge-invariance property of
SĀ½A� since the gauge is anyway fixed by the choice (1).
Rather, Eq. (4) connects two background gauges with
respective backgrounds Ā and ĀU.

B. Center-symmetric Landau gauges

It is important to stress that only those transformations U
in Eqs. (5) and (6) that are themselves periodic in time
ought to be considered as genuine gauge transformations,
that is, transformations that do not alter the state of the
system. They are generically written as U0 and form a
group denoted G0.
There is, however, a larger group G of transformations

that preserve the periodicity condition (3), namely those
transformations U that are periodic modulo an element of
the center of SU(N), that is

Uðτ þ β; x⃗Þ ¼ ei2πk=NUðτ; x⃗Þ; ð7Þ

with k ¼ 0; 1;…; N − 1. The transformations correspond-
ing to k ≠ 0 need to be interpreted as genuine physical
transformations that alter the state of the system.5 They
change at least one observable characterizing this state, the
Polyakov loop, which measures the free-energy of a heavy
test color charge in the thermal bath of gluons. Because the
Polyakov loop is invariant under the action of G0, the actual
physical symmetry group is the quotient group G=G0. This
group is isomorphic to the center of SU(N) and is, there-
fore, naturally dubbed as the center-symmetry group.
As long as this symmetry is explicitly realized in the

system, the Polyakov loop needs to vanish, which makes
the free energy of the heavy test quark infinite and which, in
turn, is interpreted as the confining phase of the thermal

bath of gluons. In contrast, the spontaneous breaking of
the symmetry allows the Polyakov loop to acquire a non-
zero value, corresponding to a finite free energy and thus to
a deconfined phase. This shows that the Polyakov loop
plays the role of an order parameter for center symmetry
and, as such, allows one to identify the confinement/
deconfinement transition within the pure Yang-Mills sys-
tem. This order parameter is gauge-invariant, that is,
invariant under the action of G0.
In the continuum, however, the Polyakov loop is not the

simplest quantity to evaluate, and it might be useful to
identify simpler order parameters that probe the same
symmetry. This can be done, in particular, by choosing a
background Āc such that

ĀUc
c ¼ Āc; ð8Þ

for a certain transformation Uc obeying the condition (7)
with 1 ≤ k < N.6 We refer to these types of backgrounds as
center-invariant and to the associated gauges as center-
invariant Landau gauges. Now, because of Eqs. (4) and (8),
the transformation Uc is a symmetry of the gauge-fixed
action in the corresponding gauge7:

SĀc
½AUc � ¼ SĀc

½A�: ð9Þ
This simple observation allows one to define alternative
order parameters for the confinement/deconfinement tran-
sition in terms of the n-point functions [43,44]. The
simplest example, on which we shall focus in the present
work, is that of the one-point function hAiĀc

. This proposal
differs from the popular choice based on the use of self-
consistent backgrounds Ās ¼ hAiĀs

and the associated
background effective action. We shall compare the two
approaches in Sec. VII D.

C. Constant, temporal, and Abelian backgrounds

In practice, it is not necessary to determine all possible
center-invariant backgrounds. In this respect, it is conven-
ient to first restrict to constant, temporal, and Abelian
backgrounds, that is,

ĀμðxÞ ¼
T
g
r̄jtjδμ0; ð10Þ

where the tj span the diagonal part of the algebra and
the r̄j are the components of a constant, dimensionless8

5One could of course question this interpretation by stating that
all transformations within G are actual gauge transformations.
However, this would have annoying consequences at an inter-
pretation level. In particular, the Polyakov loop (see below) would
not be an observable. Let us also mention that, within QCD, the
only transformations that are symmetries of the Euclidean func-
tional integral representation of the partition function are those
within G0. Then, it makes sense once again to interpret G0 as the
group of genuine gauge transformations, the other, physical
symmetries being explicitly broken by the presence of dynamical
quarks in this case.

6In what follows, we shall work essentially with k ¼ 1.
7This identity substantially differs from themoregeneral one (4).

Indeed, the latter reflects a connection between two distinct gauges
characterized by Ā and ĀU ≠ Ā, while the former is a symmetry
constraint within a particular gauge characterized by Āc.

8The factor T=g has dimension ðd − 2Þ=2 in dimensional
regularization that is precisely the dimension of Ā. We stress
that, so far, g denotes the bare coupling which has dimension
ð4 − dÞ=2. The dimensionless, renormalized coupling will be
introduced later when dealing with renormalization.
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vector r̄ within RN−1. The particular values r̄ ¼ r̄c that
correspond to center-invariant backgrounds can then be
determined using the notion of Weyl chambers; see below
as well as Refs. [44,45] for details. In the SU(2) case,
one can for instance take r̄c ¼ π, with tj ¼ σ3=2, while in
the SU(3) case, one can take r̄c ¼ ð4π=3; 0Þ, with
tj ∈ fλ3=2; λ8=2g.
Moreover, with the choice of background (10), it can be

shown that the one-point function acquires a similar form

hAμiĀ ¼ T
g
rjtjδμ0; ð11Þ

and that within the gauge r̄ ¼ r̄c, and as long as center
symmetry is not spontaneously broken, r should also be
center-symmetric. Any deviation from this allows one to
identify the confinement/deconfinement transition. It is the
purpose of this paper to analyze how this happens and how
this depends on the renormalization scheme and renorm-
alization scale, complementing the results of Ref. [42].

D. The Curci-Ferrari model

Before doing so, however, an important remark is in
order. The point is that the FP action (2) is not a bona fide
gauge fixing due to the existence of Gribov copies in the
class of gauges (1). Even though these copies are expected
not to play a role at high energies and the use of the FP
action is sensible in this case, this is not necessarily so at
low energies, in particular regarding the low-temperature
phase of the system. It is usually accepted that the FP action
needs to be modified in that case.
Here we do not aim at implementing this modification

exactly. Rather, we consider a phenomenological take on
that question, based on the Curci-Ferrari model which has
shown a surprising ability to capture many infrared proper-
ties of Landau gauge YM theory from simple perturbative
calculations; see [20] for a thorough review.
In the background Landau gauges, the CF extension of

the FP gauge-fixing (2) is provided by

SĀ½A� þ
Z
x

1

2
m2ðAa

μ − Āa
μÞ2; ð12Þ

wherem is the CF mass parameter whose value can be fixed
by fitting the zero-temperature9 Landau gauge correlators
determined in lattice simulations. The mass term in Eq. (12)
is tailor-made such that the symmetry identity (4) is
preserved, and we can still rigorously construct order
parameters based on the relation (9). For other approaches
that phenomenologically include massive gluons, see for
instance [46,47]. In these approaches, the modeling is

usually done at the level of the thermodynamical potential.
One benefit of the Curci-Ferrari approach is that it is
formulated, instead, at the level of the classical action, thus
allowing for the evaluation of higher order corrections.

III. THE ONE-LOOP EFFECTIVE POTENTIAL

In what follows, we determine the one-point function
hAμiĀc

within the Curci-Ferrari model in the presence of a
center-invariant background Āc. To take into account the
possibility of spontaneous center-symmetry breaking, one
needs to perform the calculation in the presence of an
external source Jμ coupled to Aμ that breaks explicitly the
symmetry (9), and, only then, to analyze what happens as
the external source is sent to 0. An efficient way to do so is
to evaluate the effective action10 ΓĀc

½A� which takes its
minimal value when A ¼ hAiĀc

. We have already men-
tioned that this quantity plays the role of an order parameter
for the confinement/deconfinement transition. The argu-
ment in terms of the effective action goes as follows.
First, for an arbitrary background Ā, the effective action

ΓĀ½A� obeys the identity [48]

∀U∈G; ΓĀU ½AU� ¼ ΓĀ½A�: ð13Þ

In general, ĀU ≠ Ā, and therefore, this identity connects the
effective actions in two distinct gauges, characterized by
the backgrounds Ā and ĀU, respectively. In particular, upon
the action of U, the absolute minima of ΓĀ½A� are trans-
formed into absolute minima of ΓĀU ½A�, so there is no actual
constraint on the location of the minima,11 just a connection
between these minima in two different gauges.
In contrast, within the center-symmetric Landau gauge,

corresponding to a choice of background Āc, we have

ΓĀc
½AUc � ¼ ΓĀc

½A�; ð14Þ

for any transformation Uc complying with Eq. (8), i.e. that
is not just a genuine gauge transformation. In this case, the
absolute minima of ΓĀc

½A� are transformed into absolute

9In this limit, and due to the explicit factor of T in Eq. (10), the
center-symmetric background vanishes and the background
Landau gauge coincides with the Landau gauge.

10In principle, one should introduce external sources coupled
to the auxiliary fields c, c̄, and h, which then leads to an effective
action ΓĀ½A; c; c̄; h� whose arguments represent the expectation
values of these auxiliary fields in the presence of the sources.
In the limit of zero sources, however, the ghost expectation values
vanish which means that one can restrict from the beginning
to ΓĀ½A; h�≡ ΓĀ½A; 0; 0; h�. Moreover, it can be shown that the
h-dependent part of ΓĀ½A; h� is the one already present in the
classical action: ΓĀ½A; h� ¼ ΓĀ½A; 0� þ

R
x ih

aD̄a
μðAa

μ − Āa
μÞ. The

extremization with respect to ha leads simply to the gauge
condition (1). Thus, in practice, one can assume that Dμ½Ā�ðAμ −
ĀμÞ ¼ 0 and, thus, effectively, h ¼ 0.

11Such a constraint would make the minima play the role of
order parameters for the symmetry at hand.
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minima of the same functional. Within the explicit, Wigner-
Weyl realization of the symmetry, the minimum is unique,
and, therefore, it needs to be invariant under Uc and thus to
correspond to a center-invariant configuration. In contrast,
within the broken, Nambu-Goldstone realization of the
symmetry, the absolute minima become degenerate, there is
no such constraint, and the transformation Uc simply
transforms the possible minima into one another.

A. Effective potential

In the case where the background is taken constant,
temporal, and Abelian, and because hAμiĀc

obeys the same
properties, it is enough to minimize the effective action
within the subspace of configurations (11). Up to a trivial
spacetime volume factor, this amounts to minimizing an
effective potential Vr̄cðrÞ, a function of the N − 1 real
variables rj.
In practice, it is convenient to first evaluate the potential

Vr̄ðrÞ associated with a generic background of the form (10)
and only then to restrict to confining backgrounds. At one-
loop order, this potential is easily computed since it only
requires the evaluation of the determinant of the quadratic
part of the gauge-fixed action (2) as the fields are varied
around configurations that represent the arguments of the
effective action. The result of this calculation has already
been presented in Refs. [42,49]. The calculation is pretty
standard once one introduces the appropriate color basis. For
the sake of simplicity,we shall gather the associated details in
Appendix A and just recall here the choice of color basis.
In the presence of backgrounds of the form (10), it is

convenient to switch from the usual, Cartesian bases ftag
of the color algebra, to Cartan-Weyl bases ftκg such that

½tj; tκ� ¼ κjtκ: ð15Þ
The labels κ are real-valued vectors of RN−1 known as
adjoint weights. They can be of two types. If they are
nonzero, they are called roots and denoted by the first
letters of the Greek alphabet: α, β, …. We stress that roots
appear always in pairs; that is, if α is a root, then so is −α. In
the case where the label κ vanishes, one needs to add one
extra label to indicate that it can correspond to any of the
Abelian tj: κ ¼ 0ðjÞ such that t0ðjÞ ¼ tj. We refer to 0ðjÞ as a
zero. In the SU(2) case for instance, we have one zero and
two roots, �1, while in the SU(3) case, we have two zeros
and six roots�ð1; 0Þ,�ð1=2; ffiffiffi

3
p

=2Þ, and�ð1=2;− ffiffiffi
3

p
=2Þ.

In terms of the adjoint weights κ, the one-loop potential
Vr̄ðrÞ reads (see Appendix A)

Vr̄ðrÞ ¼
m2T2

2g2
ðr − r̄Þ2 þ d − 2

2

X
κ

Z
T

Q
ln½Q2

κ þm2�

þ 1

2

X
κ

Z
T

Q
ln

�
1þ m2Q̄2

κ

ðQκ · Q̄κÞ2
�
; ð16Þ

where the last line includes the ghost contribution
−ð1=2Þ lnðQκ · Q̄κÞ2 which rewrites − ln jQκ · Q̄κj or,
equivalently, −Re lnðQκ · Q̄κÞ. The absolute value or the
real part is important since the sign of Qκ · Q̄κ can vary as
one varies r and r̄. In the examples treated below, however,
we shall see that, when r̄ is chosen in a given Weyl
chamber, the value of r that minimizes Vr̄ðrÞ lies in the
same Weyl chamber in such a way that Qκ · Q̄κ remains
positive [43,44] and one may remove the absolute value/
real part; we shall keep it for completeness.
The notation

R
T
Q stands for a Matsubara sum-integralZ

T

Q
fðQÞ≡ T

X
q∈Z

Z
dd−1q
ð2πÞd−1 fðωq; q⃗Þ; ð17Þ

with Q ¼ ðωq; q⃗Þ and ωq ¼ 2πTq the associated
Matsubara frequency.12 We mention that, within dimen-
sional regularization, the potential is d ¼ 4 − 2ϵ dimen-
sional, which goes together with the fact that the bare
coupling g2 has dimension 2ϵ. It is then convenient to
multiply the potential by Λ2ϵ, with Λ an arbitrary scale, so
that it becomes four-dimensional. The effective way to do
so is to redefine the Matsubara sum-integral (17) to include
a factor Λ2ϵ and to view the bare coupling appearing in the
tree-level term of Eq. (16) as a dimensionless bare coupling
obtained from the dimensional one after applying the
rescaling g2 → g2Λ2ϵ. Of course, physical results should
not depend on the scale Λ.13

As for the other notations in Eq. (16), ðr − r̄Þ2 designates
the square of the vector r − r̄, that is,

P
jðrj − r̄jÞ2, while

Q2
κ and Q̄2

κ are the squares of the four-momenta

Qκ
μ ¼ Qμ þ Tðr · κÞδμ0; ð18Þ

Q̄κ
μ ¼ Qμ þ Tðr̄ · κÞδμ0; ð19Þ

which we refer to as shifted or generalized momenta. Note
that the shifts affect only the frequency components and
play, therefore, the role of (imaginary) chemical potentials.
Aside from the tree-level term in Eq. (16), these shifts are
the only source of r- and r̄-dependence in the one-loop
effective potential (16). In fact, only those color labels
corresponding to roots carry this dependence. To minimize
the potential, we can then restrict the sum over color labels

12We use the same letter q to denote the integer labeling the
Matsubara frequencies ωq and the associated spatial momentum
q⃗ with norm q. This should always be clear from the context.

13This scale is sometimes mistaken with the renormalization
scale. This is because, within the minimal subtraction scheme, it
coincides with it. But, in general, this scale has to be viewed as a
regulating scale, akin to the cutoff in momentum regularizations
[50]. It differs in general from the renormalization scale μ that
enters the renormalization conditions, and it is actually replaced
by the latter in the renormalized expressions (see below).
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κ in Eq. (16) to a sum over the roots α. Moreover, since a
given root α and the associated root −α contribute the
same,14 one can just sum over half the roots and omit the
factors of 1=2 in the last two terms of Eq. (16).

B. Symmetries

Let us now review some of the symmetries of the
effective potential Vr̄ðrÞ.

1. Gauge transformations

With each root α, one can associate two particular
transformations within G0 with the additional property that
they leave the particular form of the background (10)
invariant [44,45], with possibly a different value of r̄. The
first of these transformations is a color rotation, known as a
Weyl transformation, that acts on (10) as a reflection with
respect to a hyperplane orthogonal to α:

r̄ → r̄ − 2
r̄ · α
α2

α: ð20Þ

The other transformation corresponds to a translation by a
vector 4πα:

r̄ → r̄þ 4πα: ð21Þ

As a consequence of the identity (4), the effective potential
should then obey

Vr̄ðrÞ ¼ Vr̄−2r̄·α
α2
α

�
r − 2

r · α
α2

α

�
¼ Vr̄þ4παðrþ 4παÞ: ð22Þ

We can readily check these properties on the one-loop
expression (16) given above. For instance, under the
transformation (21), we have

Qκ
μ → Qκ

μ þ Tð4πα · κÞδμ0; ð23Þ

and similarly for Q̄κ. Now, it can be shown that the only
possible values taken by α · κ are −1;−1=2; 0;þ1=2;þ1
(see for instance Ref. [44]). Therefore, for each κ, the
frequency shift in Eq. (23) is either zero or corresponds
exactly to one or two Matsubara frequencies. This means
that, in each term of Eq. (16), the shift can be reabsorbed
through a change of variables in the corresponding
Matsubara sum, which leads then to the second identity
in Eq. (22). In the SU(2) case for instance, this identity
writes Vr̄ðrÞ ¼ Vr̄þ4πðrþ 4πÞ.

