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In this work, we attack the problem of “chiral phase instability” (χPI) in a quantum chromodynamics
(QCD) system under a parallel and constant electromagnetic field. The χPI refers to the fact that, when
I2 ≡ E · B is larger than the threshold Ic2, no homogeneous solution can be found for σ or π0 condensate,
and the chiral phase θ becomes unstable. Within the two-flavor chiral perturbation theory, we obtain an
effective Lagrangian density for θðxÞ where the chiral anomalous Wess-Zumino-Witten term is found to
play a role of “source” to the “potential field” θðxÞ. The Euler-Lagrangian equation is applied to derive
the equation of motion for θðxÞ, and physical solutions are worked out for several shapes of systems. In
the case I2 > Ic2, it is found that the χPI actually implies an inhomogeneous QCD phase with θðxÞ
spatially dependent. By its very nature, the homogeneous-inhomogeneous phase transition is of pure
topological and second order at Ic2. Finally, the work is extended to the three-flavor case, where an
inhomogeneous η condensation is also found to be developed for I2 > Ic2. Correspondingly, there is a

second critical point, Ic
0
2 ¼ 24.3Ic2, across which the transition is also of topological and second order by

its very nature.
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I. INTRODUCTION

Recently, high energy nuclear physicists are devoting
more energy to looking for the signals of chiral magnetic
effect (CME) in experiments [1–5] since it was denied by
the blind analysis of the beam energy scan II data from
Relativistic Heavy Ion Collider [6]. As is well known, CME
is the first proposed macroscopic manifestation of chiral
anomaly [7,8] transport: In the presence of a finite chiral
density, a constant magnetic field could induce a finite
nondissipative electric current along its direction [9,10].
After that, people discovered other anomalous transport
phenomena that are also related to electromagnetic (EM)
fields, such as the chiral magnetic wave [11], chiral
separation effect [12,13], chiral electric separation effect
[14], anomalous magnetovorticity effect [15], and chiral
electric vortical effect [16,17]. Especially, only the EM
field and vorticity are involved in the last two effects, and
the corresponding density currents could be uniformly
presented in Lorentz covariant forms [16].
However, even restricted to the many-body effect, chiral

anomaly could manifest itself not only through anomalous
transports but also by modifying the ground states of the
systems. In a system with finite baryon chemical potential
and magnetic field, the chiral separation effect is expected
on one hand [12,13], but the ground state can be reorgan-
ized as a π0 domain wall [18] (or more precisely, chiral
soliton lattice [19]) on the other hand. In a system with
parallel and constant EM field, the chiral density would
increase with time on one hand; but on the other hand, the

ground state would rotate from the one with homogeneous
σ condensate to the one with both homogeneous σ and π0

condensates [20–22]. All the mentioned studies on the
ground states were carried out within the chiral perturbation
theory (ChPT) [18–20], a precise effective theory of QCD
at low energy level, so the findings are reliable and model
independent.
Considering the case with a parallel EM field further, our

previous studies [20,23,24] had shown that homogeneous
solutions could not be found when the second Lorentz
invariant of the EM field, I2 ≡E · B, is large. Actually, if
we check the thermodynamic potential for the chiral angle,
the extremal minimum that satisfies the gap equation does
not exist at all, while the boundary minimum strongly
depends on the domain and does not satisfy the gap
equation [23]. In this sense, we interpreted that regime
as a “chaotic” phase where the chiral angle is unstable and
keeps changing with time. However, we are not satisfied
with these arguments to address the problem of chiral phase
instability (χPI), especially regarding the fact that no static
solution exists. Recall that there is no continuous symmetry
breaking in two-dimensional thermal systems due to the
instability caused by phase fluctuations [25–27]; then the
Berezinskii-Kosterlitz-Thouless transition [28–30] is
allowed to emerge as a completely new topological phase
transition. So, it is natural to ask whether the χPI similarly
implies a pure topological transition in a three-dimensional
QCD system. If so, this could be the first time that a pure
topological transition is found in a QCD system to the best
of our knowledge.
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The paper is devoted to addressing this problem and is
organized as follows. We demonstrate and solve the
problem of chiral phase instability in great detail within
the two-flavor chiral perturbation theory in Sec. II, where
Secs. II A and II B are devoted to spherical and cylindrical
systems, respectively. Take the spherical system, for
example, we show how the equation of motion can be
solved for the chiral angle in the chiral limit in Sec. II A 1
and in the real case in Sec. II A 2. Moreover, Sec. II A 3 is
set up to amply discuss the nature of phase transition across
Ic2. In Sec. III, the study is extended to the three-flavor case
for an infinitely long cylindrical system. Finally, we give a
summary and discuss the prospects in Sec. IV.

II. TWO-FLAVOR CHIRAL PERTURBATION
THEORY

The Lagrangian of two-flavor chiral perturbation theory
is given by [31]

L ¼ L0 þ LWZW; ð1Þ

where the normal chiral Lagrangian L0 is

L0 ¼
f2π
4
tr½DμU†DμU þm2

πðU þ U†Þ� ð2Þ

up toOðp2Þ andLWZW is theWess-Zumino-Witten (WZW)
term given by [32,33]

LWZW¼ Nc

48π2
Aμϵ

μναβ½trðQLνLαLβþQRνRαRβÞ− iFαβTν�;
ð3Þ

Tν ¼ tr

�
Q2ðLν þ RνÞ þ

1

2
ðQU†QULν þQUQU†RνÞ

�
;

Lμ ¼ ∂μU†U; Rμ ¼ U∂μU†: ð4Þ

In Eq. (2), the covariant derivative is defined as

DμU ¼ ∂μU þ Aμ½Q;U�; ð5Þ

where U is a 2 × 2 unitary matrix representing chiral fields
in flavor space, Aμ is the vector potential for background
EM field, and Q ¼ diagð2=3;−1=3Þe is the charge matrix.
By following the Weinberg parametrization, we have

U ¼ 1

fπ
ðσ þ iτ · πÞ; ð6Þ

where τ is the Pauli matrix in flavor space, and the σ boson
and pions π fulfill the constraint σ2 þ π2 ¼ f2π . Note that
the traces tr are all over flavor space in both Eqs. (2) and (3)
and ϵμναβ is the antisymmetric Levi-Civita symbol in space-
time coordinates.

