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We compute the two-loop helicity amplitudes for the scattering of five gluons, including all contributions
beyond the leading-color approximation. The analytic expressions are represented as linear combinations
of transcendental functions with rational coefficients, which we reconstruct from finite-field samples
obtained with the numerical unitarity method. Guided by the requirement of removing unphysical
singularities, we find a remarkably compact generating set of rational coefficients, which we display
entirely in the manuscript. We implement our results in a public code, which provides efficient and reliable
numerical evaluations for phenomenological applications.
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I. INTRODUCTION

The long-term perspective of the Large Hadron Collider
(LHC) at CERN serves as a compelling reason to explore
new ways to advance our understanding of high-energy
particle collisions beyond the level of detail and precision
currently attainable.
Among the central processes under study through hadron

collisions is the production of multiple jets. Notably, the
recent impressive measurements of the strong coupling
constant at high momentum transfer [1–3] crucially depend
upon the cutting-edge next-to-next-to-leading order (NNLO)
QCD predictions for three-jet production [1] (see also [4]).
These predictions relied upon the leading-color approxima-
tion for double-virtual corrections [5], contributing on
average about 10% [1]. This highlights the potential impor-
tance of including subleading-color effects. Moreover,
the observation that the subleading-color effects can be
enhanced in certain differential observables [6] underscores
the necessity to study three-jet production in full color.
Looking toward the future, five-parton scattering at two

loops is also a crucial ingredient in advancing toward the
N3LO precision frontier for dijet production in hadron
collisions. A related intriguing application lies in the

explicit examination of the breakdown of collinear factori-
zation in QCD, which may occur at the third order in
perturbation theory when subleading color effects are taken
into account [7–9].
In this letter we focus on the five-gluon channel and

derive compact analytic expressions for all two-loop five-
gluon helicity amplitudes, including for the first time all
contributions beyond the leading-color approximation. The
remaining quark channels will be presented in the followup
publication [10].
Five-point two-loop computations are notoriously diffi-

cult due to the unforgiving admixture of algebraic, analytic,
and combinatorial complexity. This challenge is particu-
larly pronounced when contributions from nonplanar
diagrams are included. Nevertheless, thanks to advance-
ments in the understanding of the relevant Feynman
integrals [11–15], and analytic reconstruction techniques
[16–28], recent years have witnessed remarkable progress
in computations of two-loop five-point massless ampli-
tudes. In fact, all massless two-loop amplitudes with any
combination of photons and partons in the final state are
already known analytically in full color [22,29,30], with the
exception of the five-parton process, which until now was
known only in the leading-color approximation [5].
In this work we build upon this remarkable progress

and, in particular, leverage the computational framework
established in Refs. [31–35]. We further delve into a
limiting aspect of the analytic reconstruction methods
in amplitude computations. Conventional approaches, in
essence, employ generic rational ansätze that involve
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numerous unphysical singularities and redundant parame-
ters. In stark contrast amplitudes often assume concise
representations in partial fractioned form. This leads to the
intriguing question: can analytic reconstruction directly
yield the compact results? While we delay a more thorough
discussion of this question to future work [36], we present
evidence that a positive outcome can be achieved by
leveraging information about the functions’ singularities
and residues. In fact, considering two-loop five-gluon
scattering in full color, we obtain a representation that
seamlessly fits into the Appendix of this paper. With the
exception of special helicity configurations [37–39], this
level of simplicity has been notably elusive for five-point
two-loop scattering.
Finally, we provide a C++ library for fast numerical

evaluation of the NNLO hard function that is ready for use
in cross-section computations. Together with the upcoming
results for the quark channels that we will make available
in the followup publication [10], these results will provide
crucial input for NNLO cross-section computations.

II. NOTATION AND CONVENTIONS

We consider theOα2s corrections to the scattering of five-
gluons. This requires the computation of two-loop five-
gluon scattering amplitudes, which we obtain omitting the
contributions from the massive top quark. Furthermore, we
treat all quarks as massless states. The contributing partonic
process is

g
�
−p−h1

1

�þ g
�
−p−h2

2

�
→ g

�
ph3
3

�þ g
�
ph4
4

�þ g
�
ph5
5

�
: ð1Þ

Here pi and hi denote the momentum and the helicity of
the ith particle, respectively. Unless stated otherwise,
throughout this paper, momenta and helicity labels are
understood in the all-outgoing convention. Representative
Feynman diagrams for the two-loop contributions are
shown in Fig. 1.

A. Kinematics

The process involves five massless particles. The
underlying scattering kinematic can therefore be specified
by five Mandelstam invariants fs12; s23; s34; s45; s15g,
as well as the parity-odd contraction of four momenta
tr5 ¼ trðγ5=p1=p2=p3=p4Þ.
To represent the dependence of scattering amplitudes on

the particles’ helicities we use two-component spinors, λαi
and λ̃α̇i , with i∈ f1;…; 5g. We define the invariant con-
tractions of spinors as

hiji ¼ λαi λj;α and ½ij� ¼ λ̃i;α̇λ̃
α̇
j ; ð2Þ

which are related to the Mandelstam invariants through
sij ¼ hiji½ji� (see e.g. [40] for matching conventions). We
will also use longer spinor contractions, in particular

hijj� kji� ¼ hiji½ji� � hiki½ki�: ð3Þ

Finally, we can express tr5 as a polynomial in spinor
brackets as1

tr5 ¼ ½12�h23i½34�h41i − h12i½23�h34i½41�: ð4Þ

A little-group transformation of the ith leg with helicity
hi reads ðλi; λ̃iÞ → ðziλi; λ̃i=ziÞ. Under this transformation,
the helicity amplitudes transform as A → z−2hii A. We refer
to the exponent of the zi as the little-group weight.

B. Color space

The external gluons are in the adjoint representation of
SUðNcÞ and carry indices a⃗ ¼ fa1;…; a5g which run over
N2

c − 1 values. We explicitly represent the five-gluon
amplitudes in the color space through the trace basis as [41]

Aa⃗ ¼
X

σ ∈S5=Z5

σ
�
trð1; 2; 3; 4; 5ÞA1ð1; 2; 3; 4; 5Þ

�
þ

X
σ ∈ S5

Z2×Z3

σ
�
trð1; 2Þtrð3; 4; 5ÞA2ð1; 2; 3; 4; 5Þ

�
; ð5Þ

where trði1;…; inÞ ¼ trðTai1 � � �Tain Þ, and Tai are the
Hermitian and traceless generators of fundamental repre-
sentation of SUðNcÞ. The permutation σ ¼ fi1;…; i5g acts
on all external-particle labels as σðiÞ ¼ σi. The sums run
over all permutations that do not leave the respective traces
invariant. Thus, the first sum runs over 24 elements, while
the second one runs over 20 elements.
The generators Ta are normalized as,

trðTaTbÞ ¼ δab; ð6Þ
FIG. 1. Representative Feynman diagrams for two-loop five-
gluon amplitudes. Solid lines represent closed massless quark
loops.

1We note that tr5 in Ref. [5] differs by a minus sign compared
to this definition.
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and fulfill the commutator relations,

½Ta; Tb� ¼ ifabcTc; ð7Þ

ifabc ¼ trðTaTbTcÞ − trðTbTaTcÞ: ð8Þ

The amplitudes Ai admit an expansion in terms of the
bare QCD coupling constant α0s ¼ ðg0sÞ2=ð4πÞ,

Ai ¼ ðg0sÞ3
 X2

L¼0

�
α0s
2π

�
L

AðLÞ
i þOðα0sÞ3

!
ð9Þ

with L denoting the number of loops. In this work we
consider an arbitrary number of light quark flavors in the
loops that is denoted by Nf. The five-gluon amplitudes can
be further expanded in powers of Nc and Nf through two
loops as follows,

Að0Þ
1 ¼ Að0Þ;ð0;0Þ; Að0Þ

2 ¼ 0; ð10aÞ

Að1Þ
1 ¼ NcAð1Þ;ð1;0Þ þ NfAð1Þ;ð0;1Þ; ð10bÞ

Að1Þ
2 ¼ Að1Þ;ð0;0Þ; ð10cÞ

Að2Þ
1 ¼ N2

cAð2Þ;ð2;0Þ þ Að2Þ;ð0;0Þ þ NfNcAð2Þ;ð1;1Þ

þ Nf

Nc
Að2Þ;ð−1;1Þ þ N2

fA
ð2Þ;ð0;2Þ; ð10dÞ

Að2Þ
2 ¼ NcAð2Þ;ð1;0Þ þ NfAð2Þ;ð0;1Þ þ N2

f

Nc
Að2Þ;ð−1;2Þ: ð10eÞ

The coefficients AðLÞ;ðnc;nfÞ, which we call partial ampli-
tudes, are uniquely identified by the three integers L; nc; nf.
Therefore, to avoid clutter we omit the subscripts on the
right hand side of Eq. (10). In the limit of large number of
colors with Nf=Nc fixed only the partial amplitudes with
L ¼ nc þ nf contribute. These leading-color partial ampli-
tudes receive contributions only from planar diagrams [42]
and have been calculated in [24,43–46], while Að2Þ;ð1;0Þ and
Að2Þ;ð0;0Þ are known in the special all-plus helicity configu-
ration only [37–39]. The amplitudes Að2Þ;ð0;0Þ, Að2Þ;ð−1;1Þ,
Að2Þ;ð1;0Þ, Að2Þ;ð0;1Þ, Að2Þ;ð−1;2Þ receive contributions from
nonplanar diagrams and are the new result of this work.
We note that the amplitudes Að2Þ;ð−1;2Þ vanish for any
helicity assignments. For convenience we also recalculate
all previously known amplitudes in Eq. (10).

