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We consider the quantum chromodynamics (QCD) Kondo effect for a single heavy quark in quark matter
composed of light quarks with chiral symmetry breaking. Introducing several spinor structures in QCD
Kondo condensates, i.e., particle-projected condensate, antiparticle-projected condensate, and normal
condensate without projection, we calculate the attractive energy gained by the heavy quark within the
mean-field approximation in the path-integral formalism. We show that the normal condensate is favored at
low density and the particle-projected condensate is favored at high density, when the light quark has a
nonzero mass. We interpret such a density-dependent transition between the two condensates in terms of
the Kondo resonances.
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I. INTRODUCTION

Heavy quarks with the charm or bottom flavor are impor-
tant for researching the strong interaction governed by quan-
tum chromodynamics (QCD). In quark matter, the heavy
quarks are regarded as impurity particles in the medium
composed of light quarks, such as up and down quarks, and
they can lead to the Kondo effect at low temperature [1,2].
This is called theQCDKondo effect. It is caused by thegluon
exchange between a light quark and a heavy quark. Indeed,
the color exchange with the SUðNcÞ symmetry (Nc ¼ 3 is
the number of colors) enhances the strength of the effective
interaction between quarks at low-energy scale. This mimics
the original Kondo effect which is caused by the spin
exchange with the SU(2) symmetry for impurity atoms in
metals [3], see, e.g., Refs. [4–7] formore details.1 TheKondo

effects are realized also in Dirac/Weyl metals and semi-
metals [9–26]. Thus the Kondo effect can be a universal
phenomenon from condensed matter physics to high-energy
physics.
The QCD Kondo effect was first studied in the pertur-

bation theory by the Nambu–Jona-Lasinio model [1] and
the one-gluon exchange model [2]. In both cases, it was
concluded that the perturbation is not applicable at a low-
energy scale, called the Kondo scale. This is because the
coupling strength becomes effectively larger due to the
quantum effect: the virtual creation and annihilation of
the particles and holes near the Fermi surface. Thus, the
Kondo effect inevitably induces nonperturbative quantum
phenomena.
The non-perturbative analysis of the QCD Kondo effect

was conducted in the mean-field theory under the
assumption that heavy quarks are distributed uniformly
in three-dimensional space [27,28].2 The mean field was
introduced to indicate an expectation value for the
composite field, which mixes the light quarks and the
heavy quarks in the ground state. This is called the QCD
Kondo condensate. It has interesting topological properties,
e.g., the Berry phases and the monopoles, in the momentum
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1One may regard mathematically the QCD Kondo effect as an
extension from the SU(2) symmetry to the SUðNÞ symmetry.
Furthermore, it is possible to realize the Kondo effect in various
non-Abelian groups, see Ref. [8].

2In the condensed matter physics, since the early days, the
mean-field approximation has been adopted to the analysis of the
Kondo effect for a single impurity [10,11,29–32]. See also
Ref. [4] and references therein.
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space [28]. The QCD Kondo condensate was explored also
for a single heavy quark, where the QCD Kondo con-
densate appears as the resonance state (QCD Kondo cloud)
near the Fermi surface in the quark matter made of massless
quarks [33].
The purpose of the present study is to explore the QCD

Kondo effect for a single heavy quark in matter made of
massive light quarks. So far the QCD Kondo effect for a
single heavy quark was studied for the matter made of
massless quarks [33], but not for themassive one. However,
the matter composed of massive light quarks, where the
chiral symmetry for light quarks is broken, is more realistic
than the massless one, because the light quarks should have
current and/or dynamical masses. So far, the influence of
the chiral symmetry breaking for light quarks was inves-
tigated for heavy quarks that are distributed uniformly
in three-dimensional space [34], but not for an isolated
single heavy quark. However, a single heavy quark may be
more realistic in relativistic heavy-ion collisions, because
produced heavy quarks would be a small number, and the
heavy quarks may not be regarded to be distributed
uniformly. Thus, the present work fills the gaps in the
previous studies.
This paper is organized as follows. In Sec. II, we

introduce the Lagrangian for the QCD Kondo effect for a
single heavy quark in matter made of massive light
quarks. We introduce several types of the QCD Kondo
condensates and adopt the mean-field approximation to
calculate the impurity energy decrease caused by the
QCD Kondo condensate. In Sec. III, we present the
numerical results for the impurity energy, and give
interpretations in terms of the QCD Kondo resonances.
The final section is devoted to the conclusion and
outlooks.

II. FORMALISM

A. Lagrangian for heavy and light quarks

We consider the situation that a single heavy quark
exists as an isolated impurity in matter whose quark mass
is m. We suppose one flavor for the light quarks. Based on
the procedure in Ref. [33], we introduce the partition
function

Z ¼
Z

DψDψ̄Df̂Df̂†Dλ exp

�Z
d4xL½ψ ; f̂; λ�

�
; ð1Þ

where the Lagrangian is given by

L½ψ ; f̂; λ� ¼ −ψ̄ðγ∂þm − μγ4Þψ
þ Gðψ̄ f̂ f̂†ψ þ ψ̄iγ5f̂f̂

†iγ5ψ þ ψ̄iγf̂f̂†iγψ

þ ψ̄iγγ5f̂f̂
†iγγ5ψÞδðxÞ − f̂†∂τf̂δðxÞ

− λðf̂†f̂ − 1ÞδðxÞ; ð2Þ

with the coordinate xμ ¼ ðx; τÞ in the four-dimensional
Euclidean space3 and the chemical potential μ for the light
quarks. In Eq. (2), ψðxÞ is the relativistic Dirac spinor for
the light quark with Dirac mass m, and f̂ðτÞ is the
nonrelativistic spinor for the heavy quark. We notice that
f̂ðτÞ has dependence only on the Euclidean time τ because
the heavy quark is supposed to locate at the origin of three-
dimensional space, x ¼ 0. This setting is expressed by the
three-dimensional δ-function, δðxÞ. The auxiliary field λðτÞ
is the Lagrange multiplier for the constraint condition,
f̂†ðτÞf̂ðτÞ ¼ 1, indicating that the number of heavy quarks
should be one.
The second term in Eq. (2) represents the interaction

between the light and heavy quarks provided by the point-
like interaction with the scalar, pseudoscalar, vector, and
axialvector channels with the common coupling constantG
[27,28]. This mimics a one-gluon exchange interaction.
The Lagrangian can be obtained from the viewpoint of the
heavy quark effective theory, see Appendix A.
We adopt the mean-field approximation for the four-