In the presence of a constant parallel electromagnetic
field, we have already known that the phase with nonzero
hσi and hπ0i≡ hπ3i is favored [20]. Here, we more
generally assume that

hσi ¼ fπ cos θðxÞ; hπ0i ¼ fπ sin θðxÞ ð7Þ

with θðxÞ as the chiral phase or angle, and it follows from
the constraint hσi2þhπi2¼ f2π that hπ1i ¼ hπ2i ¼ 0. Then,
explicit calculations show that the normal Lagrangian
density (2) reduces to

L̄0 ¼
f2π
2
∂μθðxÞ∂μθðxÞ þ f2πm2

π cos θðxÞ: ð8Þ

To evaluate the explicit form of the WZW term, we find the
expectation values (EVs) of Lμ and Rμ to be

L̄μ ¼ R̄μ ¼ −iτ3∂μθðxÞ; ð9Þ

which then implies the EV of Tν to be

T̄ν ¼ 3trQ2L̄ν ¼ −ie2∂νθðxÞ: ð10Þ

Because of the commutability among L̄ν; L̄α, and L̄β, it is
easy to check that the cubic terms of L̄μ and R̄μ vanish in
Eq. (3), and the WZW term could be simply given as

L̄WZW ¼ −
Nce2

48π2
ϵμναβAμFαβ∂νθðxÞ: ð11Þ

Because of the derivatives ∂νθðxÞ, the 2π periodicity with
respect to θðxÞ is automatically guaranteed for L̄WZW as it
should be. Note that the reduced WZW term is exactly the
same as that adopted for the study of π0 domain wall in
Refs. [18,19] when setting A0 ¼ μB and F12 ¼ B.
In total, the explicit form of the Lagrangian density is

L̄
f2π

¼ 1

2
∂μθðxÞ∂μθðxÞ þm2

π cos θðxÞ

−
ρ̃5
4I2

ϵμναβAμFαβ∂νθðxÞ; ð12Þ

where we have introduced “chiral density” ρ̃5 ≡ Nce2I2
12π2f2π

with

I2 ≡ E · B ¼ EB the second Lorentz invariant of the EM
field. The Lagrangian is gauge invariant when θðxÞ varies
together with Aμ [33]. In order to stabilize the vacuum for
the following studies, we take eE≲m2

π to suppress
Schwinger pair production and tune I2 simply through
B. In some work, a constant θ is introduced to the
Lagrangian to study the CP violation of QCD explicitly
[34]. In our consideration, θðxÞ is kind of order parameter
that has to be determined by the minimizing the
Hamiltonian density
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H
f2π

¼ ∂0θ
∂

L̄
f2π

∂ð∂0θÞ
þ ∂0Aα

∂
L̄
f2π

∂ð∂0AαÞ
−

L̄
f2π

¼ 1

2
½ð∂0θÞ2 þ ð∇θÞ2� −m2

π cos θ

þ ρ̃5
2I2

ϵμναβAμ∇αAβ∇νθðxÞ ð13Þ

with ∇0 ¼ 0 and ∇i ¼ ∂i (i ¼ 1; 2; 3). The minimizing
process is equivalent to follow the Euler-Lagrangian
equation

∂μ
∂L̄

∂∂μθðxÞ
−

∂L̄
∂θðxÞ ¼ 0; ð14Þ

and the static equation of motion (EOM) of θðxÞ can be
obtained as

−∇2θðxÞ þm2
π sin θðxÞ − ρ̃5 ¼ 0: ð15Þ

The EOM (15) is invariant with respect to the gauge change
of Aμ; we can set Aμ to be time independent in order to
simply reproduce the EOM from Eq. (13).
If θðxÞ is almost a constant, the Hamiltonian density

equation (13) becomes

H
f2π

¼ −m2
π cos θ þ

ρ̃5
2I2

ϵμναβAμ∇αAβ∇νθðxÞ ð16Þ

to next-leading order and the EOM follows correspond-
ingly as

m2
π sin θðxÞ − ρ̃5 ¼ 0: ð17Þ

For a small I2 or ρ̃5, two solutions can be obtained from
Eq. (17), that is,

θ1 ¼ arcsin
ρ̃5
m2

π
; θ2 ¼ π − θ1: ð18Þ

Surely, θ1 is a local minimum of H and θ2 a local
maximum, so θ1 is the physical solution and the energy
density is

H
f2π

¼ −m2
π cos θ1: ð19Þ

We would like to point out that θ ¼ 2nπðn∈ZÞ seems to
give the lowest energy for any I2, but chiral anomaly drives
the system to be located at θ1 instead with extra energy
injected from the EM field. However, when ρ̃5 > m2

π , there
is no solution to Eq. (17) at all. This is of course
nonphysical and was called chiral phase instability in
our previous works [20,23,24]. Specifically, at the critical

point with ρ̃c5 ¼ m2
π or e2Ic2 ¼ 12π2

Nc
f2πm2

π, θ1 ¼ θ2 ¼ π
2
and

the energy density can be evaluated as Hc ¼ 0.
In the following, we will confine ourselves to the

supercritical case with ρ̃5 > m2
π to discuss the chiral phase

instability problem. When no constant solution can be
found to the EOM, it is natural to ask if a space-dependent
solution is possible. To answer the question, we have to
refer to the general EOM, Eq. (15). For demonstration, two
shapes of systems will be explored: a spherical system in
Sec. II A and a cylindrical system in Sec. II B.