C. Renormalization

We regularize ultraviolet (UV) and infrared (IR) diver-
gences of loop amplitudes in the ’t Hooft–Veltman scheme
of dimensional regularization, setting the space-time
dimensions to D ¼ 4 − 2ϵ. The UV divergences are

removed by renormalization of the bare QCD coupling
in the MS scheme. To achieve this we perform the
following replacement in Eq. (9),

α0μ
2ϵ
0 Sϵ¼αsμ

2ϵ

�
1−

β0
2ϵ

αs
2π

þ
�
β20
4ϵ2

−
β1
8ϵ

��
αs
2π

�
2

þOðα3sÞ
�
;

ð11Þ

where Sϵ ¼ ð4πÞϵe−ϵγE , with γE ¼ −Γ0ð1Þ the Euler-
Mascheroni constant, and μ0; μ are regularization and
renormalization scale respectively. The QCD β-function
coefficients are

β0 ¼
11

3
Nc −

2

3
Nf; ð12aÞ

β1 ¼
34

3
N2

c −
13

3
NcNf þ

Nf

Nc
: ð12bÞ

The renormalized amplitudes are expanded through the
renormalized coupling as in Eq. (9).
The remaining infrared divergences can be extracted

through the universal factorization [47–50]:

R ¼ Zðϵ; μÞAþOϵ; ð13Þ

where the finite remainder R is obtained through the
application of the color-space operator Z. The latter is
obtained [49] from the path-ordered evolution

Z−1ðϵ; μÞ ¼ P exp

�Z
∞

μ

dμ0

μ0
Γðμ0Þ

�
; ð14Þ

of the anomalous dimension matrix

ΓðμÞ ¼ −
X
ði;jÞ

Ti · Tj
γcusp
2

ln

�
−
sij
μ2

− i0

�
þ 5γg; ð15Þ

where the sum runs over all pairs of external gluons, and
the color operators Ti act on the color representation of
the ith parton. For adjoint indices the action is given by
ðTa

i Þbc ¼ −ifabc. The anomalous dimensions γcusp and γg

can be found in [Ref. [51], Appendix A].2

After UV and IR renormalization of amplitudes through
Eqs. (11) and (13) we recover expansions of Eqs. (5), (9)
and (10) for the finite remainders R, and therefore obtain
partial finite remainders

R
ðLÞ;ðnc;nfÞ
h⃗

ði1;…; i5Þ; ð16Þ

2We rescale them by a factor of 2 per loop to match our
expansion in αs=2π in Eq. (9).
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which are the elementary building blocks that we focus on
in this work. It is worth noting that the finite remainders
contain the complete physical information about the under-
lying scattering process. In particular, any observable can
be calculated through finite remainders (see e.g. [52]),
which allows one to cancel much of the disruptions caused
by the use of dimensional regularization. Finite remainders
in a different IR renormalization scheme (with a different
operator Z) can be obtained by an additional finite
renormalization after Eq. (13). We elaborate on this in
the forthcoming publication [10].

D. Generating set of finite remainders

To calculate arbitrary observable quantities we must
know all partial remainders from Eq. (10) in all permuta-
tions in Eq. (5), with 25 helicity assignments for each of
them. Fortunately, the combinatorial complexity can be
sidestepped by mapping each partial helicity remainders
onto a small generating set.
First, it is well known that in the Yang-Mills theory

partial amplitudes (in the trace basis) satisfy additional
identities (see e.g. [53] for a systematic study, and [54] for
a recent review). We verified by a direct computation
that the relations between two-loop partial amplitudes
discussed in Ref. [53] hold both at the level of amplitudes
and finite remainders. They allow us to express Rð2Þ;ð0;0Þ

through sums over permutations of Rð2Þ;ð2;0Þ and Rð2Þ;ð1;0Þ
for each helicity assignment. Interestingly, we find no
linear relation among permutations of Rð2Þ;ð1;1Þ, Rð2Þ;ð0;1Þ

and Rð2Þ;ð−1;1Þ.
Next, we work out the generating set for each partial

remainder constructively by starting with the set of all
helicities and permutations, and partitioning it into the
orbits under the action of the group P ⊗ C ⊗ Σi, where P
and C are parity- and charge-conjugation respectively, and
Σi is the symmetry group of the corresponding color
structure in Eq. (5). We can then pick one representative
from each orbit, and obtain the complete set of remainders
by relabeling momenta and symmetries. Let us note, that
for the reasons that will become clear in Sec. III D, we do
not choose the identity permutation f1; 2; 3; 4; 5g for all our
representatives. Instead we prioritize to have uniform
spinor weight for each of the three helicity assignments
þþþþþ (all-plus), þþþþ − (single-minus), and
þþþ − − (MHV).
For the all-plus helicity configuration we have the

generating remainders

R1ð1þ; 2þ; 3þ; 4þ; 5þÞ; ð17aÞ

R2ð1þ; 2þ; 3þ; 4þ; 5þÞ: ð17bÞ

For the single-minus helicity configuration we have

R1ð1þ; 2þ; 3þ; 4þ; 5−Þ; ð18aÞ

R2ð1þ; 2þ; 3þ; 4þ; 5−Þ; ð18bÞ

R2ð1þ; 5−; 4þ; 3þ; 2þÞ: ð18cÞ

Finally, for the MHV configurations we have five generat-
ing remainders,

R1ð1þ; 2þ; 3þ; 4−; 5−Þ; ð19aÞ

R1ð1þ; 2þ; 4−; 3þ; 5−Þ; ð19bÞ

R2ð1þ; 2þ; 3þ; 4−; 5−Þ; ð19cÞ

R2ð1þ; 5−; 2þ; 3þ; 4−Þ; ð19dÞ

R2ð5−; 4−; 3þ; 2þ; 1þÞ: ð19eÞ

Here we suppress the labels L; nc; nf, and, for better
readability, we show the helicity labels as superscripts of
the momentum labels.

E. NNLO hard function

To calculate the double-virtual contribution to NNLO
QCD partonic cross sections one must square the helicity
finite remainder Rh⃗;a⃗ in Eq. (5) and perform summation
over color and helicity indices.
At leading order in αs we define the function

B ¼
X
h⃗;a⃗

���Að0Þ
h⃗;a⃗

���2 ¼ N3
cðN2

c − 1ÞB: ð20Þ

We then define the hard function H as

H ¼ 1

B

X
h⃗;a⃗

��Rh⃗;a⃗

��2; ð21Þ

which can be expanded perturbatively up to Oðα2sÞ as in
Eq. (9). Similar to Eq. (10), we can expand H in powers of
Nc and Nf. Through two loops we get

Hð0Þ ¼ 1; ð22aÞ

Hð1Þ ¼ NcHð1Þ;ð1;0Þ þ 1

Nc
Hð1Þ;ð−1;0Þ

þ NfHð1Þ;ð0;1Þ þ Nf

N2
c
Hð1Þ;ð−2;1Þ; ð22bÞ
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Hð2Þ ¼ N2
cHð2Þ;ð2;0Þ þHð2Þ;ð0;0Þ;

þ Nf

X
nc ∈ f1;−1;−3g

Nnc
c Hð2Þ;ðnc;1Þ;

þ N2
f

X
nc ∈ f0;−2;−4g

Nnc
c Hð2Þ;ðnc;2Þ: ð22cÞ

Here again only the functionsHðLÞ;ðnc;nfÞ with L ¼ nc þ nf
contribute in the leading-color approximation.
To perform the summations in Eq. (21) we use the maps

inverse to the ones that were used in the previous section to
construct the generating set of finite remainders. It is worth
noting that the polynomial expansion in Nc and Nf given
in Eq. (22) holds only when identities between partial
remainders are correctly taken into account.

III. ANALYTIC RECONSTRUCTION

We now discuss the computation of the finite remain-
ders (13). They can be represented as a linear combination
of transcendental integral functions hi and rational coef-
ficient functions ri,

R ¼
X
i

rihi: ð23Þ

For the integral functions hi, we employ the set of non-
planar pentagon functions from Ref. [15]. The rational
coefficient functions are the central result of this paper and
we obtain them via analytic reconstruction, i.e. we start
with an Ansatz for the rational coefficient functions ri and
determine its parameters from exact numerical evaluations
of the remainder over prime fields. The reconstruction cost
is dominated by the time of sampling the remainders. This
motivates us to search for a strategy to constrain the Ansatz
using physics arguments and reduce its free parameters. We
will now discuss the details of this computation.

A. Numerical sampling

For numerical amplitude evaluations in a finite field we
use the program CARAVEL [34], which implements the
multi-loop numerical unitarity method [31–33]. In this
approach amplitudes are reduced to a set of master integrals
by matching numerical evaluations of generalized unitarity
cuts to a parametrization of the loop integrands. For the
five-gluon process we use the recently obtained paramet-
rization [35], which we extend in loop-momentum degree
to match the corresponding dependence of the gluon cut
diagrams. Furthermore, we extended the set of planar
unitarity cuts to nonplanar diagrams which are required
for subleading-color partial amplitudes. We generated the
cut diagrams with qgraf [55] and arranged them into
a hierarchy of cuts with a private code. We matched the
cuts evaluated through color-ordered tree amplitudes to
the amplitude definitions in Sec. II B, by employing the

unitarity based color decomposition [56,57]. We extracted
the ϵ-dependence of cuts that originates from the state sums
in loops through the dimensional reduction method [58,59].
With these extensions CARAVEL now computes the

integral coefficients ri of five-gluon partial amplitudes
up to two loops, given a kinematic point and a choice of
polarization labels for the external gluons.
Analytic expressions for the coefficient functions ri

can then be reconstructed using multivariate functional
reconstruction techniques [16,17] (see also recent
Refs. [18–20,25]) based on Newton and Thiele’s interpo-
lation algorithms. However, our approach is in fact closer to
the Ansatz-based approach of Refs. [21,26]. This approach
constructs an Ansatz for the rational integral coefficients ri,
which is constrained by information from the neighborhood
of their singularities. Nevertheless, here we differ even from
this approach in that we use information about the residues
to build linear transformations of rational functions ri to
bases of functions r̃i with a simplified pole structure and
fewer Ansatz parameters. This basis change is determined
numerically and simplifies the subsequent Ansatz construc-
tion and parameter determination.
We will require two types of numerical evaluations for

the remainder functions:
(1) Random phase-space points: these are N randomly

generated phase-space points which we label by the
superscript n. We represent these points in terms of
sets of spinor variables,

		
λn1;…; λn5; λ̃

n
1;…; λ̃n5




n¼1;N: ð24Þ

They are subject to momentum conservationP
i λ

n
i λ̃

n
i ¼ 0.

(2) A family of (anti-)holomorphic slices: these are
Ñ < N holomorphic slices [23,35,60] associated
to a subset of the random phase-space points (24),

λñi ðtÞ ¼ λñi þ tcñi η
ñ; λ̃ñi ðtÞ ¼ λ̃ñi ;X5

i¼1

cñi λ̃
ñ
i ¼ 0: ð25Þ

Here the reference spinor ηñ is chosen randomly.
The label ñ runs over Ñ values. Similarly we will use
anti-holomorphic slices which are obtained from (25)
by swapping λñi ↔ λ̃ñi and ηñ → η̃ñ.