point interaction in Eq. (2). The mean field gives the QCD
Kondo condensate, i.e., the dynamical mixing between the
light quark and the heavy quark in the ground state. To
proceed with the calculation, we introduce the auxiliary
fields: the scalar field ΦðxÞ, the pseudoscalar field Φ5ðxÞ,
the vector field ΦðxÞ, and the axialvector field Φ5ðxÞ.
These functions correspond to the heavy-light bifermion
forms ψ̄ðxÞΓf̂ðτÞ with Γ ¼ 1; iγ5; iγ; iγγ5, respectively.
They are defined at the position of the heavy quark, i.e.,
x ¼ 0. When the mixing is favored energetically in the
system, their expectation values should take nonzero
values.
The auxiliary fields are introduced through the following

identity relation,Z
DΦDΦ†DΦ5DΦ†

5DΦDΦ†DΦ5DΦ†
5

×exp

�
−
1

G

Z
d4xðΦ†ΦþΦ†

5Φ5þΦ†ΦþΦ†
5Φ5ÞδðxÞ

�
¼N ; ð4Þ

with a constant N , where the δ-function, δðxÞ, is inserted
because ΦðxÞ, Φ5ðxÞ, ΦðxÞ, and Φ5ðxÞ are essentially
defined at x ¼ 0. Multiplying the equation (4) to the
right-hand side of Eq. (1) and shifting the auxiliary

3In the Euclidean spacetime, we use the following representa-
tions of the Dirac matrices given by

γk ¼
�

0 −iσk

iσk 0

�
; γ4 ¼

�
I 0

0 −I

�
; γ5 ¼

�
0 −I

−I 0

�
; ð3Þ

with the Pauli matrices σk (k ¼ 1, 2, 3) and the 2 × 2 dimensional
unit matrix I.
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fields as ΦðxÞ→ΦðxÞþGψ̄ðxÞf̂ðτÞ, Φ5ðxÞ → Φ5ðxÞ þ
Gψ̄ðxÞiγ5f̂ðτÞ, ΦðxÞ → ΦðxÞ þ Gψ̄ðxÞiγf̂ðτÞ, and
Φ5ðxÞ → Φ5ðxÞ þ Gψ̄ðxÞiγγ5f̂ðτÞ, we rewrite the partition
function Z as

Z ¼
Z

DΦDΦ†DΦ5DΦ†
5DΦDΦ†DΦ5DΦ†

5Dλ

× exp

�
Tr ln S−1 −

1

G

Z
dτ ðΦ†ΦþΦ†

5Φ5

þΦ†ΦþΦ†
5Φ5Þ þ

Z
dτ λ

�
; ð5Þ

with the inverse of the propagator

SðxÞ−1 ¼
 
γ∂þm − μγ4 Δ̄ðxÞ 1þγ4

2
δðxÞ

1þγ4
2

ΔðxÞδðxÞ 1þγ4
2

ð∂τ þ λÞδðxÞ

!
; ð6Þ

and the gap function

ΔðxÞ ¼ ΦðxÞ þΦ5ðxÞiγ5 þΦðxÞiγ þΦ5ðxÞiγγ5; ð7Þ

and Δ̄ðxÞ ¼ γ4Δ†ðxÞγ4. ∂τ is a derivative with respect to τ.
We notice that S−1ðxÞ is the 8 × 8 dimensional matrix, in
which the diagonal 4 × 4 dimensional submatrices represent
the propagators of a light quark and a heavy quark, and the
off-diagonal 4 × 4 dimensional submatrices represent the
mixing between a light quark and a heavy quark.
Assuming the mean-field approximation for the

composite fields Φ, Φ5, Φ, and Φ5 in Eq. (5), we obtain
the free energy F at zero temperature,4

F ¼ −Tr ln SðxÞ−1 þ 1

G

Z
dτ ðΦ†ΦþΦ†

5Φ5 þΦ†Φ

þΦ†
5Φ5Þ −

Z
dτ λ; ð8Þ

where Φ, Φ5, Φ, Φ5, and λ are regarded as the classical
fields which are determined by the stationary condition of
the free energy.

B. QCD Kondo condensates

The gap function Δ in Eq. (7) is related to the bifermion
form, f̂Γψ with an appropriate matrix Γ, in correspondence
to the scalar (Φ), the pseudoscalar (Φ5), the vector (Φ), and
the axialvector (Φ5) boson fields. In the following, we
consider the Kondo condensate by assuming that some of
Φ, Φ5, Φ, and Φ5 take nonzero values in the mean-field

approximation, and investigate several different types of the
Kondo condensate.
Firstly, we consider conventional configurations charac-

terized by only either of the scalar condensate Φ or the
pseudoscalar condensate Φ5, i.e.,

Nþ∶ Φ ≠ 0 while Φ ¼ 0; Φ5 ¼ 0; Φ5 ¼ 0; ð9Þ
N−∶Φ5 ≠ 0 while Φ ¼ 0; Φ ¼ 0; Φ5 ¼ 0: ð10Þ

In the present paper, we call them Nþ and N− condensates,
where the subscripts (�) represent the corresponding parity
eigenvalues. The N� condensates give one of the simplest
configurations, where equally both the particle and anti-
particle components of the light quark correlate with the
particle component of the heavy one.5

Secondly, we consider the so-called the hedgehog
configurations of the Kondo condensate. From the previous
studies [27,28,33,34], we have learned that the hedgehog
configuration can be realized at sufficiently large μ.
Following this fact, in the present study we invent similar
Ansätze as ground states. Taking into account the con-
densate structures with different parities, the hedgehog
configurations are expressed in momentum space by

Pþ∶ Φ ¼ −
p

Ep þm
Φ ≠ 0 while Φ5 ¼ 0; Φ5 ¼ 0;

ð11Þ

P−∶ Φ5 ¼ −
ip

Ep −m
Φ5 ≠ 0 while Φ ¼ 0; Φ ¼ 0;

ð12Þ
with the three-dimensional momentum p and the energy
Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, where the subscripts (�) represent the

corresponding parity eigenvalues. Here, we have named the
configurations P� condensates, because they pick up only
the particle component of the light quark as discussed
shortly. The Pþ (or P−) condensate exhibits the hedgehog
type in momentum space, because the direction of Φ
(or Φ5) coincides with the direction of p.
Using the Eqs. (11) and (12), we find that the gap

function Δ in Eq. (7) can be rewritten in the momentum
space as

Pþ∶ f̂†Δψ ¼ 2Ep

Ep þm
f̂†ΦΛPðpÞψ ; ð13Þ

P−∶f̂†Δψ ¼ −2Ep

Ep −m
f̂†iγ5Φ5ΛPðpÞψ : ð14Þ

4We note that Φ, Φ5, Φ, and Φ5 are the fields dependent only
on the Euclidean time. Here “mean-field” means to take a
constant value on the axis of the Euclidean time τ at x ¼ 0,
not in the whole three-dimensional space [4].