A. A spherical system

1. Chiral limit

We will start with the chiral limit mπ ¼ 0, which is
simpler but still contains the most important physical
ingredient—the WZW term. In this case, Ic2 ¼ 0, and the
EOM (15) is reduced to

−∇2θðxÞ ¼ ρ̃5: ð20Þ

This is just like the fourthMaxwell differential equationwith
a constant charge density, that is, ∇·EðxÞ¼−∇2ϕ0ðxÞ¼
ρe. So we immediately understand that ρ̃5 plays a role of
reduced chiral charge density. According to classical
electromagnetism, the shape of the system boundary
strongly affects the spatial dependence of θðxÞ. In this
section, we consider a spherical system first, then Gauss’s
theorem can be applied to find

Eθ ≡ −∇θðxÞ ¼ r
3
ρ̃5 ð21Þ

with r ¼ xþ y þ z, which then gives

θðrÞ ¼ −
r2

6
ρ̃5 ð22Þ

up to a constant. The constant cannot be constrained due to
the exact chiral symmetry of the chiral perturbation theory in
chiral limit when the EM field is absent. Actually, the EOM
(20) can be simply reduced to

−
d2½rθðrÞ�
rdr2

¼ ρ̃5 ð23Þ

in the spherical case, and one can check that Eq. (22) is truly
the solution.
In such a case, the corresponding Hamiltonian density is

H
f2π

¼ 1

2
ð∇θðxÞÞ2 þ ρ̃5

2I2
ϵμναβAμ∇αAβ∇νθðxÞ

¼ r2

18
ρ̃25 þ

r2

9
ρ̃25 ¼

r2

6
ρ̃25 > 0; ð24Þ
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where the isotropic symmetry has been applied to the
WZW term in the second step. Compared to Hc ¼ 0, we
can see that the inhomogeneous solution is less favored
than the homogeneous one if it exists. If we introduce a
small real correction δθðrÞ to the solution (22), that is,
θðrÞ ¼ − r2

6
ρ̃5 þ δθðrÞ, then we can derive from Eq. (13),

H
f2π

−
r2

6
ρ̃25 ¼

1

2
½∇δθðrÞ�2 > 0; ð25Þ

so the solution is a local minimum.

2. Real case

The situation changes a bit when we consider mπ ≠ 0,
because there is a local minimum (18) for I2 < Ic2 [20] and
the Hamiltonian (19) is negative. So the homogeneous
solution is stable until I2 > Ic2, whence we have to solve the
following space-dependent differential equation:

−∇2θðxÞ þm2
π sin θðxÞ ¼ ρ̃5: ð26Þ

Note that I2 > Ic2 is equivalent to the condition ρ̃5 > m2
π .

We are going to solve this equation in the following.
For a spherical system, the EOM (26) can be reduced to

−
d2½rθðrÞ�
rdr2

þm2
π sin θðrÞ ¼ ρ̃5: ð27Þ

We have mentioned that the homogeneous solution is
θðrÞ ¼ π

2
at I2 ¼ Ic2 due to the chiral rotation [20]. To keep

the energy continuous across Ic2, one should choose θð0Þ ¼
π
2
for the inhomogeneous phase. Then, we can check that

θðrÞ ¼ −
r2

6
ðρ̃5 −m2

πÞ þ
π

2
ð28Þ

is the asymptotic solution of Eq. (27) around the center
r ∼ 0, and the boundary conditions follow as θð0Þ ¼ π

2
and

θ0ð0Þ ¼ 0. With that, it is easy to solve the EOM (27)
numerically and obtain an exact and definite result.
For r2 ≫ ρ̃−15 , it is convenient to redefine the angle

function as θðrÞ≡ θ̂ðrÞ − r2
6
ρ̃5 and the EOM becomes

−
d2½rθ̂ðrÞ�
rdr2

þm2
π sin

�
θ̂ðrÞ − r2

6
ρ̃5

�
¼ 0: ð29Þ

If we assume jθ̂ðrÞj ≪ j r2
6
ρ̃5j in the large r limit, the EOM

can be approximately presented as

−
d2½rθ̂ðrÞ�
rdr2

−m2
π sin

�
r2

6
ρ̃5

�
¼ 0: ð30Þ

Such a differential equation can be solved analytically to
get the general solution as

θ̂ðrÞ ¼ 3m2
π

ρ̃5

Cðr̃Þ þ C1

r̃
þ C2 ð31Þ

with r̃≡
ffiffiffiffi
ρ̃5
3π

q
r as the reduced radius and CðzÞ as the

Fresnel integral function. Since limr→∞ θ̂ðrÞ ¼ C2, the
prescription jθ̂ðrÞj ≪ j r2

6
ρ̃5j is self-consistently satisfied.

Thus, we can conclude that θðrÞ ¼ − r2
6
ρ̃5 is the asymptotic

solution of Eq. (27) for very large r. Moreover, the larger is
ρ̃5, the better is the approximate solution, because
m2

π sin θðrÞð≤ m2
πÞ is then only a small correction to ρ̃5.

For a medium radius, we still need to take into account
the correction (31) to better reproduce the numerical
results. Then, by noticing that Cðr̃Þ oscillates around the
center value 1=2 with r̃ varying, the explicit form could be
given as

θ̂ðrÞ ¼ 3m2
π

ρ̃5

Cðr̃Þ − Cð2Þ
r̃

þ θðr0Þ þ 2π; ð32Þ

where θðr0Þ is the value given by numerical calculations
at a large distance r0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
3π=ρ̃5

p
and Cð2Þ ¼ 0.488.

