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Heavy multiquark systems as clusters of smaller units: A diffusion
Monte Carlo calculation
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Multiquark systems appear less frequently than mesons and baryons despite the enormous worldwide
experimental effort that has been made during the last two decades. In this work, we propose a possible
explanation for that fact, restricting ourselves to the case of sets including only ¢ and ¢ quarks. We show
that those multiquarks can be thought as different combinations of smaller units that associate together to
produce colorless assemblies with a definite value of the total spin. For instance, for the cccccc hexaquark
with spin S = 0, we have three possibilities; a set of six undistinguishable ¢ quarks, an association of two
ccc baryons, or a set of three cc diquarks close together. This means we can have three different values for
the mass of an open-charm hexaquark with § = 0. Using the diffusion Monte Carlo method, we calculate
all possible combinations compatible with tetraquark ccc ¢, pentaquark ccccc, open-charm ccccce, and
hidden-charm cccc ¢ ¢ hexaquark structures with the minimum value of total spin (S = 0 or S = 1/2). We
consider compact structures with radial wave functions including pair interactions between all the quarks in
the cluster. We find that, in all cases, the mass of the multiquark decreases with the number of small units
that conform the set of quarks. For instance, an open charm hexaquark made up of three diquarks has a
smaller mass than a set of six ¢ undistinguishable units. When the pieces that conform the multiquark are
themselves colorless with a definite value of the total spin, the cluster splits into those smaller units that

separate infinitely from each other.

DOI: 10.1103/PhysRevD.109.094032

I. INTRODUCTION

A century of fundamental research in atomic physics has
demonstrated that ordinary matter is corpuscular, with the
atoms themselves containing a dense nuclear core com-
posed of protons and neutrons, collectively named as
nucleons, which are members of a broader class of
femtometer-scale particles, called hadrons. In working
towards an understanding of hadrons, it has been discov-
ered that they are bound states of quarks and gluons whose
strong nuclear interactions are described by a Poincaré
invariant quantum non-Abelian gauge field theory; namely,
quantum chromodynamics (QCD).

Solving QCD exhibits a fundamental problem, never
before have we been confronted by a theory whose
elementary color excitations (quarks and gluons) are not
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those degrees of freedom readily accessible via experiment,
i.e., they always appear confined inside colorless systems
(hadrons). This complexity makes hadron spectroscopy, the
collection of readily accessible states constituted from
quarks and gluons, the starting point for all further
investigations. A very successful classification scheme
for hadrons in terms of their valence quarks and antiquarks
was independently proposed by Murray Gell-Mann [1] and
George Zweig [2] in 1964. It basically separates hadrons in
mesons and baryons which are, respectively, quark-anti-
quark and three-quark bound states located at the multiplets
of the flavor symmetry. The so-called quark model clas-
sification received experimental verification in the late
1960s and, despite extensive experimental searches, no
unambiguous candidates for other exotic quark-gluon
configurations were identified until the beginning of the
third millennium.

The Belle Collaboration reported in 2003 [3] an
anomalous signal, named X(3872), in the invariant mass
spectrum of 7z z~J/y produced in B* — K*X(3872) —
K*(ztn=J/w) decays. The X(3872) was later studied by
the CDF, DO, and BABAR Collaborations confirming that
its quantum numbers, mass and decay patterns make it an
unlikely conventional charm-anticharm (charmonium)
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candidate. Therefore, the simplest quark model picture that
had been so successful for around 40 years was challenged
leading to an explosion of related experimental and
theoretical activity since then. Nowadays, the number of
exotic so-called XYZ states has increased dramatically, in
both light- and heavy-quark sectors but also with respect to
the meson and baryon categories. For extensive recent
presentations about the status of exotic hadrons, the reader
is referred to several reviews [4-24].

The ultimate aim of theory is to describe the properties of
the XYZ states from QCD’s first principles. Since the
strong coupling constant becomes large in the energy
regime where hadrons live, perturbative methods are of
limited use in QCD. The two most promising ab initio
approaches are effective field theories [25-28] and lattice
gauge theories [29-32]. In fact, they have recently played a
major role in reproducing the observed mass spectrum of
stable, long-lived, conventional hadrons but, unfortunately,
they have also appeared as very limited methods when
treating excitations, states close to hadron-hadron thresh-
olds and multiquark structures [33—-36]. Therefore, a more
modest goal is the development of QCD motivated phe-
nomenological models that specify the colored constitu-
ents, how they are clustered and the forces between them.
In that line, simultaneously to the experimental measure-
ments, theorists have been proposing for the XYZ states
different kinds of color-singlet clusters, made by quarks
and gluons, which go beyond conventional mesons and
baryons such as glueballs, quark-gluon hybrids and multi-
quark systems (for a graphic picture of these kinds of
hadrons see, for example, Figs. 1, 6, and 7 of Ref. [9]).