5The Nþ condensate was discussed for the heavy quarks
distributed uniformly in three-dimensional space, which is
regarded as the Kondo lattice in the small limit of the lattice
spacing [15,35].
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In the above equations, Δ needs to be sandwiched between
the heavy quark and the light quark as f̂†Δψ , because
Eqs. (13) and (14) hold only within the projected space, as
explained shortly. Here we defined6

ΛPðpÞ ¼
−ip · γ þ Epγ4 þm

2Ep
; ð15Þ

which is the projection operator picking up the particle
component of the light quark as indicated by f̂†Δψ.7 For
obtaining Eqs. (13) and (14), we have implicitly used a
fact that the particle-projection operator for the heavy
quark: ð1þ γ4Þ=2 is present at the left of Δ inside
f̂†Δψ . In the followings, we introduce the assumption that
Φ and Φ5 are factorized as Φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEp þmÞ=Ep

p
Φ̃ and

Φ5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEp −mÞ=Ep

p
Φ̃5 with Φ̃ and Φ̃5 being constant

values, respectively, in the momentum space.8

Similarly to the P� condensates, one can also consider
the antiparticle-projected (AP�) condensates picking up the
antiparticle component of the light quark, which is shown
in Appendix B 1. Those configurations are, however, found
to be always disfavored for realistic parameter sets.
We remember that the N� condensates contain both light

particles and light antiparticles on an equal footing, while
the P� condensates contain light particles only. Then, it
may be expected that the latter is more favored than the
former as far as only the Fermi surface is concerned.
However, the situation can be different in the presence of
chiral symmetry breaking, as discussed below.9

C. Impurity energy

We discuss the stability of the Kondo condensates, N�
and P� condensates, introduced in Sec. II B. As a quantity
measuring the stability of the Kondo condensate, we define
a useful quantity,

δF≡ F þ Tr ln S0ðxÞ−1; ð16Þ

by subtracting the free energy of noninteracting light
quarks, −Tr ln S0ðxÞ−1, from the free energy in Eq. (8).
Here S0ðxÞ−1 is defined by Eq. (C2) in Appendix C.

We call δF impurity energy, because δF measures an
energy decrease due to the formation of the QCD Kondo
condensate. For example, a negative (positive) δFmeans an
energy decrease (increase). In the following, we denote δF
for the N�, P�, and AP� condensates by δFN�, δFP� , and
δFAP� , respectively.
The impurity energies in the N� condensates are

δFN� ¼ 2Nc

π

Z
μ

m
dω atan

 
1
4π ðωþmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ϕ

ω − μ − λ − IN�ðωÞ
4π2

ϕ

!

× θðμ −mÞ

−
2Nc

π

Z
−m

−Λm

dω atan

 
1
4π ðω −mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ϕ

ω − μ − λ − IN�ðωÞ
4π2

ϕ

!

þ 1

G
ϕþ 2Ncλθð−λÞ − λ; ð17Þ

with ϕ ¼ Φ†Φ for the Nþ condensate and ϕ ¼ Φ†
5Φ5 for

the N− condensate. θð·Þ is a step function. The energy
integral is performed both for positive energy ω∈ ½m; μ�
and for negative energy ω∈ ½−Λm;−m�, because the
N� condensates include both particle-component and
antiparticle-component of the light quark. Here we define
Λm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
with the momentum cutoff Λ for neg-

ative-energy states in the Dirac sea of the light quarks. The
functions INþðωÞ and IN−

ðωÞ are defined as Eqs. (C8)
and (C9), respectively, in Appendix C. Notice that the Nþ
and N− condensates have different impurity energies due
to INþðωÞ ≠ IN−

ðωÞ.
The impurity energies in the P� condensates are

δFP� ¼ 2Nc

π

Z
μ

m
dω atan

 
1
2π ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ϕ̃

ω − μ − λ − IPðωÞ
2π2

ϕ̃

!

× θðμ −mÞ þ 1

G
ϕ̃þ 2Ncλθð−λÞ − λ; ð18Þ

with ϕ̃ ¼ 2Φ̃†Φ̃ for the Pþ condensate and ϕ̃ ¼ 2Φ̃†
5Φ̃5 for

the P− condensate. The details of the calculation are shown
in Appendix C. The range of the energy integral is limited
to the positive energy ω∈ ½m; μ� with μ ≥ m, because the
P� condensates include only the particle-component of the
light quark. The function IPðωÞ is defined as Eq. (C11) in
Appendix C. We can confirm that δFP� reproduces the
result for the massless quark case in Ref. [33] by putting
m ¼ 0 into Eq. (18).10

We note that, from Eq. (18), the Pþ and P− condensates
are degenerate, not only for chirally symmetric massless
quarks (m ¼ 0), but also for chirally broken massive quarks

6In the literature, understanding the hedgehog configuration as
the particle-projection for a light quark was first pointed out in
Ref. [36].

7In Eq. (15), “−i” in front of p · γ is put since γk is defined as a
Hermitian matrix in the present Euclidean notation as seen from
Eq. (3).

8This factorization was adopted in the case of the uniformly
distributed impurities in Ref. [34], where the same form for the
factorization was used.

9In the present study, for simplicity, we do not consider the
possible coexistence or the competition of N� and P�. Such
phenomena will be investigated by minimizing the free energy
with both condensates.

10In Ref. [33], the author diagonalized the mean-field Ham-
iltonian directly instead of summing up the expansion series as
shown in Appendix C.
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(m ≠ 0). The degeneracy for the latter is, however, regarded
to be accidental, because the chiral symmetry breaking
does not necessarily lead to the nondegeneracy between the
positive-parity state and the negative-parity state.11

Similarly, the impurity energies for the AP� conden-
sates, δFAP� , are shown in Appendix B 2. However, we do
not consider the AP� condensates seriously, because they
lead to only trivial states with vanishing condensates when
realistic parameter sets are used.12

III. RESULTS

A. Impurity energy

In order to determine the ground states for the N� and
P� condensates, we show the numerical results of the
impurity energies, δF ¼ δFN� , δFP� , as functions of
the chemical potential μ of the light quarks, see Fig. 1.
As the model parameters, we use the coupling constant
GΛ2 ¼ 4.3 and the momentum cutoffs, (a) Λ ¼ 1 GeV and
(b) Λ ¼ 1.2 GeV.13 The two different cutoff parameters are
introduced in order to investigate the contributions from the
light antiparticles in the Dirac sea. The masses of the light
quark are set to be m ¼ 0 GeV (the massless quarks) and
m ¼ 0.4 GeV (the massive quarks).
Let us see the result of Λ ¼ 1 GeV in Fig. 1(a). In the

massless case with m ¼ 0 GeV (dashed lines), the P�
condensates are more favored than the N� condensates for
any chemical potential. Thus the P� condensate gives the
most stable state. In the massive case with m ¼ 0.4 GeV
(solid lines), the Nþ condensate gives the most stable state
for the smaller chemical potential (μ≲ 0.65 GeV), and the
P� condensate becomes the most stable state for the larger
chemical potential (μ≳ 0.65 GeV).14 Such an inversion of
the condensate type is more clearly seen for the larger
cutoff momentum Λ ¼ 1.2 GeV in Fig. 1(b). In this
case, the Nþ condensate is the most stable state for
μ≲ 0.8 GeV, and the P� condensate becomes the most
stable for μ≳ 0.8 GeV.
Here, we explain the mechanism of the μ-dependent

