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Roy-equation analysis on lattice data of ππ scattering phase shifts at mπ ¼ 391 MeV reveals that the
lowest f0 meson becomes a bound state under this condition. In addition, there is a pair of complex poles
below threshold generated by crossing symmetry [X.-H. Cao et al., Phys. Rev. D 108, 034009 (2023)]. We
use the N=D method to partially recover crossing symmetry of the OðNÞ σ model amplitude at leading
order of 1=N expansion, and qualitatively reproduce the pole structure and pole trajectories with varying
pion masses as revealed by Roy-equation analyses. The σ pole trajectory with varying temperature is also
discussed and found to be similar to its properties when varying mπ . As the temperature increases, the
complex σ poles firstly move from the second Riemann sheet to the real axis becoming two virtual state
poles, and then one virtual state pole moves to the first sheet turning into a bound state pole and finally
tends to the pion pole position at high temperature which is as expected from the chiral symmetry
restoration. Our results provide further evidence that the lowest f0 state extracted from experiments and
lattice data plays the role of the σ meson in the spontaneous breaking of chiral symmetry. Finally, we also
briefly discuss the problems of the effective potential in the situation whenmπ and the temperature become
large.
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I. INTRODUCTION

Chiral symmetry breaking plays an important role in the
QCD low energy dynamics. It is already well known that
due to the smallness of the u and d quark masses, QCD
possesses an approximate SUð2ÞL × SUð2ÞR chiral sym-
metry, and it is also well accepted that this symmetry is
spontaneously broken by the nonzero h0jq̄qj0i and three
pseudo-Goldstone bosons are generated which are identi-
fied as the π mesons observed in the low energy hadron
scatterings. Historically, the famous linear sigma model
firstly proposed by Gell-Mann and Lévy in 1960 [1]
could provide an effective field theory description of
this symmetry. In this model, another scalar field σ is
combined with the three pions to form a linear realization
of an Oð4Þ symmetry and acquires a vacuum expectation
value (VEV) to break the Oð4Þ to Oð3Þ, where the

Oð4Þ ≃ SUð2ÞL × SUð2ÞR can be identified as the previous
chiral symmetry and the remaining Oð3Þ corresponds to
the preserved SUð2ÞV . For a long time, the existence of
the σ particle was in controversy. The mild rise of the ππ
phase shift can hardly be recognized as generated from a
typical resonance. A broad resonance was proposed to
describe the ππ scattering phase shift in the 1960s, see for
example [2–4]. However, such a broad resonance appeared
and disappeared from the PDG table several times from the
1960s until the 2000s.
Another description using a nonlinear realization of the

chiral symmetry [5,6] in which the scalar-isoscalar particle
is totally abandoned from the Lagrangian is the nowadays
very popular chiral perturbation theory (χPT) [7,8], which
is regarded as the low energy effective theory of QCD.
Within this formalism, the low energy properties of the
pion-pion scattering, such as the scattering length, effective
range, and phase shifts near the threshold can be repro-
duced. The low energy coupling constants can be saturated
by integrating out vector resonances [9,10] (see however
[11,12]). Thus, there seems to be no need to have a scalar-
isoscalar particle in describing the low energy pion-pion
scatterings. However, with energy going up, χPT blows up
quickly. Fortunately, unitarity and dispersive techniques
come to its rescue. After unitarization, the IJ ¼ 00 channel
ππ scattering amplitude dynamically generates a resonance
state represented as a pair of conjugate poles on the second
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Riemann sheet, see for example [13,14]. However, this kind
of unitarized method always generates more poles than
physically expected [15], especially spurious poles on the
physical sheet, which cast doubts on the reliability of the
results, not to mention the violation of crossing symmetry
(for a recent review, see Ref. [16]). On the other hand, a
novel model-independent analysis representing the partial
wave S-matrix as a product of pole and the left-hand cut
integral terms showed that the left-hand cut estimated from
χPT always produces a negative contribution to the phase
shift while the data show a positive trend near the threshold,
which demonstrates the necessity of a subthreshold reso-
nance pole on the second sheet of the amplitude [17].
This method was further developed into the so-called
Peking University (PKU)-representation of the partial wave
S-matrix [18–22], and more precise mass and width for the
particle was obtained by fitting the data with the constraints
from Balachandran-Nuyts-Roskies (BNR) relations derived
from crossing symmetry [19].
A major step forward in analyzing the pion-pion scatter-

ing data is the so-called Roy-equation analysis [23] which
incorporates crossing symmetry and unitarity into a set of
integral equations involving only the partial wave ampli-
tudes in the physical region. By solving these integral
equations with the low energy constraints from χPT [24,25]
and extending the solution to the complex plane, a broad
resonance pole can be found around ffiffiffiffiffiffiffiffiffispole

p ¼ 44116−8 −
i272þ9

−13 MeV [26] (see also [27–29]). From these model-
independent efforts, the existence of a scalar-isoscalar
resonance in the low energy ππ scattering was firmly
established, and up to now PDG lists the particle as f0ð500Þ
with a pole mass in 400–550 MeV and the half-width
around 200–350 MeV.
Although these model-independent methods confirm the

existence of this particle, it is obscure what the role of this
scalar-isoscalar particle plays in the low energy QCD
spectrum and chiral symmetry breaking. An argument
showing that this f0ð500Þ is not a usual pure q̄q state is
that with large number of colors, Nc, the pole generated in
the unitarized χPT goes away from the real axis which is
different from the usual meson behavior in the large Nc
limit [13]. However, for large enough Nc, the pole position
still moves toward the real axis [30]. Another problem is
whether it really corresponds to the original σ particle in the
Lagrangian models with linearly realized chiral symmetry,
which is still not clearly understood (see for example,
Ref. [31]). Within the unitarized χPT framework, the
f0ð500Þ particle is only a dynamically generated resonance
without any useful information about the role it plays in the
chiral symmetry breaking. This can be understood since
χPT starts off from the broken phase of QCD with a
nonzero VEV, it may not provide much information about
the global property of the effective potential which is
responsible for symmetry breakdown. Moreover, a study of
χPT at high temperatures reveals its drastic difference

compared with the linear σ model: the former simply
cannot restore the wanted Oð4Þ symmetry explicitly,
though there are some implicit evidences [32–36]. So to
analyze the role played by this particle, it is desirable to
look back at the linear σ model to see whether the sigma
particle in this model is consistent with f0ð500Þ in model-
independent analyses. One advantage of the OðNÞ linear σ
model is that in the large N limit (here N denotes the
number of flavors), the model is exactly solvable [37–39]
and has been used to study the possible relation between
f0ð500Þ and the σ [40].
With the recent development of lattice QCD [41–51],

phase shifts of ππ scattering can be reproduced from the
first principle at various unphysical pion masses. This
provides additional valuable information for the resonances
in ππ scattering by extracting pole positions from those
phase shifts. In Ref. [49], the scattering phase shifts for the
IJ ¼ 00 channel are calculated at mπ ∼ 236 and 391 MeV,
and K-matrix parametrization was used to extract the poles
in this channel. The result shows that whenmπ ∼ 236 MeV
the lowest f0 state is still a resonance while at 391 MeV it
becomes a bound state.
More recent results by the HadSpec Collaboration using

the similar K-matrix method shows that at mπ ∼ 330 MeV,
σ already becomes a shallow bound state, whereas at mπ ∼
283 MeV it may become a virtual state or a subthreshold
resonance [51]. In fact, it has been suggested that in the
unitarized χPT amplitudes with larger pion masses, the
dynamically generated f0 particle moves toward the real
axis below threshold and finally becomes a bound state
[52–54]. However, it is well known that the K-matrix
approach does not satisfy crossing symmetry [11,12],
which is important in the low energy pion-pion scattering
and is crucial in determining the properties of f0ð500Þ
resonance [19,28,29]. The first attempt to incorporate
crossing symmetry in the analysis is in Ref. [55], where
the PKU representation combined with BNR relations and
a virtual state accompanying the f0 bound state was found
at mπ ¼ 391 MeV. However, it was noticed that the left-
hand cut considered in that paper is not complete: the left-
hand cut contribution introduced by the f0 bound state
from crossed channels was not taken into account [56].
Not only in Ref. [55], the situation in general is also