Concerning the multiquark systems, the very first quark
model proposals already speculated with their existence
[37-39]. In fact, QCD does not forbid to construct more
complex colorless arrangements of valence quarks than
mesons and baryons, and provides simple mechanisms to
construct multiquark structures. For instance, since a
diquark (antidiquark) in a color antisymmetric (symmetric)
combination acts as if it were a single antiquark (quark),
(anti)diquarks could thus become the building blocks of
compacttetraquarks, [(¢) (7 4)). pentaquarks, [(¢q) (4)d],
and even hexaquarks, [(¢q)(qq)(qq)], whose size is of the
order of the confining scale. A further QCD mechanism for
the creation of multiquark structures is inspired by the
residual strong interaction that binds nucleons in nuclei, i.e.,
the nuclear binding is effective in meson-meson, baryon-
meson, and baryon-baryon combinations so as to produce
loosely bound and extended molecular-type of multiquark
systems. These various quark binding mechanisms could
lead to different exotic families, or even to systems with
mixed features.

One important observation related with multiquark
systems is that they appear much less frequently than usual
mesons and baryons despite the enormous world-wide
experimental effort that has been made since mid 1960s

but specially in the last two decades. The goal of the present
theoretical study is to shed some light about this fact
performing stability assessments of exotic multiquark
structures such as tetraquarks, pentaquarks, and hexaquarks
assuming all possible clusters between quarks and anti-
quarks as building blocks. This should yield a hierarchy
among the different organizations/families and potentially
an explanation of why mesons and baryons have been the
only hadron states discovered for decades and are still
overwhelming abundant nowadays.

In order to comply with our aim, we use a diffusion
Monte Carlo method (DMC) to solve the many-body
Schrodinger equation that describes the fully-heavy multi-
quark systems.1 This approach allows us to reduce the
uncertainty of the numerical calculation, accounts for
multiparticle correlations in the physical observables,
and generalizes the quark-clustering picture. The quark
model we use [40,41] has a pairwise interaction which
is the most general and accepted one; Coulomb +
linear-confining + hyperfine spin-spin. Therefore, our
analysis should provide some rigorous statements about
the mass location of the all-heavy multiquark ground states
with different clustering assumptions. Note, too, that the
model parameters were constrained by a simultaneous fit of
36 mesons and 53 baryons, with a range of agreement
between theory and experiment around 10-20%, which can
be taken as an estimation of our predictions shown here.

II. THEORETICAL FRAMEWORK

Fully heavy ground state systems can be described by the
following Hamiltonian:

n-part 1-52 n-part
H = T S I V(7;), 1
; <mz + 2mi> oM T Z (rl]) ( )

j>i=I

where m; is the quark mass, p; is the momentum of the
quark, and Ty, is the center-of-mass kinetic energy. Since
chiral symmetry is explicitly broken in the heavy quark
sector, the two-body potential, V(?ij), can be deduced from
the one-gluon exchange and confining interactions, i.e.,

V(7)) = Voce(7ij) + Veon (7)) (2)
The one-gluon exchange potential is given by

1Fully heavy multiquark systems are going to be considered
here because nonrelativistic phenomenological Hamiltonians are
naturally accepted to describe the dynamics of heavy hadrons;
moreover, we are pursuing general statements about the stability
hierarchy of the different multiquark arrangements allowed by
QCD and, since this has not done before, we consider heavy
quark sectors the correct environment to begin with leaving light
quark dynamics for future work.
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Voae(7ij) :Zas(/li'/lj) —=

where «, is the strong coupling constant, 7 are the SU (3)-
color Gell-Mann matrices, 6 denote the Pauli spin matrices
and the 5)(7;;) is replaced by a smeared function that
reads as
. e_’"tg// ’(2)

5(3)(rij) - KHTQ’%, (4)
2m;m;
regulator which depends on the reduced mass of the quark-
(anti)quark pair.

Lattice-QCD  has demonstrated that multigluon
exchanges produce an attractive linearly rising potential,
which is proportional to the interquark distance [42]. This is
usually modeled as

with k a quark model parameter, and ry = A(

-

Veon(7i;) = (bryj + A)(Zi “Aj)s (5)

where b is the confinement strength and A is a global
constant fixing the origin of energies.

Table I shows the quark model parameters relevant for
this work. We are using the so-called AL1 potential
proposed by Silvestre-Brac and Semay in Ref. [40], and
applied extensively to the baryon sector in Ref. [41].