One can easily check that θ̂ðr0Þ − 2π ¼ θðr0Þ, that is,
the approximate solution exactly matches the numerical
one at r0.
The comparisons between the approximate solutions,

θsðrÞ ¼ − r2
6
ðρ̃5 −m2

πÞ þ π
2
and θlðrÞ ¼ θ̂ðrÞ − r2

6
ρ̃5 with

Eq. (32), and the exact numerical results are given in
Fig. 1 for several I2 > Ic2. As we can see, for I2 ¼ 2Ic2, the
numerical results are well reproduced by θsðrÞ and θlðrÞ,
respectively, in the small and large distance limits. For
I2 ≳ Ic2, a large range around r ¼ 0 can be well reproduced
by θsðrÞ, but we need a much larger fixed point than r̃ ¼ 2
for θlðrÞ to better reproduce the large distance limit. So in
the limit I2 → Ic2 from above, θðrÞ ¼ − r2

6
ðρ̃5 −m2

πÞ þ π
2
is

FIG. 1. The comparisons between the approximate solutions,
θsðrÞ ¼ − r2

6
ðρ̃5 −m2

πÞ þ π
2
(blue dotted) and θlðrÞ ¼ θ̂ðrÞ − r2

6
ρ̃5

with Eq. (32) (red dashed), and the exact numerical results (black
solid) for i≡ I2=Ic2 ¼ 1.1 and 2.
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the exact solution for a system with a finite radius, and
we have

lim
I2→Icþ

2

θðrÞ ¼ π

2
; ð33Þ

lim
I2→Icþ

2

∂I2θðrÞ ¼ −
r2

6

Nce2

12π2f2π
: ð34Þ

Thus, the continuity of energy is guaranteed at Ic2 and the
phase transition is of second order.
Finally, we show in Fig. 2 the corresponding evolutions

of more physical order parameters, hσðxÞi and hπ0ðxÞi,
with the radius r. Although θðrÞ is not continuous with r
after taking modulus over 2π, hσðxÞi and hπ0ðxÞi are
continuous as 2π are exactly their period with respect to
θðrÞ. As can be seen, they oscillate with r but the period
continuously changes, so such an inhomogeneous phase is
very different from the chiral density wave which is
periodic in space.

3. The nature of phase transition

What kind of phase transition is it across Ic2? As a matter
of fact, neither internal nor spatial symmetry are further
broken by the inhomogeneous condensate θðrÞ for the real
case, so it is not of Landau type. That can be strongly
supported by demonstrating the absence of zero mode
fluctuation. If we assume a small fluctuation δθðrÞ to the
solution θðrÞ in the Lagrangian (12), the Lagrangian for the
fluctuation field would follow as

δL ¼ f2π
2
∂μδθðxÞ∂μδθðxÞ − f2πm2

π cos θðxÞ
δθ2ðxÞ

2
ð35Þ

up to order oðδθ2ðxÞÞ. Then, by recalling the spherical
symmetry of the system, the EOM of δθðxÞ can be given as

0 ¼
�
∂
2
t − ∂

2
r −

2

r
∂r þm2

π cos θðrÞ
�
δθðt; rÞ

¼ ½∂2t − ∂
2
r þm2

π cos θðrÞ�rδθðt; rÞ: ð36Þ

For a system with a large radius R, we have numerically
checked that the zero mode solution would diverge as r−2

around r ∼ 0 for nontrivial boundary conditions δθðt; RÞ ¼
0 and ∂Rδθðt; RÞ ≠ 0. Such a divergent solution cannot be a
candidate for wave function, so there is no massless
Nambu-Goldstone mode at all in the inhomogeneous
phase. However, since cos θðrÞ ∼ 0 for r ∼ 0, the collective
excitation is almost massless when r is not large, which
means that the effective interaction range becomes much
larger when π0 is exchanged. While, it is easy to find from
Eq. (35) that δθðrÞ is massless in chiral limit, which follows
the Nambu-Goldstone nature of π0 and indicates no energy
cost to change θð0Þ. The physics is quite similar to that of
photons: Even when finite electric charges are put into the
system and a background electric field is then generated,
photons remain massless in this system.
Then, the phase transition at Ic2 can only be of topological

type according to our knowledge about the category of
phase transition. Surely, the chiral charge ρ̃5 is of topo-
logical nature and increases with increasing I2, but how
about the topology of the condensate across the critical
point Ic2? We may recall Gauss’s law that the electric field
flux through a closed surface, Φ ¼ H

S E · dS, is solely
determined by the number of electric charges inside the
surface but does not depend on the distribution, so the field
flux serves as a topological invariant. In chiral limit, the
background field Eθ becomes coordinate dependent if and
only if I2 (thus ρ̃5) is nonzero. In this sense, the presence of
finite chiral charges is consistent with a nontrivial back-
ground field flux, defined asΦθ ≡ H

S Eθ · dS, similar to the
case with electric field.
For the real case, the situation is very different: Because

of the second term on the right-hand side of Eq. (12) which
explicitly breaks chiral symmetry, the flux Φθ trivially
keeps zero up to Ic2 as θðxÞ is homogeneous. It seems that
all the chiral charges are completely screened thanks to the
reorganization of the chiral vacuum. Beyond Ic2, an inho-
mogeneous profile is developed for θðxÞ and we can
evaluate Φθ for a spherical surface with radius r as

ΦθðrÞ≡ −4πr2∂rθðrÞ: ð37Þ

Actually, ΦθðrÞ depends on the details of chiral charge
distribution as the second term is involved in Eq. (12), so
ΦθðrÞ can only be understood as an approximate topo-
logical order parameter. The exact numerical and approxi-
mate results are both presented in Fig. 3 for ΦθðrÞ. As we
can see, the explicit chiral symmetry breaking term seems
to contribute a negative charge density ρ̃05 ¼ −m2

π for
I2 > Ic2. The whole feature is quite similar to that of a

FIG. 2. The spatial distributions of reduced condensates
hσ̃ðrÞi≡ hσðrÞi=fπ and hπ̃ðrÞi≡ hπðrÞi=fπ for i≡ I2=Ic2 ¼
1.1 (blue solid) and 2 (red dashed).
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type-II superconductor in an external magnetic field [35]:
When B is small, it will be completely expelled from the
bulk by the superconducting system; but when B becomes
larger than the critical one Bc, inhomogeneous magnetic
vortices would gradually form. So, a chiral charge, such as
a deconfined u=d quark, would not feel the field Eθ until
I2 > Ic2, when it will get accelerated. However, there is one
big difference for the type-II superconductor: the rotational
symmetry is spontaneously broken by the magnetic vortex
lattice, hence the involved phase transitions are of
Landau type.