B. Coefficient-function basis

We now identify a basis of coefficient functions ri based
on a measure for the functions’ complexity. We start from
the general form of the rational coefficient functions in
spinor variables,
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ri ¼
N iðλ; λ̃ÞQ
jD

qij
j ðλ; λ̃Þ : ð26Þ

The denominator factors Dj are given by the symbol
alphabet with integer exponents qij [24]. Computing ri
amounts to determining the qij and all parameters in the
numerator polynomial N i. While it is straightforward to
determine qij (see below) it is nontrivial to determine N i

because of the typically large polynomial degree. Con-
sequently, a useful measure of complexity is the mass
dimension of N i, which is linked to the number of
parameters the polynomial depends on.
Simple dimensional analysis allows us to determine the

mass dimension and spinor weights of the numerators N i,
from those of the polynomials Dj, the data qij and the
overall mass dimension and spinor weights of the helicity
remainder. Consequently, we only need to determine the
exponents qij, which we compute following the univariate-
slice reconstruction [24] in spinor-helicity variables [60]
(see also Refs. [23,35]). Here the remainder functions are
reconstructed on a single holomorphic and a single anti-
holomorphic slice (25), and subsequently the denominators
are matched to products of the letter polynomials DjðtÞ.
This uniquely fixes the exponents qij for each function ri.
For the five-gluon finite remainders we observe that the

set of denominator factors contains the 35 elements,

D ¼ fhiji; ½ij�; hijjþ kjl�;…g ð27Þ

where the set runs over all independent permutations of the
spinor strings/brackets. We also note that no coefficient in
the finite remainder has a tr5 singularity. From the qij we
can immediately deduce the mass dimension of the
numerators N i.
Our next goal is to determine a minimal function basis

for the set of coefficient functions ri in order to reduce
the number of rational functions ri that must to be con-
structed [59]. To this end, we exploit the freedom in our
choice of basis functions and select a basis containing
numerators with the lowest mass dimensions. We express
the linear dependent ri through the basis as

ri ¼
X

j∈ basis

rjMji; ð28Þ

whereMij is a constant rectangular matrix. At this point we
do not have analytic expressions for the ri available and we
require a numerical method to identify linear dependence
of functions. This is achieved using a set of random
evaluations (24) [59,61], which allows to associate vectors
r⃗i of function values to each ri. A function basis is then
identified by identifying a basis in the vector space of
function values r⃗i ¼

P
j∈ basis r⃗jMji by linear algebra.

After this step, we arrive at the form of the remainder,

R ¼
X

j∈ basis;i

rjMjihi: ð29Þ

Obtaining the analytic form of the remainder now amounts
to computing the set frigi∈ basis.

C. Basis change

So far we have selected a convenient basis of functions
frigi∈ basis. Next, we will exploit universal properties of
the functions’ poles, namely correlations between residues,
to construct linear transformations to a simpler basis of
functions, which we will denote by r̃i. (“Simpler” again
refers to the r̃i functions having numerators with lower
mass dimension than the ones of the ri.) A basis change of
this type was used already some time ago in Ref. [24] and a
detailed discussion of the algorithm will be presented in the
forthcoming paper [36]. Here we summarize the main
steps. The reason that such linear combinations exist, stems
from the fact that many poles (at zeros of the Di) are
spurious and cancel in the remainders. (Examples of
spurious-pole denominators are spinor strings hijjþ kjl�,
as well as higher-order spinor products ½ij� and hiji which
do not contribute to factorization poles.) Such cancellations
require that the residues of distinct ri are linearly related;
only in this way they may cancel when multiplied with
(degenerate) transcendental functions hi evaluated on the
respective singular surfaces.
We now discuss the simplifying basis change from the

functions ri to r̃i for a given remainder. We start by defining
our requirement for a constant linear basis change Oij,

r̃i ¼
X

j∈ basis

Oijrj: ð30Þ

Our objective is to ensure that the mass dimension of all
new numerators Ñ i,

r̃i ¼
Ñ iðλ; λ̃ÞQ
jD

q̃ij
j ðλ; λ̃Þ

; ð31Þ

is lower than those in the original least common denom-
inator (LCD) form (26),

dimðÑ jÞ < dimðN iÞ i∈ basis ð32Þ

where dimðN iÞ denotes the mass dimension of numer-
ator N i.
The property we use is that the mass dimension is linked

to the exponents q̃ij. We are thus lead to consider the
residues of the coefficient functions on the zeros of the
denominator factors Dj. To this end we use a family of
holomorphic univariate slices (25) and obtain a univariate
representation of the coefficient functions r̃iðtÞ. Near a
single zero tk of one of the denominator factors
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DkðtkÞ ¼ 0; ð33Þ

we obtain a formal Laurent series

riðtÞ ¼
Xqik
m¼1

ekim
ðt − tkÞm

þO
�ðt − tkÞ0

�
; ð34Þ

with ekim being functions of the external kinematics. The ekim
will be referred to as codimension-one residues. To write
the above Eq. (34) in a more uniform way, we introduce the
maximal pole degree of a given factor Dk,

qk ¼ maxi∈ basis½qik�: ð35Þ

At the same time we introduce vanishing residues,

ekim ¼ 0 for qik < m ≤ qk; ð36Þ

and rewrite (34) as,

riðtÞ ¼
Xqk
m¼1

ekim
ðt − tkÞm

þOððt − tkÞ0Þ: ð37Þ

In this way the summation is independent of the residue
function and the degree of the pole is encoded in the
vanishing of residues.
Equipped with this notation, we now return to the

discussion of the constant transformation matrix Oij. We
will now constrain the matrix, such that some of the leading
residues vanish for the new basis r̃i. This is equivalent to
lowering the respective pole degrees q̃ij (and consequently
the numerators’mass dimensions), which is what we aimed
to achieve in the first place. The Laurent expansion of the
functions r̃i depends linearly on the data of the Laurent
expansion of ri,

r̃iðtÞ ¼
Xqk
m¼1

ẽkim
ðt − tkÞm

þO
�ðt − tkÞ0

�
; ð38Þ

ẽkim ¼
X

j∈ basis

Oijekjm: ð39Þ

Consequently, we can choose the basis changeOij in such a
way, that the leading residue vanishes, effectively reducing
the power of the leading pole,X

j∈ basis

Oijekjqk ¼ 0: ð40Þ

We find that the requirement for a good basis change is that
the rows of the matrix Oij are in the kernel of the leading
residue functions. Independently, we also have to ensure
that the basis change is invertible. Given this property, the
pole degrees of the r̃i are reduced.

Finally, we adjust the criterion for the fact that we do
not have analytic expressions for the residue functions
available. We follow the strategy of Refs. [59,61] (see also
Sec. III B). We repeat the above construction for D̃ holo-
morphic slices (25) (labeled by ñ) and obtain a represen-
tation of the residue functions ekim as vectors of their
function values

e⃗kim ¼ 	ekimðt1kÞ;…; ekim
�
tD̃k
�


: ð41Þ

The linear constraint for the basis change Oij is up-
graded to, X

j∈ basis

Oije⃗kjqk ¼ 0; ð42Þ

and relies solely on numerical input. The required number
D̃ of slices is given by the dimension of the largest vector
space of codimension-one residues ekjqk . Each row of Oij

lives in the nullspace of e⃗kjqk .
So far we were concerned with removing the leading

singularity associated to the pole labeled by k. In reality,
we impose the linear constraint (42) for multiple residues
simultaneously. This includes originally subleading resi-
dues, if they transform into leading residues following
the cancellation of the previous leading ones. In fact, for
the most complicated function, k and m run over up to
40 residues and orders. Furthermore, we find it convenient
to derive the basis change by considering one function r̃i at
a time, which amounts to constructing Oij row by row. We
start from the simplest functions, progressing toward the
most complex ones.
In practice, to build each row, we perform an exhaustive

breadth-first search in the space of intersections of null-
spaces of the e⃗kim. That is, we build r̃i by attempting to
remove an increasingly higher number of poles, until no
combination exists that drops more. Figure 2 shows a
simplified example of such a search tree, in the case where
the function has only two denominator factors. The tree is
truncated at depth 2. A tick (✓) or cross (✗) on the edge
labels whether a linear combination of the ri’s exists that
removes the given denominator factor. We label the
numerators by their respective denominator factor powers.

FIG. 2. Example of a simple search tree for intersecting null
spaces with a global (r̃i) and a local minimum [Ñ 2;1=ðD2

1D2Þ].
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We look for a global minimum in the search tree. Although
the Di may differ in mass dimension, we find it most
convenient to minimize the sum of their exponents q̃ij.
To ensure the rank stays maximal, after each row of Oij

has been computed, the following search for r̃iþ1 is done
using r̃i0≤i and ri0>i. A suitable pivoting strategy in the
computation of the nullspace intersections ensures r̃iþ1

remains a pivot, and hence the rank does not drop.
Otherwise, the linear combination is discarded. In certain
cases, the computation for the last rows of Oij was un-
necessary, as these functions were derived through sym-
metries (as discussed below) or other partial remainders.
The impact of the basis change is presented in Table II in
terms of LCD Ansatz sizes.
Using basis changes that decorrelate the functions poles

we have achieved much simplified coefficient functions
prior to performing a prohibitively expensive recon-
struction. The effect is somewhat similar to what was
achieved by univariate partial fractioning by a suitable
variable [22,23,62]. However, we avoid introducing new
spurious denominators, and in addition the order of un-
physical poles is systematically reduced. Both effects are
expected to lead to much improved numerical stability.
Moreover, we also note that, following the change in the set
of basis functions, further simplification may be achieved
by a partial-fraction decomposition, either by the semi-
numerical slicing techniques just mentioned, or through the
purely numerical approach of Refs. [21,26].

D. Analytic reconstruction and simplification

We are now in a position to reconstruct the coefficient
functions. We do this by constructing an Ansatz matching
the pole structure of the final LCD form (31). Given
previous experience, we further simplify the Ansatz by
removing terms with more than one hijjþ kji�-factors in
the denominator [35]. For example, we expect (and verify)
N to be such that the following type of equality holds

N
h4j1þ 5j4�2h5j3þ 4j5�2 ¼

N a

h4j1þ 5j4�2 þ
N b

h5j3þ 4j5�2
ð43Þ

irrespective of what other denominator factors appear and
of the degree of the spinor chains. This allows us to make
the Ansatz in terms of the two lower-degree numerator
polynomials N a;b instead of N . Constructing an Ansatz
for the numerator polynomial can be non trivial. We build
Ansätze for the numerator polynomials in terms of inde-
pendent monomials of spinor brackets, which have both
the right mass dimension and little group weights.
Mathematically, this amounts to the enumeration of
members of a polynomial quotient ring, subject to irre-
ducibility by a Gröbner basis and degree bounds [21]. The
Ansatz construction relies on the open-source programs

Singular [63], for the Gröbner basis computation, and
OR-tools [64], for the linear programming. Finally, we
determine the numerator polynomials by solving linear
systems for a sufficient number of random evaluations (24).
When reconstructing the coefficient functions of all

remainders of the generating sets (17), (18) and (19), we
find it most effective to reconstruct remainder functions in
bunches of the same spinor weight. In fact, the permuta-
tions of momenta chosen within the above 3 sets are such
that all remainders within a given set have the same spinor
weight. This is useful because there exists overlap between
the vector spaces of rational functions of each separate
remainder. Namely, the dimension of the sum of two such
vector spaces is often smaller than the sum of their
dimensions. Furthermore, we find it most effective to
reconstruct denominators of lower mass dimension first.
We also observe that permuting the momentum assign-
ments of the functions r̃i that yield the same spinor weight
often yields linearly independent coefficient functions.
We thus, after each newly reconstructed coefficient func-
tion, ensure that the set of functions is closed under all
momentum permutations that leave the little-group weights
unchanged. This ensures that information is recycled
among different partials, and that the symmetries of
amplitudes are exploited. Numerically, the closure of the
space of functions is conveniently checked by adding all
permutations and evaluating them on the random phase-
space points (24). We then filter out redundant ones via
Gaussian elimination.
After the reconstruction of the function coefficients is

complete, we simplify the final results considering each of
the three helicity sets individually. In fact, we perform a
further basis change on the vector space obtained from
the union of all remainders. We determine a simple basis
for this space, by placing the chosen basis functions in
global, or failing that local, minima in the space of
possible denominator powers [35]. Finally, the basis
functions are then partial fractioned following the approach
of Refs. [21,26].
We display the set of all coefficient functions in

Appendices A to C.