Note here that, in principle, the different configurations
in each multiquark system can couple through the interact-
ing Hamiltonian. The usual procedure is to derive a residual
interaction between cluster-configurations from the quark—
(anti)quark one using, for instance, the so-called resonating
group method (RGM) [43,44]. Our experience states that
the resulting interaction between clusters is usually small;
see, e.g., Ref. [45]. In any case, one could insist on the
development of the necessary formalism to perform the
mentioned 3 x 3 (or 4 x 4) diagonalization of coupled-
cluster configurations but this would be beyond the scope
of the present work and prohibitive from the point of view
of (our) computational resources.

TABLE L. Quark model parameters used herein and taken from

AL1 potential in Refs. [40,41].

Quark masses m, (GeV) 1.836

OGE a 0.3802
K 3.6711
A (GeV)E-! 1.6553
B 0.2204

CON b (GeV?) 0.1653
A (GeV) —0.8321

The application of quantum Monte Carlo (QMC) meth-
ods to hadron physics has been scarce, basically because
most known hadrons consisted on bound states of just two
and three quarks. However, many of the recently discov-
ered XYZ particles are candidates to be 4-, 5- and even
6-quark bound or resonance states and thus QMC algo-
rithms can become a competitive tool to shed some light
into the spectroscopy and structure of multiquark systems.
In fact, after the seminal works studying the fully heavy
tetraquark systems [46,47], ourselves and other colleagues
have been applying the same technique to other conven-
tional and exotic hadron systems [48—54].

The central idea behind the DMC is to write the
Schrodinger equation for n-particles in imaginary time
(h=c=1),

oV¥y (R 1 )

at EVV(R1).  (6)

= (Ha/a -

where E| is the usual energy shift used in DMC methods,
R = (7,...,7,) stands for the position of n particles and a
denotes each possible spin-color channel, with given
quantum numbers, for the n-particles system. The function
¥, (R, t) can be expanded in terms of a complete set of the
Hamiltonian’s eigenfunctions as

lP(z(R7 t) = Zci.ae_(Ei_E“)[q)i.a(R)’ (7)

where the E; are the eigenvalues of the system’s
Hamiltonian operator. The ground state wave function,
$o..(R), is obtained as the asymptotic solution of Eq. (6)
when ¢t — o0, as long as there is overlap between W, (R, t =
0) and ¢ ,(R), for any a-channel. This shall also provide
us the ground-state mass of the different set of quarks given
a particular set of quantum numbers a.

From the paragraph above, one can deduce that the DMC
method needs an initial approximation to the many-body
wave function of the cluster, the so-called trial function,
that should include all the information known a priori
about the hadron system. We chose the expression

D, (R)=D;(Fi, o, Py 1y evs S35 Cls vvns C)
= ¢i(717 ""771)
X [rs(81se0s8,) @ xelcry o)l (8)

where, explicitly, ?j, s;, and ¢; stand for the position, spin,
and color of the j-quark which is inside the n-quark cluster.

In this work, we are going to consider hadron states that
are eigenvectors of the angular momentum operator L> with
eigenvalue equals to zero. This means that ¢» depends on the
distance between pairs of quarks,
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Py = T exploayr,). )

j>i=1

Other alternatives to the radial part of the trial function are
not considered in this work since, in principle, the DMC
algorithm is able to correct its possible shortcomings and
produce the exact masses of the arrangements [47].
Moreover, a;; are determined by the so-called cusp con-
ditions, viz. a;; are initially fixed in accordance to the
boundary conditions of the problem.

The spin and color terms, y, and y,., of the total wave
function are written as linear combinations of the eigen-
vectors of the spin and color operators defined by

N 2 N 2

(S (59w

i=1

with eigenvalues F? = 0 (colorless functions) and S = 0 or
1/2, depending on whether the number of quarks in the
multiquark system is even or odd, respectively. Those are
the lowest possible eigenvalues for the spin operator and
the only ones considered in this work.

Since Eq. (9) is symmetric with respect to the exchange
of any two identical quarks, we have to produce spin-color
combinations which are antisymmetric with respect to
those exchanges in order to fulfill Pauli statistics. To do
so, we apply the antisymmetry operator,

1N, .,
A=y 2 ()P (1)

to the complete set of spin-color functions. In Eq. (11), N is
the number of possible permutations of the set of quark
indexes, P is the order of the permutation, and P,
represents the matrices that define those permutations.
Once constructed the matrix derived from the operator in
Eq. (11), we have to check if we can find any eigenvector
with eigenvalue equal to one. If this is so, those combi-
nations shall be the input of the DMC calculation.