unsatisfactory. Model-independent lattice data were always
analyzed using rough models. A precise model-independent
analysis of lattice data using Roy-equation analysis which
incorporates crossing symmetry from the startup was done
in Ref. [57]. It is also found that on the second sheet there is
a pair of conjugate subthreshold poles generated, which is
related to the left-hand cut originated from the f0 bound
state in crossed channels. A general argument of why this
subthreshold pole is present was also given in Ref. [57].
Recently, a further lattice study using Roy-equation analy-
sis at mπ ∼ 239 and 283 MeV found that for the former, the
lowest f0 state remains a resonance, whereas in the latter
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case the state was claimed (though not definitively, see
Ref. [58] for details) to become a virtual state, accompanied
by a “noisy” pole close to the left-hand cut on the second
Riemann sheet. However, this additional virtual state pole is
generated before the f0 particle turns into a bound state, a
situation not considered in Ref. [57]. To one’s surprise, this
phenomenon is exactly what happens in the N=D modified
OðNÞ model and we will explain the details in Sec. III.
The phenomena at unphysical pion masses provide a

new test ground of whether the lowest f0 state in model-
independent analyses corresponds to the σ particle in the
linear σ model. The purpose of this paper is to use the
solvable OðNÞ linear σ model with a crossing symmetry
improvement at unphysical pion masses and compare it
with the results from Roy-equation analyses.
The paper is organized as follows. In Sec. II, a review

on standard results of the OðNÞ model is given, especially
the behavior of the lowest f0 particle is discussed and
compared with similar results obtained by different model
analyses of the lattice data. The comparison necessitates the
effort of going beyond the lowest order calculation of the
OðNÞ model. In Sec. III, the modified OðNÞ amplitude
incorporating crossing symmetry is introduced, aided by
the use of N=D method. The results from Roy-equation
analyses on the σ particle can be reproduced in this
approach at a qualitative level. In particular, the f0 state
becomes a bound state and the lower subthreshold pole
generated through cross-channel effects also emerges at
mπ ¼ 391 MeV after partially imposing crossing sym-
metry, by tuning the parameters in the N=D method.
Though it is well known that the linear σ model is not
QCD [7,8], this paper is trying to demonstrate that it
provides a qualitative description of low energy QCD in the
IJ ¼ 00 channel at the phenomenological level, even for
unphysical pion masses—from this observation we take the
perspective that the f0ð500Þ particle plays the role of the σ
particle. In Sec. IV, we also investigate thermal properties
of the scattering amplitudes with leading order 1=N
expansion. We reproduce the widely accepted results that
OðNÞ symmetry is restored at high temperature, irrespec-
tive of differentmπ values. Finally Sec. V is for discussions
and conclusions, where we shortly discuss the problem that
the effective potential no longer provides a local minimum
at high temperature, as well as when mπ gets large. Future
improvements on the related issues are also outlined there.

II. σ POLE WITH VARYING mπ IN OðNÞ MODEL

In this section, we will review the OðNÞ linear σ model
and look at the σ pole trajectory with varyingmπ, at leading
order of 1=N expansion. The Lagrangian for this model is

LOðNÞ ¼
1

2
∂μϕa∂

μϕa −
1

2
μ20ϕaϕa −

λ0
8N

ðϕaϕaÞ2 þ αϕN;

ð1Þ

where a ¼ 1; 2;…; N. When μ20 < 0, without the linear α
term, the system has a spontaneous symmetry breaking of
OðNÞ → OðN − 1Þ, hϕi ≠ 0. With the linear ϕN term, the
VEV is aligned with the Nth direction, namely, hϕNi ¼ v,
with N − 1 pseudo-Goldstone particles, πa ≡ ϕa, a ¼
1;…; N − 1 and we define the shifted field σ ≡ ϕN − v.
For convenience when counting 1=N orders in the calcu-
lation of the effective action, we introduce an auxiliary field
χ to the Lagrangian [39],

L → Lþ N
2λ0

�
χ −

λ0
2N

ϕaϕa − μ20

�
2

¼ 1

2
∂μϕa∂

μϕa þ αϕN þ N
2λ0

χ2 −
1

2
χϕaϕa −

Nμ20
λ0

χ; ð2Þ

with an irrelevant constant omitted. The effective action can
be obtained by standard procedures,

Γðϕ; χÞ ¼
Z

d4x

�
1

2
∂μϕa∂

μϕa þ αϕN þ N
2λ0

χ2 −
1

2
χϕaϕa

−
Nμ20
λ0

χ

�
þ i
2
NTr logð∂2 þ χ − iϵÞ; ð3Þ

where Tr denotes trace taken in four-dimensional
Minkowski spacetime and ϵ → 0þ. For convenience we
will not distinguish the notation for the classical fields and
the original fields in the Lagrangian, which can be under-
stood in the context. Then the effective potential can be
obtained as

Vðϕ; χÞ ¼ −αϕN −
N
2λ0

χ2 þ 1

2
χϕaϕa þ

Nμ20
λ0

χ

−
i
2
N
Z

d4l
ð2πÞ4 logð−l

2 þ χ − iϵÞ; ð4Þ

where ϕa, χ are regarded as their constant expectation
values, respectively. The renormalization conditions are
chosen to be [39,59]

μðMÞ2
λðMÞ ¼ μ20

λ0
þ i
2

Z
d4l
ð2πÞ4

1

l2 þ iϵ
; ð5Þ

1

λðMÞ ¼
1

λ0
−
i
2

Z
d4l
ð2πÞ4

1

ðl2 þ iϵÞðl2 −M2 þ iϵÞ : ð6Þ

With these conditions, the minimum of the effective poten-
tial can be obtained by solving ∂V

∂χ ¼ 0 and ∂V
∂ϕa

¼ 0 which
reduce to relations of the VEVs for the corresponding fields

ϕaϕa ¼
2N
λ

χ −
2Nμ2

λ
−

N
16π2

χ log
χ

M2
; ð7Þ

χϕa ¼ 0ða < NÞ; χϕN − α ¼ 0: ð8Þ
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Thus, the VEV for each πa is still zero, i.e. hπai ¼ 0 and ϕN
gets expectation value hϕNi ¼ v ¼ α=hχi. Since the cor-
rection to the pion mass term only appears at higher 1=N
order, at leading order we have hχi ¼ m2

π . At zero temper-
ature, from the definition of the pion decay constant fπ ,
h0jAμ

aðxÞjπi ¼ ipμfπe−ip·x, where Aμ
a is the axial vector

current, and the relation of partially conserved axial current
(PCAC), ∂μA

μ
a ¼ απa, we have v ¼ fπ . For pheno-

menological calculations, we always set fπ ¼ 92.4 MeV
and N ¼ 4.
With these preparations, now the ππ scattering amplitude

in the leading 1=N order can be expressed according to the
external isospin structure as follows,

T πaπb→πcπd ¼ iDττðsÞδabδcd þ iDττðtÞδacδbd
þ iDττðuÞδadδbc; ð9Þ

with Dττ the propagator for τ≡ χ − hχi field from the
effective action. Since there are mixing terms of τ and σ, a
2 × 2 inverse propagator matrix needs to be considered
[39,59], which can be expressed in the momentum space as

D−1ðp2Þ ¼ −i
�
p2 −m2

π −fπ
−fπ N=λ0 þ NB0ðp2; mπÞ

�
; ð10Þ

with

B0ðp2;mπÞ¼
−i
2

Z
d4l
ð2πÞ4

1

ðl2−m2
πþ iϵÞððlþpÞ2−m2

πþ iϵÞ :