Similarly, under the transformation (20), we have

Qκ
μ → Qκ

μ − 2T
r̄ · αα · κ

α2
δμ0 ¼ Q

κ−2κ·α
α2
α

μ : ð24Þ

It can also be shown that κ − 2ðκ · α=α2Þα is either 0 (when
κ is a zero) or spans all possible roots as κ spans the roots
(see [44]). This means that the terms in Eq. (16) are simply
reshuffled into one another by the considered transforma-
tion, which leads to the first identity in Eq. (22). In the
SU(2) case, this identity becomes Vr̄ðrÞ ¼ V−r̄ð−rÞ.

2. Center transformations

So far, we considered transformations within G0,
that is, transformations corresponding to k ¼ 0 in Eq. (7).
There are also transformations with k ≠ 0. They are all
generated by

r̄ → r̄þ 4πρ; ð25Þ

corresponding to k ¼ 1. Here, the ρ’s denote the defining
weights of SU(N), obtained after diagonalizing the defining
action of the algebra, tjjρi ¼ ρjjρi. We should again have

Vr̄ðrÞ ¼ Vr̄þ4πρðrþ 4πρÞ; ð26Þ

which is readily checked using the same argument as
above, combined with the fact that the only possible values
for κ · ρ are −1=2; 0;þ1=2. In the SU(2) case in particular,
we should have Vr̄ðrÞ ¼ Vr̄þ2πðrþ 2πÞ.

3. Charge conjugation

Charge conjugation acts on ðr; r̄Þ as ð−r;−r̄Þ. It follows
that

Vr̄ðrÞ ¼ V−r̄ð−rÞ: ð27Þ

This can be explicitly verified on Eq. (16) since the tree-
level term is quadratic in r − r̄ and the one-loop contribu-
tion associated with a mode κ depends on r and r̄ via the
combinations κ · r and κ · r̄ in such a way that the trans-
formation ðr; r̄Þ → ð−r;−r̄Þ relates the contributions from
the modes κ and −κ. It is even simpler than that because, as
we have seen, the contributions from the modes κ and −κ
are identical and, thus, each mode contribution is invariant
under ðr; r̄Þ → ð−r;−r̄Þ.

4. Weyl chambers

The transformations (20) and (21) are also intimately
related to the Weyl chambers alluded to above and which,
among other things, allow one to identify center-invariant
configurations as defined in Eq. (8). More precisely, by
combining these transformations, one generates reflections
orthogonal to a given root α and displaced with respect to
the origin by any multiple of 2π times that root. The Weyl

14This is easily shown by making the change of variablesωq →
−ωq under the Matsubara sum.
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chambers appear as the regions delimited by the hyper-
planes associated with all these reflections for all the roots
of the algebra [44,45].
Now, under a center transformation (25), a given Weyl

chamber is transformed into a different one. However,
upon using the gauge transformations that connect the
Weyl chambers into one another, one can bring the
transformed Weyl chamber back on top of the original
one. In doing so, one obtains a transformation of a Weyl
chamber into itself whose fixed points are center-invariant
configurations in the sense of Eq. (8). In the SU(2) case
for instance, the Weyl chambers are the intervals
½2πn; 2πðnþ 1Þ� and the action of a center transformation
with k ¼ 1 on a given Weyl chamber is a reflection about
its center 2πðnþ 1=2Þ.
Turning back to the effective potential Vr̄ðrÞ, we have

seen that, when choosing r̄ ¼ r̄c center-invariant and as
long as center symmetry is not spontaneously broken, the
minimum of Vr̄cðrÞ needs to be center-invariant as well.
More precisely it needs to be invariant under the same
transformation Uc that leaves r̄c invariant. Now, since this
transformation has usually only one fixed point [44], it
follows that, as long as center symmetry is not broken, the
minimum of Vr̄cðrÞ needs to be r ¼ r̄c.
Similar considerations, allow one to identify charge-

conjugation invariant configurations (modulo gauge trans-
formations). In the SU(2) case, it is found that any
configuration is invariant in this sense under charge
conjugation. In the SU(3) case, in contrast, not all con-
figurations are compatible with charge conjugation. Among
the configurations of the form (10), one example is
provided by those with r̄8 ¼ 0 which are invariant under
r̄8 → −r̄8. For backgrounds of this form, and because
charge conjugation is not expected to break spontaneously,
the one-point function needs also to be invariant under
r8 → −r8 and thus r8 ¼ 0. We shall use this remark below
to simplify the discussion in the SU(3) case.

IV. RENORMALIZATION

Before considering the practical evaluation of the poten-
tial, we analyze its divergences and their renormalization.

A. General considerations

Let us start by emphasizing that the analysis of diver-
gences in the presence of a background slightly differs from
the corresponding analysis in the absence of a background.
Yet, in the case of backgrounds of the form (10), the two
can be easily connected.
One first notices that, in deriving Eq. (13), one usually

assumes that the gauge fields are periodic, and, conse-
quently, the considered transformations U need to belong
to G for the periodicity to be preserved. It is possible,
however, to consider transformations with other boundary
conditions, the only change in Eq. (13) being that the

transformed gauge fields are periodic up to the considered
transformation15:

ΓĀ½A� ¼ ΓU
ĀU ½AU�: ð28Þ

In particular, for backgrounds of the form (10), one can take
the transformation Ū≡ e−iðτ=βÞr̄jtj such that

ĀŪ
μ ¼ e−i

τ
βr̄

jtj T
g
δμ0r̄jtje

iτβr̄
jtj þ i

g
e−i

τ
βr̄

jtj
∂μe

iτβr̄
jtj ¼ 0: ð29Þ

Then, from Eq. (28), we find

ΓĀ½A� ¼ ΓŪ
0 ½AŪ�: ð30Þ

We can also rewrite AŪ as

AŪ ¼ ðĀþ A − ĀÞŪ
¼ ĀŪ þ ŪðA − ĀÞŪ†

¼ ŪaŪ†; ð31Þ

with a≡ A − Ā. We have thus shown that

ΓĀ½A� ¼ ΓŪ
0 ½ŪaŪ†�: ð32Þ

Since the boundary conditions should not affect the UV
divergences, it follows, as announced, that the analysis
of the UV divergences of ΓĀ boils down to that of the
UV divergences of ΓĀ¼0. In particular, the elimination of
UV divergences requires the multiplicative renormalization
of a,

a →
ffiffiffiffiffiffi
Za

p
a; ð33Þ

rather than A (see below for further remarks).
Also, since Ū plays a spectator role with regard to the

UV divergences in Eq. (32), it remains finite upon
renormalization, and because it depends only on the
combination r̄ ∝ gĀ, we deduce that the renormalization
of the coupling and the renormalization of the background
are intimately related. More precisely, the corresponding
renormalization factors Zg2 and ZĀ are such that their
product Zg2ZĀ is finite. As a consequence, one can choose
to work within renormalization schemes where

ZĀ ¼ Z−1
g2 : ð34Þ

In the following, we restrict ourselves to using these
schemes, and hence the combination gĀ (and therefore

15Not only are the background ĀU and the argument AU of the
effective action periodic up to the transformation U, but also the
gauge-fields over which one integrates to evaluate the various
contributions to the effective action, hence the notation ΓU.
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r̄) does not renormalize. We stress that, in contrast, the
renormalization of a cannot be entirely encoded in that of g
since the second derivative of the effective action with
respect to a is nothing but the inverse propagator, and it is
well known that the latter renormalizes differently than the
coupling. In other words, the combination ga (and therefore
r − r̄) does get renormalized.
Still, one could wonder why it is not possible to assume

that Ā and A renormalize both multiplicatively, that is, Ā →ffiffiffiffiffiffi
ZĀ

p
Ā and A →

ffiffiffiffiffiffi
ZA

p
A, with ZĀ ≠ ZA. This choice is too

naïve, however, because this implies that the effective
action for the rescaled fields would obey (13) with

ĀμðxÞ → UðxÞĀμðxÞU†ðxÞ þ i
g
UðxÞ∂μU†ðxÞ; ð35Þ

AμðxÞ → UðxÞAμðxÞU†ðxÞ þ
ffiffiffiffiffiffi
ZĀ

ZA

s
i
g
UðxÞ∂μU†ðxÞ; ð36Þ

where we have used Eq. (34) and g is now the renormalized
coupling. This is problematic, however, because the pres-
ence of ZĀ=ZA makes the transformation of A ill-defined.
On the other hand, assuming that the fields that renor-
malize multiplicatively are not Ā and A but rather Ā and
a≡ A − Ā:

Ā →
ffiffiffiffiffiffi
ZĀ

p
Ā; a →

ffiffiffiffiffiffi
Za

p
a; ð37Þ

and defining Γ̂Ā½a�≡ ΓĀ½A�, one finds

Γ̂ĀU ½UaU†� ¼ Γ̂Ā½a�; ð38Þ

which remains unchanged upon rescaling Ā and a accord-
ing to Eq. (37).

B. Divergences

The above considerations lead naturally to the conclu-
sion that the effective action should be more conveniently
seen as a functional of Ā and a. The UV divergences are
entirely contained in the first terms of the Taylor expansion
of Γ̂Ā½a� around a ¼ 0 and relate to the zero-, two-, three-,
and four-gluon vertex functions. In the case of the one-loop
potential Vr̄ðrÞ, since the field and the background are
taken in the commuting part of the algebra, the divergences
associated with three- and four-gluon functions should not
be present since there would be no tree-level term to absorb
them. To capture all the UV divergences, it is then enough
to determine the Taylor expansion up to second order.
To do so, it is convenient to first express the potential in

terms of renormalized variables defined by the rescalings

m2 → Zm2m2; g2 → Zg2g
2; r̄→ r̄; Δr→ Z1=2

g2 Z1=2
a Δr;

ð39Þ

where we have used that r̄ ∝ gĀ does not renormalize, as
well as Δr ∝ gðA − ĀÞ. Then, the Taylor expansion of the
effective potential around the background to second order
in the renormalized Δr reads16

½Vr̄ðrÞ�2 ≡ Vr̄ðr̄Þ þ
X
j

∂Vr̄ðrÞ
∂rj

����
r¼r̄

Δrj

þ 1

2

X
j;k

∂
2Vr̄ðrÞ
∂rj∂rk

����
r¼r̄

ΔrjΔrk; ð40Þ

with

Vr̄ðr̄Þ ¼
X
κ

�
d − 1

2

Z
T

Q
ln½Q̄2

κ þm2� − 1

2

Z
T

Q
ln Q̄2

κ

�
; ð41Þ

∂Vr̄ðrÞ
∂rj

����
r¼r̄

¼ T
X
κ

κj
�
ðd − 1Þ

Z
T

Q

ω̄κ
q

Q̄2
κ þm2

−
Z

T

Q

ω̄κ
q

Q̄2
κ

�
;

ð42Þ

and

∂
2Vr̄

∂rj∂rk

����
r¼r̄

¼ T2

�
ZaZm2

m2

g2
δjk þ

X
κ

κjκk
�Z

T

Q

ðω̄κ
qÞ2

Q̄4
κ

− 2ðd− 1Þ
Z

T

Q

ðω̄κ
qÞ2

ðQ̄2
κ þm2Þ2 þ ðd− 2Þ

×
Z

T

Q

1

Q̄2
κ þm2

þ
Z

T

Q

ðω̄κ
qÞ2

Q̄2
κðQ̄2

κ þm2Þ
��

: ð43Þ

The above expressions involve one-loop Matsubara sum-
integrals which can here all be split into a vacuum
contribution, defined as the T → 0 limit of the correspond-
ing expressions with Tr̄ kept fixed, and a thermal con-
tribution (see Appendix C for more details).17 We can
denote this splitting formally asZ

T

Q
fðQÞ ¼

Z
Q
fðQÞ þ

Z
th

Q
fðQÞ; ð44Þ

where the last term should actually be seen as a q-integral
(obtained after performing the Matsubara sums) but it is
convenient to denote it formally as a Q-sum-integral (see
below). The UV divergences are entirely contained within
the vacuum contributions, so we can ignore the thermal
contributions for now. We shall evaluate them later.
The vacuum contributions are simply obtained by

replacing the discrete Matsubara summations by

16To this order of accuracy in perturbation theory, renormal-
ization factors appear only in the tree-level contributions, when
any. They are set to 1 within the one-loop contributions.

17There, we also discuss one example where the splitting is not
possible.
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continuous frequency integrals. In this case, the color-
dependent frequency shifts can be absorbed via a change of
variables, and, therefore, the sums become independent of
r̄. For instance, the vacuum contribution to (41) is

d − 1

2
ðN2 − 1Þ

Z
Q
ln½Q2 þm2�; ð45Þ

where we used
P

κ 1 ¼ N2 − 1 and
R
Q lnQ2 ¼ 0. In

principle, the corresponding divergence needs to be
absorbed in a shift of the potential. However, because
we are only interested in extremizing with respect to r, we
can ignore this contribution. As for the vacuum contribu-
tion in Eq. (42), it is seen to vanish trivially. This comes
either from

R
Q ωq=ðQ2 þm2Þ ¼ 0 or from

P
κ κ

j ¼ 0.
There is thus no divergence within (42), in line with the
fact that there is no tree-level term to absorb it.
We are then left with the vacuum contribution in

Eq. (43). It can be given in a simple form by usingR
Q ω2

q=Q4 ¼ ð1=dÞ RQ 1=Q2 ¼ 0 as well as

Z
Q

ω2
q

ðQ2 þm2Þ2 ¼
1

d

Z
Q

Q2

ðQ2 þm2Þ2

¼ 1

d

Z
Q

�
1

Q2 þm2
−

m2

ðQ2 þm2Þ2
�

¼ 1

d

Z
Q

1

Q2 þm2

�
1 −

Γð2 − d=2Þ
Γð1 − d=2Þ

�
¼ 1

2

Z
Q

1

Q2 þm2
ð46Þ

and Z
Q

ω2
q

Q2ðQ2 þm2Þ ¼
1

d

Z
Q

1

Q2 þm2
: ð47Þ

Altogether, the vacuum contribution to the square
bracket in the right-hand side (RHS) of Eq. (43) reads
ðM2

T¼0=g
2Þδjk, with

M2
T¼0 ¼ ZaZm2m2 −

d − 1

d
g2N

Z
Q

1

Q2 þm2

¼ ZaZm2m2 þ 3 − 2ϵ

4 − 2ϵ

g2N
16π2

m2

�
1

ϵ
þ ln

Λ̄2

m2
þ 1

�
¼

�
ZaZm2 þ 3g2N

64π2

�
1

ϵ
þ ln

Λ̄2

m2
þ 5

6

��
m2; ð48Þ

where Λ̄2 ≡ 4πΛ2e−γ and we have used
P

κ κ
jκk ¼ Nδjk.

The notation M2
T¼0 is not innocent. This is because, as it

can easily be argued, within the gauge r̄ ¼ r̄c and as long
as the system is in the symmetric phase for which r ¼ r̄c,
the quantity ðg2=T2Þ∂2Vr̄ðrÞ=∂rj∂rkjr¼r̄ is nothing but the

zero-temperature, zero-momentum mass as obtained from
the inverse gluon propagator in this limit.
As a check of Eq. (48), we notice that, writing the

renormalization factors as Z ¼ 1þ δZ, we deduce that

δZa þ δZm2 ¼ −
3g2N
64π2

1

ϵ
þ � � � : ð49Þ

This is in agreement with the known divergent contribu-
tions for Za and Zm2 obtained from the vacuum propagator
at one-loop order [30,51]. Thus the divergent contribution
to the potential is correctly renormalized at one-loop order.
In the next section, we explain how to evaluate the
corresponding finite contribution. Of course, part of this
contribution has to do with fixing the finite parts of the
renormalization factors. This we do in Sec. VI where we
review various possible renormalization schemes together
with the associated renormalization group flow.

V. EVALUATION OF THE POTENTIAL

Let us now detail the evaluation of the potential. Since
we have already gone through the extraction of the UV
divergences, it is actually simpler to organize the calcu-
lation as

Vr̄ðrÞ ¼ ½Vr̄ðrÞ�2 þ δVr̄ðrÞ; ð50Þ

with

δVr̄ðrÞ≡ Vr̄ðrÞ − ½Vr̄ðrÞ�2: ð51Þ

The divergences are entirely contained within the vacuum
contribution to ½Vr̄ðrÞ�2 which we have computed in the
previous section, and which is given by

VT¼0
r̄ ðr̄Þ þ T2

2g2
M2

T¼0ðΔrÞ2; ð52Þ

where we recall that the first term can be ignored for it does
not depend on r. We are thus left with the determination of
both the thermal contribution to ½Vr̄ðrÞ�2 and the UV-finite
difference δVr̄ðrÞ.