E. Implementation

To perform the reconstruction, for the most complicated
remainder, we use roughly 35,000 numerical samples. Most
of these samples are points on slices needed to perform the
basis change, while around 5,000 are random phase-space
points. All rational functions are fitted with a single finite
field. This is possible thanks to the size of the rational
numbers appearing in the basis, with the largest ones not
exceeding 2 digits. Initially the matricesMij are obtained in
a finite field. To lift the matrices Mij from a finite field to
rational numbers we require, on the first finite field value,
as many samples as the dimension of the vector space,
while subsequent finite field values requires roughly a
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factor of 5 fewer samples for each iteration. In the end, a
single evaluation with a finite field value not employed in
the reconstruction is used as a check.
Finally, we summarize software packages used in the

analytic reconstruction. For convenience, we take advan-
tage of hardware acceleration on NVIDIA GPUs with the
private code LINAC (LINear Algebra with C UDA), which we
use to solve linear systems over a finite fields for the Ansatz
coefficients, and to handle the vector spaces of rational
functions. Nevertheless, given the relatively small size
of the systems, a low-level CPU implementation may also
have sufficed. We use LIPS and PYADIC [65] for the gene-
ration and manipulations of phase-space points defined in
terms of spinors, and for numerical evaluations of spinor-
helicity functions.

IV. RESULTS

We express remainders in terms of three rational-
function bases. The function bases are obtained from a
generating set of spinor-helicity functions and symmetry
operations. We denote the generating functions as r̃h4h5i ,
with h4 and h5 labeling the three helicity configuration:
all-plus (r̃þþ

i ), single-minus (r̃þ−
i ), and MHV (r̃−−i ). The

respective basis functions are given in appendices A to C.
The functions themselves are expressed in terms of spinor-
helicity variables, and symmetry operations. The latter take
the form

ð12345 → �σ1σ2σ3σ4σ5Þ ð44Þ

where “−” denotes that the expression with the permuted
labels should be subtracted. For example,

rð1; 2; 3; 4; 5Þ þ ð12345 → 45321Þ ¼ ð45Þ

rð1; 2; 3; 4; 5Þ þ rð4; 5; 3; 2; 1Þ; ð46Þ

rð1; 2; 3; 4; 5Þ þ ð12345 → −45321Þ ¼ ð47Þ

rð1; 2; 3; 4; 5Þ − rð4; 5; 3; 2; 1Þ: ð48Þ

Within a rational function, the employed convention is to
apply the (anti)symmetrization to all terms preceding the
mapping [26].
To obtain the function basis from the generating func-

tions, the set needs to be closed under the symmetries
of the little group weights. These are S5ð1; 2; 3; 4; 5Þ,
S4ð1; 2; 3; 4Þ and S3ð1; 2; 3Þ ⊗ S2ð4; 5Þ, for all-plus,
single-minus and MHV configurations, respectively (here
Snð1;…; nÞ denotes the group of permutations of the
elements f1;…; ng). Table I shows the dimensions of
the three vector spaces, and the number of generating
spinor-helicity expressions in the chosen basis. The

dimensions of the vector spaces are uniquely defined, in
the sense that they are the smallest spaces that are both
closed under the symmetries and that span all coefficients
in the required partials. The number of generating functions
is representation dependent.
We note that the overlap between the rational-function

spaces of the different partials is significant. This can be
observed by comparing the sizes of the vector spaces in
Table II, to that of their union, closed under S3ð1; 2; 3Þ ⊗
S2ð4; 5Þ, in Table I, in spite of the fact that the spaces of
partials are not closed under all symmetries of the phase
weights.
The remaining helicity configurations are obtained by

reassigning momentum labels and/or parity conjugation.
However, some of the permutation of Eq. (5) will involve
exchanges between momenta in the initial and final state.
This encompasses nontrivial analytic continuation, which

TABLE I. For each helicity configuration, this table shows the
dimension of the vector space of rational functions, and the
number of functions in the generating set that spans the space
upon closure under the symmetries of the helicity vector.

Gluon helicities Vector-space dimension Generating set size

þþþþþ 24 3
þþþþ − 440 33
þþþ − − 937 115

TABLE II. For each partial amplitude, this table shows the
dimension of the vector space of rational functions, and Ansatz
size in LCD form of the most complicated function in the basis,
before and after basis change. In the cases denoted by N/A the
basis change was not required.

Helicity
remainder dimðVSðRÞÞ

LCD Ansatz size

Before basis
change

After basis
change

Rð2Þ;ð2;0Þ
þþþ−−

31 21,910 N/A

Rð2Þ;ð2;0Þ
þþ−þ−

54 54,148 N/A

Rð2Þ;ð1;0Þ
þþþ−−

274 163,635 14,093

Rð2Þ;ð1;0Þ
þ−þþ−

270 241,156 14,552

Rð2Þ;ð1;0Þ
−−þþþ 203 82,180 25,620

Rð2Þ;ð1;1Þ
þþþ−−

31 21,910 N/A

Rð2Þ;ð1;1Þ
þþ−þ−

54 54,148 N/A

Rð2Þ;ð0;1Þ
þþþ−−

226 118,880 4,108

Rð2Þ;ð0;1Þ
þ−þþ−

240 209,018 N/A

Rð2Þ;ð0;1Þ
−−þþþ 157 76,845 8,840

Rð2Þ;ð−1;1Þ
þþþ−−

25 5,320 N/A

Rð2Þ;ð−1;1Þ
þþ−þ−

35 9,384 N/A
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we perform following Ref. [5]. More explicitly, the action
of permutation σ on a finite remainder R is given by

σ ∘R ¼ σ ∘ ðr̃iMijhjÞ ¼ ðσ ∘ r̃ÞiMijQjkhk ð49Þ

¼ ðσ ∘ r̃ÞiM0
ijhj: ð50Þ

Here we rely on the closure of the pentagon functions under
permutations [15]. The analytic continuation therefore
amounts to simply obtaining a matrixM0

ij for each required
permutation. In practice, these matrices are obtained by
permuting the legs in the master integrals only, and then
remapping them to pentagon functions.

A. Ancillary files

We provide expressions for the finite remainders of all
independent partial amplitudes through two loops in the
decomposition of Eqs. (5), (9) and (10) in [66]. For each
helicity configuration, all-plus, single-minus and MHV, we
organize the results in terms of two global bases, valid for
all partials and crossings, in the files
(1) basis_transcendental,
(2) basis_rational.

The constant matrices Mij of rational numbers are partial
remainder, and permutation specific. They are organized in
subfolders labeling the partial remainders from Sec. II D,
with the notation

fh⃗g fLgL Ncfncg Nffnfg=,
where h⃗, L, nc and nf refer to helicities, number of loops,
number of Nc powers and number of Nf powers, as defined
earlier in the paper. For completeness of the ancillaries,
we also provide information about permutations and color
structures of the partials in the file amp_info.
The matrices themselves are stored in the files
rational_matrix_{permutation},

where it is understood that this permutation has to be
combined with that of each partial as defined in Sec. II D
and in amp_info. The order of the permutations matters,
with those defined in II D taking precedence.

B. Validation

Our computation incorporates multiple internal consis-
tency checks at various stages. In constructing the finite
remainders, we ensure the cancellation of poles in the
dimensional regulator ϵ at every kinematic point. Further
validation of the finite field reconstruction occurs at an
independent kinematic point, not utilized for the recon-
struction, and with a distinct value of the prime.
We found agreement with the numerical evaluations for

the helicity- and color-summed squared remainders in the
leading-color approximation [5]. Furthermore, we conduct
additional checks through independent computations in full

color. We compared the one-loop hard functions against
numerical evaluations by BLACKHAT [67] and found agree-
ment. At two loops we performed verification against the
full-color all-plus calculation [37], and the validation of the
evaluations provided in Appendix D with an independent
computation [68,69].

C. Numerical evaluation

We implement our analytic results for the partial
helicity remainders, as well as for the NNLO hard function
defined in Eq. (21) in the C++ library FivePoint-
Amplitudes [70], which employs Pentagon-
Functions++ [15,71,72] for numerical evaluation of
the transcendental integral functions. This allows us to
ensure the stability of numerical evaluations via the rescue
system developed in Ref. [5]. We achieve excellent
numerical performance, with a single numerical evaluation
of the two-loop hard function taking a few seconds in
double precision on a personal desktop computer. The
average evaluation time per phase-space point on cluster
nodes over the phase-space of Ref. [5] is around 8s with the
rescue system enabled. For comparison, the average evalu-
ation time for the leading-color contribution only is around
1.6s with the same setup.

V. CONCLUSIONS

In this work we computed the two-loop five-gluon
helicity amplitudes in QCD. The amplitudes are uniformly
represented in terms of a basis of rational coefficient
functions, transcendental functions and constant matrices
of rational numbers that link the two. We achieved an
unprecedented level of simplicity in the basis of coefficient
functions, by identifying a distinguished basis of functions
based on their singularity structure. However, it has to
be noted that significant complexity still remains in the
transcendental functions and in the mentioned matrices of
rational numbers. This observation raises an intriguing
possibility of a more physically motivated basis of tran-
scendental functions, rooted in the cancellation of spurious
singularities, that is, in the amplitudes’ locality. Further
exploration into this avenue remains an intriguing direction
for future research.
In terms of phenomenological applications, the signifi-

cance of our result becomes particularly evident when
considering not just three-jet production at NNLO, but also
two-jet at N3LO in hadron collisions. In fact, the latter will
require integrating the provided expressions in unresolved
phase-space configurations. We expect our compact basis
of rational coefficient functions to benefit both precision
and stability of such computations.
Finally, the simplicity achieved in the present computa-

tion is not confined to the specific channel under
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consideration, nor are the techniques employed specific to
five-point massless kinematics. Analogous results for the
quark channels of three-jet production will follow shortly in
a separate publication, and preliminary studies show similar
benefits in tackling processes involving more challenging
kinematics, such as five-point one-mass. In summary,
we believe that the form of the rational coefficient func-
tions, which directly benefits phenomenological studies,
deserves further studies concerning the mathematical
structure of scattering amplitudes, and may open new paths
to precision predictions for multi-scale scattering processes
at particle colliders.