It is worth emphasizing herein that the spin and color
eigenvectors that are introduced in Eq. (11) must be
obtained in a previous numerical diagonalization of F?
and S? operators. Expressions for these functions are given
in Ref. [47] for mesons, baryons, and tetraquarks. In any
case, we have to bear in mind that when the eigenvalues of
an operator are degenerate any linear combination of their
corresponding eigenvectors is also an eigenvector. For
instance, the color eigenfunctions for a tetraquark system
with F2 =0 can be expressed in either the so-called
diquark basis ((3® 3) @ (6 ® 6)), the meson-meson
one (1 ® 1) @ (8 ® 8)) or in any other rotation of those
former pairs of perpendicular vectors that spans the same
two-dimensional space. The same can be said of the two

spin-eigenvectors corresponding to S? = 0. All this means
that there is not a physically preferred set of functions to be
introduced in Eq. (11), and one can use combinations of
any set of mutually perpendicular color and spin eigen-
vectors, since the application of the antisymetry operator
produces the same result for any of them. In a sense, it is
then not meaningful to give explicit expressions for the
eigenfunctions of the operators shown in Eq. (10), beyond
mentioning that they are the corresponding ones to a given
eigenvalue and their multiplicity. Furthermore, the larger
the cluster, the greater the number of terms that include all
the color and spin values of each quark in those functions.
For example, in the case of an hexaquark, the color
eigenfunctions can be made of up to 3% terms, from
|rrrrrr) through |gggggg) and arriving at |bbbbbb), that
combined with 2% spin possibilities, from [111111) to
W4l ddd), make a total of 6% =46, 656 color-spin
possible configurations.

III. RESULTS

Three multiquark structures: tetra, penta, and hexaquark
systems, shall be under scrutiny in order to establish the
most stable quark-clustering configurations for each exotic
hadron. We shall concern ourselves only with arrangements
made up of ¢ and ¢ quarks.

Let us then begin with the fully charmed tetraquark
system, [ccc ¢] = [(cc)(c ¢)]; that is to say, we have two
pairs of indistinguishable quarks and antiquarks, respec-
tively. For this cluster, we have two color and two spin
S = 0 eigenfunctions, to be combined to give two totally
antisymmetric color-spin functions. Those are then intro-
duced in the DMC algorithm to get the total mass and
relevant mean-square radii shown in the first row of
Table II. We obtain a bound state in which the distances
between all quarks are quite similar, indicating that it is a
compact object. Our next step is to consider the [(c¢¢)(cc)]
tetraquark, in which the cc and ¢ ¢ units are not considered
to be undistinguishable, but they keep the tetraquark
identity as a whole. In this case, we have the same two
color and two spin eigenfunctions, but this time combined
to produce four channels. The total mass and mean-square
radii produced by the DMC algorithm with those functions
are shown in the second row of Table II. Attending to its
mass, this hadron is more bounded and then more stable
than the former case; with respect to the interquark
distances, one may conclude that mesons can be distin-
guished clearly but the quarks in different mesons are
further apart from each other. In any case, we have a
compact structure with finite distances between all quarks.
The third row in Table II, shows our results for the case in
which the a;; coefficients in Eq. (9) are different from zero
only for the ¢ —¢ in the same meson. The color-spin
functions are the same as in the previous [(c¢)(cc)] case.
The total mass is exactly the same as twice the meson mass
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TABLE II.

2
ij

Masses, in MeV, of the studied fully-charmed multiquark systems. We also provide relevant interquark
mean-square radii, in fm?2. The subindexes in (r

) represent i-quark and j-quark (or antiquark) within the [1234]-

tetraquark, [12345]-pentaquark and [123456]-hexaquark.

PHYS. REV. D 109, 094032 (2024)

Tetraquarks Configuration M (1) (r1) (r3,) (r3,)
[(cc)(22)] 6350 0.26 0.23 . 0.26

[(c©)(cT)] 6032 0.25 0.49 0.38 0.25

(cc) = (cc) 6010 0.13 0 . e
Pentaquarks Configuration M (r,) (r},) (ris) (ris)
[(ccec)e] 8194 0.31 e 0.31 e

[(cc)(ce)d] 8021 0.25 0.27 0.25 0.26

[(cce)(ct)] 7923 0.23 0.61 . 0.17

(cec) = (ct) 7899 0.21 00 0.16

Open-charm hexaquarks Configuration M (r3,) (rfy) (ris) (ris)