B. A cylindrical system

For completeness, we will study a cylindrical system
which is infinitely long and infinitely wide in Secs. II B 1
and II B 2, respectively. On one hand, in classical electro-
magnetism, the electric configuration in such systems can
be easily solved when the cylindrical symmetry is con-
sistently taken into account. On the other hand, it is much
more convenient to prepare a cylindrical system with
constant parallel EM field along its axis in practice.

1. Infinitely long

We set both the axis of the cylindrical system and the
parallel EM field to be along z-direction without loss of
generality. When the length L along z-direction and
transverse radius R in the x-y plane satisfy L ≫ R, such
a cylindrical system can be approximately considered as
infinitely long. It is well known that the z-component of Eθ

would vanish in this case, so the EOM (15) is reduced to

�
∂
2
r þ

1

r
∂r

�
θðrÞ −m2

π sin θðrÞ þ ρ̃5 ¼ 0 ð38Þ

with r ¼ xþ y. In chiral limit, it is easy to find

Eθ ¼
r
2
ρ̃5; θðrÞ ¼ −

r2

4
ρ̃5 þ θð0Þ ð39Þ

with θð0Þ random.
By following a similar process as that in Sec. II A 2, if we

redefine the field as θðrÞ ¼ θ̂ðrÞ − r2
4
ρ̃5, the EOM (38)

becomes

�
∂
2
r þ

1

r
∂r

�
θ̂ðrÞ −m2

π sin

�
θ̂ðrÞ − r2

4
ρ̃5

�
¼ 0: ð40Þ

For r ∼ 0, it can be checked that θðrÞ ¼ − r2
4
ðρ̃5 −m2

πÞ þ π
2

is the approximate solution to Eq. (40). For a large r, the
second term is dominated by − r2

4
ρ̃5 in the sine function, so

the EOM can be reduced to

�
∂
2
r þ

1

r
∂r

�
θ̂ðrÞ þm2

π sin

�
r2

4
ρ̃5

�
¼ 0: ð41Þ

And the general analytic solution is found to be

θ̂ðrÞ ¼ −
m2

π

ρ̃5
½Ciðr̃2Þ þ C1 lnðr̃2Þ� þ C2 ð42Þ

with CiðzÞ the cosine integral function and r̃ ¼ r
2

ffiffiffiffiffi
ρ̃5

p
.

Since CiðzÞ oscillates around 0 with increasing z, the
approximate solution can be set to

θ̂ðrÞ ¼ −
m2

π

ρ̃5

�
Ciðr̃2Þ − Cið2.52Þ þ C1 ln

r̃2

2.52

�

þ θðr0Þ þ 2.52; ð43Þ

where θðr0Þ is the value given by numerical calculations at
a large distance r0 ¼ 5=

ffiffiffiffiffi
ρ̃5

p
and Cið2.52Þ ¼ −0.028. Then,

one can check that θ̂ðr0Þ − 2.52 ¼ θðr0Þ, that is, the
approximate solution exactly matches the numerical one
at r0. The constant C1 is very important for the accuracy of
the approximate solution in the medium range, since lnðr̃2Þ
increases with r. The numerical fitting shows that C1 ¼
−1=2 can reproduce the exact results very well for larger I2,
see Fig. 4. The features are quite similar to those
of a spherical system and the transition is still of second
order at Ic2.

2. Infinitely wide

To the contrary, if L ≪ R, such a cylindrical system can
be approximately considered as infinitely wide. It is well
known that only the z-component of Eθ is nonzero in this
case, so the EOM (15) is reduced to

∂
2
zθðzÞ −m2

π sin θðzÞ þ ρ̃5 ¼ 0: ð44Þ

For ρ̃5 ¼ 0, chiral soliton lattice is a solution of this EOM
[19], but it is not the ground state compared to the

FIG. 3. The field flux ΦθðrÞ from exact numerical calculations
(black solid) and approximate solution θðrÞ ¼ − r2

6
ðρ̃5 −m2

πÞ þ π
2

(blue dotted) for i≡ I2=Ic2 ¼ 1.1; 2.
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homogeneous phase with θðzÞ ¼ 0. In chiral limit, it is easy
to find

Eθ ¼ zρ̃5; θðzÞ ¼ −
z2

2
ρ̃5 ð45Þ

with θð0Þ random.
By following a similar process as that in Sec. II A 2, if we

redefine the field as θðzÞ ¼ θ̂ðzÞ − z2
2
ρ̃5, the EOM (44)

becomes

∂
2
z θ̂ðzÞ −m2

π sin

�
θ̂ðzÞ − z2

2
ρ̃5

�
¼ 0: ð46Þ

For z ∼ 0, it can be checked that θðzÞ ¼ − z2
2
ðρ̃5 −m2

πÞ þ π
2

is the approximate solution to Eq. (46). For a large jzj, the
second term is dominated by − z2

2
ρ̃5 in the sine function, so

the EOM can be reduced to

∂
2
z θ̂ðzÞ þm2

π sin

�
z2

2
ρ̃5

�
¼ 0: ð47Þ

And the general analytic solution is found to be

θ̂ðzÞ ¼ m2
π

ρ̃5

�
cos

�
π

2
z̃2
�
þ πz̃Sðz̃Þ − C1z̃

�
þ C2 ð48Þ

with SðzÞ as the Fresnel integral function and z̃ ¼
jzj ffiffiffiffiffiffiffiffiffiffi