Note added. While this work was in preparation, we
became aware of Ref. [69], which reports partially over-
lapping results. We thank the authors for the numerical
comparison of our results and for coordinating the
publications.
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APPENDIX A: FIVE-GLUON ALL-PLUS BASIS FUNCTIONS

r̃þþ
1 ¼ ½45�2

h12ih13ih23i r̃þþ
2 ¼ −h14ih24ih25i½25�h35i½45�

h12i2h15ih23ih34i2h45i þ ½24�½35�
h12ih15ih34i

þ ð12345 → 23451Þ þ ð12345 → 34512Þ
þ ð12345 → 45123Þ þ ð12345 → 51234Þ

r̃þþ
3 ¼ tr5ð1234Þ

h12ih15ih25ih34i2
þ ð12345 → 12453Þ
þ ð12345 → 12534Þ
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APPENDIX B: FIVE-GLUON SINGLE-MINUS BASIS FUNCTIONS

r̃þ−
1 ¼ ½34�3

h12i2½35�½45�

r̃þ−
2 ¼ h45i½23�h15i

h14i3h23i

r̃þ−
3 ¼ h25i½23�h35i

h14i2h23i2

r̃þ−
4 ¼ ½45�h25i3

h12i2h23i2h24i

r̃þ−
5 ¼ h25i2½12�

h12ih23ih24ih34i

r̃þ−
6 ¼ ½25�h25i3

h12i2h23ih24ih34i

r̃þ−
7 ¼ h24ih25ih13ih15i½34�

h12i4h34i2

r̃þ−
8 ¼ ½15�h35i2h25i2

h15ih23i3h24ih34i

r̃þ−
9 ¼ ½23�h45i½34�h25i

h12ih14ih24i2½24�

r̃þ−
10 ¼ h45i½14�½23�h15i

h14i2h23ih1j2þ 3j1�

r̃þ−
11 ¼ ½12�½34�h25i2

h12ih23ih24ih2j1þ 5j2�

r̃þ−
12 ¼ h25i2h45i½34�½23�

h12ih15ih24i3½24�

r̃þ−
13 ¼ h35i2h25i½25�½14�

½12�h13ih14ih23i3

r̃þ−
14 ¼ h45i½14�2½23�h15i

h14ih23ih1j2þ 3j1�2

r̃þ−
15 ¼ h35i2h25i½25�½34�

h12ih13ih23i2½23�h34i

r̃þ−
16 ¼ ½14�½13�h15i2

h12i2h34ih1j2þ 5j1�
þ ð12345 → −21435Þ

r̃þ−
17 ¼ h35ih45i½34�2

h12i2h34ih3j1þ 2j3�
þ ð12345 → −21435Þ

r̃þ−
18 ¼ −15h45i½13�h15i

h13ih14ih24i2

þ h45i2½34�½23�
h14i2h24i2½24�

r̃þ−
19 ¼ −3h23ih25ih35i½12�

h12ih23i2h34i2

þ −2h25i2h35i½12�
h12ih23i2h34ih45i

r̃þ−
20 ¼ 12h25i½14�h15i

h12ih14ih23i2

þ h25ih45i½14�½24�
h12i½12�h14ih23i2

r̃þ−
21 ¼ 5h35i2½45�½23�2

h13i2h34i2½34�½35�

þ 17h35i2½24�½23�
h13i2h34i2½34�

r̃þ−
22 ¼ ½35�h45i3½24�h15i

h14i3h24ih34i½34�h35i

þ 8h45i3½24�
h14i2h24ih34ih35i

r̃þ−
23 ¼ −h35ih25i2½12�½45�

h12ih23i3½25�h45i

þ −10h35ih25i2½12�
h12ih23i2h34ih45i

r̃þ−
24 ¼ 3h34ih35ih25i2½14�½24�

½12�h14ih15ih23i4

þ h35ih45i½14�½24�
½12�h13ih14ih23i2

r̃þ−
25 ¼ h34ih35ih25i½14�½34�

h13i½13�h14ih23i3

þ −5h35ih45i½14�2½23�
½12�h13i½13�h14ih23i2

r̃þ−
26 ¼ 5h34ih35i½45�h25i3½24�

h12ih15ih23i4½25�h45i

þ 4h35ih25i2½12�½45�
h12ih23i3½25�h45i

r̃þ−
27 ¼ −½45�h15ih25i3½12�

h12i2h23i2h45ih2j1þ 5j2�

þ −3½34�h25ih45ih35i½25�
h12i2h34i2h2j1þ 5j2�

r̃þ−
28 ¼ h25i½12�2½34�

h12i½15�h34ih2j1þ 5j2�
þ ð12345 → −43215Þ

þ ½12�½14�½34�
h12i½15�h34i½45�

r̃þ−
29 ¼ ½35�h45i3h15i2½45�

h14i4h23ih24i½34�h35i

þ −4½35�h45i3h13ih15i
h14i4h23ih24ih35i

þ 4h45i3h12i½24�
h14i3h23ih24ih35i

r̃þ−
30 ¼ −2½12�½23�h25i2½24�½34�

h12ih2j1þ 5j2�3

þ −½12�h25ih45i½24�½34�
h12ih34ih2j1þ 5j2�2

þ 2h35ih45i½12�½34�
h12ih34i2h2j1þ 5j2�

r̃þ−
31 ¼ −2h35ih25i½34�

h12i2h23ih34i

þ 2h45i½14�½34�h15i
h12i2h34ih1j2þ 3j1�

þ 3½23�h35i½13�½14�h15i
h14ih23ih1j2þ 3j1�2

þ −6½12�½23�½13�½14�h15i2
h14ih1j2þ 3j1�3

r̃þ−
32 ¼ ½12�h12i½23�h45i½14�h15i

h14i2h23ih1j2þ 3j1�2

þ −h12i½23�h35ih45ih15i½15�
h14i3h23i2h1j2þ 3j1�

þ 2½12�h12i½23�h45ih15i
h14i3h23ih1j2þ 3j1�

þ −h35i½35�h45ih15i
h14i3h23i2

þ h25ih45i½24�
h14i2h23i2

r̃þ−
33 ¼ ½24�½14�½13�h15i

h14ih23i½45�h1j2þ 3j1�

þ −h25i½12�½24�½13�
h12i½15�h34ih2j1þ 5j2�

þ 2½12�½14�½13�h15i2
h14ih23ih1j2þ 3j1�2

þ −2h25i2½12�½24�½23�
h12ih34ih2j1þ 5j2�2

þ ð12345 → −43215Þ

þ −h24i½13�h13i½14�½24�
h12ih14i½15�h23ih34i½45�
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APPENDIX C: FIVE-GLUON MHV BASIS FUNCTIONS

r̃−−1 ¼ h45i2
h12ih13ih23i r̃−−20 ¼ ½13�2h45i

h23ih25i½35�½45� r̃−−39 ¼ h25i3½23�2
h12i2h23i½34�2h35i

r̃−−2 ¼ h45i3
h12i2h34ih35i r̃−−21 ¼ ½23�h45i2

h12ih13ih35i½35� r̃−−40 ¼ h25i3½25�2
h12i2h23ih35i½45�2

r̃−−3 ¼ h45i3
h12ih15ih23ih34i r̃−−22 ¼ ½13�½23�2

h12i½25�½34�½45� r̃−−41 ¼ ½12�h35ih15ih14i
h12ih13i3½14�

r̃−−4 ¼ ½14�½12�½35�
h23i½45�3 r̃−−23 ¼ ½12�2h45i

h13i½15�h23i½24� r̃−−42 ¼ h45i3½23�
h14ih15ih23ih24i½24�

r̃−−5 ¼ h45i2h24i
h12i2h23ih34i r̃−−24 ¼ h25ih34i2½12�

h13ih23i3½25� r̃−−43 ¼ ½35�½15�h35ih25i
h12ih23i2½45�2

r̃−−6 ¼ h15ih14ih45i
h12i2h13i2 r̃−−25 ¼ h25i½14�½25�2

h13ih23i½45�3 r̃−−44 ¼ ½25�h25i2½13�
h12i2½14�h23i½45�

r̃−−7 ¼ ½12�2h45i
h34ih35i½45�2 r̃−−26 ¼ ½13�h45i3

h13i½14�h15ih24i2 r̃−−45 ¼ ½12�h45i2½13�
h12ih14i½14�2h34i

r̃−−8 ¼ ½25�½14�2½35�
h23i½45�4 r̃−−27 ¼ ½13�3½25�

h12i½15�2½34�½45� r̃−−46 ¼ h14i½34�h45i2
h12i2h13ih24i½24�

r̃−−9 ¼ ½23�2h34i
h13ih14i½45�2 r̃−−28 ¼ ½12�h45i3

h14ih24ih35i2½45� r̃−−47 ¼ h34i½13�2h45i
h23i2½35�h3j1þ 5j3�

r̃−−10 ¼ ½13�2h34ih24i
h23i3½35�2 r̃−−29 ¼ h25ih14i2h24ih45i

h12i4h34i2 r̃−−48 ¼ ½13�h14i2h15i½25�
h12ih13i3½35�2

r̃−−11 ¼ h34ih14ih45i2
h13i3h24i2 r̃−−30 ¼ ½14�h15ih14i2

h12i2h13i2½45� r̃−−49 ¼ ½12�2½23�2h45i
½24�½25�h2j1þ 5j2�2

r̃−−12 ¼ h34ih14ih35i2
h13i3h23i2 r̃−−31 ¼ h34i½12�2h24i

h13i2½15�2h23i r̃−−50 ¼ h24i2½12�2h35i
h23i3½25�h2j1þ 5j2�

r̃−−13 ¼ h35i3h14i2
h13i4h23ih25i r̃−−32 ¼ h35ih25i½23�2

h12i2h23i½24�2 r̃−−51 ¼ h45i2½13�2h14i
h13ih25i2h34i½35�2

r̃−−14 ¼ ½12�½23�h14i
h13i2½35�½45� r̃−−33 ¼ ½13�h34ih35i2

h13i2½14�h23i2 r̃−−52 ¼ ½12�2h45i2h23i
h12ih13i½14�2h34i2

r̃−−15 ¼ h25ih45i½13�
h12i2½14�h23i r̃−−34 ¼ h45i2½23�2

h12ih15ih25i½25�2 r̃−−53 ¼ h45i2h15i½25�2
h13ih14i2h35i½45�2

r̃−−16 ¼ ½15�h45ih25i
h12ih23i2½45� r̃−−35 ¼ ½13�2h45i2

h13i½14�h24i2½34� r̃−−54 ¼ ½12�2h35i½23�3
½24�2½25�h2j1þ 5j2�2

r̃−−17 ¼ h35i½13�h24i
h12ih23i2½45� r̃−−36 ¼ h14i½13�2h45i

h12i2h15i½15�2 r̃−−55 ¼ h34i½23�h45i2
h13ih15ih23ih24i½25�

r̃−−18 ¼ ½12�h24ih45i
h12ih23i2½25� r̃−−37 ¼ ½34�h34i2h35i2

h13i3h23i2½14� r̃−−56 ¼ ½23�½13�h45i2
h15ih23ih25i½25�½35�

r̃−−19 ¼ ½13�2½23�
h23i½34�½35�½45� r̃−−38 ¼ h45ih24i2h35ih14i2

h12i4h34i3 r̃−−57 ¼ h25i½25�h45i2
h13ih15ih23ih24i½45�
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r̃−−58 ¼ ½12�h45i2½23�
h12i½24�h34ih2j1þ 5j2� r̃−−77 ¼ h34ih45i½35�h35i2