A. Thermal contribution to ½Vr̄ðrÞ�2
As before, we can ignore the thermal contribution to

Vr̄ðr̄Þ since it does not depend on r. This function,
however, will reenter our discussion below for it is at
the basis of a popular approach to which we shall compare
our results.
The first derivative of the potential appearing in Eq. (40)

is purely thermal as we have seen. Performing the
Matsubara sums (see Appendix C), one finds
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∂Vr̄ðrÞ
∂rj

����
r¼r̄

¼ T
2π2

X
κ

κj
Z

∞

0

dq q2Im½3nε̄κq − nq̄κ �; ð53Þ

where we have set d ¼ 4 (since this contribution is UV
finite) and we have defined the Bose-Einstein distribution
nε ≡ 1=ðeβε − 1Þ as well as ε̄κq ≡ εq − iTr̄ · κ and εq ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
.

The second derivative of the potential appearing in
Eq. (40) rewrites as M2

T;jkT
2=g2, where M2

T;jk is the
zero-momentum mass whose vacuum contribution was
determined above. To evaluate the thermal contribution,
we use18Z

th

Q

ðω̄κ
qÞ2

Q̄2
κðQ̄2

κ þm2Þ ¼
Z

th

Q

1

m2

�ðω̄κ
qÞ2

Q̄2
κ

−
ðω̄κ

qÞ2
Q̄2

κ þm2

�
¼

Z
th

Q

1

m2

�
q2 þm2

Q̄2
κ þm2

−
q2

Q̄2
κ

�
ð54Þ

andZ
th

Q

ðω̄κ
qÞ2

ðQ̄2
κ þm2Þ2 ¼

Z
th

Q

�
1

Q̄2
κ þm2

−
q2 þm2

ðQ̄2
κ þm2Þ2

�
¼
Z

th

Q

�
1

Q̄2
κ þm2

þ q2 þm2

2q
d
dq

1

Q̄2
κ þm2

�
¼
Z

th

Q

�
1

Q̄2
κ þm2

−
1

2

�
3þm2

q2

�
1

Q̄2
κ þm2

�
¼ −

1

2

Z
th

Q

�
1þm2

q2

�
1

Q̄2
κ þm2

: ð55Þ

Because we focused on the thermal contributions only, we
could set d ¼ 4 from the start and we could safely neglect
the boundary terms in the integration by parts used in the
last steps of (55).19 Putting all the pieces together, one finds
the thermal contribution

δM2
th;jk ¼ g2

X
κ

κjκk
�Z

T

Q

�
3
m2

q2
þ 6þ q2

m2

�
1

Q̄2
κ þm2

−
Z

T

Q

�
1

2
þ q2

m2

�
1

Q̄2
κ

�
; ð56Þ

towhichwe should of course add the expression forM2
T¼0δjk

obtained above [see Eq. (48)]. In this form, the Matsubara
sums can be simply performed (seeAppendixC), andwe find

M2
T;jk ¼

�
ZaZm2 þ 3g2N

64π2

�
1

ϵ
þ ln

Λ̄2

m2
þ 5

6

��
m2δjk

þ g2

2π2
X
κ

κjκk
Z

∞

0

dqq2Re

×

��
3
m2

q2
þ 6þ q2

m2

�
nε̄κq
εq

−
�
1

2
þ q2

m2

�
nq̄κ

q

�
: ð57Þ

This curvature mass matrix is intimately related to the
confinement/deconfinement transition. In the SU(2) case
for instance, its vanishing (in the gauge r̄ ¼ π) allows one to
extract the transition temperature, whereas in the SU(3) case,
it gives access to the higher spinodal temperature; see
Sec. VII for more details. For completeness, we mention
that the curvature can be put in the following form:

M2
T;jk ¼

X
κ

κjκk
��

ZaZm2

N
þ 3g2

64π2

�
1

ϵ
þ ln

Λ̄2

m2
þ 5

6

��
m2

þ g2

2π2

Z
∞

0

dqq2Re
�
3
m2

q2
þ 6þ q2

m2

�
nε̄κq
εq

− g2T2

�
1

4
B2

��
κ · r̄
2π

	�
− π2B4

��
κ · r̄
2π

	�
T2

m2

��
;

ð58Þ

where

B2ðxÞ ¼ x2 − xþ 1

6
ð59Þ

and

B4ðxÞ ¼ x4 − 2x3 þ x2 −
1

30
ð60Þ

are theBernouilli polynomials of degree 2 and 4, respectively,
andfxg is the real number between0and1obtained fromxby
adding the appropriate integer20 (see Appendix C).

B. The UV finite δVr̄ðrÞ
By construction, δVr̄ðrÞ is UV finite. In the present case,

it is a pure one-loop contribution which we write for
convenience as

δVr̄ðrÞ ¼
X
κ

Z
T

Q

�
LðΔrÞ − Lð0Þ − ΔrjL0

jð0Þ

−
ΔrjΔrk

2
L00
jkð0Þ

�
; ð61Þ

18Here it is important to stress that the notation
R
th
Q introduced

in Eq. (44) is actually a formal proxy for a q-integral rather than
an actual Q-sum-integral. However, as long as the considered
manipulations do not involve frequencies, we can perform these
manipulations at the level of the formal notation

R
th
Q .

19With some effort, it is possible to show that, in dimensional
regularization, the same manipulations hold for the vacuum
contributions.

20This definition is ambiguous if x is already an integer.
However, κ · r̄=ð2πÞ will not be chosen to be an integer, and
κ · r=ð2πÞ will turn out not to be an integer either.
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with

LðΔrÞ ¼ 1

2
ln

�
1þ m2Q̄2

κ

ðQκ · Q̄κÞ2
�
þ d− 2

2
ln½Q2

κ þm2�; ð62Þ

as well as

Lð0Þ ¼ d − 1

2
ln½Q̄2

κ þm2� − 1

2
ln Q̄2

κ ; ð63Þ

L0
jð0Þ ¼ Tκj

�
ðd − 1Þ ω̄κ

q

Q̄2
κ þm2

−
ω̄κ
q

Q̄2
κ

�
; ð64Þ

L00
jkð0Þ ¼ T2κjκk

�ðω̄κ
qÞ2

Q̄4
κ

− 2ðd − 1Þ ðω̄κ
qÞ2

ðQ̄2
κ þm2Þ2

þ d − 2

Q̄2
κ þm2

þ ðω̄κ
qÞ2

Q̄2
κðQ̄2

κ þm2Þ
�
: ð65Þ

In principle, we could apply the strategy followed in the
previous subsection, based on performing the Matsubara
sums analytically and the resulting momentum integrals
numerically. However, some of the Matsubara sums are
cumbersome to evaluate using contour integration tech-
niques due to the presence of quartic polynomials in the
Matsubara frequencies with no obvious roots. For this
reason, we adopt a different strategy based, instead, on
performing the momentum integrals analytically and the
resulting Matsubara sums numerically.
The first step is to rewrite the momentum integrals as

vacuum D≡ d − 1 integrals. To this purpose, we notice
that

Q̄2
κ ¼ q2 þ M̄2

0;κ; ð66Þ

Qκ · Q̄κ ¼ q2 þM2
0;κ; ð67Þ

Q̄2
κ þm2 ¼ q2 þ M̄2

κ ; ð68Þ

Q2
κ þm2 ¼ q2 þM2

κ ; ð69Þ

where we have defined the frequency-dependent masses

M̄2
0;κ ≡ ðω̄κ

qÞ2; ð70Þ

M2
0;κ ≡ ωκ

qω̄
κ
q; ð71Þ

M̄2
κ ≡ ðω̄κ

qÞ2 þm2; ð72Þ

M2
κ ≡ ðωκ

qÞ2 þm2: ð73Þ

Similarly,

ðQκ · Q̄κÞ2 þm2Q̄2
κ ¼ q4 þ q2ðm2 þ 2ωκ

qω̄
κ
qÞ

þ ðω̄κ
qÞ2ðm2 þ ðωκ

qÞ2Þ
¼ ðq2 þM2þ;κÞðq2 þM2

−;κÞ; ð74Þ

with

M2
�;κ ≡ ωκ

qω̄
κ
q þ

m2

2
�m2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ω̄κ
qðωκ

q − ω̄κ
qÞ

m2

r
: ð75Þ

Then,

LðΔrÞ ¼ 1

2
ln
ðq2 þM2þ;κÞðq2 þM2

−;κÞ
ðq2 þM2

0;κÞ2

þD − 1

2
lnðq2 þM2

κÞ; ð76Þ

and

Lð0Þ ¼ D
2
lnðq2 þ M̄2

κÞ −
1

2
lnðq2 þ M̄2

0;κÞ; ð77Þ

L0
jð0Þ ¼ Tκj

�
D

ω̄κ
q

q2 þ M̄2
κ
−

ω̄κ
q

q2 þ M̄2
0;κ

�
; ð78Þ

L00
jkð0Þ ¼ T2κjκk

� ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞ2

− 2D
ðω̄κ

qÞ2
ðq2 þ M̄2

κÞ2

þ D − 1

q2 þ M̄2
κ
þ ðω̄κ

qÞ2
ðq2 þ M̄2

0;κÞðq2 þ M̄2
κÞ
�
: ð79Þ

Putting all the pieces together, we arrive at

δVr̄ðrÞ ¼ T
X
κ

X
q∈Z

Z
dDq
ð2πÞD

�
1

2
ln
ðq2 þM2þ;κÞðq2 þM2

−;κÞðq2 þ M̄2
0;κÞðq2 þM2

κÞD−1

ðq2 þM2
0;κÞ2ðq2 þ M̄2

κÞD

þ Tðκ · ΔrÞ
�

ω̄κ
q

q2 þ M̄2
0;κ

−D
ω̄κ
q

q2 þ M̄2
κ

�
−
1

2
T2ðκ · ΔrÞ2

� ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞ2

þ ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞðq2 þ M̄2

κÞ
− 2D

ðω̄κ
qÞ2

ðq2 þ M̄2
κÞ2

þ D − 1

q2 þ M̄2
κ

��
: ð80Þ
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Then, using the basic D-dimensional integralsZ
dDq
ð2πÞD

1

ðq2 þM2Þα ¼
ðM2ÞD=2−α

ð4πÞD=2

Γðα −D=2Þ
ΓðαÞ ; ð81Þ

Z
dDq
ð2πÞD lnðq2 þM2Þ ¼ −

ðM2ÞD=2

ð4πÞD=2 Γð−D=2Þ; ð82Þ

we find21

δVr̄ðrÞ ¼
T

ð4πÞD=2

X
κ

X
q∈Z

�
1

2
ð2ReðM2

0;κÞD=2 þDðM̄2
κÞD=2 − ðM̄2

0;κÞD=2 − ðD − 1ÞðM2
κÞD=2

− ðM2
κ;þÞD=2 − ðM2

κ;−ÞD=2ÞΓð−D=2Þ þ Tðκ · ΔrÞω̄κ
qððM̄2

0;κÞD=2−1 −DðM̄2
κÞD=2−1ÞΓð1 −D=2Þ

þ 1

2
T2ðκ · ΔrÞ2ðω̄κ

qÞ2ð2DðM̄2
κÞD=2−2 − ðM̄2

0;κÞD=2−2ÞΓð2 −D=2Þ

þ 1

2
T2ðκ · ΔrÞ2ðω̄κ

qÞ2
ðM̄2

κÞD=2−1 − ðM̄2
0;κÞD=2−1

M̄2
κ − M̄2

0;κ
Γð1 −D=2Þ

−
1

2
T2ðκ · ΔrÞ2ðM̄2

κÞD=2−1ðD − 1ÞΓð1 −D=2Þ
�
: ð83Þ

C. Taking the ϵ → 0 limit

We have argued above that δVr̄ðrÞ is UV-finite so we
can, in principle, take the ϵ → 0 limit without encountering
any divergence. The latter limit is tricky, however, because,
in the present case, it does not commute with the Matsubara
summation; see Ref. [43] for a thorough discussion
including additional examples.
To see where the problem originates from, let us study

the behavior of the dimensionally regularized summand in
Eq. (83) for large values of jωqj. One finds

−
Tðκ · ΔrÞ3
3ð4πÞD=2 ðD − 1Þ2Γð2 −D=2ÞjωqjD

×

�
T3

ω3
q
þ ðD − 3Þκ ·

�
r̄þ Δr

4

�
T4

ω4
q
þ � � �

�
: ð84Þ

From the point of view of power counting, both terms
contribute a divergence to the corresponding Matsubara
sum which, of course, seems contradictory with the fact
that δVr̄ðrÞ is finite. However, the contribution from the
first term of the expansion (84) cancels when one considers
both limits ωq → þ∞ and ωq → −∞. Second, the next
term in the expansion includes a factor D − 3 ¼ −2ϵ
which turns the divergent sum

P
q∈Z� 1=jωqj1þ2ϵ ∼ 1=ϵ ×

1=ð2πTÞ1þ2ϵ into a finite result. It follows that δVr̄ðrÞ is
indeed finite but that one could miss a finite contribution if
the ϵ → 0 limit was taken too early, that is before the
Matsubara summation.

One way to proceed is to take the limit of the summand
anyway, while introducing the finite contribution by hand.
This method was applied for instance in Ref. [43] for the
evaluation of the gluon propagator in the center-symmetric
Landau gauge. Here, we shall proceed in a slightly different
(but equivalent) way that allows one to avoid some
subtleties that were not discussed in Ref. [43].22

First, noticing that the summand is actually a function
of ω̄κ

q and Δr, we consider the first two terms of the
asymptotic expansion as jω̄κ

qj → ∞:

−
Tðκ · ΔrÞ3
3ð4πÞD=2 ðD − 1Þ2Γð2 −D=2Þjω̄κ

qjD

×

�
T3

ðω̄κ
qÞ3

þ ðD − 3Þ κ · Δr
4

T4

ðω̄κ
qÞ4

�
; ð85Þ

and subtract them from the summand, which allows one to
safely take the limit ϵ → 0 because the corresponding sum
is now absolutely convergent.
The subtracted contributions are finally added back in

the form of additional series which can be expressed in
terms of the Hurwitz zeta function

ζðs; zÞ≡X∞
q¼0

1

ðqþ zÞs : ð86Þ

More specifically, the needed series are (the power of 2πT
is introduced for convenience)

21The real part originates from the remark below Eq. (16). The
other terms do not require an explicit real part.

22In Appendix D, for completeness, we shall apply the method
of Ref. [43] to the evaluation of the potential and discuss these
subtleties in more detail.
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ð2πTÞnþ2ϵ
X
q∈Z

jω̄κ
qj3−2ϵ

ðω̄κ
qÞ3þn ¼

X
q∈Z

jqþ κ·r̄
2π j3−2ϵ

ðqþ κ·r̄
2πÞ3þn ; ð87Þ

with n ¼ 0 or n ¼ 1. Given x ≠ Z, let us denote by fxg the
unique real number between 0 and 1 such that x − fxg is an
integer. We then have

ð2πTÞnþ2ϵ
X
q∈Z

jω̄κ
qj3−2ϵ

ðω̄κ
qÞ3þn

¼
X∞
q¼0

1

ðqþ fκ·r̄
2πgÞnþ2ϵ þ

X−1
q¼−∞

ð−q − fκ·r̄
2πgÞ3−2ϵ

ðqþ fκ·r̄
2πgÞ3þn

¼
X∞
q¼0

1

ðqþ fκ·r̄
2πgÞnþ2ϵ − ð−1Þn

X∞
q¼0

1

ðqþ 1 − fκ·r̄
2πgÞnþ2ϵ

¼ ζ

�
nþ 2ϵ;

�
κ · r̄
2π

	�
− ð−1Þnζ

�
nþ 2ϵ; 1 −

�
κ · r̄
2π

	�
:

ð88Þ

For n ¼ 0, we use

ζð2ϵ; zÞ ¼ −B1ðzÞ þOðϵÞ; ð89Þ
where B1ðzÞ ¼ z − 1=2 denotes the Bernoulli polynomial
of order 1. The sum (88) then gives