inversion of the P� and Nþ condensates for the massive
case. At sufficiently large μ (≫ m), only the particle

component of the light quark is likely to correlate with
the heavy impurity assisted by Fermi-surface effects sub-
stantially, while the antiparticle one is not. Hence, the P�
condensates are favored. Such a selection rule to pick
up only the particle component of the light quark is
essentially provided by the factor of p · γ in the projection
operator (15).
When the chemical potential is close to the light-quark

mass, μ≳m, the Fermi momentum pF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
gets

small, and contributions from p · γ in the P� condensates
are suppressed. Accordingly, the configuration of the P�
condensates becomes similar to the Nþ one. Meanwhile,
from the second term in the impurity energy (17), one can
see that the Nþ condensate incorporates an additional
attraction from the antiparticle component of the light
quark that the P� condensates do not. As a result, the Nþ
condensate is more favored than the P� ones in such a low-
density region. For μ < m, there is no energy decrease
leading to the P� condensates, and obviously the Nþ one is
favored.
It should be noted that the attraction from the antiparticle

component for the Nþ condensate depends on the value of

FIG. 1. The impurity energies δF ¼ δFN� ; δFP� are shown
as functions of the chemical potential μ. The cutoff parameters
are (a) Λ ¼ 1 GeV and (b) Λ ¼ 1.2 GeV. The masses of a
light quark are m ¼ 0 GeV (dashed lines) and m ¼ 0.4 GeV
(solid lines).

11It is true that the nondegeneracy between eigenstates with
opposite parity is caused by the chiral symmetry breaking,
whereas its inverse does not necessarily hold in general.

12See Sec. III A for the possible realization of the AP�
condensates when an unrealistic parameter set is used.

13The value of GΛ2 is larger than the one used in Eq. (1) in
Ref. [28] which corresponds to GΛ2 ¼ 4.0 in the present
notation. See also Appendix A in this reference. In the present
calculation, we adopt a larger value for GΛ2 and regard Λ as a
free parameter in order to enhance the differences for each type of
condensate.

14Notice that the attraction in theN− condensate is weaker than
that of the Nþ condensate for m ¼ 0.4 GeV. Such a difference
may be caused by the breaking of chiral symmetry due to finite
mass of light quarks.
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the momentum cutoffΛ. In fact, we can see that, comparing
the panels (a) and (b) in Fig. 1, the energy decrease by the
condensate for the larger momentum cutoff (Λ ¼ 1.2 GeV)
is larger than that of the smaller momentum cutoff
(Λ ¼ 1 GeV). This will be also discussed in terms of
the Kondo resonance in Sec. III B.
We have shown that the QCD Kondo condensate is

realized in finite density at nonzero chemical potential
(μ > 0) within our choices of parameters. Here, we com-
ment on the question whether the QCD Kondo condensate
could occur in vacuum (μ ¼ 0), as this problem was raised
in Ref. [15]. In the present study, for μ ¼ 0, we confirmed
that the N� and AP� condensates occur for an extremely
large value of the momentum cutoff Λ, while the P�
condensate vanishes due to the absence of the antiparticle
component. However, we regard that this choice of param-
eter would be unrealistic in the QCD vacuum, because there
is no observation of the QCD Kondo effect in vacuum.

B. Interpretation: QCD Kondo resonances

The QCD Kondo condensate can be interpreted in terms
of the resonance which is dynamically formed by the
mixing between the light and heavy quarks near the Fermi
surface.15 The idea of the resonance picture has been
discussed as the Kondo resonance (or cloud) in metals,
as such studies were originally initiated by Abrikosov [37]
and Suhl [38] and later developed in the mean-field theory
[39–41] (see, e.g., Ref. [4] and references therein).
We show the resonance picture in the present study. For

this purpose, we approximate the impurity energies (17)
and (18) at a large chemical potential. As an approximation,
we replace the denominator of the arctangent functions in
Eqs. (17) and (18) with ω − μ − λ by neglecting I iðωÞ
(i ¼ N�, P), and we replace ω in the numerator with μ
because the energy around the Fermi surface (ω ≈ μ) gives
the most dominant contribution to the energy integrals.
For the N� condensates, the impurity energy (17) is

approximated as

δFN� ≈ 2Nc

Z
μ

m
dωðω − μÞρNðωÞθðμ −mÞ

þ 2Nc

Z
−m

−Λm

dωðω − μÞρNðωÞ þ
1

G
ϕ

þ 2Ncλθð−λÞ − λ; ð19Þ

where the spectral function ρNðωÞ is defined as

ρNðωÞ ¼
1

π

ΔN

ðω − μ − λÞ2 þ Δ2
N
; ð20Þ

with ΔN ¼ πðμþmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
ϕ=ð4π2Þ. This result indi-

cates the Lorentzian-type resonance with the energy posi-
tion μþ λ and the width ΔN . Thus, we understand that the
QCDKondo condensate gives the width of the QCD Kondo
resonance. We notice that the impurity energies of the Nþ
and N− condensates coincide with each other accidentally
in the present approximation, because IN�ðωÞ in Eq. (17)
have been neglected. Thus this degeneracy should not be
taken seriously.
For the P� condensate, the impurity energy (18) is

approximated as

δFP� ≈ 2Nc

Z
μ

m
dωðω − μÞρPðωÞθðμ −mÞ þ 1

G
ϕ̃

þ 2Ncλθð−λÞ − λ; ð21Þ

where the spectral function ρPðωÞ is defined as

ρPðωÞ ¼
1

π

ΔP

ðω − μ − λÞ2 þ Δ2
P
; ð22Þ

with ΔP ¼ πμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
ϕ̃=ð2π2Þ. Thus we obtain the

resonance state with the energy position μþ λ and the
width ΔP. We see again that the QCD Kondo condensate
gives the width of the QCD Kondo resonance. For the P�
condensates, we can prove that there is always a nonzero
value of the QCD Kondo condensate for any small
(attractive) coupling, as shown in Appendix D.
In summary, the QCD Kondo condensate is regarded as

the resonance state with the energy position λ above the
Fermi surface and the width Δi (i ¼ N, P). We call it QCD
Kondo resonance (or QCD Kondo cloud). This resonance
is stabilized by the energy decrease through the mixing
between a light quark and a heavy quark. The QCD Kondo
resonance is analogous to the Kondo resonance in con-
densed matter systems, which is caused by the mixing
between an itinerant (conducting) electron and a localized
electron [42–45].16

C. N + condensate vs P� condensate

In Sec. III A, we discussed based on the numerical
computations the inversion of the Nþ and P� condensates
for large chemical potentials μ≳m (see Fig. 1). In this
subsection, we show that this inversion can be understood
also at a qualitative level in terms of the widths of the QCD
Kondo resonance.
Since the energy position ω ¼ μþ λ of the Kondo

resonance always lies above the integration rangem < ω <
μ for the particle-component contributions as seen from
Eq. (19) [or Eq. (20)], one can reasonably infer that the
larger value of the resonance width (ΔN or ΔP) leads to the

15See Ref. [33] for the QCD Kondo resonance in the Pþ
condensate for massless light quarks for an isolated impurity as
discussed in the present study.