ð11Þ

The propagators can then be obtained as

Dττðp2Þ ¼ iðp2 −m2
πÞ

ðp2 −m2
πÞðN=λ0 þNB0ðp2;mπÞÞ− f2π

; ð12Þ

Dσσðp2Þ ¼ ið1=λ0 þB0ðp2;mπÞÞ
ðp2 −m2

πÞð1=λ0 þB0ðp2;mπÞÞ− f2π=N
: ð13Þ

Using the previous renormalization conditions Eqs. (5)
and (6), we have

1

λ0
þ B0ðp2; mπÞ ¼

1

λðMÞ þ Bðp2; mπ;MÞ; ð14Þ

Bðs;mπ;MÞ ¼ 1

32π2

�
1þ ρðsÞ log ρðsÞ − 1

ρðsÞ þ 1
− log

m2
π

M2

�
;

ð15Þ

where ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

. For our purpose, we need only
IJ ¼ 00 amplitude in the leading order of 1=N expansion,

T LO
00 ðsÞ ¼

iNDττðsÞ
32π

; ð16Þ

which is of Oð1Þ.
The σ resonance corresponds to poles on the second

Riemann sheet, which can be obtained by solving the zero
points of the denominator of Dττ:

ðs −m2
πÞð1=λðMÞ þ BIIðs;mπ;MÞÞ − f2π=N ¼ 0; ð17Þ

where BII represents the analytically continued Bðs;mπ;MÞ
function onto the second sheet, which is obtainable by
changing the sign of ρðsÞ.
Since the coupling constant λ and the renormalization

scaleM are related, we can defineM to be the intrinsic scale
of the OðNÞ model, when regarded as an effective field
theory, at which the coupling blows up, i.e. 1=λðMÞ ¼ 0
[59]. Then the coupling λ would not appear in the scattering
amplitude,

T LO
00 ðsÞ ¼ −

1

32π

s −m2
π

ðs −m2
πÞBðs;mπ;MÞ − f2π=N

; ð18Þ

and Eq. (17) can be recast into

ðs −m2
πÞBIIðs;mπ;MÞ − f2π=N ¼ 0: ð19Þ

The leading order amplitude automatically satisfies the exact
partial wave unitarity, i.e. ImT 00ðsÞ ¼ ρðsÞjT 00ðsÞj2. It also
has an Adler zero [60] at s ¼ m2

π . Notice that the isospin
projection for the OðNÞ singlet channel is T I¼0ðs; t; uÞ ¼
ðN − 1ÞiDττðsÞ þ iDττðtÞ þ iDττðuÞ. Thus the t- and
u-channel amplitudes in Eq. (9) contribute to the Oð1=NÞ
amplitude, and only the s-channel amplitude contributes
to the leading order IJ ¼ 00 partial wave amplitude. This
already breaks crossing symmetry.
With the leading order T matrix, we can study the σ pole

trajectory with varying mπ . The intrinsic scale M is chosen
at 550 MeV. See Table I for comparison of the pole
positions obtained in the OðNÞ model and the lattice
results analyzed using K matrix and Roy equation respec-
tively. The pole trajectory is shown in Fig. 1. When mπ

increases from the physical mass, the σ poles move toward
the real axis, and then become two virtual state poles (VS I
and II) after they meet at the real axis. One virtual state pole
(VS II) moves down away and the other (VS I) moves
toward the threshold, crossing it to the first sheet, and
becomes a bound state (BS) pole.
From Eq. (19) one can work out the condition for the

critical pion mass mπ ¼ mc at which the σ pole is located
exactly at the threshold,

log
m2

c

M2
¼ 1 −

32π2f2π
3m2

cN
: ð20Þ
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The numerical result is mc ≃ 337 MeV. This is a little bit
different from the lattice results which may be located at
somewhere between 283 and 330 MeV [49,51,58]. The
difference is not surprising since the mc obtained here is
only the leading 1=N order result of OðNÞ model. When
mπ > mc, the σ particle becomes a bound state. At the same
time, it also appears in the t- and u-channel amplitudes due
to crossing symmetry, which are not included in the leading
order amplitude since they are of Oð1=NÞ after isospin
projection. If we add the t- and u-channel contributions and
do the isospin and partial wave projection, then the T 00

matrix is expressed as

T 00ðsÞ ¼
N − 1

32π
ALOðsÞ þ ItuðsÞ; ð21Þ

where

ALOðsÞ ¼ m2
π − s

ðs −m2
πÞNBðs;mπ;MÞ − f2π

; ð22Þ

ItuðsÞ ¼
1

16πðs − 4m2
πÞ
Z

0

4m2
π−s

dtALOðtÞ: ð23Þ

Function ItuðsÞ in Eq. (21) comes from the partial wave
projection of the crossed t- and u-channel amplitudes. The
bound state in the crossed channels also generates a left-
hand cut with a branch point at 4m2

π −m2
σ. However, this

amplitude does not satisfy the exact unitarity any more.
Thus, to partially recover crossing symmetry and restore
unitarity, we need to resort to some unitarization methods,
e.g. the inverse amplitude method (IAM, see Ref. [61] and
references therein) and the N=Dmethod [62]. The situation
here is not suitable for direct application of IAM, because
the partial wave amplitude Eq. (21) is not a complete
calculation at Oð1=NÞ and thus will break even the
perturbative version of the unitarity relation, namely

ImT NLO
00 ¼ ρ

�
T LO

00 ðT NLO
00 Þ� þ ðT LO

00 Þ�T NLO
00

�

¼ 2ρReT LO
00 ReT

NLO
00

1 − 2ρImT LO
00

; ð24Þ

where we also represent ImT NLO
00 , i.e. the imaginary part

of the next-to-leading order amplitude, in terms of ImT LO
00

and ReT NLO
00 after simple algebraic calculations. Neverthe-

less, it is still possible to acquire an approximation of the

FIG. 1. Pole trajectories for the σ poles of the leading order
OðNÞ amplitude. The left-hand cut branch point is still at sL ¼ 0
after the virtual state pole VS I moves across threshold to the
physical Riemann sheet (RS), becoming a bound state. There is
neither an additional virtual state pole generated from the left-
hand cut (suggested by Refs. [57,58]), nor subthreshold poles
similar to those found in Ref. [57].

TABLE I. Comparison of the pole positions ( ffiffiffiffiffiffiffiffiffispole
p ) for OðNÞ model, lattice þ K matrix [49,51] and latticeþ Roy equation [57,58].

When mπ ¼ 391 MeV, the subthreshold (Sub.) pole close to the left-hand cut in Ref. [57] can also be found (qualitatively) within the
N=D modified OðNÞ model discussed in this work.

mπ ðMeVÞ 139 239 283 330 391

OðNÞ (LO) 356 − i148 448 − i57 558(VS I) 660(VS I) 780(BS)
438(VS II) 451(VS II) 489(VS II)

N=D modified OðNÞ 348 − i180 469(BS) 527(BS) 585(BS) 658(BS)
426(VS II) 422(VS II) 396 − i28 466 − i77
168(VS III) 264(VS III) (Sub pole) (Sub pole)

latticeþ K-matrix (487–809
−i136–304Þ [49,51]

(476–579
−i0–129Þ [51]

657þ3
−4 ðBSÞ [51] 758� 4ðBSÞ [49]

latticeþ Roy equation (416–644 522–562 759þ7
−16ðBSÞ [57]

−i176–307Þ [57,58] (VS I&II) [58]a 269þ40
−25 − i211þ26

−23
(Sub pole) [57]

aAdditionally, there is a third though “noisy” pole close to the left-hand cut on the second sheet, which could correspond to the virtual
state pole VS III appearing in the N=DmodifiedOðNÞmodel analysis. However, a definitive conclusion about whether the σ is a virtual
state or a subthreshold resonance at this mπ value cannot be made, owing to large statistical uncertainties in the results, see Ref. [58] for
details.
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Oð1=NÞ partial wave (denoted by TNLO0
00 ) that does satisfy

the above relation by setting ReT NLO
00 ¼ − 1

N ReT
LO
00 þ Itu

and obtaining ImT NLO
00 using Eq. (24). After the analytic

continuation of the modified amplitude TNLO0
00 , the approxi-

mated “IAM unitarized amplitude” T IAM
00 can be con-

structed as usual:

T IAM
00 ¼ ðT LO

00 Þ2
T LO

00 − T NLO0
00

: ð25Þ

However, this unitarized amplitude is found to have
spurious poles both on the first and second sheets that
may not be simply removed. Thus in the following we will
use the N=D method.