1 − 2

�
κ · r̄
2π

	
: ð90Þ

For n ¼ 1, we use

ζð1þ 2ϵ; zÞ ¼ 1

2ϵ
− ψðzÞ þOðϵÞ; ð91Þ

where ψðzÞ is the digamma function. The sum (88) gives in
this case

1

ϵ
− ψ

��
κ · r̄
2π

	�
− ψ

�
1 −

�
κ · r̄
2π

	�
: ð92Þ

Putting all the pieces together, we arrive at

δVr̄ðrÞ ¼
T4

6π

X
κ

ðκ · ΔrÞ3
�
2

�
κ · r̄
2π

	
− 1þ κ · Δr

4π

�
þ T

π

X
κ

X
q∈Z

�
1

12
ð2ReðM2

0;κÞ3=2 þ 3ðM̄2
κÞ3=2 − ðM̄2

0;κÞ3=2 − 2ðM2
κÞ3=2 − ðM2

κ;þÞ3=2 − ðM2
κ;−Þ3=2Þ

−
T
4
ðκ · ΔrÞω̄κ

qððM̄2
0;κÞ1=2 − 3ðM̄2

κÞ1=2Þ þ
T2

4
ðκ · ΔrÞ2ðM̄2

κÞ1=2 þ
T3

6
ðκ · ΔrÞ3sgnðω̄κ

qÞ

þ T2

16
ðκ · ΔrÞ2ðω̄κ

qÞ2
�

6

ðM̄2
κÞ1=2

−
1

ðM̄2
0;κÞ1=2

−
2

ðM̄2
0;κÞ1=2 þ ðM̄2

κÞ1=2
��

: ð93Þ

We mention that both the sum and the correction terms in the first line obey the various symmetry identities discussed in
Sec. III B. This is one advantagewith respect to the result that one obtains using themethod ofRef. [43] inwhich case, some of
the symmetries reemerge only after one has added all contributions (see Appendix D). We also mention that we could further
improve the evaluation of the Matsubara sum by subtracting and adding back higher terms of the asymptotic expansion. The
subtracted sum would converge faster and faster while the added terms can all be expressed in terms of the Hurwitz zeta
function.23

D. Final expression

At the end of the day, the final result for the potential is

Vr̄ðrÞ ¼ Vr̄ðr̄Þ þ
T
2π2

X
κ

ðκ · ΔrÞ
Z

∞

0

dq q2Im½3nε̄κq − nq̄κ � þ
T2

2g2
M2

T;jkΔrjΔrk þ
T4

6π

X
κ

ðκ · ΔrÞ3
�
2

�
κ · r̄
2π

	
− 1þ κ · Δr

4π

�
þ T

π

X
κ

X
q∈Z

�
1

12
ð2ReðM2

0;κÞ3=2 þ 3ðM̄2
κÞ3=2 − ðM̄2

0;κÞ3=2 − 2ðM2
κÞ3=2 − ðM2

κ;þÞ3=2 − ðM2
κ;−Þ3=2Þ

−
T
4
ðκ · ΔrÞω̄κ

qððM̄2
0;κÞ1=2 − 3ðM̄2

κÞ1=2Þ þ
T2

4
ðκ · ΔrÞ2ðM̄2

κÞ1=2 þ
T3

6
ðκ · ΔrÞ3sgnðω̄κ

qÞ

þ T2

16
ðκ · ΔrÞ2ðω̄κ

qÞ2
�

6

ðM̄2
κÞ1=2

−
1

ðM̄2
0;κÞ1=2

−
2

ðM̄2
0;κÞ1=2 þ ðM̄2

κÞ1=2
��

: ð94Þ

23For the present application, such type of improvement is not really needed as we find that a few Matsubara sums (jqj ≲ 3) give
already a pretty accurate account of the potential in the relevant range of temperatures.
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Let us mention that the noncommutation of the ϵ → 0
limit and the Matsubara summation, which leads to the
modification of the summand and the correction term in
Eq. (94), can be traced back to the second term in Eq. (16).
Since this term is very easily evaluated using the contour
deformation technique, another possibility is to apply our
strategy only to the other terms. In this case, there is no
correction term to be added when permuting the ϵ → 0
limit and the Matsubara sums. We collect the details in
Appendix B.24

For completeness, we also provide expressions for the
first and second derivatives of the potential. Those are

useful when studying the transition. Introducing a slightly
more compact notation Xs ≡ ðM2

s;κÞ1=2 and using that

∂X2
0

∂rj
¼ κjTω̄κ

q; ð95Þ

∂X2

∂rj
¼ 2κjTωκ

q; ð96Þ

∂X2
�

∂rj
¼ κjTω̄κ

q

�
1� m2

X2þ − X2
−

�
; ð97Þ

we find

∂Vr̄

∂rj
¼ T

2π2
X
κ

κj
Z

∞

0

dq q2Im½3nε̄κq − nq̄κ � þ
T2

g2
M2

T;jkΔrk þ
T4

6π

X
κ

κjðκ · ΔrÞ2
�
6

�
κ · r̄
2π

	
− 3þ κ · Δr

π

�
þ T2

8π

X
κ

κj
X
q∈Z

�
ω̄κ
q

�
2ReX0 − 2X̄0 − 4X þ 6X̄ − Xþ − X− −

m2

Xþ þ X−

�
þ 4T2ðκ · ΔrÞ2sgnðω̄κ

qÞ

þ 4Tðκ · ΔrÞðX̄ − XÞ þ Tðκ · ΔrÞðω̄κ
qÞ2

�
6

X̄
−

1

X̄0

−
2

X̄0 þ X̄

��
: ð98Þ

We note that, for r ¼ r̄, the RHS should be given only by the first term (see the discussion above). Using
that X0 ¼ X̄0 ¼ X− ∈R and X ¼ X̄ ¼ Xþ in this limit, and X2 ¼ X2

0 þm2, we find that the remaining terms
combine into

X − X0 −
m2

X þ X0

¼ 0:

Similarly, after some algebra, one finds

∂
2Vr̄

∂rj∂rk
¼ T2

g2
M2

T;jk þ
T4

6π

X
κ

κjκkðκ · ΔrÞ
�
12

�
κ · r̄
2π

	
− 6þ 3

κ · Δr
π

�
þ T3

8π

X
κ

κjκk
X
q∈Z

�
ðω̄κ

qÞ2
�
Re

1

X0

þ 6

X̄
−

1

X̄0

−
2

X̄0 þ X̄
−
Xþ þ X−

2XþX−

�
1 −

m2

ðXþ þ X−Þ2
�

2
�

þ 4ðX̄ − XÞ − 4
ðωκ

qÞ2
X

þ 8Tðκ · ΔrÞsgnðω̄κ
qÞ
�
: ð99Þ

Once again, we can check that, when r ¼ r̄, all terms
cancel except for the first one. This is because the
remaining terms combine into

2

X
−

2

X þ X0

−
X þ X0

2XX0

�
1 −

m2

ðX þ X0Þ2
�

2

¼ 0:

We mention that the integral in Eqs. (94) and (98) vanishes
for r̄ ¼ r̄c (see Appendix C).

VI. RENORMALIZATION GROUP

To finalize the evaluation of the potential, we need
to fix the finite parts of the renormalization factors.
This is done by specifying a renormalization scheme
which, in turn, provides a specification of the renor-
malized parameters m and g at a given renormalization
scale μ.
In what follows, we compare two popular schemes in the

framework of the CF model, the vanishing momentum
scheme (VM for short) that was used in Ref. [42] as well
as the infrared safe scheme (IR-safe for short) introduced
in Ref. [30].

24This is actually the way the potential was originally
computed in Ref. [42]. We have checked numerically that the
two formulas lead to the same results.
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A. Renormalization schemes

The CF model exhibits a nonrenormalization theorem
that derives from the anti-ghost shift symmetry c̄ → c̄þ λ̄.
As a consequence, the combination Zg2ZaZ2

c of renormal-
ization factors is UV finite, and one can take the renorm-
alization of the coupling as25

Zg2 ¼ Z−1
a Z−2

c : ð100Þ

This will be a common feature of the two schemes
considered in this work. In both of them, we shall also
fix the ghost renormalization Zc from the condition

D−1
T¼0ðq ¼ μ; μÞ ¼ μ2; ð101Þ

on the renormalized, vacuum ghost two-point function
DT¼0ðq; μÞ. At one-loop order, this leads to

Zc ¼ 1þ g2N
64π2

�
3

�
1

ϵ
þ ln

Λ̄2

m2

�
þ 5þm2

μ2
þ μ2

m2
ln

μ2

m2
−
ðμ2 þm2Þ3

μ4m2
ln

�
1þ μ2

m2

��
: ð102Þ

Next, we notice that the one-loop potential involves the
renormalization factors Za and Zm2 in the particular
combination ZaZm2 . In the IR-safe scheme, this product
is determined by exploiting yet another nonrenormalization
theorem related to a modified Becchi-Rouet-Stora-Tyutin
symmetry present within the CF model which implies that
the combination Zm2ZaZc of renormalization factors is
finite. One can then set

ZaZm2 ¼ Z−1
c : ð103Þ

In contrast, in the VM scheme, the same combination is
determined, instead, from the condition

G−1
T¼0ðq ¼ 0; μÞ ¼ m2ðμÞ; ð104Þ

on the renormalized, vacuum gluon two-point function
GT¼0ðq; μÞ. Notice that G−1

T¼0ðq ¼ 0; μÞ is nothing but
M2

T¼0. Therefore, in this scheme, the RHS of Eq. (48) is

nothing but the squared renormalized mass m2ðμÞ, without
having to evaluate ZaZm2 . For later use, we note nonethe-
less that

ZaZm2 ¼ 1 −
3g2N
64π2

�
1

ϵ
þ ln

Λ̄2

m2
þ 5

6

�
; ð105Þ

where we have expanded in g2 to one-loop accuracy.
Finally, in order to fully fix the parameters and also to

implement the renormalization group flow (see the next
section), we need to determine Za and Zm2 separately. In
both schemes, one uses the condition

G−1
T¼0ðq ¼ μ; μÞ ¼ μ2 þm2ðμÞ; ð106Þ

which allows one to determine Za knowing ZaZm2 , and
then, to also deduce Zm2 . At one-loop order, one finds

Za ¼ 1 −
g2N
64π2

��
1

ϵ
þ ln

Λ̄2

m2

��
−
26

3
þ 3

m2

μ2

�
−
121

9
þ 21

m2

μ2

þ 1

4

�
1þ 4m2

μ2

�
3=2

��
μ2

m2

�
2

− 20
μ2

m2
þ 12

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2

μ2

q
þ 1

þ 1

2

�
1þm2

μ2

�
3
��

μ2

m2

�
2

− 10
μ2

m2
þ 1

�
ln

�
1þ μ2

m2

�
þ 1

4

�
2 −

�
μ2

m2

�
2
�
ln

μ2

m2
− 2

�
m2

μ2

�
2
�
− ðZaZm2 − 1Þm

2

μ2
: ð107Þ

B. Renormalization group flow

The renormalization procedure introduces a scale μ at
which the renormalization conditions are imposed and
which eventually replaces the regulating scale Λ introduced
earlier. The dependence on μ is spurious of course because

25Recall that we have also chosen our scheme such that
ZĀ ¼ Z−1

g2 . Therefore, ZĀ ¼ ZaZ2
c.
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physical observables should not depend on it. In practice,
however, observables are evaluated to a certain degree of
approximation, which typically introduces a spurious
dependence on μ, thus potentially hindering predictability.
Interestingly, this a priori annoying feature can be turned

into a test of the quality of the approximation. Indeed, the
better the approximation, the less scale dependence should
be present in the results. In this work, we shall test our one-
loop calculation of the potential by studying the scale
dependence of various physical observables related to the
confinement/deconfinement transition, such as the transi-
tion temperature, the spinodal temperatures (in the case of a
first-order transition), or various order parameters for center
symmetry; see Sec. VII for more details.
For the test to make sense, as the scale μ is varied, the

renormalized parameters x ¼ g2 or m2 should be varied
along a renormalization group trajectory or “line of con-
stant physics.” This variation is encoded within the beta
functions

βx ≡ μ
dx
dμ

; ð108Þ

where it is implicitly understood that the μ-derivative needs
to be taken at fixed bare parameters.
The beta functions can themselves be extracted from the

knowledge of the corresponding renormalization factors
Zx. Indeed, since the bare parameters Zxx know nothing
about the scale μ, one has

μ
dZx

dμ
xþ Zxμ

dx
dμ

¼ 0; ð109Þ

and thus

βx ¼ −μ
d lnZx

dμ
x≡ −xγx; ð110Þ

with γx the anomalous dimension associated with the
parameter x.
Similarly, one associates anomalous dimensions γy with

the various field renormalization factors Zy, with y ¼ a or
c. In both schemes considered in this work, the γx’s and
thus the βx’s can be expressed solely in terms of the γy’s.
First, owing to the condition (100), one has γg2 ¼ −γa −
2γc from which one deduces that

βg2 ¼ g2ðγa þ 2γcÞ: ð111Þ

Moreover, in the IR-safe scheme, the condition (103)
implies γm2 ¼ −γa − γc, from which one deduces that

βm2 ¼ m2ðγa þ γcÞ: ð112Þ

In contrast, in the VM scheme, from Eq. (105) and
neglecting higher-order contributions in the flow, one
obtains γm2 ¼ −γa and thus

βm2 ¼ m2γa; ð113Þ

which does not involve γc in this case.
The anomalous dimensions γc and γa can be determined

from the expressions for the renormalization constants Zc
and Za given above. The ghost renormalization is fixed
equally in both schemes resulting in the same anomalous
dimension

γc ¼ −
g2N

32π2t2
½2t2 þ 2t − t3 ln tþ ðtþ 1Þ2ðt − 2Þ lnðtþ 1Þ�; ð114Þ

where for brevity we have defined the dimensionless ratio t≡ μ2=m2. As for the gluon anomalous dimension, its expression
depends on the considered scheme, as seen from the differently defined product ZaZm2 which enters the expression (107)
for Za. In the IR-safe scheme, it reads [30]

γa ¼ −
g2N

96π2t3

�
17t3 − 74t2 þ 12t − t5 ln tþ ðtþ 1Þ2ðt − 2Þ2ð2t − 3Þ lnðtþ 1Þ

þ t
3
2

ffiffiffiffiffiffiffiffiffiffi
tþ 4

p ðt3 − 9t2 þ 20t − 36Þ ln
� ffiffiffiffiffiffiffiffiffiffi

tþ 4
p

−
ffiffi
t

pffiffiffiffiffiffiffiffiffiffi
tþ 4

p þ ffiffi
t

p
��

; ð115Þ

while in the VM scheme, one finds [30]

γa ¼ −
g2N

96π2t3

�
17t3 −

175

2
t2 þ 3t − t5 ln tþ ðtþ 1Þ2ð2t3 − 11t2 þ 20t − 3Þ lnðtþ 1Þ

þ t
3
2

ffiffiffiffiffiffiffiffiffiffi
tþ 4

p ðt3 − 9t2 þ 20t − 36Þ ln
� ffiffiffiffiffiffiffiffiffiffi

tþ 4
p

−
ffiffi
t

pffiffiffiffiffiffiffiffiffiffi
tþ 4

p þ ffiffi
t

p
��

: ð116Þ
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C. Initial conditions

From the above expressions for the field anomalous
dimensions, one can access the beta functions which, upon
integration, give the runnings of the renormalized param-
eters in the considered scheme.
Of course, the beta functions need to be integrated from a

set of initial conditions specifying the values m0 and g0 of
the renormalized parameters at a given scale μ0. Here, since
the CF model is meant to be a phenomenological model
for the Landau gauge-fixing in the infrared, we shall use the
values obtained in Refs. [30,52] by fitting the one-loop CF
gluon and ghost vacuum two-point functions to the
corresponding YM Landau gauge propagators as computed
on the lattice.26

In the IR-safe scheme, the fits are performed by setting
the renormalization scale in the propagator expressions to
μ ¼ p where p is the momentum variable entering the
propagators.27 This leads to the following values of the
renormalized parameters at the scale μ0 ¼ 1 GeV:

SUð2Þ∶ m0 ¼ 450 MeV; g0 ¼ 5.2;

SUð3Þ∶ m0 ¼ 390 MeV; g0 ¼ 3.7:

In the VM scheme, due to the presence of a Landau pole,
the same fits were performed using μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ αm2

0

p
with

α ¼ 1 or α ¼ 2. One obtains two sets of initial conditions.28

For α ¼ 1, one has

SUð2Þ∶ m0 ¼ 600 MeV; g0 ¼ 5.6;

SUð3Þ∶ m0 ¼ 500 MeV; g0 ¼ 4.3;

whereas for α ¼ 2, one has29

SUð2Þ∶ m0 ¼ 600 MeV; g0 ¼ 5.9;

SUð3Þ∶ m0 ¼ 500 MeV; g0 ¼ 4.7:

Some other fits were performed in the VM scheme by
fixing the renormalization scale in the propagator expres-
sions to μ ¼ μ0 ¼ 1 GeV. The values of the parameters are
in this case

SUð2Þ∶ m0 ¼ 680 MeV; g0 ¼ 7.5;

SUð3Þ∶ m0 ¼ 540 MeV; g0 ¼ 4.9:

We have performed the now following analyses for this last
choice as well, but noting that the results are essentially

equal to those obtained using the other two VM scheme
options and would only clutter up the figures, we omit them
from this work.
Upon integrating the beta functions from the initial

conditions given above, we obtain the running coupling
and the running gluon mass. Figure 1 shows the running of
the expansion parameter λ≡ g2N=16π2 which tells us
about the range where our perturbative calculation is
expected to be valid. In both schemes, λ is perturbative
(λ < 1) for intermediate to large values of the renormal-
ization scale, as it should, and becomes larger than 1 at the
values marked with vertical lines in Fig. 1. As we will see
in the next section, the region of interest always lies above
this threshold, but we may also consider certain values
around the region λ ∼ 1. For lower scales, the VM scheme
exhibits an infrared Landau pole at which λ diverges. In
contrast, λ remains finite in the IR-safe scheme, vanishing
for μ → 0. Note that the dropoff from the Landau pole to
perturbative values happens quickly, meaning we can have
a valid perturbative expansion not too far from the
Landau pole.