16Recently the experimental observation of the Kondo cloud
was reported [46].
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greater energy decrease. Since the width is proportional to
the magnitude of the condensate, we expect that a more
favored (stable) condensate can be realized for more
enhanced resonance width.
In order to check this property with respect to theNþ and

P� condensates in an intuitive manner, we focus on the
ratio of the widths ΔN and ΔP in Eqs. (20) and (22),

ΔP

ΔN
¼ 2

1þm=μ
: ð23Þ

From this ratio, we can achieve the following reinterpre-
tation of the ground-state configurations:
(1) When the chemical potential μ is sufficiently large

(μ ≫ m) at high density, the ratio (23) approaches
two, i.e., ΔP=ΔN ≈ 2. Thus, the resonance in the P�
condensates has a width almost twice as large as that
of theNþ condensate, and hence the P� condensates
are more stable than the Nþ condensate.

(2) In contrast, when μ is close to the light-quark massm
threshold (μ≳m) at low density, the ratio (23)
approaches one, i.e., ΔP=ΔN ≳ 1. Then, one might
think that the Nþ condensate and the P� condensate
are almost same. Nevertheless, the additional energy
decrease is provided for the Nþ condensate by the
attraction from the light antiparticle component in
the second term of Eq. (19), and it makes the Nþ
condensate more stable than the P� condensates.

From the above consideration, we find that the inversion of
the Nþ and P� condensates is understood qualitatively
through magnitude of the width of QCDKondo resonances.

IV. CONCLUSION AND OUTLOOKS

We have discussed the QCD Kondo effect on the heavy
quark as a single impurity particle embedded in the quark
matter of massive light quarks with chiral symmetry
breaking. In order to understand the ground state non-
perturbatively, we have introduced the QCD Kondo con-
densate that measures the strength of mixing between a
light quark and a heavy quark. We have considered the
scalar, pseudoscalar, vector, and axialvector channels in the
interaction between the light quark and the heavy quark,
and have investigated different types of condensates, i.e.,
the N�, P�, and AP� condensates. For massive light
quarks, we have shown that the most favored condensate is
the Nþ condensate at small chemical potential, while the
P� condensate is favored at large chemical potential. The
AP� condensate is disfavored at any chemical potential for
realistic parameter sets.
In the present study, we have not specified the origin of

the light quark mass: it can be the current mass in the QCD
Lagrangian or the dynamical mass generated by the
spontaneous chiral-symmetry breaking. Among the quarks
with light flavors (up, down, and strangeness), the lightest
quarks, i.e., the up quarks, would be most favored to make

the QCD Kondo condensate when the chemical potentials
are near the masses of the light quark. This is clearly
suggested from the result that the zero mass is most favored
to form the QCD Kondo condensate, as shown in Fig. 1.
As for the dynamical masses, we can regard in the present
study that the chiral-symmetry broken state can coexist
with the QCD Kondo condensate (Nþ or P�). This is
essentially the same as the case that the heavy quarks
are distributed uniformly in three-dimensional space, as
studied for the Nþ condensate [35] and for the Pþ
condensate [34].
We comment on several possible extensions for future

studies. Throughout the present paper, we have assumed
that the light-quark mass is a constant value independent of
the spatial position. More generally, however, the dynami-
cal mass, characterized by the chiral condensate, can
depend on the position, i.e., near the heavy quark or in
the bulk space away from the heavy quark. Since our
present result shows that the QCD Kondo condensate
favors the smaller mass of the light quark, it may lead
to the partial restoration of the chiral symmetry around the
heavy quark. In order to clarify this problem, we need to
evaluate the position dependence of the chiral condensate
in a self-consistent way. Furthermore, we have neglected
the interaction between two light quarks relevant to the
color superconductivity characterized by diquark conden-
sates. It will be interesting to investigate the position
dependence of diquark condensates around a single heavy
quark.
There are still many open problems regarding the QCD

Kondo effect:
(i) In the QCD phase diagram at finite density, the

Kondo condensate can compete with the chiral and/
or diquark condensates. In the low-density phase,
the competition with the (uniformly distributed)
chiral condensate can be studied in the mean-field
theory [34,47,48] and in the random-matrix theory
[35]. At a high density, the competition with the
color superconductivity was studied in Ref. [15].17

(ii) The transport coefficients under the QCD Kondo
effect, such as the electric resistivity and the shear
viscosity, were calculated in Ref. [51]. Also, the
QCD Kondo excitons [28,52] can be excited from
the ground state and additionally contribute to
transport coefficients.18

(iii) In relativistic heavy-ion collisions, particles and
antiparticles with heavy flavors are simultaneously

17See, e.g., Ref. [49] for a review on the competition of the
superconductors with the impurities in condensed matter systems.
In a color superconducting phase, gapped light quarks coexist
with ungapped quarks and play the role of impurities, which can
lead to an emergent QCD Kondo effect [50].

18In Ref. [52], the random-phase-approximation equation for
the QCD Kondo excitons, which was partly studied in Ref. [28],
was studied fully by considering all the relevant channels.
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generated by the pair creations, and hence the QCD
Kondo effect including the effect of the heavy
antiparticles should be taken into account [53]. In
the mean-field theory, since one can consider con-
densates including heavy antiparticles, the different
types of condensates from those considered in the
present work may be significant.

(iv) When the number of light-quark flavors is Nf ≥ 2,
the QCD Kondo effect exhibits non-Fermi liquid
behaviors [15] (which is a realization of the multi-
channel Kondo effect [54]). For such systems, the
conventional mean-field theory cannot be applied,
and other approaches such as the conformal field
theory [55,56] are needed.

(v) If heavy quarks are abundantly present inside
compact stars (which may be called “charm/bottom
stars” [57]), the QCD Kondo effect may change the
properties of stars. A possible discussion was given
in Ref. [58]. Then, depending on the density profile
of heavy quarks inside stars, both uniformly dis-
tributed impurities and single impurities will be
essential.