ρ̃5=π
p

.
Since cosðπ

2
z̃2Þ and Sðz̃Þ oscillate around 0 and 1=2,

respectively, we would fix C2 at z̃20 ¼ 11 where cosðπ
2
z̃20Þ ¼

0 and Sðz̃0Þ ¼ 0.503. We have

θ̂ðzÞ ¼ m2
π

ρ̃5

�
cos

�
π

2
z̃2
�
þ πz̃½Sðz̃Þ − Sðz̃0Þ�

− C1ðz̃ − z̃0Þ
�
þ θðz0Þ þ

11

2
π; ð49Þ

where θðz0Þ is the value given by numerical calculations at
a large distance z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11π=ρ̃5

p
. Then, one can check that

θ̂ðz0Þ − 11
2
π ¼ θðz0Þ, that is, the approximate solution

exactly matches the numerical one at z0. The constant
C1 is very important for the accuracy of the approximate
solution in the medium range, since z̃ increases with z. The
numerical fitting shows that C1 ¼ −

ffiffiffi
6

p
can reproduce the

exact results very well over the whole range for larger I2,
see Fig. 5. Again, the features are quite similar to those of a
spherical system and the transition is still of second order
at Ic2.

III. THREE-FLAVOR CHIRAL PERTURBATION
THEORY

The Lagrangian of two-flavor chiral perturbation theory
can be easily extended to the three-flavor case by redefining
the unitary matrix U in SUð3Þ flavor space, that is,

U ¼ exp

�
i
X8
a¼1

λaϕaðxÞ
�

ð50Þ

with λa Gell-Mann matrices and ϕa the corresponding
octuplet pseudoscalar fields. The Lagrangian is now

L ¼ L0 þ LWZW; ð51Þ

where the normal chiral Lagrangian L0 changes to [36]

FIG. 4. The comparisons between the approximate solutions,
θðrÞ ¼ − r2

4
ðρ̃5 −m2

πÞ þ π
2
(blue dotted) and θðrÞ≡ θ̂ðrÞ − r2

4
ρ̃5

with Eq. (43) (red dashed), and the exact numerical results (black
solid) for i≡ I2=Ic2 ¼ 1.1; 2.

i=1.1

i=2

0 10 20 30 40 50 60
–60

–40

–20

0

20

z (GeV–1)

θ (
z)

FIG. 5. The comparisons between the approximate solutions,
θðzÞ ¼ − z2

2
ðρ̃5 −m2

πÞ þ π
2
(blue dotted) and θðzÞ≡ θ̂ðzÞ − z2

2
ρ̃5

with Eq. (49) (red dashed), and the exact numerical results (black
solid) for i≡ I2=Ic2 ¼ 1.1; 2.
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L0 ¼
f2π
4
tr

�
DμU†DμU þm2

πðM̃†U þU†M̃Þ
�

ð52Þ

and the Wess-Zumino-Witten term LWZW takes the same
form as Eq. (3). In Eq. (52), M̃ ¼ diagð1; 1; rsÞ is the
reduced mass matrix with rs ≡ms=m ¼ 24.3 as the ratio
between s and u=d quark masses [36]; the covariant
derivative is defined as

DμU ¼ ∂μU þ Aμ½Q;U�; ð53Þ

whereQ ¼ diagð2=3;−1=3;−1=3Þe is the charge matrix in
SUð3Þ flavor space. In the limit ms → ∞, only the lightest
pseudoscalars π ∝ ðϕ1;ϕ2;ϕ3Þ are effective, and the theory
exactly reduces to the two-flavor one with the Lagrangian
given by Eq. (2).
For the three-flavor case, since ϕ8 is neutral and takes

part in the triangle anomaly, it might condense as π0 does in
the presence of a parallel EM field. If we set only ϕ3 and ϕ8

to be nonzero in U, the unitary matrix can be simply
reduced to

U ¼ diag

�
eiðϕ

3þϕ8ffiffi
3

p Þ; eið−ϕ
3þϕ8ffiffi

3
p Þ; e−i

2ϕ8ffiffi
3

p
�
: ð54Þ

From such a form, we can identify

hσui¼ fπ cos

�
ϕ3þ ϕ8ffiffiffi

3
p

�
; hσdi¼ fπ cos

�
−ϕ3þ ϕ8ffiffiffi

3
p

�
;

hσsi¼ fπ cos
2ϕ8ffiffiffi
3

p ; hπui¼ fπ sin

�
ϕ3þ ϕ8ffiffiffi

3
p

�
;

hπdi¼ fπ sin

�
−ϕ3þ ϕ8ffiffiffi

3
p

�
; hπsi¼ fπ sin

2ϕ8ffiffiffi
3

p ; ð55Þ

which are consistent with Eq. (7) in the limit ϕ8 → 0. But
for ϕ8 ≠ 0, the eigenstates are not π0 and η anymore due to
flavor mixing [24]. By substituting Eq. (54) into Eq. (52),
we find the explicit form of the normal chiral Lagrangian as

L̄0

f2π
¼ 1

2

X
a¼3;8

∂μϕ
a
∂
μϕa þm2

π

�
cosϕ3 cos

ϕ8ffiffiffi
3

p þ rscos2
ϕ8ffiffiffi
3

p
�

ð56Þ

up to an irrelevant constant. When ϕ3;ϕ8 ∼ 0, we can check

that their masses are mπ and mη ≡
ffiffiffiffiffiffiffiffiffi
1þ2rs

3

q
mπ , respectively.