VII. RESULTS

In this section, we present our results in the center-
symmetric Landau gauge r̄ ¼ r̄c.

A. SU(2) transition

In the SU(2) case, the transition is continuous [53]. This
means that the transition temperature can be extracted from
the vanishing of the curvature of the potential at the center-
symmetric point r ¼ r̄c ¼ π. The latter is nothing but the
squared mass M2

T introduced in Eq. (56), which is just a
number in the present case. Since there are only two roots
α ¼ �1 that contribute identically, and because nε−iπT ¼
−fε with fε ≡ 1=ðeβε þ 1Þ the Fermi-Dirac distribution,
the condition determining the transition temperature reads

FIG. 1. Running of the expansion parameter λ ¼ g2N=16π2 in
the considered renormalization schemes for SU(2) (transparent)
and SU(3) (dark). The thin vertical lines mark the values of the
renormalization scale at which this parameter goes above 1.

26Since the renormalization is done at T ¼ 0, we can switch off
the background for the present discussion.

27This is done to prevent the appearance of large logarithms in
the UV tails.

28If no approximations were present, these two sets should
correspond to the same renormalization group trajectory.

29Some typos in Tables 5.5 and 5.6 of Ref. [52] were pointed
out to us by the author.
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0 ¼ M2
T¼0 þ

g2T2

24

�
1þ 7π2

5

T2

m2

�
−
g2

π2

Z
∞

0

dq q2
�
3
m2

q2
þ 6þ q2

m2

�
fεq
εq

: ð117Þ

Solving this equation for T as a function of μ, we obtain the
curves TcðμÞ shown in Fig. 2.
Of course, the transition temperature is an observable

and, as such, should not depend on the renormalization
scale μ.30 As already mentioned, however, approximations
introduce a spurious scale dependence which can be used to
test the quality of the approximation. For the test to make
sense, it should be performed over a finite interval of values
of μ to avoid a too-large separation between μ and the
relevant scales of the problem that would invalidate the use
of perturbation theory.
Here, we use the conventional range μ∈ ½πT; 4πT�,

centered around μ ¼ ω1 ¼ 2πT, a value corresponding
to the typical frequency scale associated with the temper-
ature, the first Matsubara frequency. In Fig. 2, this interval
corresponds to the highlighted, conic area. Similarly, the
considered range should lie far away from possible Landau
poles which can appear in certain renormalization schemes,
of which the VM scheme is an example. The Landau pole is
represented in Fig. 2 by a vertical line.
We collect the corresponding temperature and renorm-

alization scale ranges in physical units in Table I.

We observe that in both of the considered schemes, the
scale dependence of Tc is very mild,31 with a variation of
9% and 6%–7% in the IR-safe and VM schemes, respec-
tively. These numbers are already quite good given the
relatively simple one-loop approximation considered at this
point. An even more stringent test would involve assessing
whether and how much the renormalization scale depend-
ence gets reduced as one includes the two-loop corrections.
We leave this question for a future investigation.
Let us mention that, were we to take arbitrarily large

values of μ, we could obtain arbitrarily large values of Tc.
To see this it is convenient to rescale all mass scales by m.
The equation fixing T̃c ≡ Tc=m becomes

0 ¼ M̃2
T¼0 þ

g2T̃2

24

�
1þ 7π2

5
T̃2

�
−
g2

π2

Z
∞

0

dq q2
�
3

q2
þ 6þ q2

�
f̃ε̃q
ε̃q

; ð118Þ

with f̃ε ≡ 1=ðeε=T̃ þ 1Þ and ε̃q ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
, and where

M̃2
T¼0 ¼ 1 in the VM scheme, and

M̃2
T¼0 ¼ 1 −

g2

32π2

�
5

2
þm2

μ2
þ μ2

m2
ln

μ2

m2

−
ðμ2 þm2Þ3

μ4m2
ln

�
1þ μ2

m2

��
ð119Þ

in the IR-safe scheme. Since g2 ∼ ð12=11Þπ2= lnðμ=μ0Þ and
M̃2

T¼0 goes to a constant in both schemes (either to 1 or to
53=44), we deduce that T̃ has to diverge. To see how it
diverges, it is more convenient to rescale all masses by T
instead, in which case the equation reads

0 ¼ T̃−2M̃2
T¼0 þ

g2

24

�
1þ 7π2

5
T̃2

�
−
g2

π2

Z
∞

0

dq q2
�
3T̃−2

q2
þ 6þ q2T̃2

�
f̃ε̃q
ε̃q

; ð120Þ

with f̃ε ≡ 1=ðeε þ 1Þ and ε̃q ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ T̃−2

p
. At large T̃, it

is found that the equation becomes T̃−2M̃2
T¼0 ∼ g2=3 and

FIG. 2. SU(2) transition temperature as a function of the
renormalization scale μ in both the IR-safe and VM renormal-
ization schemes. The conic band represents the region
μ∈ ½πT; 4πT�, with the dashed line representing the central value
μ ¼ 2πT. The black dots correspond to the values obtained from
a “minimum sensitivity” principle dTc=dμ ¼ 0.

TABLE I. The intervals for Tc and μwith edge points satisfying
μ ¼ πTcðμÞ and μ ¼ 4πTcðμÞ in the SU(2) case. Note that in the
IR-safe scheme TcðμÞ decreases over this interval.

IR-safe VM α ¼ 1 VM α ¼ 2

Tc ½MeV�∈ [243, 222] [270, 289] [264, 280]
μ ½GeV�∈ [0.76, 2.80] [0.85, 3.63] [0.83, 3.52]

30This can be easily seen from the fact that a change of scheme
leads to a multiplicative and temperature-independent, finite
renormalization of the curvature mass, which thus does not
affect the temperature at which the curvature mass vanishes. Of
course, in practice, the multiplicative renormalization is not
exactly satisfied, which introduces a spurious renormalization
scale dependence to the transition temperature. 31This observation extends even further away from μ ¼ 4πT.
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thus T2 ∝ m2=g2. Since m2 ∝ ðg2Þ35=44 [30,32], we deduce
that T2 ∝ ð1=g2Þ9=44 and thus diverges as μ → ∞.
A similar behavior is observed when approaching the

Landau pole (present in the VM scheme). Indeed, the
coupling diverges in this limit which requires T̃ to approach
one of the values that make the prefactor of g2 in Eq. (118)
vanish. There are two such values T̃¼0 and T̃≡ T̃0≃0.235.
We have checked numerically that this second option is
chosen, leading to T ∼ T̃0m. Sincem diverges in the vicinity
of the Landau pole,32 we deduce that the transition temper-
ature diverges in this limit as well.
Finally, in the IR-safe scheme, we can consider the limit

μ → 0. Since the coupling goes to zero in this limit as well,
and because M̃2

T¼0 approaches 1, we deduce, once again
that T̃ diverges like 1=g, and thus T ∼

ffiffiffi
3

p
m=g. Now, in this

scheme, m=g goes to a constant [32], and thus there is a
limit to TcðμÞ as μ → 0. In fact, sincem2ðμ→0Þ=g2ðμ→0Þ
can be directly related to the zero-momentum gluon
propagator Gð0Þ in this scheme [30]

m2ðμÞ
g2ðμÞ

����
μ→0

¼ Gðp ¼ 0Þm
4
0

g20
; ð121Þ

one finds

Tcðμ → 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Gð0Þ

p m2
0

g0
: ð122Þ

We stress once again that, even though we can analytically
understand these limiting cases, the corresponding values
of the renormalization scale should not be considered too
seriously since they probably lie beyond the range of
validity of a strict perturbative expansion.
Another popular choice of μ is the one that relies on the

principle of minimal sensitivity. Since Tc should be μ-
independent in the absence of approximations, one can
define an optimal value μ⋆ of the renormalization scale, and
thus an optimal value T⋆

c of the transition temperature, by
enforcing the condition dTc=dμ ¼ 0. We find T⋆

c ¼
253 MeV in the IR-safe scheme, corresponding to
μ⋆=T⋆

c ≃ 0.50π, and T⋆
c ¼ 269 or 263 MeV (correspond-

ing to α ¼ 1 or 2) in the VM scheme, corresponding to
μ⋆=T⋆

c ≃ 0.73π or 0.92π. In the case of the IR-safe scheme,
we note that there is a second optimal value for Tc but the
renormalization scale (μ⋆=T⋆

c ≃ 7.3π) lies way above the
interval ½πT; 4πT�. Note that the lower, minimally sensitive
μ for the IR-safe scheme is in the region where the coupling
is not perturbative λðμ⋆Þ ≈ 1.16, even though close to
λ ¼ 1. Thus, this value should be taken with some care.

Importantly, the range μ ¼ πTc → 4πTc lies well within
the perturbative region for all schemes.
So far our remarks concerned the internal consistency of

the perturbative expansion within the CF model. One can
also wonder to which extent this model allows one to
capture nontrivial features of Yang-Mills theories. To this
respect, let us note that the values obtained from the
principle of minimal sensitivity in both schemes are quite
close to each other, as they lie only 3%–6% apart. This is
quite remarkable if one takes into consideration the fact that
the initialization of the corresponding RG flows are
external to the Curci-Ferrari model itself, since they are
taken from fits to the Landau gauge correlators as com-
puted on the lattice. Let us also stress that the predictions
for Tc within the CF are only 2%–25% below the value
predicted by the simulations, T latt

c ¼ 295 MeV for the
SU(2) deconfinement transition. This observation will
improve even further in the SU(3) case.

B. SU(3) transition

In the SU(3) case, the curvature is a matrix with
components corresponding to the color directions 3 and
8. Within the center-symmetric gauge r ¼ r̄c ¼ ð4π=3; 0Þ
and using charge conjugation invariance, one can argue
that the transition occurs along the r8 ¼ 0 direction.
Consequently, the relevant quantity is the curvature
along the color direction 3, that is, M2

T;33, evaluated
for r ¼ r̄c.
It can again be argued that all roots contribute identically

to M2
T;33 and the condition for its vanishing eventually

writes

0 ¼ M2
T¼0 þ

g2T2

24

�
1þ 52π2

45

T2

m2

�
−
3g2

4π2

Z
∞

0

dq
q2

εq

�
3
m2

q2
þ 6þ q2

m2

�
eβεq þ 2

1þ eβεq þ e2βεq
:

ð123Þ

Because the transition is first order in the SU(3) case,
this condition does not determine the transition temper-
ature but, rather, the higher spinodal temperature
Thsp > Tc. However, this quantity should be renormal-
ization scale independent as well in the absence of
approximations, so studying its residual scale depend-
ence is again a good way to test the quality of the one-
loop approximation.
Our results are collected in Fig. 3. We observe similar

features as for the transition temperature in the SU(2) case,
with the actual values falling between 259 MeV≲ Thsp ≲
304 MeV across all the schemes. The lower value corre-
sponds to the minimum T⋆

hsp in the IR-safe scheme and the
higher value to the μ ¼ 4πThspðμÞ edge of the interval in the
VM scheme with α ¼ 1. A similar analysis has been

32We mention that, in the IR-safe, there also exist trajectories
(not the ones considered here) that possess a Landau pole. But,
for these trajectories, the mass vanishes at the Landau pole rather
than diverging.
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performed for the lower spinodal,33 with again very similar
observations. Additionally, we observe that the spinodal
temperatures lie rather close to the transition temperatures
and could thus be used as a simpler alternative for it.
To perform a faithful comparison with the SU(2) case,

we should access the actual transition temperature in the
SU(3) case. To do so, we need to locate the temperature (in-
between the two spinodals) at which the two minima of the
effective potential become degenerate. Once again, this
quantity does not depend on the renormalization scheme
since a change of scheme corresponds to a mere rescaling
of the field variables that enter the effective potential. In
practice, however, the transition temperature features a
spurious scale dependence which we can use as a test of the
quality of the one-loop approximation. Our results are
presented in Fig. 4. The main features are similar to the
ones in the previous plots, we highlight again the ½πT; 4πT�
interval as well as the extrema suggested by the principle of
minimal sensitivity. We collect the temperature and renorm-
alization scale ranges in Table II.
As in the SU(2) case the scale dependence of Tc over this

interval is rather small, 4% or 8%–9% in the IR-safe or VM
schemes, respectively. One could again analyze whether
these variations improve further when performing a two-
loop calculation, which we leave for future investigation.
Note that since the absolute values of Tc went up/down and
the length of the intervals down/up in the IR/VM scheme,

the corresponding relative variation across the interval went
down/up. This can partly be traced to the different initial
conditions used for the renormalized parameters, e.g. the
IR-safe coupling g0 decreased more from SU(2) to SU(3)
compared to the VM schemes. We can again conclude that
our perturbative expansion within the CF model seems
reliable at one-loop order, since we obtained consistent
results from different schemes.
Similar predictions arise using the principle of minimum

sensitivity. In the IR-safe scheme, both optimal values are
now closer to the ½πT; 4πT� range, giving T⋆

c ¼ 261 or
246 MeV with μ⋆=T⋆

c ≃ 0.53π or 4.74π. In the VM scheme
the optimal temperatures are T⋆

c ¼ 260 or 252 MeV with
μ⋆=T⋆

c ≃ 0.63π or 0.89π (corresponding to α ¼ 1 or 2).
Note that while all of these optimal points lie outside the
respective ½πT; 4πT� interval, due to the small dependence
on the renormalization scale the “optimal” temperatures do
not differ greatly from the predictions given by the previous
prescription. As for SU(2), there is one case where T⋆

c is in
the nonperturbative region, here for the VM α ¼ 1 scheme,
with λðμ⋆Þ ≈ 1.18. But again, the range μ ¼ πTc → 4πTc
lies well within the perturbative region for all schemes.
We can also consider the variation with respect to the

simulated value obtained from the lattice, T latt
c ¼ 270 MeV.

Our predictions for Tc are now only 3%–9% below it in the
IR scheme, or up to 6% around it, including it in the

FIG. 4. SU(3) transition temperature as a function of the
renormalization scale μ in both the IR-safe and VM renormal-
ization schemes. The conic band represents the region
μ∈ ½πT; 4πT�, with the dashed line representing the central value
μ ¼ 2πT. The black dots correspond to the values obtained from
a “minimum sensitivity” principle dTc=dμ ¼ 0.

FIG. 3. SU(3) spinodal temperatures as a function of the
renormalization scale μ in both the IR-safe and VM renormal-
ization schemes. For each, the colored band represents the
temperature interval between the two spinodals. The conic band
represents the region μ∈ ½πT; 4πT�, with the dashed line repre-
senting the central value μ ¼ 2πT. The black dots correspond to
the values obtained from a “minimum sensitivity” principle
dTsp=dμ ¼ 0.

TABLE II. The intervals for Tc and μ with edge points
satisfying μ ¼ πTcðμÞ and μ ¼ 4πTcðμÞ in the SU(3) case. Note
that in the IR-safe scheme TcðμÞ decreases over this interval.

IR-safe VM α ¼ 1 VM α ¼ 2

Tc ½MeV�∈ [256, 246] [264, 287] [252, 273]
μ ½GeV�∈ [0.80, 3.09] [0.83, 3.61] [0.79, 3.43]

33The lower spinodal does not occur at r ¼ r̄c, so the condition
determining its location requires one to cancel both ∂Vr̄c=∂r

3 and
∂
2Vr̄c=∂ðr3Þ2 [see Eqs. (98) and (99)]. This leads to a system of
equations determining both the value of the lower spinodal
temperature and the value of r at which it occurs.
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interval, in both cases of the VM scheme. This is a
significant improvement over the SU(2) case, where all
schemes showed at least up to a 10% deviation (see above).
We presume that this improved behavior can mostly be
traced back to the fact that the fitted coupling constants are
smaller in SU(3), rendering the loop expansion more
accurate.