(vi) The QCD Kondo effect can also be studied
by numerical simulations of lattice QCD, but
Monte Carlo simulations at a large chemical poten-
tial are difficult due to the sign problem. However,
although environments with a chiral chemical
potential [35,59] or with a strong magnetic field
[48,55,60] can induce the QCD Kondo effect, they
are free from the sign problem and can be examined
by Monte Carlo simulations. Thus, lattice QCD
simulations are powerful tools for studying this
effect. The formulation of lattice field theory to
simulate QCD with a single color impurity, as
studied in the present work, will be required.

(vii) When the quark matter is under a magnetic field,
characteristic transport phenomena can be induced,
such as the modification of the chiral separation
effect [36,61] and the spin polarization of heavy
impurities [61,62]. As a result of the latter, the spin
polarizations of charm (c) and bottom (b) quarks
induced by the QCD Kondo effect can be mapped to
the spin polarization of the Λc and/or Λb baryons,
which are more direct observables (than non-meas-
urable heavy quarks) in heavy-ion collisions.

(viii) Finally, we comment that some heavy hadrons in
nuclear matter can have non-Abelian interaction
with nucleons by spin and/or isospin exchange, and
hence it can lead to the spin-isospin Kondo effect in
analogy to the QCD Kondo effect [1,63–65].19 The
connection of the Kondo effects between the quark
matter and the nuclear matter is an interesting
question.

These studies will be awaited in the future.
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APPENDIX A: CONNECTION TO HQET
LAGRANGIAN

The heavy quark can be described by the heavy-quark
effective theory (HQET), i.e., an effective theory of QCD in
the large mass limit of a heavy quark [67,68].20 In this
appendix, we show how the Lagrangian (2) can be obtained
from the framework of the HQET. For this purpose, we start
from the following Lagrangian,

LHQET ¼ −ψ̄ðγ∂þmÞψ −Gcðψ̄γ4TaψÞðΨ̄vγ4TaΨvÞ
− Ψ̄v∂τΨv; ðA1Þ

in the Euclidean spacetime, where we neglect the chemical
potential μ of light quarks, for brevity. The interaction term
with the coupling constant Gc > 0 mimics the one-gluon
exchange interaction between a light quark and a heavy
quark. The sign of Gc is chosen to provide an attraction in
the color-singlet channel. Here, Ta ¼ λa=2 is the generator
of SUðNcÞ symmetry with the Gell-Mann matrices λa

(a ¼ 1; 2;…; N2
c − 1). ψðxÞ is the field of a light quark

with the Dirac spinor, and ΨvðxÞ is the effective field of a
heavy quark in the HQET. The latter is defined as ΨvðxÞ ¼
1
2
ð1þ γ4ÞeiMvxΨðxÞ for the original heavy-quark fieldΨðxÞ

in QCD. Here vμ is the four-velocity of the rest frame of the
heavy quark, satisfying the conditions vμvμ ¼ 1 (a sum
over μ ¼ 1, 2, 3, 4). We take vμ ¼ ð0; 1Þ at the rest frame
where the heavy quark has no motion.
As the basic idea of the HQET, the four-momentum pμ in

Ψ is divided into two parts: the on-mass-shell partMvμ and
the off-mass-shell (residual) part kμ. M is the mass of the
heavy quark. The magnitude of the residual four-momen-
tum kμ is assumed to be much smaller thanM: jkμj ≪ M. In

19See, e.g., Ref. [66] for a review of the studies on heavy
hadrons in nuclear matter.

20See e.g. Refs. [69–71] for reviews and textbooks on the
HQET.
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the definition of the effective field ΨvðxÞ, the on-mass-shell
part is extracted as a plane wave eiMvx, and thus ΨvðxÞ
depends only on kμ. In Eq. (A1), the (Euclidean) time-
derivative operator ∂τ is understood to act on the residual
momentum k4 (μ ¼ 4).
In the formalism of the HQET, we consider that the

heavy quark locates at the position x ¼ 0. In this situation,
we can assume that the effective field ΨvðxÞ is replaced by

ΨvðxÞ → f̂ðτÞ ¼

0
BBB@

f↑ðτÞ
f↓ðτÞ
0

0

1
CCCA at x ¼ 0; ðA2Þ

where f̂ðτÞ is an effective field defined only at x ¼ 0. We
note that f̂ðτÞ has dependence only on the (Euclidean)
time τ. Because of the factor ð1þ γ4Þ=2 in ΨvðxÞ, f̂ðτÞ
has only the upper two spin-components, f↑ðτÞ and f↓ðτÞ.
As for the color symmetry, f̂ðτÞ belongs to the funda-
mental representation. We impose a constraint condition
f̂†ðτÞf̂ðτÞ ¼ 1, i.e.,

f†↑ðτÞf↑ðτÞ þ f†↓ðτÞf↓ðτÞ ¼ 1: ðA3Þ

This condition is necessary because there should be only
one heavy quark with either up or down spin and with either
red, green, or blue in color. Using Eq. (A2), we introduce
the following replacement in the bilinear form of ΨvðxÞ,

Ψ̄vðxÞΓΨvðxÞ → f̂†ðτÞΓf̂ðτÞδðxÞ; ðA4Þ

for any 4 × 4 dimensional matrix Γ. For example, Γ
indicates γ4λ

a or ∂τ in Eq. (A1). With the constraint
condition (A3) and the replacement (A4), we change the
Lagrangian (A1) to

Limp ¼ −ψ̄ðγ∂þmÞψ −Gcðψ̄γ4TaψÞðf̂†γ4Taf̂δðxÞÞ
− f̂†∂τf̂δðxÞ − λðf̂†f̂ − 1ÞδðxÞ; ðA5Þ

where λ is a Lagrange multiplier. Then, we apply the Fierz
transformation by the Fierz identities,

X4
μ¼1

ðγμÞαβðγμÞγδ ¼ δαδδγβ þ ðiγ5Þαδðiγ5Þγβ

−
1

2

X4
μ¼1

ðγμÞαδðγμÞγβ

−
1

2

X4
μ¼1

ðγμγ5Þαδðγμγ5Þγβ; ðA6Þ

for the Dirac matrices γμ (μ ¼ 1, 2, 3, 4) and

XN2
c−1

a¼1

ðλaÞijðλaÞkl ¼ 2
N2

c − 1

N2
c

δilδkj

−
1

Nc

XN2
c−1

a¼1

ðλaÞilðλaÞkj; ðA7Þ

for the Gell-Mann matrices λa (a ¼ 1; 2;…; N2
c − 1),

where we leave only the first term in Eq. (A7) as the
leading-order term in the 1=Nc expansion. To obtain
Eq. (A5), we finally multiply a minus sign due to the
interchange of fermion operators. Recovering the chemical
potential μ, we obtain our Lagrangian (2) with the coupling
constant G defined as G ¼ ðGc=4ÞðN2

c − 1Þ=N2
c.