III. σ POLE IN N=D MODIFIED OðNÞ MODEL
WITH VARYING mπ

It has been seen that in the OðNÞ model the isospin
projection to the I ¼ 0 channel breaks crossing symmetry
at the leading order of 1=N expansion. TheOðNÞ amplitude
must be modified in order to at least partially recover
crossing symmetry while preserving unitarity. The key
point is to generate the left-hand cut from crossed channels
in the scattering amplitude, which should be consistent with
the bound state the σ generated. It is well known that the
N=Dmethod can introduce the left-hand cut contribution to
the amplitude and at the same time preserve partial wave
unitarity, which is suitable for the purposes here.
In the spirit of the N=D method, the T matrix can be

expressed as

T ðsÞ ¼ NðsÞ
DðsÞ ; ð26Þ

where the singularity of NðsÞ contains only the left-hand
cut (L), while DðsÞ only contains the right-hand cut (R)
and Castillejo-Dalitz-Dyson (CDD) poles [63], thus
ImRNðsÞ ¼ ImLDðsÞ ¼ 0. To satisfy the partial wave
unitarity relation, i.e. ImRT −1 ¼ −ρ, the relation between
NðsÞ and DðsÞ should be

ImRDðsÞ ¼ −ρðsÞNðsÞ; ð27Þ

ImLNðsÞ ¼ DðsÞImLTðsÞ: ð28Þ

Using the Cauchy integral formula, one can write down
dispersion relations forNðsÞ andDðsÞ, and then solveNðsÞ
and DðsÞ numerically to obtain the scattering amplitude.
Our strategy is to extract the ImLT from the OðNÞ

model, use the N=D method to obtain the scattering
amplitude, which at the leading 1=N order recovers the
originalOðNÞmodel amplitude, and require the position of
the σ bound state to be consistent with the left-hand cut

branch point at sL ¼ 4m2
π −m2

σ for large unphysical mπ .
Since the numerator and denominator of the amplitude in
Eq. (18) both have an s power less than s2 as s → ∞, it is
natural to use twice subtracted dispersion relations forNðsÞ
andDðsÞwithout CDD poles, and as a bonus, the zero point
of the T matrix can be dynamically generated, which could
correspond to the Adler zero. The twice subtracted
dispersion relations for NðsÞ and DðsÞ can be expressed as

DðsÞ ¼ s − sA
s0 − sA

þ gD
s − s0
sA − s0

−
ðs − s0Þðs − sAÞ

π

×
Z
R

ρðs0ÞNðs0Þ
ðs0 − sÞðs0 − s0Þðs0 − sAÞ

ds0; ð29Þ

NðsÞ ¼ b0
s − sA
s0 − sA

þ gN
s − s0
sA − s0

þ ðs − s0Þðs − sAÞ
π

×
Z
L

Dðs0ÞImLT ðs0Þ
ðs0 − sÞðs0 − s0Þðs0 − sAÞ

ds0; ð30Þ

where the subtraction points sA ¼ m2
π , s0 ¼ sth ¼ 4m2

π, and
Dðs0Þ ¼ 1 are chosen for convenience. With these choices,
the subtraction constants are Nðs0Þ ¼ b0, NðsAÞ ¼ gN ,
DðsAÞ ¼ gD. Noticing that at sA ¼ m2

π , the leading order
partial wave amplitude in Eq. (18) is zero, corresponding
to the leading order Adler zero. Then with T ðsAÞ ¼
NðsAÞ=DðsAÞ ∼Oð1=NÞ, one can choose gN to be
Oð1=NÞ and gD to be Oð1Þ. Thus to the leading order,
NðsÞ ¼ b0

s−sA
s0−sA

. By substituting this into Eq. (29) one
recovers the leading order scattering amplitude by choosing

b0 ¼ −
1

32π

s0 − sA
ðs0 − sAÞBðs0; mπ;MÞ − f2π=N

; ð31Þ

gD ¼ 32πf2πb0
Nðs0 − sAÞ

: ð32Þ

It is obvious that b0 is just the leading order amplitude
which is consistent with our prescription Nðs0Þ ¼ b0 and
Dðs0Þ ¼ 1. After including t- and u-channel contributions
in the N=D construction, the amplitude recovers unitarity
and has a left-hand cut with a branch point at 4m2

π −m2
σ

whenmπ > mc, which is as expected. However, since the σ
pole in the crossed channels is still located at the same
position in the leading order amplitude, the branch point at
4m2

π −m2
σ is determined by the leading order mσ in 1=N

expansion. But with the Oð1=NÞ left-hand cut contribution
in DðsÞ, the mass of the σ bound state may be shifted from
the pole position of T LO

00 . To be consistent with the left-
hand cut, demanded by crossing symmetry, we need to
require the σ bound state pole position [solved from
DðsÞ ¼ 0] to be the same as the one in leading order
amplitude. In general, this can be achieved by properly
choosing the higher order corrections to the parameters b0
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and gD. For mπ > mc this can only be done numerically,
our prescription is as follows:

b0 ¼ T 00ðs0Þ ¼
N − 1

32π
ALOðs0Þ þ Ituðs0Þ; ð33Þ

Dðm2
σÞ ¼ 0; ð34Þ
gN
gD

¼ ReItuðsAÞ: ð35Þ

where b0 is chosen as the amplitude evaluated at s0 with the
crossed channels added, gD is determined by requiring the
bound state pole position to be the same as the leading
order result sσ ¼ m2

σ , and Eq. (35) results directly from the
requirement T ðsAÞ ¼ T 00ðsAÞ while sL < sA [64]. When
mπ < mc, Eq. (34) is replaced by Eq. (32) with Eqs. (33)
and (35) not changed. This prescription for the subtraction
constants captures the most important features of the
inputted OðNÞ model. Anyway, it is of course not the
“unique solution” for N=D modified OðNÞ model. We also
tried several different sets of subtraction constants, and
found that the qualitative results for the σ pole trajectory are
quite robust.
The numerical results of the pole structure as mπ

increases are shown in Fig. 2. In order to obtain a σ pole
close to the one in the leading order OðNÞ amplitude
at physical pion mass, the intrinsic scale M is set to
1.5 GeV with mc ≃ 214 MeV accordingly. When pion
mass increases from the physical value mπ ¼ 139 MeV,
the σ poles move towards the real axis and at some point
they hit the real axis and separate into two virtual state
poles, with one moving up (VS I) and the other moving
down (VS II) along the real axis. The upper virtual state,
VS I, moves across the threshold to the physical Riemann

sheet and then moves down along the real axis, hence
becoming a bound state. At the same time, there will be a
left-hand cut generated with the branch point located at
sL ¼ 4m2