C. Order parameters

The Polyakov loop [54–56]

l ¼ 1

N



trP exp

�
ig
Z

β

0

dτAa
0ðτ; xÞta

��
ð124Þ

is the most commonly used order parameter for the
confinement/deconfinement transition and has been com-
puted on the lattice, allowing for comparisons with con-
tinuum evaluations [42,57]. In this work, we have focused
on an alternative quantity, the one-point function hAiĀc

in
the center-symmetric Landau gauge, as introduced in
Sec. II, or, equivalently, on the simpler quantity r, the
argument of the effective potential. We can connect these
quantities by noticing that r appears implicitly in the
definition of the Polyakov loop as it is contained in Aa

0 .
As discussed in Ref. [42], at one-loop order, we can
formally approximate the expression for the Polyakov loop
by its tree-level form, while plugging in the minimum of
the potential rmin as found from the one-loop calculation.34

We thus have

l ¼ 1

N
tr eir

j
mint

j þOðg4Þ; ð125Þ

which plugging in the relevant generators and using only
the r3 component for SU(3) gives

SUð2Þ∶ l ¼ cosðrmin=2Þ; ð126Þ

SUð3Þ∶ l ¼ 1

3
ð1þ 2 cosðrmin=2ÞÞ: ð127Þ

Note that plugging in the center-symmetric point π or 4π=3,
respectively, indeed gives zero.
The Polyakov loop usually gets renormalized which

means that its renormalized version depends a priori on the
renormalization scale. If the renormalization scheme is
considered at zero temperature, however, the ratio of the
Polyakov loop to the corresponding value at some reference
temperature should be μ-independent, again, up to trunca-
tion errors. In the present, one-loop, dimensionally regu-
larized, continuum calculation, it turns out that the

Polyakov loop does not require renormalization, and thus,
we expect the Polyakov loop itself to be quite independent
of μ, within the appropriate range.
One should bear in mind, however, that the transition

temperature depends on μ, as we saw in previous sections.
Although small, this noticeable dependence affects the
setting of the scale in physical units, and a faithful
comparison of the Polyakov loop for various values of μ
requires a rescaling of T by Tc. In Fig. 5 we show the SU(2)
and SU(3) Polyakov loops as a function of this rescaled
temperature and in the range between μ ¼ πT and μ ¼ 4πT
for each scheme.
Since the SU(2) transition is second-order, the Polyakov

loop is continuous, while in the first-order SU(3) transition
it has a discontinuity at the transition temperature. In both
cases, after rescaling the temperature, only a very small
dependence on the scheme and renormalization scale
remains visible. The difference between the two versions
of the VM scheme is negligible, while the IR-safe scheme
lies slightly above the others. Varying the renormalization
scale in the range πT → 4πT results in very small changes
to the order parameter, which could be visualized only by
using thinner lines for the edges of the interval and shading
the inside; otherwise, the variation is contained completely
in the line thickness. We can conclude that most of the
dependence on the renormalization scale is encoded in the
transition temperatures, rather than in the order parameters.
Another way to verify the (small) effect of varying

the renormalization scale μ is by instead evaluating the
Polyakov loop at a fixed temperature and varying the
renormalization scale. Looking at the SU(3) case in Fig. 5
we see that the variation due to the scale seems to be larger
close to the transition temperature with the bands thinning
as the temperature increases past ∼1.5Tc. In Fig. 6 the
results are shown for the fixed temperatures T ¼ aT⋆

c , with
a∈ f1.1; 1.2; 1.5g (bottom to top) and for renormalization
scales in the range ½πT; 4πT�. In the IR-safe scheme, the

FIG. 5. SU(2) and SU(3) Polyakov loops as a function of the
rescaled temperature T=Tc and the renormalization scale
μ∈ ½πT; 4πT�. The regions spanned by taking μ between πT
and 4πT are shaded in.

34Expanding the expression of the Polyakov loop to one-loop
order and plugging in the minimum as found from the one-loop
calculation would give a higher order correction.

DECONFINEMENT TRANSITION WITHIN THE CURCI-FERRARI … PHYS. REV. D 109, 094033 (2024)

094033-21



lower value of T⋆
c was chosen to match the fact that it lies

below the range, not above, as is the case for the VM
schemes.
Using the optimal temperatures T⋆

c found using the
minimum sensitivity principle for each scheme allows one
in a sense to minimize the scheme dependence in the plot
and focus on μ-dependence, in contrast to taking the ratio
with the μ-dependent transition temperature as seen in
Fig. 5. This is confirmed by the fact that the values for the
different schemes lie fairly close together for each temper-
ature, even though the absolute temperatures T used are
different. While the lines are not completely flat, it is clear
that across all schemes the dependence on the renormal-
ization scale is small, and decreases further with increasing
temperatures. We omit the analogous figure for SU(2), as
the conclusions are the same, with the results showing a
slightly stronger dependence on the scale μ especially for
the IR-safe scheme and low temperatures.
From the above analyses we conclude that the main

source of the spurious dependencies on the renormalization
scheme and scale originate from the transition temper-
atures’ dependencies, with the order parameters showing
only very little additional variations after factoring this in.
Thus to improve the results, an improvement of the
calculation of the transition temperature is necessary,
whether through higher loop orders, RG methods, or
others, and we expect the results for the Polyakov loop
to follow suit.

D. Background effective potential

We end this section by comparing our approach based on
the center-symmetric Landau gauge to the one based on
the minimization of the background effective potential
Ṽðr̄Þ≡ Vr̄ðr ¼ r̄Þ. Although the latter is not a Legendre
transform, it can be argued that, in the exact theory, mini-
mizing Ṽðr̄Þ is equivalent to minimizing Vr̄cðrÞ [37].

However, this is not necessarily true anymore in the
presence of approximations (such as the one-loop approxi-
mation) and/or modeling (such as the modeling of the
gauge-fixing procedure considered in this paper), thus
introducing a possible bias in the results. Our approach,
being a true Legendre transform, should therefore be an
improvement over the background effective potential.
At one-loop order, Ṽðr̄Þ is given by [58]

Ṽðr̄Þ ¼ d − 1

2

X
κ

Z
T

Q
ln½Q2

κ þm2� − 1

2

X
κ

Z
T

Q
lnQ2

κ :

ð128Þ
Except for a vacuum piece that we can disregard, there are
no other divergences. The thermal piece can be evaluated
using standard techniques to get

Ṽðr̄Þ ¼̂ 3

4π2
X
κ

Z
∞

0

dq q2 lnðe2βεq − 2eβεq cosðr̄ · κÞ þ 1Þ

−
1

4π2
X
κ

Z
∞

0

dq q2 lnðe2βq − 2eβq cosðr̄ · κÞ þ 1Þ:

ð129Þ
One can also evaluate the first derivatives

∂Ṽ
∂r̄j

¼ T
X
κ

κj
�
ðd − 1Þ

Z
T

Q

ωκ
q

Q2
κ þm2

−
Z

T

Q

ωκ
q

Q2
κ

�
ð130Þ

and

∂
2Ṽ

∂r̄j∂r̄k
¼ T2

X
κ

κjκk
�
−
Z

T

Q

�
1

Q2
κ
−
2ðωκ

qÞ2
ðQ2

κÞ2
�

þ ðd − 1Þ
Z

T

Q

�
1

Q2
κ þm2

−
2ðωκ

qÞ2
ðQ2

κ þm2Þ2
��

:

ð131Þ

Notice that the first derivative is the same as in Eq. (42)
or in Eq. (53) but with r̄ replaced by r. Moreover, it is easily
checked using Eqs. (46) and (47) that the vacuum piece of
the second derivative vanishes identically, in line with the
fact that the vacuum piece of the potential (128) does not
depend on r̄. The second derivative is then just given by its
thermal piece which can be computed using Eqs. (54) and
(55). We find

∂
2Ṽ

∂r̄j∂r̄k
b¼ T2

X
κ

κjκk
Z

T

Q

�
3

�
2þm2

q2

�
1

Q2
κ þm2

−
2

Q2
κ

�
¼ T2

X
κ

κjκk
Z

T

Q

�
3

�
2þm2

q2

�
nεκq
εq

− 2
nqκ

q

�
: ð132Þ

Solving for the transition temperature can be done in
analogy to the center-symmetric potential. In the SU(2)

FIG. 6. SU(3) Polyakov loops as a function of the renormal-
ization scale μ in the region μ=ð2πTÞ∈ ½0.5; 2� for various
temperatures, which are given in terms of the respective schemes
minimally sensitive transition temperature T⋆

c .
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case it suffices to find the temperature at which the
curvature at the center-symmetric point vanishes, whereas
this will again only give the upper spinodal temperature in
the SU(3) case. There is an advantage over the center-
symmetric potential though. Since there is no explicit
dependence on the coupling in the potential and the only
scale is given by the mass, everything can be solved in
terms of T̃ ≡ T=m, independent of the scheme. The
running is implicit in mðμÞ, and thus the variations of
Tc with scale and scheme will come directly from the
variations of the mass. We find that for SU(2) T̃c ≃ 0.336
and for SU(3) T̃c ≃ 0.363 with rminðTc þ ϵÞ ≃ 2.41. For
completeness, the higher and lower spinodal temperatures
are T̃hsp ≃ 0.38 and T̃ lsp ≃ 0.361 at rlsp ≃ 2.85. At one-loop
order, there appears also an artifact where the rmin’s vanish
exactly from a certain temperature on, corresponding to a
maximal Polyakov loop or reaching a zero free energy
requirement. This happens at T̃ ≃ 0.50 in both cases: the
defining equations for this temperature are equivalent in
SU(2) and SU(3).
In Fig. 7 we illustrate the type of scheme and scale

dependence that we find using the background field
effective potential. The transition temperatures vary much
stronger with the scale compared to the ones computed
using the center-symmetric potential, and are also generally
further away from the lattice values. The variations across
the ½πT; 4πT� interval are up to 53% and the distance from
the lattice value of 19%–44%. The absolute values range
between 119MeVand 220MeV. Additionally, the behavior
for large μ is also different, with the transition temperatures
vanishing logarithmically, just as the mass.

VIII. CONCLUSIONS

We have studied the confinement/deconfinement tran-
sition of pure Yang-Mills theories using perturbative

methods. For this, we worked in the recently introduced
center-symmetric Landau gauge with a Curci-Ferrari mass
term modeling the effect of Gribov copies in the infrared.
Extending previous work in this setup [42], we present a
comprehensive overview of the methods used to evaluate
the one-loop potential for the one-point function, one
of the possible order parameters for the confinement/
deconfinement transition in this gauge. In this work, par-
ticular focus was placed on studying the renormalization
scale and scheme dependence of various observables, this
in view of both further testing the inner consistency of
perturbative calculations within the CF model and checking
the adequacy of the model as an effective and efficient
description of background Landau-gauge YM theories in
the infrared.
We have shown that the present one-loop order calcu-

lation is already precise, with small dependencies on the
renormalization scale and scheme in both the SU(2) and
SU(3) cases. The transition temperature shows variations
with the scale of under 9%. Additionally, the results are
accurate to the temperature found in lattice computation
within 25% for SU(2) and 9% for SU(3), where the loop
expansion is better behaved. In the SU(3) case we have also
computed the lower and higher spinodal temperatures
around the transition temperature and checked that they
follow the same behavior considering the residual scale
dependence. These results hold across the diverse renorm-
alization schemes, further suggesting that the center-
symmetric Curci-Ferrari model is a valid way of describing
finite temperature Yang-Mills theory. While there is some
visible variation with scale and scheme in the transition
temperature, the order parameter shows barely any addi-
tional variations that cannot be traced back to the transition
temperature. We have compared the current approach to
previous methods involving a background effective poten-
tial and see a clear improvement in both the accuracy and
precision of the transition temperatures.
A natural continuation of this analysis is to compute

the two-loop potential with the corresponding renormali-
zation and check whether the results improve. Another
extension is the application to QCD. In this case, it is well
known that perturbative methods are inefficient, even
within the Curci-Ferrari model. However, in this latter
context, the good control of the pure gauge sector has
allowed for the setup of a controlled nonperturbative
expansion scheme which we plan to investigate in the
future. In this case as well, renormalization group effects
need to be taken into account.
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FIG. 7. SU(3) transition temperature found using the back-
ground effective potential as a function of the renormalization
scale μ in both the IR-safe and VM renormalization schemes. The
conic band represents the region μ∈ ½πT; 4πT�, with the dashed
line representing the central value μ ¼ 2πT.
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APPENDIX A: DETERMINANT

As already explained, the one-loop effective potential
is obtained from the determinant of the quadratic part
of the action (2) expanded around a classical configu-
ration of the fields. Recall that the classical ghost, anti-
ghost, and Nakanishi-Lautrup fields can be taken equal
to zero. For simplicity, the classical gauge field con-
figuration is denoted Aμ. This means that we have to
expand the action SĀ½Aþ a� in powers of the fluc-
tuation a.
From now on, we take both Ā and A constant, temporal,

and Abelian, see Eqs. (10) and (11).

1. Quadratic part

In the ghost sector, the quadratic part is simply

−
Z
x
c̄aðxÞD̄ab

μ Dbc
μ ccðxÞ; ðA1Þ

where we have integrated by parts. In order to identify the
quadratic part in the gluon sector, we note that

Fa
μν½Aþ a� ¼ Fa

μν½A� þDab
μ abν −Dab

ν abμ þ gfabcabμacν;

ðA2Þ

where the first term in the RHS vanishes in the present case.
The quadratic part in the gluon sector then readsZ

x

1

2
ðDab

μ abνðxÞDac
μ acνðxÞ −Dab

μ abνðxÞDac
ν acμðxÞ

þm2ðaaμðxÞÞ2Þ þ
Z
x
ihaðxÞD̄ab

μ abμðxÞ: ðA3Þ

One should not forget the last term coupling aμ to h
since it is also quadratic. After an integration by parts, we
arrive atZ

x

1

2
aaμðxÞðDac

ν Dcb
μ − δμνðDac

ρ Dcb
ρ −m2δabÞÞabνðxÞ

þ 1

2

Z
x
ihaðxÞD̄ab

ν abνðxÞ −
1

2

Z
x
aaμðxÞD̄ab

μ ðihbðxÞÞ:

ðA4Þ

2. Color structure

The index structure in Eq. (A4) is intricate since it is
diagonal in neither the Lorentz indices nor the color
indices. Let us first deal with the color structure.
Because both A and Ā are constant, temporal, and

Abelian, it is convenient to switch to a Cartan-Weyl color
basis. Indeed, in such a basis, the action of the covariant
derivative writes

DμðXκtκÞ ¼ ∂μðXκtκÞ − ig½Aμ; Xκtκ�

¼ ð∂μXκÞtκ − iTδμ0rXκ

�
σ3
2
; tκ

�
¼ ð∂μXκÞtκ − iTδμ0rκXκtκ

¼ ð∂μ − iTδμ0rκÞXκtκ ≡ ðDκ
μXκÞtκ; ðA5Þ

and similarly of course for D̄μðXκtκÞ with r replaced by r̄.
Altogether, the quadratic part within a Cartan-Weyl color
basis reads then

Z
x

1

2
a−κμ ðxÞðDκ

νDκ
μ − δμνðDκ

ρDκ
ρ −m2ÞÞaκνðxÞ

þ 1

2

Z
x
ih−κðxÞD̄κ

νaκνðxÞ −
1

2

Z
x
ā−κμ ðxÞD̄κ

μðihκðxÞÞ: ðA6Þ

The presence of the labels −κ relates to the fact that trtκtλ ∝
δκð−λÞ rather than trtatb ∝ δab for the usual Cartesian bases.
This will make even more sense in the next section.