h13i2h23i2h3j1þ 2j3� r̃−−92 ¼ ½23�2h25ih24i2
h12i2h23ih35i½35�2

þ 2h14i½23�h25i2h24i
h12i3h23ih35i½35�r̃−−59 ¼ ½12�2½13�h45i

h13i½14�½15�h1j2þ 3j1� r̃−−78 ¼ h34i½12�½23�3h25i2
h12i½24�h2j1þ 5j2�3

r̃−−93 ¼ 2h25i3½25�h14ih24i
h12i3h23i2h35i½35�

þ −h25i3½25�2h24i2
h12i2h23i3h35i½35�2

r̃−−60 ¼ ½34�½12�½35�h45i
h12i½45�2h5j1þ 2j5� r̃−−79 ¼ h45i2h34i2½34�2

h12ih13ih23ih35i2½35�2

r̃−−94 ¼ −½12�½23�2h14ih23i
h13i3½13�½35�½45�

þ ½12�2h15i½23�h23i
h13i3½13�½14�½45�

r̃−−61 ¼ ½13�h34ih24i½12�2
½15�h23i3½23�½25� r̃−−80 ¼ h45i2h35i2½35�h25i

h15i2h23i3h5j1þ 4j5�

r̃−−95 ¼ 2½25�½15�h45i3½34�2
h12i½45�h5j1þ 2j5�3

þ 3½35�h15i½12�½13�h45i
h12i½45�h5j1þ 2j5�2

r̃−−62 ¼ ½23�h45ih35ih34i
h13i2h23ih3j1þ 2j3� r̃−−81 ¼ ½12�h45i½34�h34i

h13ih23ih35i½35�½45�

r̃−−96 ¼ 2½34�½14�½35�½25�h45i
h12i½45�3h5j1þ 2j5�

þ ½34�2½15�½25�h45i2
h12i½45�2h5j1þ 2j5�2

r̃−−63 ¼ ½12�h25i½23�2h35i
h12ih23ih24i½24�3 r̃−−82 ¼ ½12�h35ih45i3½25�

h12i½24�2h25ih34i3

r̃−−97 ¼ −h34i2h45i½34�½12�
h13ih14i½15�h23ih35i½45�

þ 2h45i3½14�½13�
h14i½15�h25i2h35i½45�

r̃−−64 ¼ h24i½23�h25i2h15i
h12i3h23i½34�h35i r̃−−83 ¼ ½12�½13�h45ih25i2

h12i½14�2h15ih23ih24i

r̃−−98 ¼ ½14�½15�h45ih24i½24�
h23i2½45�2h4j1þ 5j4�

þ −½14�½15�½25�h25ih45i
h23i2½45�2h5j1þ 4j5�

r̃−−65 ¼ ½35�2h25ih15ih45i
h12i3½45�h5j1þ 2j5� r̃−−84 ¼ h25i2h24i½23�2½12�

h12ih23i½34�h2j1þ 5j2�2

r̃−−99 ¼ −½12�h24i½34�h45i
h12ih23ih25i½25�½45�

þ ½35�½12�h45i2½34�
h12ih25i½25�½45�h5j1þ 2j5�

r̃−−66 ¼ ½35�½12�h45i2½34�
h12i½45�h5j1þ 2j5�2 r̃−−85 ¼ ½23�h45i4h12ih23i2

h13i3h24i2h25i2h2j1þ 3j2�

r̃−−100 ¼
½35�h25i2h15i½25�h45i2
h12i3h35ih5j1þ 2j5�2

þ −3½35�h25i2h15ih14ih45i
h12i4h35ih5j1þ 2j5�

r̃−−67 ¼ h14i2½24�h24i2½34�
h12i4½25�h34i½45� r̃−−86 ¼ h24ih25i½13�½23�h35i

h12ih23i2½34�h2j1þ 5j2�

r̃−−101 ¼
½34�h34ih45i2½15�½14�
h23i2½45�h4j1þ 5j4�2

þ −h24i½23�h34ih45i½14�2
h23i2½45�h4j1þ 5j4�2

þ ð12345 → −32154Þ

r̃−−68 ¼ h25i3h24ih13i½25�
h12i3h23i2h35i½45� r̃−−87 ¼ h15i2½23�½25�h35i2

h13i4½24�h25i½34�
þ ð12345 → 12354Þ

r̃−−69 ¼ ½35�2h35i3½25�
h13ih15ih23ih34i½45�3

r̃−−88 ¼ ½15�2h45i2h15i½14�
h23i2½45�h4j1þ 5j4�2
þ ð12345 → −32154Þr̃−−70 ¼ ½35�2h45ih35i2

h12ih15ih23ih34i½45�2

r̃−−89 ¼ h14i2½13�2h24i½14�
h12i3h15i½15�3

þ h14i½13�3h34i
h12i2h15i½15�3

r̃−−71 ¼ h25i½13�3h35i2
h12i½14�3h15ih23ih24i

r̃−−90 ¼ −3h45i½12�½13�
h23i½45�h4j1þ 5j4�

þ ½23�½12�h45i2
h12i½24�h34ih4j1þ 5j4�

r̃−−72 ¼ h45i3½14�h34i½24�
h14ih24ih35i3½45�2

r̃−−91 ¼ 2h24i2½13�½23�2
h12ih23ih35i½35�3

þ h24i½13�½23�h45i
h12ih23ih35i½35�2

r̃−−73 ¼ ½14�2½23�h14i2
h12ih13i½45�2h1j2þ 3j1�

r̃−−74 ¼ ½12�½23�3h35i2
h12i½24�3h34ih2j1þ 5j2�

r̃−−75 ¼ h25i2½23�2h24i
h12i2h23i½34�h2j1þ 5j2�

r̃−−76 ¼ ½12�h15ih14i2h25i
h12i2h13i2h1j2þ 5j1�
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r̃−−102 ¼
−2h14i½25�h35i2h34i

h13i4½15�h23i

þ h34ih24ih35i2½25�2
h13i4½15�2h23i

þ −2½12�h35ih34i2½35�
h13i3½15�2h23i

r̃−−108 ¼
h45i3½13�2h13i2

h12i2h34ih35ih3j1þ 2j3�2

þ −h24ih13i2½13�h45i3
h12i3h34i2h35ih3j1þ 2j3�

þ −h45i3½13�h25ih13i2
h12i3h34ih35i2h3j1þ 2j3�

r̃−−114 ¼
½12�2½23�2

h13i½15�½24�2½35�

þ h45i3h2j1þ 5j2�
h13ih15ih23ih24i2½24�

þ −½12�h45i2h25i½25�
h13ih23ih24i2½24�2

þ ½23�2h45i2h5j1þ 3j5�
h13ih15ih24i2½24�2½35�

þ −½12�½23�2½13�h34i
h13i½15�½24�½35�h3j1þ 5j3�

þ −2½12�2½23�2½13�
½15�½24�2½35�h3j1þ 5j3�

þ −½23�2½13�h45i2½15�
h24i2½24�2½35�h3j1þ 5j3�

þ −2½23�3h34ih35i
h13i2½24�½35�h3j1þ 5j3�

þ ½23�2h35ih34ih14i½13�2
h13ih24i½24�½35�h3j1þ 5j3�2

þ 3½12�½23�3½13�h35i
½24�2½35�h3j1þ 5j3�2

þ 3½23�3½13�2h34ih35i
½24�½35�h3j1þ 5j3�3

þ −3½23�3½13�h34ih35i2
h13i½24�h3j1þ 5j3�3

r̃−−103 ¼
3h45ih35i2½25�2h15i2

h13i4½24�h25ih5j1þ 3j5�

þ 3½23�h35i2½25�h15i2
h13i4½24�h25i½34�

þ −h34i2h45i½24�
h13i3½15�h23i

r̃−−109 ¼
−h34ih35i½13�½23�h45i
h13ih23ih3j1þ 2j3�2

þ −2h34i½23�2h35i2h24i
h13i2h23ih3j1þ 2j3�2

þ 2h34i½23�h35i2h24i
h13i2h23i2h3j1þ 2j3�

þ ð12345 → −21354Þ

r̃−−115 ¼
−2=3½24�2h24ih45ih14i2

h12ih13i3h35i½35�2

þ 2=3h24i2½23�½24�2½25�h14i
h13i3h35i½35�3½45�

þ −½23�3½13�h5j1þ 3j5�
h13i½24�½34�h35i½35�3

þ 5=3h24i½23�½24�h14i2½13�
h12ih13i2h35i½35�3

þ −5=6½23�h2j1þ 3j2�h45ih14i
h12ih13i2h35i½35�2

þ 2=3½23�½13�h14ih2j5 − 4j2�
h12ih13ih35i½35�2½45�

þ 1=6h25i2½23�½25�2h14i
h12ih13i2h35i½35�2½45�

þ ½23�h25i½25�h14ih45i
h12ih13i2h35i½35�2

þ −1=2h25ih45i½25�2h15i
h12ih13i2h35i½35�½45�

þ −1=2h25i½23�2h5j1þ 3j5�
h12ih13i½34�h35i½35�½45�

r̃−−104 ¼
2h24i2h34i2h5j3 − 4j2�

h14i2h23i4½25�

þ −h12i½12�2h34i2h24i
h14ih23i4½25�2

þ −2½12�h24ih34i2½23�
h14ih23i3½25�2

r̃−−110 ¼
−2h25ih45i½25�½13�h35i
h13i½14�h15ih23ih24i½45�

þ ½12�h45i½23�½34�
h15i½45�2h4j1þ 2j4�

þ ½35�h23ih45i2½24�2½13�
h13i½14�h15ih24i½45�2h4j1þ 2j4�

r̃−−105 ¼
−2h12i½12�3½13�

h13i½14�½15�½45�h1j2þ 3j1�

þ −½12�h24i½34�h34i2
h13ih14i½15�h23i2½45�

þ ½35�½13�h35i3
h13i½14�h15ih23i2½45�

r̃−−111 ¼
½35�h15ih45ih35i
h12i2h13ih23i½24�

þ h25ih15ih14i½45�h45i
h12i3h13ih23i½24�

þ −3½35�h25ih15ih14ih35i
h12i3h13ih23i½24�

þ −3½35�h25i2h14i½34�h35i
h12i4½14�h23i½24�r̃−−106 ¼

2h15ih45i½13�½23�
h12ih14i½34�h35i½45�

þ 2h25ih45i½24�½13�
h12ih23ih35i½34�½45�

þ −½35�h25ih45i2½23�
h12ih14ih24i½34�h35i½45�

r̃−−112 ¼
−3h14i½12�2h15i2½13�2h34i

h13ih1j2þ 5j1�4

þ 2h14i½12�h15i2½13�½15�h45i
h12ih13ih1j2þ 5j1�3

þ −2h14i½12�2h15i2½13�h34i
h13i2h1j2þ 5j1�3

þ −½12�2h15ih14i2h35i
h13i3h1j2þ 5j1�2

r̃−−107 ¼
−½25�h25ih15i2h14i½13�
h12i2h13i2h34i½34�2

þ −½24�h14i2h24i½13�
h12i2h13ih34i½35�½45�

þ 2½13�h14i2h25i½23�
h12i2h13ih34i½34�½35� r̃−−113 ¼

2½35�h34ih5j1þ 2j5�h14i2½34�h15i
h12i4h13ih25i½25�3

þ 2h34ih5j1þ 2j5�h14i2½34�½23�
h12i3h13ih25i½25�3

þ 2h34ih14i2½34�½12�½23�
h12i2h13ih25i½25�3

þ h45ih14i2h34i½34�2
h12i3h13ih25i½25�2
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APPENDIX D: REFERENCE EVALUATIONS