π −m2
σ > 0 in the partial wave amplitude, which

comes from the σ exchange in the t- and u-channels from
crossing symmetry. During this course but before VS I
turns into a bound state, an additional virtual state pole
(VS III) is generated from the left-hand cut, which was also
implied in Ref. [58]. Withmπ growing larger, VS II and VS
III hit each other, move into the complex plane, and become
a pair of subthreshold poles. In fact, in Ref. [57], it was
shown that besides a σ bound state below the threshold,
there is also a pair of conjugate poles below the threshold
when mπ ¼ 391 MeV, which corresponds to the pair of
subthreshold poles in Fig. 2. It was argued that such
subthreshold poles are inevitable due to the behavior of
the left-hand cut generated from the σ exchange in crossed
t- and u-channels.
A more careful argument goes as follows. Considering

that the S matrix near sL is mainly contributed by the
singular behavior of the branch point of the log cut
generated from the cross-channel σ bound state pole, if
the residue of the σ pole is positive [65], which is always
the case in practice, the sign of the partial wave S-matrix
immediately above sL on the real axis can be proved to be
negative (opposite to the sign of the residue). If mπ is not
large enough such that VS II is still on the real axis, the S
matrix below threshold between sL and the σ pole should
have two zero points as shown in the middle graph of
Fig. 3. The two zeros of S matrix mean that besides VS II
generated from the original σ poles another virtual state
pole VS III is generated from the branch point of the left-
hand cut [67]. As the pion mass increases further, the S
matrix between the branch point and the bound state
becomes smaller such that VS II and VS III move toward
each other, and then they hit each other at some point and
move into the complex plane, becoming a new resonance.
The final situation is illustrated in the right graph of Fig. 3
and is what is found at mπ ¼ 391 MeV. Admittedly, both
the above argument and the one in Ref. [57] can only
ensure the existence of VS III when there is a σ bound state.
However as pointed out above, the situation is a little

different in the N=D modified OðNÞ model, where the
additional virtual state pole, VS III, is generated before the
σ becomes a bound state (see the left graph of Fig. 3), i.e.
without the left-hand cut generated by the σ-bound-state
exchange in the crossed channels. The origin of this VS III
state is found to be related with the interplay of Adler zero
and the left-hand cut. Asmπ increases, we found that the real
Adler zero, moving toward the left-hand cut, will hit the
branch point sL ¼ 0 and go into the complex plane,
becoming a pair of conjugate zeros. Remarkably, complex
Adler zeros at mπ ∼ 391 MeV were first found in Ref. [57]
and real Adler zero cannot be found in Ref. [58] for mπ ∼
283 MeV, which may indicate that the above behavior of the

FIG. 2. The pole trajectories for the N=D modified OðNÞ
model. The left-hand cut branch point extends to sL ¼ 4m2

π −m2
σ

after the virtual state pole VS I moves across threshold to the
physical Riemann sheet, turning into a bound state. Qualitatively,
the N=D modified OðNÞ model reproduces the picture derived
from K-matrix [49,51] and Roy-equation [57,58] analyses of the
lattice data.

REVISITING OðNÞ σ MODEL AT UNPHYSICAL PION MASSES … PHYS. REV. D 109, 094026 (2024)

094026-7



Adler zero could be general. Then, it is straightforward to
prove that VS III is generated when Adler zero passes sL
as follows. The partial wave S matrix is defined as
SðsÞ ¼ 1þ 2iρðsÞT ðsÞ, thus SðsÞ → −signðT ðsÞÞ∞ when
s → sL þ 0þ, as long as lims→sLþ0þ T ðsÞ ≠ 0. [68] Then the
Adler zero, i.e. the simple zero point of T ðsÞ, passing sL,
causes a sign change of T ðsÞ from negative to positive
and hence also a sign change of SðsÞ, at s → sL þ 0þ.
This phenomenon has to occur before the σ turns into
a bound state, since according to the argument of the
previous paragraph, the sign of S matrix close to the branch
point cannot be flipped when σ remains a bound state.
Considering that the S matrix equals to 1 both at the
threshold and at the Adler zero, there can only be even
number of S-matrix zeros between these two points. Thus
before the Adler zero passes sL, if there are two virtual
states, i.e. VS I and II, generated after the σ resonance poles
hit the real axis, they must both be within that region.
For smaller mπ values, if there is no VS III and the Adler
zero has not hit the left-hand cut branch point yet, thus SðsÞ
is zero-free between the Adler zero and sL. Then SðsÞ has
to be positive on that interval. When Adler zero moves
through the branch point, it causes the sign of Smatrix near
the left-hand cut changing from positive to negative. This
sign flip of SðsÞ in the vicinity of sL indicates the generation
of a S-matrix zero point from the branch point of the left-
hand cut as shown in the left graph in Fig. 3, which exactly
results in the appearance of VS III. As the pion mass grows
further, the situation is similar to the description in the
previous paragraph where VS I moves to the first sheet
becoming a bound state, and VS II hit VS III then both
moving into the complex plane. Thus, the existence of VS
III and hence the subthreshold poles at large pion mass, e.g.
mπ ∼ 391 MeV, is actually the combined result of unitarity,
crossing symmetry, Adler zero (which is a significant
feature for low energy chiral dynamics) and the analyticity
of the S matrix in this region.

The N=D modified OðNÞ model reproduces the picture
derived from Roy-equation analyses, which demonstrates
that the σ particle in theOðNÞmodel really can represent, at
the qualitative level, the f0 state extracted by Roy equation
from the lattice data. Conversely, this also means that the
lowest f0 state in the low energy ππ scattering really plays
the similar role of the σ inOðNÞ linear σ model—providing
the vacuum expectation value for spontaneous breaking of
chiral symmetry.

IV. σ POLE TRAJECTORY WITH TEMPERATURE
FOR DIFFERENT mπ

It is also instructive to look at the σ pole trajectory in a
finite temperature environment. It is well known that in the
chiral limit, i.e., when the pion is massless at zero temper-
ature, under high temperature the system goes through a
phase transition from the chiral symmetry broken phase
to the chiral symmetric phase at a critical temperature Tc
[69–72] (e.g. for OðNÞ model without explicit symmetry
breaking [73,74], Tc ¼

ffiffiffiffiffiffiffiffiffiffiffi
12=N

p
fπ ≃ 160 MeV, which can

be easily read out in Fig. 4). One would expect that above
the phase transition temperature the massless pion gets
massive and the σ particle would be degenerate with pions.
With explicit chiral symmetry breaking where the pion
has a mass at zero temperature, there is no explicit phase
transition point. But with temperature going higher and
higher, the system asymptotically approaches the chiral
symmetric phase, where the mass of the sigma tends to the
pion mass. Notice that this whole picture cannot be
explicitly realized in χPT, since it is constructed intrinsi-
cally in the broken phase. This means that χPT is valid
only for an energy or temperature far below the chiral
symmetry breaking scale, which is determined by the VEV
of the scalar field or q̄q. Under each of the circumstances,
(a) the VEV approaches zero, or (b) the energy scale or
(c) the temperature becomes comparable with or goes

FIG. 3. Blue solid line: physical-sheet S matrix below threshold obtained in the N=D modified OðNÞ model. Blue dashed line:
position of the σ bound state. Red dashed line: branch point of the left-hand cut (sL ¼ 4m2

π −m2
σ). The left graph (mπ ¼ 207 MeV): two

virtual states in the near threshold region and one additional virtual state pole generated close to the left-hand cut. The middle graph
(mπ ¼ 283 MeV): one bound state with two virtual states. The right graph (mπ ¼ 391 MeV): two virtual state poles have become a pair
of resonance poles.
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beyond the chiral symmetry breaking scale, the whole
theory breaks down. For example, in Refs. [34,36], the σ
pole was found to be still in the complex plane of the
second Riemann sheet around T ¼ 200 MeV, which seems
to be hopeless to restore the Oð4Þ symmetry in χPT
around Tc.
The above picture can be easily seen in theOðNÞ linear σ

model. The leading order effective potential at finite
temperature T can be obtained with imaginary-time for-
malism [73–76] by Wick rotation to Euclidean space and
substituting the momentum integral with a sum over
Matsubara frequencies ωn ¼ 2πnT, i.e.