3. Lorentz structure

It is more convenient to evaluate the determinant of the
quadratic form in Fourier space. With the convention
∂μ → −iQμ, we find

Z
Q

1

2
a−κμ ð−QÞðδμνðQκ

ρQκ
ρ þm2Þ −Qκ

νQκ
μÞaκνðQÞ

þ
Z
Q
h−κð−QÞQ̄κ

νaκνðQÞ −
Z
Q
ā−κμ ð−QÞQ̄κ

μhκðQÞ; ðA7Þ

where Qκ
μ and Q̄κ

μ are the generalized momenta introduced
in the main text and which combine additively the
momentum and the charge, which are both conserved.
From this perspective, it seems natural that −κ appears in
those Fourier components of momentum −Q.
In matrix form, the quadratic form in the gluon sector

writes

�
δμνðQκ

ρQκ
ρ þm2Þ −Qκ

μQκ
ν −Q̄κ

μ

Q̄κ
ν 0

�
: ðA8Þ

To evaluate its determinant, we use the Schur decompo-
sition of a square matrix made of four square blocks A, B,
C, and D, with A invertible:

�
A B

C D

�
¼

�
A 0

C 1

��
1 A−1B

0 D − CA−1B

�
: ðA9Þ

From this decomposition, it follows that
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det

�
A B

C D

�
¼ detA × detðD − CA−1BÞ; ðA10Þ

where D − CA−1B is known as Schur’s complement.
In the present case, the block A writes

A ¼ δμνðQ2
κ þm2Þ −Qκ

μQκ
ν

¼ ðQ2
κ þm2ÞP⊥

μνðQκÞ þm2Pk
μνðQκÞ; ðA11Þ

where we have introduced the usual orthogonal projectors

Pk
μνðQκÞ≡Qκ

μQκ
ν

Q2
κ

and P⊥
μνðQκÞ≡ δμν −

Qκ
μQκ

ν

Q2
κ

; ðA12Þ

but with respect to the generalized momentum Qκ
μ. The

block A is clearly invertible, with inverse A−1 given by

A−1 ¼ P⊥
μνðQκÞ

Q2
κ þm2

þ Pk
μνðQκÞ
m2

ðA13Þ

and determinant

det A ¼ m2ðQ2
κ þm2Þd−1; ðA14Þ

the power of d − 1 coming from the fact that P⊥ðQκÞ
corresponds to an eigenspace of dimension d − 1. Finally,
the Schur complement is just a number in this case and is
computed to be

D − CA−1B ¼ Q̄κ
μP⊥

μνðQκÞQ̄κ
ν

Q2
κ þm2

þ Q̄κ
μP

k
μνðQκÞQ̄κ

ν

m2

¼ Q̄2
κ

Q2
κ þm2

þ ðQ̄κ ·QκÞ2
Q2

κ

�
1

m2
−

1

Q2
κ þm2

�
¼ 1

Q2
κ þm2

�
Q̄2

κ þ
ðQ̄κ ·QκÞ2

m2

�
: ðA15Þ

Here, we have introduced the notation Xκ · Yκ ≡ Xκ
μYκ

μ

where a summation over μ is implied. Putting all the
pieces together, the determinant of the quadratic form (A8)
writes

ðQ2
κ þm2Þd−2½m2Q̄2

κ þ ðQ̄κ ·QκÞ2�: ðA16Þ

4. Final result

The logarithm of the determinant (A16) contributes to
the effective potential with a factor 1=2. Similarly, the
quadratic part in the ghost sector gives the determinantQ

Q

Q
κ Qκ · Q̄κ whose logarithm contributes to the effec-

tive potential with a factor −1. We mention that, ifQ ¼ 0 or
κ ¼ 0, then Qκ · Q̄κ is positive. Moreover, if Q ≠ 0 and
κ ≠ 0, with each pair ðQ; κÞ, we can associate a pair

ð−Q;−κÞ such that the combined contribution of these
two modes to the determinant is positive

ðQκ · Q̄κÞðð−QÞ−κ · ð−QÞ−κÞ ¼ ðQκ · Q̄κÞ2: ðA17Þ

All in all, this means that the ghost contribution writes
−ð1=2Þ lnðQκ · Q̄κÞ2. Combining this result with (A16), we
arrive at the formula given in the main text.

APPENDIX B: ALTERNATIVE APPROACH

As suggested in the main text, an alternative approach to
evaluate the potential is to rewrite it as

Vr̄ðrÞ ¼ V̂r̄ðrÞ þ
d − 2

2

X
κ

Z
T

Q
ln½Q2

κ þm2�; ðB1Þ

with

V̂r̄ðrÞ≡m2T2

2g2
ðr − r̄Þ2 þ 1

2

X
κ

Z
T

Q
ln

�
1þ m2Q̄2

κ

ðQκ · Q̄κÞ2
�
;

ðB2Þ

and to apply the strategy presented in the main text to V̂r̄ðrÞ
only, the explicit sum-integral in Eq. (B1) being computed
as usual, via the analytic evaluation of the Matsubara sum
and the numerical evaluation of the resulting momentum
integral. Then, we have to compute

V̂r̄ðrÞ ¼ ½V̂r̄ðrÞ�2 þ δV̂r̄ðrÞ; ðB3Þ

with

δV̂r̄ðrÞ≡ V̂r̄ðrÞ − ½V̂r̄ðrÞ�2: ðB4Þ

We find

½V̂r̄ðrÞ�2 ≡ V̂r̄ðr̄Þ þ
X
j

∂V̂r̄ðrÞ
∂rj

����
r¼r̄

Δrj

þ 1

2

X
j;k

∂
2V̂r̄ðrÞ
∂rj∂rk

����
r¼r̄

ΔrjΔrk; ðB5Þ

with

V̂r̄ðr̄Þ ¼
X
κ

�
1

2

Z
T

Q
lnðQ̄2

κ þm2Þ − 1

2

Z
T

Q
ln Q̄2

κ

�
; ðB6Þ

∂V̂r̄ðrÞ
∂rj

����
r¼r̄

¼ T
X
κ

κj
�Z

T

Q

ω̄κ
q

Q̄2
κ þm2

−
Z

T

Q

ω̄κ
q

Q̄2
κ

�
; ðB7Þ

and
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∂
2V̂r̄

∂rj∂rk

����
r¼r̄

¼ T2

�
ZaZm2

m2

g2
δjk þ

X
κ

κjκk

×
�Z

T

Q

ðω̄κ
qÞ2

Q̄4
κ

− 2

Z
T

Q

ðω̄κ
qÞ2

ðQ̄2
κ þm2Þ2

þ
Z

T

Q

ðω̄κ
qÞ2

Q̄2
κðQ̄2

κ þm2Þ
��

: ðB8Þ

As before, we can ignore V̂r̄ðr̄Þ. The first derivative is
purely thermal and given by

∂V̂r̄ðrÞ
∂rj

����
r¼r̄

¼ T
2π2

X
κ

κj
Z

∞

0

dq q2Im½nεκq − nqκ �: ðB9Þ

As for the second derivative, it contains both a vacuum and
a thermal part. Interestingly enough, the vacuum contribu-
tion is the same as before35 [see Eq. (48)]. As for the
thermal contribution, it reads M̂2

T;jkT
2=g2, with

M̂2
T;jk b¼ g2

X
κ

κjκk
�Z

T

Q

�
m2

q2
þ 2þ q2

m2

�
1

Q2
κ þm2

−
Z

T

Q

�
1

2
þ q2

m2

�
1

Q2
κ

�
; ðB10Þ

to which we should of course add the expression for
M2

T¼0δjk obtained above [see Eq. (48)]. Combining the
results, we find

M̂2
T;jk ¼

�
ZaZm2 þ 3g2N

64π2

�
1

ϵ
þ ln

Λ̄2

m2
þ 5

6

��
m2δjk

þ g2

2π2
X
κ

κjκk
Z

∞

0

dq q2Re

×

��
m2

q2
þ 2þ q2

m2

�
nεκq
εq

−
�
1

2
þ q2

m2

�
nqκ

q

�
: ðB11Þ

Moreover, we write

δV̂r̄ðrÞ ¼
X
κ

Z
T

Q
½L̂ðΔrÞ − L̂ð0Þ − ΔrjL̂0

jð0Þ

−
ΔrjΔrk

2
L̂00
jkð0Þ�; ðB12Þ

with

L̂ðΔrÞ ¼ 1

2
ln

�
1þ m2Q̄2

κ

ðQκ · Q̄κÞ2
�
; ðB13Þ

as well as

L̂ð0Þ ¼ 1

2
ln½Q̄2

κ þm2� − 1

2
ln Q̄2

κ ; ðB14Þ

L̂0
jð0Þ ¼ Tκj

�
ω̄κ
q

Q̄2
κ þm2

−
ω̄κ
q

Q̄2
κ

�
; ðB15Þ

and

L̂00
jkð0Þ ¼ T2κjκk

�ðω̄κ
qÞ2

Q̄4
κ

− 2
ðω̄κ

qÞ2
ðQ̄2

κ þm2Þ2 þ
ðω̄κ

qÞ2
Q̄2

κðQ̄2
κ þm2Þ

�
:

ðB16Þ

Then,

L̂ðΔrÞ ¼ 1

2
ln
ðq2 þM2þ;κÞðq2 þM2

−;κÞ
ðq2 þM2

0;κÞ2
ðB17Þ

and

L̂ð0Þ ¼ 1

2
lnðq2 þ M̄2

κÞ −
1

2
lnðq2 þ M̄2

0;κÞ; ðB18Þ

L̂0
jð0Þ ¼ Tκj

�
ω̄κ
q

q2 þ M̄2
κ
−

ω̄κ
q

q2 þ M̄2
0;κ

�
; ðB19Þ

L̂00
jkð0Þ ¼ T2κjκk

� ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞ2

− 2
ðω̄κ

qÞ2
ðq2 þ M̄2

κÞ2

þ ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞðq2 þ M̄2

κÞ
�
: ðB20Þ

Putting all the pieces together, we arrive at

δV̂r̄ðrÞ ¼ T
X
κ

X
q∈Z

Z
dDq
ð2πÞD

�
1

2
ln
ðq2 þM2þ;κÞðq2 þM2

−;κÞðq2 þ M̄2
0;κÞ

ðq2 þM2
0;κÞ2ðq2 þ M̄2

κÞ
þ Tðκ · ΔrÞ

�
ω̄κ
q

q2 þ M̄2
0;κ

−
ω̄κ
q

q2 þ M̄2
κ

�

−
1

2
T2ðκ · ΔrÞ2

� ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞ2

þ ðω̄κ
qÞ2

ðq2 þ M̄2
0;κÞðq2 þ M̄2

κÞ
− 2

ðω̄κ
qÞ2

ðq2 þ M̄2
κÞ2

��
: ðB21Þ

35This is because, the vacuum contribution to the explicit sum-integral in Eq. (B1) is background independent, owing to the
background symmetry.
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Performing the D-dimensional integrals, one arrives this time at

δV̂r̄ðrÞ ¼
T

ð4πÞD=2

X
κ

X
q∈Z

�
1

2
ð2ReðM2

0;κÞD=2 þ ðM̄2
κÞD=2 − ðM̄2

0;κÞD=2 − ðM2
κ;þÞD=2 − ðM2

κ;−ÞD=2ÞΓð−D=2Þ

þ Tðκ · ΔrÞω̄κ
qððM̄2

0;κÞD=2−1 − ðM̄2
κÞD=2−1ÞΓð1 −D=2Þ

þ 1

2
T2ðκ · ΔrÞ2ðω̄κ

qÞ2ð2ðM̄2
κÞD=2−2 − ðM̄2

0;κÞD=2−2ÞΓð2 −D=2Þ

þ 1

2
T2ðκ · ΔrÞ2ðω̄κ

qÞ2
ðM̄2

κÞD=2−1 − ðM̄2
0;κÞD=2−1

M̄2
κ − M̄2

0;κ
Γð1 −D=2Þ

�
: ðB22Þ

It can now be checked that the summand decreases at least as 1=ω2
q as jωqj → ∞. It follows that the q-summation and the

ϵ → 0 limit can be permuted without missing any finite parts. One finally arrives at

V̂r̄ðrÞ ¼ V̂r̄ðr̄Þ þ
T
2π2

X
κ

ðκ ·ΔrÞ
Z

∞

0

dqq2Im½nεκq − nqκ � þ
T2

2g2
M̂2

T;jkΔrjΔrk

þ T
π

X
κ

X
q∈Z

�
1

12
ð2ReðM2

0;κÞ3=2 þ ðM̄2
κÞ3=2 − ðM̄2

0;κÞ3=2 − ðM2
κ;þÞ3=2 − ðM2

κ;−Þ3=2Þ

−
T
4
ðκ ·ΔrÞω̄κ

qððM̄2
0;κÞ1=2 − ðM̄2

κÞ1=2Þ þ
T2

16
ðκ ·ΔrÞ2ðω̄κ

qÞ2
�

2

ðM̄2
κÞ1=2

−
1

ðM̄2
0;κÞ1=2

−
2

ðM̄2
0;κÞ1=2 þ ðM̄2

κÞ1=2
��

: ðB23Þ

We have checked that this formula gives the same results as
the formula (94) obtained in the main text.

APPENDIX C: MATSUBARA SUM-INTEGRALS

Let us here discuss the evaluation of the Matsubara sum-
integrals.

1. Contour deformation

In the simplest cases, one can perform the Matsubara
sum first, using the contour deformation technique. Indeed,
consider a sum

F≡ T
X
n∈Z

fðiωnÞ; ðC1Þ

with ωn ¼ 2πnT and fðzÞ a complex function with simple
poles zi (distinct from the iωn for the sum to make
sense) and such that fðjzjÞ → 0 fast enough as jzj → ∞.
Introducing the complex version of the Bose-Einstein
distribution function nðzÞ≡ 1=ðeβz − 1Þ, one can consider
the contour integral

IN ≡
Z
CN

dz
2πi

fðzÞnðzÞ; ðC2Þ

with CN a circle centered around 0 with radius ωNþ1=2.
Since nðzÞ has simple poles located precisely at the iωn’s
and because the corresponding residues are all equal to 1=β,
one finds from the residue theorem

IN ¼ T
XN
n¼−N

fðiωnÞ þ
X
zi ∈Dn

ResfjzinðziÞ; ðC3Þ

where DN denotes the disk delimited by CN. In the limit
N → 0, IN → 0 due to the rapid vanishing of fðzÞ as
jzj → ∞. It follows that

F ¼ −
X
i

ResfjzinðziÞ; ðC4Þ

which is tractable so long as one can easily identify the
poles zi of fðzÞ.
In the main text, we need to evaluate sum-integrals of the

form Z
T

Q

XðqÞ
Q2

κ þm2
: ðC5Þ

Since

1

Q2
κ þm2

¼ 1

ðωκ
qÞ2 þ ε2q

¼ 1

2εq

�
−

1

iωκ
q − εq

þ 1

iωκ
q þ εq

�
; ðC6Þ

the searched-after poles are �εq − iTr · κ with residues
∓ 1=ð2εqÞ. According to the general formula derived
above, it follows thatZ

T

Q

XðqÞ
Q2

κ þm2
¼

Z
dDq
ð2πÞD XðqÞ nεq−iTr·κ − n−εq−iTr·κ

2εq
: ðC7Þ
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Using n−x ¼ −1 − nx, this formula becomesZ
T

Q

XðqÞ
Q2

κ þm2
¼

Z
dDq
ð2πÞD

XðqÞ
2εq

þ
Z

dDq
ð2πÞD XðqÞRenε

κ
q

εq
;

ðC8Þ

where we have introduced εκq ≡ εq − iTr · κ.
In Eq. (C8), we have split the result into a UV finite

thermal piece which approaches 0 as T → 0 and a vacuum
piece which contains the potential UV divergences depend-
ing on the asymptotic behavior of XðqÞ. This vacuum piece
can actually be given a more covariant form. For instance,
in the case XðqÞ ¼ 1, one hasZ

T

Q

1

Q2
κ þm2

¼
Z

ddQ
ð2πÞd

1

Q2 þm2
þ
Z

dDq
ð2πÞD

Renεκq
εq

:

ðC9Þ
This is also possible in the casewhereXðqÞ is a polynomial in
q2 since each power of q2 can, in the vacuum piece, be
replaced by the same power of Q2 times an appropriate
d-dependent factor. This type of rewriting allows one to easily
extract theUVdivergent pieces fromwell-known formulas for
Feynman integrals in the vacuum. As for the thermal pieces,
because they are finite, they can be evaluated numerically
directly in D ¼ 3 dimensions. We shall see other examples
below where the vacuum/thermal splitting is more subtle.
Another type of sum-integral isZ

T

Q

XðqÞωκ
q

Q2
κ þm2

: ðC10Þ

To make the Matsubara sum absolutely convergent, it is
convenient to add 0 asZ

T

Q
XðqÞ

�
ωκ
q

Q2
κ þm2

−
ωq

Q2 þm2

�
: ðC11Þ

Then, we write

ωκ
q

Q2
κ þm2

−
ωq

Q2 þm2
¼ 1

2i

�
1

iωq − εq
þ 1

iωq þ εq

−
1

iωκ
q − εq

−
1

iωκ
q þ εq

�
: ðC12Þ

The general formula (C4) can now be applied and one findsZ
T

Q

XðqÞωκ
q

Q2
κ þm2

¼
Z

dDq
ð2πÞD XðqÞ nεq−iTr·κ þ n−εq−iTr·κ − nεq − n−εq

2i

¼
Z

dDq
ð2πÞD XðqÞ nεq−iTr·κ þ n−εq−iTr·κ þ 1

2i

¼
Z

dDq
ð2πÞD XðqÞ nεq−iTr·κ − nεq¼iTr·κ

2i

¼
Z

dDq
ð2πÞD XðqÞImnεq−iTr·κ: ðC13Þ

Notice that there is no vacuum contribution in this case.