So, we can fix rs ¼ 24.3 by applying the physical masses
of π0 and η mesons [36].
To evaluate the WZW term, Eq. (3), in the three-flavor

case, we note that

L̄μ ¼ R̄μ ¼ −i
X
a¼3;8

λa∂μϕ
aðxÞ; ð57Þ

which then implies the EV of Tν to be

T̄ν ¼ 3trQ2L̄ν ¼ −ie2∂ν
�
ϕ3ðxÞ þ ϕ8ðxÞffiffiffi

3
p

�
: ð58Þ

So, the total Lagrangian can be given explicitly as

L̄
f2π

¼ L̄0

f2π
−

ρ̃5
4I2

ϵμναβAμFαβ∂ν

�
ϕ3ðxÞ þ ϕ8ðxÞffiffiffi

3
p

�
; ð59Þ

where we find that the chiral charge density involved for
ϕ8ðxÞ is 1ffiffi

3
p of that for ϕ3ðxÞ for a given I2. Recalling that

mη ≫ mπ , we expect the two-flavor results presented in
Sec. II to be very conceivable when m2

π ≪ ρ̃5 ≪ m2
η.

To study the ground state, we apply the Euler-
Lagrangian equation

∂μ
∂L̄

∂∂μϕ
aðxÞ −

∂L̄
∂ϕaðxÞ ¼ 0 ð60Þ

and derive the static EOM of ϕ3ðxÞ and ϕ8ðxÞ as
8>><
>>:

−∇2ϕ3 þm2
π sinϕ3 cos ϕ8ffiffi

3
p ¼ ρ̃5;

−∇2ϕ8 þ m2
πffiffi
3

p
�
cosϕ3 þ 2rs cos

ϕ8ffiffi
3

p
�
sin ϕ8ffiffi

3
p ¼ ρ̃5ffiffi

3
p ;

ð61Þ

which are coupled differential equations. For I2 ≤ Ic2 or
ρ̃5 ≤ m2

π , a homogeneous phase is expected and the EOM
(15) reduce to

8>>><
>>>:

m2
π sinϕ3 cos ϕ8ffiffi

3
p ¼ ρ̃5;

m2
πffiffi
3

p
�
cosϕ3 þ 2rs cos

ϕ8ffiffi
3

p
�
sin ϕ8ffiffi

3
p ¼ ρ̃5ffiffi

3
p :

ð62Þ

As ρ̃5 ≪ m2
η in this regime, ϕ8 is small and these algebra

equations can be approximately solved to give

sinϕ3 ¼ ρ̃5
m2

π
; sin

ϕ8ffiffiffi
3

p ¼ sinϕ3

cosϕ3 þ 2rs
: ð63Þ

We can check that sin ϕ8ffiffi
3

p ≈ 1
48.6 ≪ 1 at Ic2, so the approxi-

mation is truly very good. For ρ̃5 > m2
π, the first equation of

Eq. (62) cannot be satisfied at all, so Ic2 remains a critical
point in the three-flavor case. Similarly, there could be
another critical point Ic

0
2 induced by the presence of η

meson, beyond which the second equation of Eq. (62) can
never be satisfied for any given ϕ3. Actually, ϕ3 is not
important for the determination of Ic

0
2 as rs ≫ 1, and the

critical point can be easily found to be
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Ic
0
2 ≈ rsIc2 ð64Þ

when ρ̃5ffiffi
3

p reaches the maximum of the left-hand side.

A. Inhomogeneous phase

In the following, we will take an infinitely long cylin-
drical system for example to show how the inhomogeneous
phase develops in the case I2 > Ic2. Similar to Eq. (38) in
Sec. II B 1, the EOM can be reduced to

8>>>>><
>>>>>:

�
∂
2
r þ 1

r∂r

�
ϕ3−m2

π sinϕ3 cos ϕ8ffiffi
3

p þ ρ̃5¼ 0;

�
∂
2
r þ 1

r∂r

�
ϕ8− m2

πffiffi
3

p
�
cosϕ3þ2rs cos

ϕ8ffiffi
3

p
�
sin ϕ8ffiffi

3
p þ ρ̃5ffiffi

3
p ¼ 0

ð65Þ

with r ¼ xþ y. Since now ϕ3 develops an inhomogeneous
feature from the first equation of Eq. (65), it follows from
the second equation that ϕ8 must also be inhomogeneous.
In the chiral limit mπ → 0, the EOM decouple in Eq. (65),
and we simply have the solutions

ϕ3 ¼ −
r2

4
ρ̃5 þ C1; ϕ8 ¼ −

r2

4
ffiffiffi
3

p ρ̃5 þ C2: ð66Þ

For the physical case, the approximate solution of ϕ3

follows as

ϕ3 ¼ −
r2

4

�
ρ̃5 −m2

π cos
ϕ8ffiffiffi
3

p
�
þ π

2
ð67Þ

around r ∼ 0 up to oðr2Þ. But for I2 < Ic
0
2 , that of ϕ

8 takes
the constant solution

ϕ8 ¼
ffiffiffi
3

p

2
arcsin

ρ̃5
rsm2

π
ð68Þ

by substituting Eq. (67) into the second equation of
Eq. (65). One can easily check that Eqs. (67) and (68)
would consistently reproduce the homogeneous phase at
ρ̃5 ¼ m2

π , hence the energy is continuous across Ic2 and the
transition remains of second order. Eventually, the initial
conditions follow as

ϕ3ð0Þ ¼ π

2
; ϕ30ð0Þ ¼ 0; ð69Þ

ϕ8ð0Þ ¼
ffiffiffi
3

p

2
arcsin

ρ̃5
rsm2

π
; ϕ80ð0Þ ¼ 0 ð70Þ

for Ic2 < I2 < Ic
0
2 , but

ϕ3ð0Þ¼ π

2
; ϕ30ð0Þ¼ 0; ϕ8ð0Þ¼

ffiffiffi
3

p
π

4
; ϕ80ð0Þ¼ 0

ð71Þ

for I2 > Ic
0
2 . Again, the continuity of initial conditions

across Ic
0
2 guarantees the continuity of energy, and the

transition can be shown to be of second order by following
a similar discussion as in Sec. II A 2.
With the initial conditions (69)–(71), the EOM (65) can

be solved definitely, and the numerical results are illus-
trated in Fig. 6 for several I2. In the upper panel, the result
of ϕ3ðrÞ is quite consistent with that given in Fig. 4 for
I2 ¼ 2Ic2. Actually, the larger is I2, the better is the
consistency, since then the mass term is less important.
However, for the case I2 ∼ Ic2 (not shown), the first equation
of Eq. (65) is very sensitive to the presence of ϕ8ðrÞ, and
ϕ3ðrÞ decreases more quickly than that given in Fig. 4. In
the lower panel, it is interesting to notice that ϕ8ðrÞ
develops an oscillating feature for I2 < Ic