To facilitate comparison with our results, we provide a numerical evaluation of the hard function defined in Eqs. (21)
and (22). We evaluate B and HðLÞ;ðnc;nfÞ on the phase-space point

p1 ¼ f−3.6033749869055013; 3.5549594933215615; 0.033937560795432568; 0.58772658529828721g;
p2 ¼ f−3.5779991067160259; 3.5333697062718894; 0.033731453043168395;−0.56235070510881185g;
p3 ¼ f1.7967619455543639;−1.7454551820128482; 0.10779867188908804;−0.41245501926361226g;
p4 ¼ f0.41554983516150722;−0.38259279840807596;−0.13137170294301400; 0.095109893149375643g;
p5 ¼ f4.9690623129056561;−4.9602812191725268;−0.044095982784675001; 0.29196924592476125g; ðD1Þ

and the renormalization scale is set to μ ¼ 1.
The reference evaluations are

Hð2Þ;ð2;0Þ ¼ 39.18504944322860;
B ¼ 154023.6666921499; Hð2Þ;ð0;0Þ ¼ 181.8421831216970;

Hð2Þ;ð1;1Þ ¼ −3.524523895322017;
Hð1Þ;ð1;0Þ ¼ −1.616272307398762; Hð2Þ;ð−1;1Þ ¼ −6.578862105257153;
Hð1Þ;ð−1;0Þ ¼ 1.410723596231933; Hð2Þ;ð−3;1Þ ¼ 0.01653881075908589;

Hð1Þ;ð0;1Þ ¼ 2.508992268209689; Hð2Þ;ð0;2Þ ¼ 1.703372292225135;
Hð1Þ;ð−2;1Þ ¼ −0.04224997482253675; Hð2Þ;ð−2;2Þ ¼ −0.4017699546907486;

Hð2Þ;ð−4;2Þ ¼ 1.039350843363634:

ðD2Þ

[1] M. Czakon, A. Mitov, and R. Poncelet, Next-to-next-to-
leading order study of three-jet production at the LHC,
Phys. Rev. Lett. 127, 152001 (2021); 129, 119901(E)
(2022).

[2] G. Aad et al. (ATLAS Collaboration), Determination of the
strong coupling constant from transverse energy–energy
correlations in multijet events at

ffiffiffi
s

p ¼ 13 TeV with the
ATLAS detector, J. High Energy Phys. 07 (2023) 085.

[3] M. Alvarez, J. Cantero, M. Czakon, J. Llorente, A. Mitov,
and R. Poncelet, NNLO QCD corrections to event shapes at
the LHC, J. High Energy Phys. 03 (2023) 129.

[4] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss, and
M. Marcoli, Automation of antenna subtraction in colour
space: gluonic processes, J. High Energy Phys. 10
(2022) 099.

[5] S. Abreu, F. Febres Cordero, H. Ita, B. Page, and V.
Sotnikov, Leading-color two-loop QCD corrections for
three-jet production at hadron colliders, J. High Energy
Phys. 07 (2021) 095.

[6] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss, and J.
Mo, NNLO QCD corrections in full colour for jet
production observables at the LHC, J. High Energy Phys.
09 (2022) 025.

[7] S. Catani, D. de Florian, and G. Rodrigo, Space-like (versus
time-like) collinear limits in QCD: Is factorization violated?,
J. High Energy Phys. 07 (2012) 026.

[8] J. R. Forshaw, M. H. Seymour, and A. Siodmok, On the
breaking of collinear factorization in QCD, J. High Energy
Phys. 11 (2012) 066.

[9] L. J. Dixon, E. Herrmann, K. Yan, and H. X. Zhu, Soft gluon
emission at two loops in full color, J. High Energy Phys. 05
(2020) 135.

[10] G. De Laurentis, H. Ita, and V. Sotnikov, following article,
Double-virtual NNLO QCD corrections for five-parton
scattering II. The quark channels, Phys. Rev. D 109,
094024 (2024).

[11] C. G. Papadopoulos, D. Tommasini, and C. Wever, The
pentabox master integrals with the simplified differential
equations approach, J. High Energy Phys. 04 (2016) 078.

[12] T. Gehrmann, J. M. Henn, and N. A. Lo Presti, Pentagon
functions for massless planar scattering amplitudes, J. High
Energy Phys. 10 (2018) 103.

[13] S. Abreu, L. J. Dixon, E. Herrmann, B. Page, and M. Zeng,
The two-loop five-point amplitude in N ¼ 4 super-Yang-
Mills theory, Phys. Rev. Lett. 122, 121603 (2019).

[14] D. Chicherin, T. Gehrmann, J. M. Henn, P. Wasser, Y.
Zhang, and S. Zoia, All master integrals for three-jet

DE LAURENTIS, ITA, KLINKERT, and SOTNIKOV PHYS. REV. D 109, 094023 (2024)

094023-16

https://doi.org/10.1103/PhysRevLett.127.152001
https://doi.org/10.1103/PhysRevLett.129.119901
https://doi.org/10.1103/PhysRevLett.129.119901
https://doi.org/10.1007/JHEP07(2023)085
https://doi.org/10.1007/JHEP03(2023)129
https://doi.org/10.1007/JHEP10(2022)099
https://doi.org/10.1007/JHEP10(2022)099
https://doi.org/10.1007/JHEP07(2021)095
https://doi.org/10.1007/JHEP07(2021)095
https://doi.org/10.1007/JHEP09(2022)025
https://doi.org/10.1007/JHEP09(2022)025
https://doi.org/10.1007/JHEP07(2012)026
https://doi.org/10.1007/JHEP11(2012)066
https://doi.org/10.1007/JHEP11(2012)066
https://doi.org/10.1007/JHEP05(2020)135
https://doi.org/10.1007/JHEP05(2020)135
https://doi.org/10.1103/PhysRevD.109.094024
https://doi.org/10.1103/PhysRevD.109.094024
https://doi.org/10.1007/JHEP04(2016)078
https://doi.org/10.1007/JHEP10(2018)103
https://doi.org/10.1007/JHEP10(2018)103
https://doi.org/10.1103/PhysRevLett.122.121603


production at next-to-next-to-leading order, Phys. Rev. Lett.
123, 041603 (2019).

[15] D. Chicherin and V. Sotnikov, Pentagon functions for
scattering of five massless particles, J. High Energy Phys.
12 (2020) 167.

[16] A. von Manteuffel and R. M. Schabinger, A novel approach
to integration by parts reduction, Phys. Lett. B 744, 101
(2015).

[17] T. Peraro, Scattering amplitudes over finite fields and
multivariate functional reconstruction, J. High Energy Phys.
12 (2016) 030.

[18] J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch,
Integral reduction with Kira 2.0 and finite field methods,
Comput. Phys. Commun. 266, 108024 (2021).

[19] V. Magerya, Rational tracer: A tool for faster rational
function reconstruction, arXiv:2211.03572.

[20] A. V. Belitsky, A. V. Smirnov, and R. V. Yakovlev, Balanc-
ing act: Multivariate rational reconstruction for IBP, Nucl.
Phys. B993, 116253 (2023).

[21] G. De Laurentis and B. Page, Ansätze for scattering
amplitudes from p-adic numbers and algebraic geometry,
J. High Energy Phys. 12 (2022) 140.

[22] S. Badger, C. Brønnum-Hansen, D. Chicherin, T.
Gehrmann, H. B. Hartanto, J. Henn, M. Marcoli, R.
Moodie, T. Peraro, and S. Zoia, Virtual QCD corrections
to gluon-initiated diphoton plus jet production at hadron
colliders, J. High Energy Phys. 11 (2021) 083.

[23] S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page,
and V. Sotnikov, Leading-color two-loop amplitudes for
four partons and a W boson in QCD, J. High Energy Phys.
04 (2022) 042.

[24] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, and B.
Page, Analytic form of planar two-loop five-gluon scattering
amplitudes in QCD, Phys. Rev. Lett. 122, 082002 (2019).

[25] X. Liu, Reconstruction of rational functions made simple,
Phys. Lett. B 850, 138491 (2024).

[26] G. De Laurentis and D. Maître, Extracting analytical one-
loop amplitudes from numerical evaluations, J. High Energy
Phys. 07 (2019) 123.

[27] G. De Laurentis and D. Maître, Two-loop five-parton
leading-colour finite remainders in the spinor-helicity for-
malism, J. High Energy Phys. 02 (2021) 016.

[28] J. M. Campbell, G. De Laurentis, and R. K. Ellis, Vector
boson pair production at one loop: Analytic results for the
process qq̄lll0l0g, J. High Energy Phys. 07 (2022) 096.

[29] B. Agarwal, F. Buccioni, A. von Manteuffel, and L.
Tancredi, Two-loop helicity amplitudes for diphoton plus
jet production in full color, Phys. Rev. Lett. 127, 262001
(2021).

[30] S. Badger, M. Czakon, H. B. Hartanto, R. Moodie, T.
Peraro, R. Poncelet, and S. Zoia, Isolated photon production
in association with a jet pair through next-to-next-to-leading
order in QCD, J. High Energy Phys. 10 (2023) 071.

[31] H. Ita, Two-loop integrand decomposition into master
integrals and surface terms, Phys. Rev. D 94, 116015
(2016).

[32] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, and
M. Zeng, Two-loop four-gluon amplitudes from numerical
unitarity, Phys. Rev. Lett. 119, 142001 (2017).

[33] S. Abreu, F. Febres Cordero, H. Ita, B. Page, and M. Zeng,
Planar two-loop five-gluon amplitudes from numerical
unitarity, Phys. Rev. D 97, 116014 (2018).