2. Momentum integration

As we have discussed in the main text, another possible
strategy is to perform the D-momentum integrals analyti-
cally and the resulting Matsubara sums numerically (after
dealing with possible UV divergences). This is quite useful
in cases where it is not simple to identify the poles zi in the
contour deformation technique. Let us here illustrate this
alternative technique on a simple example that can actually
be treated with both approaches.
Consider the tadpole sum-integral in the left-hand side

(LHS) of Eq. (C9). The corresponding D-momentum
integral is a vacuum tadpole integral of mass M2 ≡m2 þ
ðωκ

qÞ2. ThenZ
T

Q

1

Q2
κ þm2

¼ Γð1 −D=2Þ
ð4πÞD=2 T

X
q∈Z

ðm2 þ ðωκ
qÞ2ÞD=2−1:

ðC14Þ

It may seem that one can take the limit D → 3 safely since
Γð−1=2Þ is finite. However, the resulting Matsubara sum is
divergent because the summand grows like jωqj. This
simply means that D plays the role of a regulator for the
sum, and before evaluating the latter numerically, one needs
to extract the corresponding divergent part. This amounts to
adding and subtracting the asymptotic contributions of the
summand that either grow or do not decrease fast enough:

Z
T

Q

1

Q2
κ þm2

¼ Γð1 −D=2Þ
ð4πÞD=2 T

X
q∈Z

�
ðm2 þ ðωκ

qÞ2ÞD=2−1 − jωκ
qjD−2 −

�
D
2
− 1

�
m2jωκ

qjD−4
�

þ Γð1 −D=2Þ
ð4πÞD=2 T

X
q∈Z

jωκ
qjD−2 −

Γð2 −D=2Þ
ð4πÞD=2 m2T

X
q∈Z

jωκ
qjD−4: ðC15Þ
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In the subtracted sum (first line), one can safely take the
limit D → 3 since it decreases as 1=jωκ

qj3. On the other
hand, the added terms (second line) are all of the formP

q∈Z jωκ
qj−s which can be expressed in terms of the

Hurwitz zeta function:

ζðs; zÞ≡X∞
q¼0

1

ðqþ zÞs : ðC16Þ

Indeed, after multiplying by the appropriate factors of 2πT,
we have

X∞
q∈Z

ð2πTÞs
jωκ

qjs
¼

X∞
q∈Z

1

jqþ κ·r
2π js

: ðC17Þ

Since we can shift the summation variable q by any
integer k, we can assume to replace κ · r=2π by fκ ·
r=2πg defined as the real number between 0 and 1
such that κ · r=2π − fκ · r=2πg is an integer. We
then have

X∞
q∈Z

ð2πTÞs
jωκ

qjs
¼
X∞
q¼0

1

ðqþfκ·r
2πgÞs

þ
X−1
q¼−∞

1

ð−q− fκ·r
2πgÞs

¼
X∞
q¼0

1

ðqþfκ·r
2πgÞs

þ
X∞
q¼0

1

ðqþ 1− fκ·r
2πgÞs

¼ ζ

�
s;

�
κ · r
2π

	�
þ ζ

�
s;1−

�
κ · r
2π

	�
: ðC18Þ

Going back to Eq. (C15), we need this formula for s ¼
2 −D ¼ −1þ 2ϵ or s ¼ 4 −D ¼ 1þ 2ϵ, with ϵ → 0. We
can use

ζð−n; zÞ ¼ −
Bnþ1ðzÞ
nþ 1

; ðC19Þ

where BnðzÞ denotes the Bernoulli polynomial of order n,
and

ζð1þ 2ϵ; zÞ ¼ 1

2ϵ
− ψðzÞ; ðC20Þ

where ψðzÞ≡ Γ0ðzÞ=ΓðzÞ denotes the digamma function.
Putting all the pieces together, we finally arrive at

Z
T

Q

1

Q2
κ þm2

¼ −
T
4π

X
q∈Z

�
ðm2 þ ðωκ

qÞ2Þ1=2 − jωκ
qj −

m2

2jωκ
qj
�
þ T2

2
B2

��
r · κ
2π

	�

−
m2

16π2

�
1

ϵ
þ ln

Λ̄2

ð4πTÞ2 − ψ

��
r · κ
2π

	�
− ψ

�
1 −

�
r · κ
2π

	��
; ðC21Þ

where we have used that ψð1=2Þ ¼ −2 ln 2 − γ, as well as
B2ð1 − xÞ ¼ B2ðxÞ. We have checked numerically that the
right-hand sides of Eqs. (C9) and (C21) coincide.

3. The case of massless integrals

By taking the limitm → 0 in the formula above, we obtainZ
T

Q

1

Q2
κ
¼ T2

2
B2

��
r · κ
2π

	�
; ðC22Þ

which provides an analytical expression for (C9) in the limit
m → 0. We notice that there is no vacuum contribution in
Eq. (C22), and, therefore, no divergence. This is in line with
the fact that, in the limit m → 0, the vacuum contribution to
(C9) becomes a scaleless integral which vanishes in dimen-
sional regularization.
Similarly, by acting on Eq. (C21) with the operator

−d=dm2 and then taking the limit m → 0, one obtainsZ
T

Q

1

Q4
κ
¼ 1

16π2

�
1

ϵ
þ ln

Λ̄2

ð4πTÞ2

− ψ

��
r · κ
2π

	�
− ψ

�
1 −

�
r · κ
2π

	��
; ðC23Þ

where Q4
κ is a shorthand notation for ðQ2

κÞ2. We notice that
there is a pole in 1=ϵ in this case. This seems in contra-
diction with the thermal splitting that one would derive
from Eq. (C9),Z

T

Q

1

Q4
κ
¼

Z
dDq
ð2πÞD

1

2q
d
dq

1

2q
þ
Z

dDq
ð2πÞD

1

2q
d
dq

Renq−iTr·κ
q

;

ðC24Þ
and that seems to feature once more a vanishing scaleless
integral in the vacuum contribution. The problem here is
that the thermal splitting does not make any sense due to the
presence of an IR divergence dDq=q3Renq−iTr·κ. In fact,
after noticing that

Ren−iTr·κ ¼ Re
1

e−ir·κ − 1

¼ Re
eir·κ=2

e−ir·κ=2 − eir·κ=2

¼ −
1

2
Re

eir·κ=2

i sinðr · κ=2Þ

¼ −
1

2
Im

eir·κ=2

sinðr · κ=2Þ ¼ −
1

2
; ðC25Þ
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one can rewrite the “vacuum contribution as”Z
dDq
ð2πÞD

1

2q
d
dq

1

2q
¼ −

Z
dDq
ð2πÞD

1

2q
d
dq

Ren−iTr·κ
q

; ðC26Þ

which upon combination with the “thermal piece” givesZ
T

Q

1

Q4
κ
¼

Z
dDq
ð2πÞD

1

2q
d
dq

Reðnq−iTr·κ − n−iTr·κÞ
q

; ðC27Þ

which is now IR-safe. In conclusion, the vacuum piece
cannot be separated from the thermal piece in this case
since it contributes to rendering the original integral
IR-safe.
Last, we note that we can also use Eq. (C15) in order to

evaluate Z
T

Q

q2

Q̄2
κ
¼ −

Z
T

Q

ðω̄κ
qÞ2

Q̄2
κ

: ðC28Þ

Indeed, the only modification to be made in the RHS of
Eq. (C15) is an overall minus sign and an extra factor of
ðω̄κ

qÞ2 in all the summands. In the limit m → 0, only the
second sum survives, as in the case of

R
T
Q 1=Q̄2

κ . One
eventually findsZ

T

Q

q2

Q̄2
κ
¼ −π2T2B4

��
κ · r̄
2π

	�
: ðC29Þ

We have used both Eqs. (C22) and (C29) in Eq. (58).

4. Some final remarks

Let us go back to the general definition (C1) and suppose
we choose the summand to be fκðzÞ≡ fðzþ iTκ · rÞ, so
that the sum is now

FκðTÞ ¼ T
X
n∈Z

fðiωn þ iTκ · rÞ: ðC30Þ

Suppose also that we are actually interested in the sumP
κ FκðTÞ in the case r ¼ r̄c. As we now show, the result

can be easily expressed in terms of Fκ¼0ðTÞ.
First of all, we note that one possible choice of r̄c is

r̄c ¼
4π

N

XN
k¼1

ðN − kþ 1Þρk; ðC31Þ

see for instance Ref. [44]. Second, we note that κ is either 0,
in which case κ · r̄c ¼ 0, or a difference ρi − ρj, in which
case κ · r̄c ¼ ð2π=NÞðj − iÞ. It follows thatX
κ

FκðTÞ ¼ ðN − 1ÞFκ¼0ðTÞ

þ T
X
i≠j

X
n∈Z

f

�
i2π

T
N
ðNnþ j − iÞ

�
: ðC32Þ

It is convenient to split the sum as

X
κ

FκðTÞ ¼ ðN − 1ÞFκ¼0ðTÞ

þ T
XN
i¼1

Xi−1
j¼1

X
n∈Z

f

�
i2π

T
N
ðNnþ j − iÞ

�

þ T
XN
i¼1

XN
j¼iþ1

X
n∈Z

f

�
i2π

T
N
ðNnþ j − iÞ

�
:

ðC33Þ
In the second line, we then do n → nþ 1 and j → j − N.
ThenX
κ

FκðTÞ ¼ ðN − 1ÞFκ¼0ðTÞ

þ T
XN
i¼1

XNþi−1

j¼iþ1

X
n∈Z

f

�
i2π

T
N
ðNnþ j − iÞ

�
:

ðC34Þ
We can now do j → jþ i and thenX
κ

FκðTÞ ¼ ðN − 1ÞFκ¼0ðTÞ

þ TN
XN−1

j¼1

X
n∈Z

f

�
i2π

T
N
ðNnþ jÞ

�
ðC35Þ

orX
κ

FκðTÞ ¼ −Fκ¼0ðTÞ

þ N2
T
N

XN−1

j¼0

X
n∈Z

f

�
i2π

T
N
ðNnþ jÞ

�
: ðC36Þ

This is nothing butX
κ

FκðTÞ ¼ −Fκ¼0ðTÞ þ N2Fκ¼0ðT=NÞ; ðC37Þ

which relates the looked-after sum of the various FκðTÞ’s
to Fκ¼0ðTÞ.
Using the same type of manipulations, let us show thatP
κ κFκðTÞ ¼ 0 when r̄ ¼ r̄c. All the information in this

sum is contained in the projections along the weights ρkX
κ

ðρk · κÞFκðTÞ

¼ T
X
i≠j

X
n∈Z

ρk · ðρi − ρjÞf
�
i2π

T
N
ðNnþ j − iÞ

�

¼ T
2

X
j≠k

X
n∈Z

f

�
i2π

T
N
ðNnþ j − kÞ

�

−
T
2

X
j≠k

X
n∈Z

f

�
i2π

T
N
ðNnþ k − jÞ

�
: ðC38Þ
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Splitting the sums, we find

X
κ

ðρk · κÞFκðTÞ ¼
T
2

Xk−1
j¼1

X
n∈Z

f

�
i2π

T
N
ðNnþ j− kÞ

�

þ T
2

XN
j¼kþ1

X
n∈Z

f

�
i2π

T
N
ðNnþ j− kÞ

�

−
T
2

Xk−1
j¼1

X
n∈Z

f

�
i2π

T
N
ðNnþ k− jÞ

�

−
T
2

XN
j¼kþ1

X
n∈Z

f

�
i2π

T
N
ðNnþ k− jÞ

�
:

ðC39Þ

Using the same trick as above, this rewrites

X
κ

ðρk · κÞFκðTÞ ¼
T
2

XN−1

j¼1

X
n∈Z

f

�
i2π

T
N
ðNnþ jÞ

�

−
T
2

XN−1

j¼1

X
n∈Z

f

�
i2π

T
N
ðNn − jÞ

�
;

ðC40Þ

which is seen to vanish upon the change of variables n →
nþ 1 and j → N − j in the second sum.

APPENDIX D: MATSUBARA SUMS
AND ϵ-EXPANSION

We have already mentioned that, even though δVr̄ðrÞ
admits a finite ϵ → 0 limit, taking the limit in Eq. (83)
is tricky because it does not commute with the
Matsubara summation. The culprit is the presence of
a contribution ϵ × 1=jωqj1þ2ϵ in the asymptotic expan-
sion of the summand at large jωqj. This contribution
vanishes if the limit is taken before the sum, but gives
a finite nonzero contribution if the limit is taken after
the sum.
In the main text, we have subtracted the problematic

terms from the summand, and we have added them back
in the form of a series that can be expressed in terms of
the Hurwitz zeta function. Another possible strategy is to
take the naive limit of the summand anyway and add the
finite contribution by hand. This strategy was used in
Ref. [43] when evaluating the gluon propagator in the
center-symmetric Landau gauge. In the present case, it
leads to

δVr̄ðrÞ ¼
T4

6π2
X
κ

ðκ · ΔrÞ3κ ·
�
r̄þ Δr

4

�
þ T

π

X
κ

X
q∈Z

�
1

12
ð2ðM2

0;κÞ3=2 þ 3ðM̄2
κÞ3=2 − ðM̄2

0;κÞ3=2 − 2ðM2
κÞ3=2 − ðM2

κ;þÞ3=2 − ðM2
κ;−Þ3=2Þ

−
T
4
ðκ · ΔrÞω̄κ

qððM̄2
0;κÞ1=2 − 3ðM̄2

κÞ1=2Þ þ
T2

4
ðκ · ΔrÞ2ðM̄2

κÞ1=2

þ T2

16
ðκ · ΔrÞ2ðω̄κ

qÞ2
�

6

ðM̄2
κÞ1=2

−
1

ðM̄2
0;κÞ1=2

−
2

ðM̄2
0;κÞ1=2 þ ðM̄2

κÞ1=2
��

; ðD1Þ

where the correction terms in the first line come from the
second term of Eq. (84) which has precisely the form
ϵ × 1=jωqj1þ2ϵ. We should stress, however, that Eq. (D1)
hides a subtle point which we now discuss.
Indeed, let us write Eq. (83) as

δVr̄ðrÞ ¼
T4

6π

X
κ

ðκ · ΔrÞ3
�
2

�
κ · r̄
2π

	
− 1þ κ · Δr

4π

�
þ T

π

X
κ

X
q∈Z

�
sq þ

T3

6
ðκ · ΔrÞ3sgnðω̄κ

qÞ
�
: ðD2Þ

The sum in this case is absolutely convergent which
means that it should not depend on the way it is computed.

Suppose for instance that we evaluate it as limN→∞
PNþn

q¼−N ,
where n has been introduced for convenience but should
not affect the final result. Then we have

δVr̄ðrÞ ¼
T4

6π

X
κ

ðκ · ΔrÞ3
�
2

�
κ · r̄
2π

	
− 1þ κ · Δr

4π

�

þ T
π

X
κ

lim
N→∞

XNþn

q¼−N

�
sq þ

T3

6
ðκ · ΔrÞ3sgnðω̄κ

qÞ
�
:

ðD3Þ

We now use
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XNþn

q¼−N
sgn

�
qþ κ · r̄

2π

�

¼
XNþnþκ·r̄

2π−fκ·r̄2πg

q¼−Nþκ·r̄
2π−fκ·r̄2πg

sgn

�
qþ

�
κ · r̄
2π

	�

¼ nþ 2

�
κ · r̄
2π

−
�
κ · r̄
2π

	�
þ 1; ðD4Þ

and then

δVr̄ðrÞ ¼
T4

6π

X
κ

ðκ · ΔrÞ3
�
nþ 2

κ · r̄
2π

þ κ · Δr
4π

�

þ T
π

X
κ

lim
N→∞

XNþn

q¼−N
sq: ðD5Þ

We recognize Eq. (D1) provided we choose n ¼ 0. This
means that Eq. (D1) is actually valid only provided one
chooses the symmetric summation limN→∞

P
N
q¼−N .

36

For nonsymmetric summations, the correction term needs
to be modified according to Eq. (D5). This subtlety
originates in the fact that, unlike the sum in Eq. (83),
the sum in Eq. (D1), although convergent, is not absolutely
convergent.
A related aspect is that, in the case of the formula (D5),

some of the symmetries discussed in Sec. III B are only
manifest once one adds all the terms. This is for instance
the case of the symmetry ðr; r̄Þ → ðrþ 4πα; r̄þ 4παÞ.
Under such a transformation, the first term of Eq. (D5) is
shifted by

2T4

3π

X
κ

ðκ · ΔrÞ3κ · α: ðD6Þ

On the other hand, the second term becomes

T
π

X
κ

lim
N→∞

XNþn

q¼−N
sqþ2κ·α; ðD7Þ

where we have used the fact that sq depends on r and r̄ only
via ωκ

q and ω̄κ
q, and we recall that 2κ · α is always an integer.

This rewrites

T
π

X
κ

lim
N→∞

XNþnþ2κ·α

q¼−Nþ2κ·α

sq; ðD8Þ

which represents a shift of the corresponding term in
Eq. (D5) by

T
π

X
κ

lim
N→∞

� XNþnþ2κ·α

q¼Nþnþ1

sq −
X−N−1þ2κ·α

q¼−N
sq

�
: ðD9Þ

For large enough N, sq in each sum can be replaced by the
constant ∓ T4ðκ · ΔrÞ3=ð6πÞ that originates from the first
term of (84) for D ¼ 3. Since each sum counts 2κ · α terms,
the total shift is

−
2T4ðκ · ΔrÞ3

3π
; ðD10Þ

which cancels identically the one [see Eq. (D6)] from the first
term of Eq. (D5). In the case of Eq. (D2), in contrast, each
term is symmetric, due to the presence of fκ · r̄g in the first
term and the fact that the sum in the second term is absolutely
convergent.
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