APPENDIX B: ANTIPARTICLE-PROJECTED
(AP�) CONDENSATES

1. Definition of AP� condensates

In contrast to the P� condensate, in which only the
particle component participates in the Kondo condensate,
we consider the QCD Kondo condensate in which only the
antiparticle component participates in. Such configurations
are expressed by

APþ∶ Φ ¼ p
Ep −m

Φ ≠ 0 while Φ5 ¼ 0; Φ5 ¼ 0;

ðB1Þ

AP−∶ Φ5 ¼
ip

Ep þm
Φ5 ≠ 0 while Φ ¼ 0; Φ ¼ 0;

ðB2Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
in momentum space, where the

subscripts (�) represent the corresponding parity eigen-
values. Here, we have named these configurations AP�
condensates, because they pick up only the antiparticle
component of the light quark.
Using Eqs. (B1) and (B2), we find that the gap function

Δ in Eq. (7) can be written in the momentum space as

APþ∶ f̂†Δψ ¼ 2Ep

Ep −m
f̂†ΦΛAPðpÞψ ; ðB3Þ

AP−∶ f̂†Δψ ¼ −2Ep

Ep þm
f̂†iγ5Φ5ΛAPðpÞψ : ðB4Þ

In Eqs. (B3) and (B4),

ΛAPðpÞ ¼
ip · γ þ Epγ4 −m

2Ep
; ðB5Þ

is the projection operator picking up the antiparticle com-
ponent of the light quark. Similarly to the P� condensates,
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the APþ (or AP−) condensate exhibits the hedgehog type in
momentum space, because the direction of Φ (or Φ5)
coincides with the direction of the momentum p.

2. Impurity energy in AP� condensates

The impurity energies in the AP� condensates are

δFAP� ¼ −
2Nc

π

Z
−m

−Λm

dω atan

 
πω
ffiffiffiffiffiffiffiffiffiffi
ω2−m2

p
2π2

ϕ̂

ω − μ − λ − IAPðωÞ
2π2

ϕ̂

!

þ 1

G
ϕ̂þ 2Ncλθð−λÞ − λ; ðB6Þ

with ϕ̂ ¼ 2Φ̃†Φ̃ for the APþ condensate and ϕ̂ ¼ 2Φ̃†
5Φ̃5

for the AP− condensate. Here we consider that Φ and
Φ5 are factorized by Φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEp −mÞ=Ep

p
Φ̃ and Φ5 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEp þmÞ=Ep

p
Φ̃5 with Φ̃ and Φ̃5 being constant values,

respectively, in the momentum space. The range in the
energy integral is limited to the negative energy
ω∈ ½−Λm;−m� with Λm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
. Here Λ is the cutoff

parameter in the three-dimensional momentum integral in
the function IAPðωÞ. The momentum cutoff is introduced
because the AP� condensates include the antiparticle-
component of the light quark in the Dirac sea. The function
IAPðωÞ is defined as Eq. (C12) in Appendix C.

3. QCD Kondo resonance in AP� condensates

In the AP� condensates, the impurity energy (B6) is
expressed by

δFAP� ≈ 2Nc

Z
−m

−Λm

dω ðω − μÞρAPðωÞ þ
1

G
ϕ̂

þ 2Ncλθð−λÞ − λ; ðB7Þ

where the spectral function ρAPðωÞ is defined as

ρAPðωÞ ¼
1

π

ΔAP

ðω − μ − λÞ2 þ Δ2
AP

; ðB8Þ

with ΔAP ¼ πμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
ϕ̂=ð2π2Þ. This indicates the res-

onance of the Lorentzian-type with the energy μþ λ and
the width ΔAP.

APPENDIX C: CALCULATION OF IMPURITY
ENERGY

We explain the calculation of the free energy (8).
Because the treatment of the δ-function [δðxÞ] in the free
energy may not be commonly known in the literature, it
may be valuable to present the concrete steps of the
calculation. The mean-field approximation for a single
impurity was developed by several researchers in con-
densed matter physics [10,11,29–32]. First of all, we
separate the propagator in Eq. (6) as

SðxÞ−1 ¼ S0ðxÞ−1 þ Δ̃ðxÞδðxÞ; ðC1Þ

where the first term is the free part

S0ðxÞ−1 ¼
�
γ∂þm − μγ4 0

0 1þγ4
2

ð∂τ þ λÞδðxÞ

�
; ðC2Þ

and the second term is for the QCD Kondo condensate.
Δ̃ðxÞ is defined as

Δ̃ðxÞ ¼
 

0 Δ̄ðxÞ 1þγ4
2

1þγ4
2

ΔðxÞ 0

!
; ðC3Þ

with ΔðxÞ in Eq. (7). With these setups, we expand
formally the free energy (8) as

F ¼ −Tr ln S0ðxÞ−1 −
X
k≥1

ð−1Þkþ1

k
TrðS0ðxÞΔ̃ðxÞδðxÞÞk

þ 1

G

Z
dτðΦ†ΦþΦ†

5Φ5 þΦ†ΦþΦ†
5Φ5Þ −

Z
dτ λ:

ðC4Þ

The first term in the right-hand side is relevant only to the
light quarks and it is irrelevant to the QCD Kondo
condensate. Thus we define the impurity energy δF in
Eq. (16) by subtracting the free energy of light quarks,
−Tr ln S0ðxÞ−1, from the free energy (8).
The trace of the second term in Eq. (C4) is calculated as

follows. For a while, we omit the trace for the color space
for brevity. First of all, we find that the terms with k odd
vanish as it can be checked directly. Thus, we consider only
the terms with k even. As a demonstration, we calculate the
k ¼ 2 term:
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TrðS0ðxÞΔ̂ðxÞÞ2 ¼ 2Tr

�
1þ γ4

2

1

∂τ þ λ
ΔðτÞ 1

γ∂þm − μγ4
Δ̄ðτÞδðxÞ

�

≈ 2tr
Z

d4xhxj 1þ γ4
2

1

∂τ þ λ
ΔðτÞ 1

γ∂þm − μγ4
Δ̄ðτÞδðxÞjxi

¼ 2tr
Z

d4x
Z

d4p
ð2πÞ4 hxj

1þ γ4
2

1

∂τ þ λ
ΔðτÞ 1

γ∂þm − μγ4
Δ̄ðτÞδðxÞjpihpjxi

¼ 2

Z
dτ
Z

d4p
ð2πÞ4

ip4 þ λ

p2
4 þ λ2

1

ðp4 − μÞ2 þ p2 þm2
tr

�
1þ γ4

2
ΔðτÞðipγ þm − μγ4ÞΔ̄ðτÞ

�

¼ 2

Z
dτT
X
n

�
1

iωn − λ

Z
d3p
ð2πÞ3

1

ðiωn − μÞ2 − E2
p

�
ðð1þ α2pÞðiωn − μÞ þ ð1 − α2pÞm − 2αpjpjÞΦΦ†

þ ðð1þ α25pÞðiωn − μÞ − ð1 − α25pÞm − 2α5pjpjÞΦ5Φ
†
5

��
; ðC5Þ

where the first trace (Tr) means the diagonal summation both in the Dirac space and in the Euclidean space, and the second
trace (tr) means the diagonal summation in the Dirac space. We have used the approximation that the change of the fields
over spacetime is sufficiently smooth in the low-energy limit and neglected the derivative terms. In the last transformation,
we have used the relationsΦ ¼ αpp̂Φ andΦ5 ¼ iα5pp̂Φ5 with αp ¼ −jpj=ðEp þmÞ, α5p ¼ −jpj=ðEp −mÞ, and p̂ ¼ p=jpj
in Eqs. (13) and (14) and changed the p4 integral to the sum over the Matsubara frequency ωn ¼ ð2nþ 1Þπ=β (n∈Z) with
the inverse temperature β ¼ 1=T.
Similarly, for general k (even), we obtain their sum:

−
X
k≥1

ð−1Þkþ1

k
TrðS0ðxÞΔ̂ðxÞÞk ¼ −tr

Z
dτ T

X
n

ln
�
1 −

1

iωn − λ

Z
d3p
ð2πÞ3

1

ðiωn − μÞ2 − E2
p

×

�
ðð1þ α2pÞðiωn − μÞ þ ð1 − α2pÞm − 2αpjpjÞΦΦ†

þ ðð1þ α25pÞðiωn − μÞ − ð1 − α25pÞm − 2α5pjpjÞΦ5Φ†
5

��
: ðC6Þ

The summation over the Matsubara frequencies is taken by using the formula

T
X
n

FðiωnÞ ¼ −
1

2πi

Z
∞

−∞
dp0ðFþðp0Þ − F−ðp0ÞÞ

1

eβp0 þ 1
; ðC7Þ

with F�ðp0Þ ¼ Fðp0 � iεÞ for an analytic function F with
the branch cut on the real axis and no poles elsewhere. Note
that p0 is a real number, and ε is an infinitely small and
positive number.
From the above calculations, we obtain the concrete

form of the impurity energies shown in Eqs. (17), (18), and
(B6). In Eq. (17), IN�ðωÞ are defined as

INþðωÞ ¼ −ðωþmÞINðωÞ þ ð−ω −mÞINð−ωÞ; ðC8Þ

IN−
ðωÞ ¼ −ðω −mÞINðωÞ þ ð−ωþmÞINð−ωÞ; ðC9Þ

where

INðωÞ ¼
Z

Λm

m
dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −m2

p 1

ξ − ω

¼ Λ − ω ln

�
m

Λþ Λm

�
þ θðjωj −mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p

× ln

���� mð−ωþ ΛmÞ
−m2 þ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
þ ωΛm

����
− θðm − jωjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p �
atan

�
Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p

m2 − ωΛm

�

þ πθ

�
ω −

m2

Λm

��
: ðC10Þ

In Eq. (18), IPðωÞ is defined as
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IPðωÞ ¼ P:V:
Z

Λm

m
dξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −m2

p
ω − ξ

¼ −Λω −
ΛΛm

2
þ
�
ω2 −

m2

2

�
ln

�
m

Λþ Λm

�

þ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ln

�
Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
þ ωΛm −m2

mðΛm − ωÞ
�
;

ðC11Þ

withΛm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
, where ξ is the energy variable in the

integral, and P:V: stands for the Cauchy’s principal value.
In Eq. (B6), IAPðωÞ is defined as

IAPðωÞ ¼ P:V:
Z

Λm

m
dξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −m2

p
ωþ ξ

¼ −Λωþ ΛΛm

2
−
�
ω2 −

m2

2

�
ln

�
m

Λþ Λm

�

þ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ln

�
Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
− ωΛm −m2

mðΛm þ ωÞ
�
:

ðC12Þ

We calculate the third term in the right-hand side of
Eq. (C4) in the momentum space as

1

G

Z
dτðΦ†ΦþΦ†

5Φ5 þΦ†ΦþΦ†
5Φ5Þ ¼

1

G

Z
dτ
Z

d3xδðxÞðΦ†ΦþΦ†
5Φ5 þΦ†ΦþΦ†

5Φ5Þ

¼ 1

G

Z
dτ
Z

d3x
Z

d3p
ð2πÞ3 e

ip·xðð1þ α2pÞΦ†Φþ ð1þ α25pÞΦ†
5Φ5Þ

¼ 1

G

Z
dτðð1þ α2pÞΦ†Φþ ð1þ α25pÞΦ†

5Φ5Þ
����
p¼0

: ðC13Þ

where the last equation can be further modified by substitut-
ing theQCDKondo condensates. Recovering the color factor
in the trace, finally, we obtain the free energy (8).

APPENDIX D: SIMPLE SOLUTION
OF δFP� AT LARGE μ

At large chemical potential (μ ≫ m), we can obtain a
simple form of the solution in the Kondo resonance of the
P� condensate (see also Ref. [33]). In this limit, the energy
integral in Eq. (21) is analytically performed and the
impurity energy is expressed in approximation as

δFP� ≈
2Nc

π

�
−λatan

�
λ

ΔP

�
þ λatan

�
μþ λ

ΔP

�

þ 1

2
ΔP ln

�
Δ2

P þ λ2

Δ2
P þ ðμþ λÞ2

��
þ 1

κG
ΔP

þ 2Ncλθð−λÞ − λ; ðD1Þ

with κ ¼ πμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
=ð2π2Þ, where we assumed the large

chemical potential and the small value for ΔP. From the
stationary conditions, ∂δFP�=∂ΔP ¼ ∂δFP�=∂λ ¼ 0, we
obtain the QCD Kondo condensate and the Lagrange
multiplier,

ΔP ≈
π

2Nc
μ exp

�
−

2π2

2Ncμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
G

�
; ðD2Þ

λ ≈ μ exp

�
−

2π2

2Ncμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
G

�
; ðD3Þ

in the large Nc approximation. Notice that the sign of λ is
positive as long as μ > 0, which means that the QCD
Kondo resonance emerges around the energy λ above the
Fermi surface, as shown by Eq. (22). Substituting ΔP and λ
into Eq. (D1), the impurity energy becomes

δFP� ≈ −μ exp
�
−

2π2

2Ncμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
G

�
< 0: ðD4Þ

The sign of the impurity energy is negative. Thus,we confirm
that theP� condensate is realized for any (nonzero) coupling
constant G as long as the interaction is attractive.
In the large Nc limit, where NcG is a finite value (the ’t

Hooft limit), ΔP approaches zero asymptotically from
Eq. (D2), while λ remains finite from Eq. (D3): the QCD
Kondo resonance becomes sharp around the energy position
λ. We confirm, however, that the QCDKondo effect does not
disappear, because δFP� is still a negative nonzero value.
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