R
d4k
ð2πÞ4 fðk0;kÞ →

iT
P

n

R
d3k
ð2πÞ3 fðk0 ¼ iωn;kÞ (see, e.g. Ref. [77] for

details). The renormalization condition is chosen the same
as the T ¼ 0 case. Then by minimizing the effective
potential, we can obtain the gap equations for v and m2

π

as functions of temperature [74]:

v2ðTÞ ¼ f2π þ
N

16π2

�
m2

π log
m2

π

M2
−m2

πðTÞ log
m2

πðTÞ
M2

�

− NAT≠0
�
m2

πðTÞ
�
; ð36Þ

α ¼ vðTÞm2
πðTÞ; ð37Þ

where vð0Þ ¼ fπ and mπð0Þ ¼ mπ are set to zero-temper-
ature values. The function AT≠0 is defined as the finite
temperature contribution to the tadpole integral encoun-
tered in the derivation of Eq. (7),

AT≠0ðm2
πðTÞÞ ¼

Z
∞

0

dk
2π2

k2nBðωkÞ
ωk

; ð38Þ

where β ¼ 1=T, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

πðTÞ
p

and nBðωkÞ ¼
ðeβωk − 1Þ−1 is the Bose-Einstein distribution. With different
values of mπð0Þ, denoting the magnitude of explicit break-
ing, the solutions of vðTÞ and mπðTÞ are shown in Fig. 4.
To study the spectrum at finite temperature in the center-

of-mass (CM) frame, the scattering amplitude is general-
ized to be the amputated four-point Green’s function with

the external momenta analytically continued back to on-
shell momenta in Minkowski space after the Matsubara
sum [36,78–80]. The leading 1=N order ππ scattering
amplitude with finite temperature can be expressed as

T T
00ðsÞ ¼ −

1

32π

s −m2
πðTÞ

ðs −m2
πðTÞÞBTðs;mπðTÞ;MÞ − v2ðTÞ=N ;

ð39Þ

where BTðs;mπðTÞ;MÞ, the finite temperature version of
Bðs;mπ;MÞ defined in Eq. (14), can be obtained by
standard calculations,

BTðs;mπðTÞ;MÞ ¼ Bðs;mπðTÞ;MÞ þ BT≠0ðs;mπðTÞÞ;
ð40Þ

BT≠0ðs;mπðTÞÞ ¼
Z

∞

0

dkk2

8π2ω2
k

nBðωkÞ

×

�
1

Eþ 2ωk
−

1

E − 2ωk

�
; ð41Þ

with BT≠0 evaluated in the CM frame and s ¼ E2. The σ
resonance pole can be obtained from the zero point of the
denominator of T T

00 on the second Riemann sheet. The
mass and width for the σ pole with varying temperature
and with mπð0Þ ¼ 200, 139, and 80 MeV respectively are
illustrated in Fig. 5, in which mσ and Γσ are also compared
to the behavior ofmπ at finite temperature for each case. As
temperature increases, σ resonance firstly becomes even
broader due to the growth in phase space caused by the
Bose-Einstein distribution nBðωkÞ, and then Γσ drops
rapidly to zero when σ turns into a pair of virtual state
poles. For the present purpose, to demonstrate the asymp-
totic degeneration of σ and π’s, we only keep track of the
virtual state pole, VS I (named in the same way as the zero-
temperature case), which moves up through threshold to the
physical sheet and becomes a σ bound state at around Tc.
Then mσ changes gradually and moves closer to mπðTÞ
when T > Tc. Furthermore, mσ and mπðTÞ asymptotically

FIG. 4. vðTÞ (left) and mπðTÞ (right). The three cases are identified by mπð0Þ ¼ 139, 80, and 0 MeV. In the chiral limit, there is a
second-order phase transition with the critical temperature Tc ≃ 160 MeV. With a nonzero mπð0Þ, there is no explicit transition point.
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tends to converge at T ≫ Tc, which is as expected by the
restoration of chiral symmetry at high temperature limit.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the OðNÞ linear σ
model with varying mπ to reproduce the subthreshold pole
structure of the IJ ¼ 00 channel ππ scattering amplitude,
recently found using the Roy equation in analyzing the
lattice phase shifts at several unphysical mπ values. By
using the N=D method to partially recover crossing
symmetry of the partial wave amplitude in the OðNÞ
model, the Roy-equation analysis results can be roughly
reproduced. The pole trajectory illustrates the picture that
with large mπ , as the Adler zero goes into the complex
plane before σ becomes a bound state, besides the virtual
state accompanying the σ bound state, another virtual state
pole will originate from the left-hand cut. As mπ grows
larger, the two virtual state poles hit each other and
scatter into the complex plane and become a pair of
resonance poles.
The consistency of the OðNÞ model with the Roy-

equation analyses reveals that the lowest f0 state from
the Roy-equation analyses of the lattice data can be fairly
described by the σ field in the OðNÞ linear σ model, thus
plays the same role in the chiral symmetry breaking as the σ
particle in OðNÞ model.
The σ pole behavior with varying temperature is also

discussed in the OðNÞ model with different pion masses. It
is shown that with higher temperature the sigma resonance
pole also moves to the real axis and becomes a pair of
virtual states. Then the upper one moves across threshold to
the first Riemann sheet and turns into a bound state. With
much higher temperatures, the mass of the σ and pion
would tend to come closer and closer, which is as expected
by chiral symmetry restoration in the high tempera-
ture limit.
It is worth mentioning that the OðNÞ model itself suffers

from the vacuum stability problem. In short, the original
OðNÞ model effective potential is obtained by solving the

auxiliary field χðϕ2Þ as a function of ϕa from one of the gap
equations ∂V

∂χ ¼ 0, which has two branches of solutions:
one with ordinary chiral symmetry breaking vacuum (i.e.
mπ → 0 when α → 0), the other with a larger pion mass
which restores chiral symmetry (v ¼ 0 but mπ ≠ 0) in the
α → 0 limit [39,81–85]. In perturbation theory, VðϕÞ is
expanded around the vacuum which is a stationary point of
the effective potential. Whether it is a local minimum, local
maximum, or saddle point can be determined by the
Hessian matrix of VðϕÞ. After a careful investigation we
found that the vacuum chosen at v ¼ fπ with χðv2Þ ¼ m2

π

remains a local minimum on the first branch when
mπ < M=

ffiffiffi
e

p
. However for larger pion mass, the stable

minimum exists only on the second branch. This is a
warning that when mπ gets large, the vacuum of the OðNÞ
model becomes unstable—a phenomenon not known in our
knowledge of QCD [86]. A similar problem also happens at
high temperature: when T ≫ Tc, the effective potential no
longer provides a local minimum on its first branch.
Instead, the local minimum will move to the second branch
and become a saddle point. In spite of these deficiencies,
we insist on the opinion that the linear σ model on the first
branch provides the correct picture for describing low
energy QCD, since high dimensional terms and other
resonance terms, missed in the present discussion based
on the toy linear sigma model may alleviate the vacuum
stability problem. After all, it is worthwhile to look at the
mπ dependence of the effective potential which is not
discussed in the literature yet, to the best of our knowledge.
We will present the details of these discussions elsewhere.
Another direction to be explored is to look at the

behavior of theN�ð920Þ recently found in the πN scattering
from the Roy-equation analysis [87–89] under different
pion masses or temperatures. The role N�ð920Þ plays in the
πN scattering is in some sense similar to the σ particle in ππ
scattering. If it shares similar properties at higher temper-
atures, one would expect that N�ð920Þ would become a
bound state and the parity partner of the nucleon, and thus
may play an important role in physics.

FIG. 5. The mass and width of σ pole with varying temperature compared with mπðTÞ. From left to right, mπð0Þ ¼ 200, 139, and
80 MeV respectively. The lower virtual state pole VS II is not shown above.
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[1] M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705
(1960).

[2] M.M. Islam and R. Pinon, Phys. Rev. Lett. 12, 310 (1964).
[3] S. H. Patil, Phys. Rev. Lett. 13, 261 (1964).
[4] V. Hagopian, W. Selove, J. Alitti, and J. P. Baton, Phys. Rev.