[cceccec] 9902 0.33 e e

[(ce)(ce)(ce)] 9671 0.25 0.28 0.28 e

[(cee)(cce)] 9616 0.23 e 0.65 0.23

(cce) = (ccc) 9596 0.21 S 0.21

Hidden-charm hexaquarks Configuration M (r3,) (r3;) (ris) (ris)
[(cce)(@co)] 9613 0.23 0.70 0.23

(cec) - (¢¢) 9596 0.21 . o0 0.21

[(cce&)(ce)] 9392 0.24 0.22 037 0.15

(cce @) — (cc) 9355 0.26 0.23 o 0.13

in Ref. [47], and the mean-square radii are also the
same as for an isolated cc¢. This situation is compatible
with the infinite separation between quarks in different
mesons. All this means that, even tough the ground state
of a tetraquark corresponds to two mesons located
infinitely apart, we can have two associated mesons close
together forming a multiquark with a slightly larger mass.
Above those, we will have a third possibility, a compact
tetraquark.

Concerning the fully charmed pentaquark system,
[ccecee], we have the following possible arrangements of
quarks; [(ccce)e], [(cc)(cc)e], [(cee)(ce)]. In all cases, we
have three colorless color eigenfunctions to be combined
with five § = 1/2 spin functions to produce 15 color-spin
functions. For the first arrangement, in which we have four
undistinguishable ¢ quarks, we found that there is only one
possible antisymmetric combination of those 15 wave
functions if we consider all equal quarks undistinguishable.
In the diquark-diquark-antiquark system, we have four
antisymmetric combinations that kept the antisymmetry of
the quarks within each of the diquarks. In the baryon-
meson cluster, we have three combinations with the
adequate symmetry. Their respective masses and quark-
quark distances are in Table II (section pentaquarks). One
can see that the [(ccce)c] configuration produces the

highest energy with a clear compact structure among all
involved quarks. This can be deduced from the equal values
of the distances between particles. The following case,
(cc)(cc)e, has a mass lower than the first one in the
spectrum and it is also a compact structure. Then, we
consider the [(ccc)(cc)] arrangement with a baryon-meson
structure inside a pentaquark. In this case, the mass
decreases again; moreover, the baryon + meson structure
can be deduced from the separation between two quarks,
one in the baryon and another in the meson, ~0.78 fm.
Finally, the lowest energy state, and thus the more stable
one, corresponds to the noninteracting baryon-meson
system. Those results are the same as those obtained in
Ref. [47]. It is worth mentioning that that 7899 MeV
mass listed in Table II corresponds to the masses of a ccc
baryon with S =3/2 and a J/¥ meson due to the
restrictions imposed by the S = 1/2 of the whole penta-
quark function. This reinforces the idea of having mesons
and baryons as the most stable hadrons in nature. However,
as in the tetraquark case, we can, in principle, have a
compact baryon-meson system slightly above the separated
structure.

Focusing now on the fully charmed hexaquark system,
we must consider two big families; the open-charm
hexaquark, [ccccec], and the hidden one, [cccc ¢ €. The
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number of their (color,spin)-eigenfunctions are (5,5) and
(6,5), respectively. However, the final antisymmetric func-
tions are just 1, 2, and 5 for [cccceec], [(cc)(cc)(cc)] and
[(cce)(cee)] open-charm hexaquarks whereas, for hidden-
charm hexaquarks, one finds two antisymmetric functions
for [(ccc)(cce)] and eight for [(cce¢)(cc)]. As for the
open-charm hexaquark system, the possible quark con-
figurations are shown in Table II, (section open-charm
hexaquarks). One can see the pattern repeating itself, the
total mass becomes lower as we go from configuration
[ccecec] to configuration [(cc)(cc)(cc)], passing through
[(cce)(cee)] and then (ccc) — (cec); therefore, the most
stable situation is again having two ccc noninteracting
baryons. Besides, as shown by the interquark distances,
configurations [(cc)(cc)(cc)] and [(ccc)(cec)] are com-
pact objects. As for the hidden-charm hexaquark family, it
is remarkable to observe that the tetraquark + meson
configuration has a mass lower than baryon-antibaryon
case. As all the cases studied before, either tetraquark-
meson or baryon-antibaryon systems without interaction
among them are more stable than their partner configura-
tions within a compact hexaquark.

IV. SUMMARY

We have used a diffusion Monte Carlo method to
solve a many-body Schrodinger equation that contains
the most general and accepted pairwise Coulomb +
linear-confining + hyperfine spin-spin interaction between
heavy quarks and antiquarks. We have found that for each
colorless combination of ¢ and ¢ quarks, we can have
several compact clusters with different masses. We also
have shown that if the internal structure of the multiquark is
made of pieces that are themselves individually colorless
and with a definite value of the spin wave function, they
separate to form smaller units.
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