[34] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus,
B. Page, E. Pascual, M. S. Ruf, and V. Sotnikov, Caravel: A
C++ framework for the computation of multi-loop ampli-
tudes with numerical unitarity, Comput. Phys. Commun.
267, 108069 (2021).

[35] S. Abreu, G. De Laurentis, H. Ita, M. Klinkert, B. Page, and
V. Sotnikov, Two-loop QCD corrections for three-photon
production at hadron colliders, SciPost Phys. 15, 157
(2023).

[36] G. De Laurentis, H. Ita, B. Page, and V. Sotnikov (to be
published).

[37] S. Badger, D. Chicherin, T. Gehrmann, G. Heinrich, J. M.
Henn, T. Peraro, P. Wasser, Y. Zhang, and S. Zoia, Analytic
form of the full two-loop five-gluon all-plus helicity
amplitude, Phys. Rev. Lett. 123, 071601 (2019).

[38] D. C. Dunbar, J. H. Godwin, W. B. Perkins, and J. M.W.
Strong, Color dressed unitarity and recursion for Yang-Mills
two-loop all-plus amplitudes, Phys. Rev. D 101, 016009
(2020).

[39] D. A. Kosower and S. Pögel, A unitarity approach to two-
loop all-plus rational terms, arXiv:2206.14445.

[40] D. Maitre and P. Mastrolia, S@M, a mathematica imple-
mentation of the spinor-helicity formalism, Comput. Phys.
Commun. 179, 501 (2008).

[41] Z. Bern and D. A. Kosower, Color decomposition of one
loop amplitudes in gauge theories, Nucl. Phys. B362, 389
(1991).

[42] G. ’t Hooft, A planar diagram theory for strong interactions,
Nucl. Phys. B72, 461 (1974).

[43] Z. Bern, L. J. Dixon, and D. A. Kosower, One loop
corrections to five gluon amplitudes, Phys. Rev. Lett. 70,
2677 (1993).

[44] S. Badger, G. Mogull, A. Ochirov, and D. O’Connell, A
complete two-loop, five-gluon helicity amplitude in Yang-
Mills theory, J. High Energy Phys. 10 (2015) 064.

[45] S. Badger, C. Brønnum-Hansen, H. B. Hartanto, and T.
Peraro, Analytic helicity amplitudes for two-loop five-gluon
scattering: The single-minus case, J. High Energy Phys. 01
(2019) 186.

[46] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page,
and V. Sotnikov, Analytic form of the planar two-loop five-
parton scattering amplitudes in QCD, J. High Energy Phys.
05 (2019) 084.

[47] S. Catani, The singular behavior of QCD amplitudes at two
loop order, Phys. Lett. B 427, 161 (1998).

[48] G. F. Sterman and M. E. Tejeda-Yeomans, Multiloop am-
plitudes and resummation, Phys. Lett. B 552, 48 (2003).

[49] T. Becher and M. Neubert, Infrared singularities of scatter-
ing amplitudes in perturbative QCD, Phys. Rev. Lett. 102,
162001 (2009); 111, 199905(E) (2013).

[50] E. Gardi and L. Magnea, Factorization constraints for soft
anomalous dimensions in QCD scattering amplitudes, J.
High Energy Phys. 03 (2009) 079.

[51] T. Becher and M. Neubert, On the structure of infrared
singularities of gauge-theory amplitudes, J. High Energy
Phys. 06 (2009) 081; 11 (2013) 24.

DOUBLE-VIRTUAL NNLO QCD …. I. THE GLUON CHANNEL PHYS. REV. D 109, 094023 (2024)

094023-17

https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1007/JHEP12(2020)167
https://doi.org/10.1007/JHEP12(2020)167
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1007/JHEP12(2016)030
https://doi.org/10.1007/JHEP12(2016)030
https://doi.org/10.1016/j.cpc.2021.108024
https://arXiv.org/abs/2211.03572
https://doi.org/10.1016/j.nuclphysb.2023.116253
https://doi.org/10.1016/j.nuclphysb.2023.116253
https://doi.org/10.1007/JHEP12(2022)140
https://doi.org/10.1007/JHEP11(2021)083
https://doi.org/10.1007/JHEP04(2022)042
https://doi.org/10.1007/JHEP04(2022)042
https://doi.org/10.1103/PhysRevLett.122.082002
https://doi.org/10.1016/j.physletb.2024.138491
https://doi.org/10.1007/JHEP07(2019)123
https://doi.org/10.1007/JHEP07(2019)123
https://doi.org/10.1007/JHEP02(2021)016
https://doi.org/10.1007/JHEP07(2022)096
https://doi.org/10.1103/PhysRevLett.127.262001
https://doi.org/10.1103/PhysRevLett.127.262001
https://doi.org/10.1007/JHEP10(2023)071
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevLett.119.142001
https://doi.org/10.1103/PhysRevD.97.116014
https://doi.org/10.1016/j.cpc.2021.108069
https://doi.org/10.1016/j.cpc.2021.108069
https://doi.org/10.21468/SciPostPhys.15.4.157
https://doi.org/10.21468/SciPostPhys.15.4.157
https://doi.org/10.1103/PhysRevLett.123.071601
https://doi.org/10.1103/PhysRevD.101.016009
https://doi.org/10.1103/PhysRevD.101.016009
https://arXiv.org/abs/2206.14445
https://doi.org/10.1016/j.cpc.2008.05.002
https://doi.org/10.1016/j.cpc.2008.05.002
https://doi.org/10.1016/0550-3213(91)90567-H
https://doi.org/10.1016/0550-3213(91)90567-H
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1103/PhysRevLett.70.2677
https://doi.org/10.1103/PhysRevLett.70.2677
https://doi.org/10.1007/JHEP10(2015)064
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(02)03100-3
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1103/PhysRevLett.111.199905
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1088/1126-6708/2009/06/081
https://doi.org/10.1088/1126-6708/2009/06/081
https://doi.org/10.1007/JHEP11(2013)024


[52] S. Weinzierl, Does one need the OðϵÞ– and Oðϵ2Þ-terms of
one-loop amplitudes in an NNLO calculation?, Phys. Rev. D
84, 074007 (2011).

[53] A. C. Edison and S. G. Naculich, SU(N) group-theory
constraints on color-ordered five-point amplitudes at all
loop orders, Nucl. Phys. B858, 488 (2012).

[54] D. C. Dunbar, Identities amongst the two loop partial
amplitudes of Yang-Mills theory, J. High Energy Phys.
10 (2023) 058.

[55] P. Nogueira, Automatic Feynman graph generation, J.
Comput. Phys. 105, 279 (1993).

[56] A. Ochirov and B. Page, Full colour for loop amplitudes in
Yang-Mills theory, J. High Energy Phys. 02 (2017) 100.

[57] A. Ochirov and B. Page, Multi-quark colour decompositions
from unitarity, J. High Energy Phys. 10 (2019) 058.

[58] S. Badger, C. Brønnum-Hansen, H. B. Hartanto, and T.
Peraro, First look at two-loop five-gluon scattering in QCD,
Phys. Rev. Lett. 120, 092001 (2018).

[59] S. Abreu, F. Febres Cordero, H. Ita, B. Page, and V.
Sotnikov, Planar two-loop five-parton amplitudes from
numerical unitarity, J. High Energy Phys. 11 (2018) 116.

[60] B. Page, Sagex mathematica and maple schools: Lectures on
finite fields and large ansätze (2021), https://indico.desy.de/
event/28075/.

[61] S. Abreu, B. Page, and M. Zeng, Differential equations from
unitarity cuts: Nonplanar hexa-box integrals, J. High Energy
Phys. 01 (2019) 006.

[62] S. Badger, H. B. Hartanto, and S. Zoia, Two-loop QCD
corrections to Wbb̄ production at hadron colliders, Phys.
Rev. Lett. 127, 012001 (2021).

[63] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann,
SINGULAR 4-3-0—A computer algebra system for polyno-
mial computations, http://www.singular.uni-kl.de (2022).

[64] L. Perron and V. Furnon, OR-Tools, https://developers
.google.com/optimization/ (2023), Google.

[65] G. De Laurentis, Lips:p-adic and singular phase space, in
21th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research: AI meets Reality
(2023), arXiv:2305.14075.

[66] G. De Laurentis, H. Ita, M. Klinkert, and V. Sotnikov,
Supplementary material for “Double-Virtual NNLO QCD
Corrections for Five-Parton Scattering: The Gluon Chan-
nel,” 10.5281/zenodo.10142295 (2023).

[67] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D.
Forde, H. Ita, D. A. Kosower, and D. Maitre, An automated
implementation of on-shell methods for one-loop ampli-
tudes, Phys. Rev. D 78, 036003 (2008).

[68] B. Agarwal, F. Buccioni, F. Devoto, G. Gambuti, A. von
Manteuffel, and L. Tancredi (private communication).

[69] B. Agarwal, F. Buccioni, F. Devoto, G. Gambuti, A. von
Manteuffel, and L. Tancredi, this issue, Five-parton scatter-
ing in QCD at two loops, Phys. Rev. D 109, 094025 (2024).

[70] https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-
cpp.git.

[71] D. Chicherin, V. Sotnikov, and S. Zoia, Pentagon functions
for one-mass planar scattering amplitudes, J. High Energy
Phys. 01 (2022) 096.

[72] S. Abreu, D. Chicherin, H. Ita, B. Page, V. Sotnikov, W.
Tschernow, and S. Zoia, All two-loop Feynman integrals for
five-point one-mass scattering, arXiv:2306.15431.

DE LAURENTIS, ITA, KLINKERT, and SOTNIKOV PHYS. REV. D 109, 094023 (2024)

094023-18

https://doi.org/10.1103/PhysRevD.84.074007
https://doi.org/10.1103/PhysRevD.84.074007
https://doi.org/10.1016/j.nuclphysb.2012.01.019
https://doi.org/10.1007/JHEP10(2023)058
https://doi.org/10.1007/JHEP10(2023)058
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1007/JHEP02(2017)100
https://doi.org/10.1007/JHEP10(2019)058
https://doi.org/10.1103/PhysRevLett.120.092001
https://doi.org/10.1007/JHEP11(2018)116
https://indico.desy.de/event/28075/
https://indico.desy.de/event/28075/
https://indico.desy.de/event/28075/
https://indico.desy.de/event/28075/
https://doi.org/10.1007/JHEP01(2019)006
https://doi.org/10.1007/JHEP01(2019)006
https://doi.org/10.1103/PhysRevLett.127.012001
https://doi.org/10.1103/PhysRevLett.127.012001
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arXiv.org/abs/2305.14075
https://doi.org/10.5281/zenodo.10142295
https://doi.org/10.1103/PhysRevD.78.036003
https://doi.org/10.1103/PhysRevD.109.094025
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://doi.org/10.1007/JHEP01(2022)096
https://doi.org/10.1007/JHEP01(2022)096
https://arXiv.org/abs/2306.15431