145, 1128 (1966).
[5] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969).
[6] C. G. Callan, Jr., S. R. Coleman, J. Wess, and B. Zumino,

Phys. Rev. 177, 2247 (1969).
[7] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).
[8] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[9] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys.

B321, 311 (1989).
[10] J. F. Donoghue, C. Ramirez, and G. Valencia, Phys. Rev. D

39, 1947 (1989).
[11] Z. H. Guo, J. J. Sanz Cillero, and H. Q. Zheng, J. High

Energy Phys. 06 (2007) 030.
[12] Z. H. Guo, J. J. Sanz-Cillero, and H. Q. Zheng, Phys. Lett. B

661, 342 (2008).
[13] J. R. Pelaez, Mod. Phys. Lett. A 19, 2879 (2004).
[14] A. Gomez Nicola and J. R. Pelaez, Phys. Rev. D 65, 054009

(2002).
[15] G.-Y. Qin, W. Z. Deng, Z. Xiao, and H. Q. Zheng, Phys.

Lett. B 542, 89 (2002).
[16] D.-L. Yao, L.-Y. Dai, H.-Q. Zheng, and Z.-Y. Zhou, Rep.

Prog. Phys. 84, 076201 (2021).
[17] Z. Xiao and H. Q. Zheng, Nucl. Phys. A695, 273 (2001).
[18] H. Q. Zheng, Z. Y. Zhou, G. Y. Qin, Z. Xiao, J. J. Wang, and

N. Wu, Nucl. Phys. A733, 235 (2004).
[19] Z. Y. Zhou, G. Y. Qin, P. Zhang, Z. Xiao, H. Q. Zheng, and

N. Wu, J. High Energy Phys. 02 (2005) 043.
[20] H. Q. Zheng, Z. Y. Zhou, G. Y. Qin, and Z. Xiao, AIP Conf.

Proc. 717, 322 (2004).
[21] J.-j. Wang, Z. Y. Zhou, and H. Q. Zheng, J. High Energy

Phys. 12 (2005) 019.
[22] Z. Y. Zhou and H. Q. Zheng, Nucl. Phys. A775, 212 (2006).
[23] S. M. Roy, Phys. Lett. B 36, 353 (1971).
[24] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys.

B603, 125 (2001).
[25] B. Ananthanarayan, G. Colangelo, J. Gasser, and H.

Leutwyler, Phys. Rep. 353, 207 (2001).
[26] I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett.

96, 132001 (2006).
[27] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de

Elvira, and F. J. Yndurain, Phys. Rev. D 83, 074004 (2011).
[28] G. Mennessier, S. Narison, and W. Ochs, Phys. Lett. B 665,

205 (2008).

[29] G. Mennessier, S. Narison, and X. G. Wang, Phys. Lett. B
688, 59 (2010).

[30] Z. X. Sun, L. Y. Xiao, Z. Xiao, and H. Q. Zheng, Mod. Phys.
Lett. A 22, 711 (2007).

[31] S. Weinberg, Phys. Rev. Lett. 110, 261601 (2013).
[32] J. Gasser and H. Leutwyler, Phys. Lett. B 188, 477 (1987).
[33] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989).
[34] S. Cortés, A. Gómez Nicola, and J. Morales, Phys. Rev. D

93, 036001 (2016).
[35] A. Gomez Nicola and J. Ruiz de Elvira, Phys. Rev. D 97,

074016 (2018).
[36] R. Gao, Z.-H. Guo, and J.-Y. Pang, Phys. Rev. D 100,

114028 (2019).
[37] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[38] H. J. Schnitzer, Phys. Rev. D 10, 1800 (1974).
[39] S. R. Coleman, R. Jackiw, and H. D. Politzer, Phys. Rev. D

10, 2491 (1974).
[40] Z.-H. Guo, L. Y. Xiao, and H. Q. Zheng, Int. J. Mod. Phys.

A 22, 4603 (2007).
[41] M. Luscher, Commun. Math. Phys. 105, 153 (1986).
[42] M. Luscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
[43] M. Luscher, Nucl. Phys. B354, 531 (1991).
[44] Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, and A.

Ukawa, Phys. Rev. Lett. 71, 2387 (1993).
[45] S. He, X. Feng, and C. Liu, J. High Energy Phys. 07 (2005)

011.
[46] N. Mathur, A. Alexandru, Y. Chen, S. J. Dong, T. Draper, I.

Horvath, F. X. Lee, K. F. Liu, S. Tamhankar, and J. B.
Zhang, Phys. Rev. D 76, 114505 (2007).

[47] X. Feng, K. Jansen, and D. B. Renner, Phys. Lett. B 684,
268 (2010).

[48] Z. Fu, Phys. Rev. D 85, 014506 (2012).
[49] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson,

Phys. Rev. Lett. 118, 022002 (2017).
[50] H.-W. Lin et al. (Hadron Spectrum Collaboration), Phys.

Rev. D 79, 034502 (2009).
[51] A. Rodas, J. J. Dudek, and R. G. Edwards (Hadron Spec-

trum Collaboration), Phys. Rev. D 108, 034513 (2023).
[52] C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Rev. Lett. 100,

152001 (2008).
[53] J. R. Pelaez and G. Rios, Phys. Rev. D 82, 114002 (2010).
[54] C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, 375

(2014).
[55] X.-L. Gao, Z.-H. Guo, Z. Xiao, and Z.-Y. Zhou, Phys. Rev.

D 105, 094002 (2022).
[56] X.-L. Gao, Z.-H. Guo, Z. Xiao, and Z.-Y. Zhou, Phys. Rev.

D 107, 058502 (2023).
[57] X.-H. Cao, Q.-Z. Li, Z.-H. Guo, and H.-Q. Zheng, Phys.

Rev. D 108, 034009 (2023).

REVISITING OðNÞ σ MODEL AT UNPHYSICAL PION MASSES … PHYS. REV. D 109, 094026 (2024)

094026-11

https://doi.org/10.1007/BF02859738
https://doi.org/10.1007/BF02859738
https://doi.org/10.1103/PhysRevLett.12.310
https://doi.org/10.1103/PhysRevLett.13.261
https://doi.org/10.1103/PhysRev.145.1128
https://doi.org/10.1103/PhysRev.145.1128
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2247
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1103/PhysRevD.39.1947
https://doi.org/10.1103/PhysRevD.39.1947
https://doi.org/10.1088/1126-6708/2007/06/030
https://doi.org/10.1088/1126-6708/2007/06/030
https://doi.org/10.1016/j.physletb.2008.01.073
https://doi.org/10.1016/j.physletb.2008.01.073
https://doi.org/10.1142/S0217732304016160
https://doi.org/10.1103/PhysRevD.65.054009
https://doi.org/10.1103/PhysRevD.65.054009
https://doi.org/10.1016/S0370-2693(02)02312-2
https://doi.org/10.1016/S0370-2693(02)02312-2
https://doi.org/10.1088/1361-6633/abfa6f
https://doi.org/10.1088/1361-6633/abfa6f
https://doi.org/10.1016/S0375-9474(01)01100-9
https://doi.org/10.1016/j.nuclphysa.2003.12.021
https://doi.org/10.1088/1126-6708/2005/02/043
https://doi.org/10.1063/1.1799725
https://doi.org/10.1063/1.1799725
https://doi.org/10.1088/1126-6708/2005/12/019
https://doi.org/10.1088/1126-6708/2005/12/019
https://doi.org/10.1016/j.nuclphysa.2006.06.170
https://doi.org/10.1016/0370-2693(71)90724-6
https://doi.org/10.1016/S0550-3213(01)00147-X
https://doi.org/10.1016/S0550-3213(01)00147-X
https://doi.org/10.1016/S0370-1573(01)00009-6
https://doi.org/10.1103/PhysRevLett.96.132001
https://doi.org/10.1103/PhysRevLett.96.132001
https://doi.org/10.1103/PhysRevD.83.074004
https://doi.org/10.1016/j.physletb.2008.06.018
https://doi.org/10.1016/j.physletb.2008.06.018
https://doi.org/10.1016/j.physletb.2010.03.031
https://doi.org/10.1016/j.physletb.2010.03.031
https://doi.org/10.1142/S0217732307023304
https://doi.org/10.1142/S0217732307023304
https://doi.org/10.1103/PhysRevLett.110.261601
https://doi.org/10.1016/0370-2693(87)91652-2
https://doi.org/10.1016/0550-3213(89)90349-0
https://doi.org/10.1103/PhysRevD.93.036001
https://doi.org/10.1103/PhysRevD.93.036001
https://doi.org/10.1103/PhysRevD.97.074016
https://doi.org/10.1103/PhysRevD.97.074016
https://doi.org/10.1103/PhysRevD.100.114028
https://doi.org/10.1103/PhysRevD.100.114028
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/PhysRevD.10.1800
https://doi.org/10.1103/PhysRevD.10.2491
https://doi.org/10.1103/PhysRevD.10.2491
https://doi.org/10.1142/S0217751X0703710X
https://doi.org/10.1142/S0217751X0703710X
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1103/PhysRevLett.71.2387
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1103/PhysRevD.76.114505
https://doi.org/10.1016/j.physletb.2010.01.018
https://doi.org/10.1016/j.physletb.2010.01.018
https://doi.org/10.1103/PhysRevD.85.014506
https://doi.org/10.1103/PhysRevLett.118.022002
https://doi.org/10.1103/PhysRevD.79.034502
https://doi.org/10.1103/PhysRevD.79.034502
https://doi.org/10.1103/PhysRevD.108.034513
https://doi.org/10.1103/PhysRevLett.100.152001
https://doi.org/10.1103/PhysRevLett.100.152001
https://doi.org/10.1103/PhysRevD.82.114002
https://doi.org/10.1016/j.physletb.2014.11.011
https://doi.org/10.1016/j.physletb.2014.11.011
https://doi.org/10.1103/PhysRevD.105.094002
https://doi.org/10.1103/PhysRevD.105.094002
https://doi.org/10.1103/PhysRevD.107.058502
https://doi.org/10.1103/PhysRevD.107.058502
https://doi.org/10.1103/PhysRevD.108.034009
https://doi.org/10.1103/PhysRevD.108.034009


[58] A. Rodas, J. J. Dudek, and R. G. Edwards (Hadron Spec-
trum Collaboration), Phys. Rev. D 109, 034513 (2024).

[59] R. S. Chivukula and M. Golden, Phys. Lett. B 267, 233
(1991).

[60] S. L. Adler, Phys. Rev. 137, B1022 (1965).
[61] A. Gomez Nicola, J. R. Pelaez, and G. Rios, Phys. Rev. D

77, 056006 (2008).
[62] G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
[63] L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,

453 (1956).
[64] If m2

σ < 3m2
π such that sA ¼ m2

π is located in the left-hand
cut region, then T 00ðsAÞ is replaced by ReT 00ðsAÞ.

[65] In the nonrelativistic scattering theory, the residual of the
scattering amplitude is related to −γ2 for s wave, where
γ ∈R is defined using the asymptotic behavior of the wave

function ηðrÞ⟶r→∞
γe−αr [66], thus the residue for the S

matrix at the σ bound state is positive. In relativistic
quantum field theory, the positivity of the residue follows
from unitarity.

[66] J. R. Taylor, Scattering Theory: The Quantum Theory
of Nonrelativistic Collisions (John Wiley & Sons, Inc.,
New York, 1972).

[67] The second sheet S-matrix is the inverse of the one defined
on the physical sheet, owing to unitarity and analyticity.

[68] The situation here is similar to but much more complicated
than that of physical mπ [19].

[69] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
[70] A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
[71] A. Bazavov et al. (HotQCD Collaboration), Phys. Lett. B

795, 15 (2019).
[72] H. T. Ding et al. (HotQCD Collaboration), Phys. Rev. Lett.

123, 062002 (2019).

[73] A. Bochkarev and J. I. Kapusta, Phys. Rev. D 54, 4066
(1996).

[74] J. O. Andersen, D. Boer, and H. J. Warringa, Phys. Rev. D
70, 116007 (2004).

[75] H. Meyers-Ortmanns, H. J. Pirner, and B. J. Schaefer, Phys.
Lett. B 311, 213 (1993).

[76] H. Meyer-Ortmanns, Rev. Mod. Phys. 68, 473 (1996).
[77] M. L. Bellac, Thermal Field Theory, Cambridge Mono-

graphs on Mathematical Physics (Cambridge University
Press, Cambridge, England, 2011).

[78] E. Quack, P. Zhuang, Y. Kalinovsky, S. P. Klevansky, and J.
Hufner, Phys. Lett. B 348, 1 (1995).

[79] N. Kaiser, Phys. Rev. C 59, 2945 (1999).
[80] A. Gomez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez,

Phys. Lett. B 550, 55 (2002).
[81] M. Kobayashi and T. Kugo, Prog. Theor. Phys. 54, 1537

(1975).
[82] L. F. Abbott, J. S. Kang, and H. J. Schnitzer, Phys. Rev. D

13, 2212 (1976).
[83] A. D. Linde, Nucl. Phys. B125, 369 (1977).
[84] W. A. Bardeen and M. Moshe, Phys. Rev. D 28, 1372

(1983).
[85] W. A. Bardeen and M.Moshe, Phys. Rev. D 34, 1229 (1986).
[86] The situation of χPT is even worse due to the Oströgradski

instability, such that the χPT Hamiltonian is unbounded
from below.

[87] X.-H. Cao, Q.-Z. Li, and H.-Q. Zheng, J. High Energy Phys.
12 (2022) 073.

[88] Y.-F. Wang, D.-L. Yao, and H.-Q. Zheng, Eur. Phys. J. C 78,
543 (2018).

[89] M. Hoferichter, J. R. de Elvira, B. Kubis, and U.-G.
Meißner, arXiv:2312.15015.

LYU, LI, XIAO, and ZHENG PHYS. REV. D 109, 094026 (2024)

094026-12

https://doi.org/10.1103/PhysRevD.109.034513
https://doi.org/10.1016/0370-2693(91)91253-R
https://doi.org/10.1016/0370-2693(91)91253-R
https://doi.org/10.1103/PhysRev.137.B1022
https://doi.org/10.1103/PhysRevD.77.056006
https://doi.org/10.1103/PhysRevD.77.056006
https://doi.org/10.1103/PhysRev.119.467
https://doi.org/10.1103/PhysRev.101.453
https://doi.org/10.1103/PhysRev.101.453
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevD.54.4066
https://doi.org/10.1103/PhysRevD.54.4066
https://doi.org/10.1103/PhysRevD.70.116007
https://doi.org/10.1103/PhysRevD.70.116007
https://doi.org/10.1016/0370-2693(93)90557-X
https://doi.org/10.1016/0370-2693(93)90557-X
https://doi.org/10.1103/RevModPhys.68.473
https://doi.org/10.1016/0370-2693(95)00128-8
https://doi.org/10.1103/PhysRevC.59.2945
https://doi.org/10.1016/S0370-2693(02)02959-3
https://doi.org/10.1143/PTP.54.1537
https://doi.org/10.1143/PTP.54.1537
https://doi.org/10.1103/PhysRevD.13.2212
https://doi.org/10.1103/PhysRevD.13.2212
https://doi.org/10.1016/0550-3213(77)90112-2
https://doi.org/10.1103/PhysRevD.28.1372
https://doi.org/10.1103/PhysRevD.28.1372
https://doi.org/10.1103/PhysRevD.34.1229
https://doi.org/10.1007/JHEP12(2022)073
https://doi.org/10.1007/JHEP12(2022)073
https://doi.org/10.1140/epjc/s10052-018-6024-5
https://doi.org/10.1140/epjc/s10052-018-6024-5
https://arXiv.org/abs/2312.15015