0
2 but decreases

very quickly for I2 > Ic
0
2 . Recalling the discussions in

Sec. II A 3, the oscillating feature actually implies a lattice
structure of the effective field E8 ≡ −∂rϕ8ðrÞ, so the
transition is also topological at Ic

0
2 . We will show in more

detail later that the oscillation center of ϕ8ðrÞffiffi
3

p is at ∼ π
2
for

I2 ∼ Ic2; so the screening chiral charge, m2
π cos

ϕ8ffiffi
3

p , vanishes

on average for larger r. As a consequence, the effective

FIG. 6. The coordinate dependences of ϕ3ðrÞ (upper) and ϕ8ðrÞ
(lower) for I2=Ic2 ¼ 2 (black solid lines), 10 (blue dotted lines),
20 (red dashed lines), and 25 (green dash-dotted lines).
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chiral charge for ϕ3ðrÞ is ρ̃5 at larger r instead of ρ̃5 −
m2

π ∼ 0 at r ∼ 0, which explains why ϕ3ðrÞ decreases more
quickly for I2 ∼ Ic2 in the three-flavor case.
Now, we pay attention to the oscillating feature of ϕ8ðrÞ

at larger r. Without the mixing term ∝ cosϕ3 sin ϕ8ffiffi
3

p , it is

obvious that ϕ8ðrÞ ¼ ϕ8ð0Þ is the exact solution of the
second equation of Eq. (65), so the spatial dependence of
ϕ3ðrÞ is the key for developing the oscillation. We have
mentioned that the mass term for ϕ3 is not important when
ρ̃5 ≫ m2

π , so the solution of the first equation of Eq. (65)
can be simply given by Eq. (67) that automatically satisfies
the constraints at r ∼ 0. Then, the second equation of
Eq. (65) can be reduced to

�
∂
2
rþ

1

r
∂r

�
ϕ8−

m2
πffiffiffi
3

p
�
sinϕ30þ2rscos

ϕ8ffiffiffi
3

p
�
sin

ϕ8ffiffiffi
3

p þ ρ̃5ffiffiffi
3

p ¼0

ð72Þ

with ϕ30ðrÞ≡ r2
4
ðρ̃5 −m2

πÞ. In Sec. II, we have shown that
there are two independent homogeneous solutions,
Eq. (18), to the EOM of θ for I2 < Ic2. Similarly, the
two independent homogeneous solutions for ϕ8 are

ϕ8
0 ≡ ϕ8ð0Þ;

ffiffiffi
3

p

2
π − ϕ8

0 ð73Þ

for I2 < Ic
0
2 if ϕ3 ¼ π=2. The solution ϕ8

0 is a local
minimum and serves as a self-consistent initial condition,

while
ffiffi
3

p
2
π − ϕ8

0 is a local maximum. Actually, we have
checked that the latter is exactly the oscillation center
for larger r and gradually approaches ϕ8

0 as I2 → Ic
0
2 .

If we redefine ϕ8ðrÞ≡ ϕ̂8ðrÞ þ
ffiffi
3

p
2
π − ϕ8ð0Þ, Eq. (72)

can be reduced to

�
∂
2
r þ

1

r
∂r

�
ϕ̂8 −

m2
π

3

�
sinϕ30 sin

ϕ8
0ffiffiffi
3

p − 2rs cos
2ϕ8

0ffiffiffi
3

p
�
ϕ̂8

−
m2

πffiffiffi
3

p sinϕ30 cos
ϕ8
0ffiffiffi
3

p ¼ 0 ð74Þ

up to oðϕ̂8Þ. Here, we find that the chiral charge ρ̃5ffiffi
3

p is

completely canceled out by the reorganization of vacuum

around ϕ8 ¼
ffiffi
3

p
2
π − ϕ8

0. Instead, there is an effective chiral
charge oscillating over space; see the last term on the left-
hand side of Eq. (74). So the existence of a homogeneous
solution to the second equation of Eq. (65) for ϕ3 ¼ π

2
is

important for developing a lattice structure—this explains
the topological change of ϕ8ðrÞ across Ic02 . In fact, the effect
of the ϕ30-dependent terms is to catalyze the evolution of

ϕ8ðrÞ from ϕ8
0 to around

ffiffi
3

p
2
π − ϕ8

0; after that, they can be
roughly neglected for larger r as rs ≫ 1. Then, Eq. (74) can
be simply reduced to

�
∂
2
r þ

1

r
∂r

�
ϕ̂8 þ m̃2

ηϕ̂
8 ¼ 0; ð75Þ

where the effective mass of the η meson is

m̃2
η ≡ 2rs

3
cos

2ϕ8
0ffiffiffi
3

p m2
π ¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrsm2

πÞ2 − ρ̃25

q
ð76Þ

after substituting the explicit value of ϕ8
0. Note that m̃η

vanishes at Ic
0
2 indicating a phase transition.

The general solution of Eq. (75) is

ϕ̂8ffiffiffi
3

p ¼ C1J0ðm̃ηrÞ þ C2Y0ðm̃ηrÞ; ð77Þ

where J0ðzÞ and Y0ðzÞ are Bessel functions of the first and
second kind, respectively. So, the wave length of the
oscillation is found to be 2π=m̃η, and the approximate
solution of ϕ8 is

ϕ8ffiffiffi
3

p ¼ C1J0ðm̃ηrÞ þ C2Y0ðm̃ηrÞ þ
π − arcsin ρ̃5

rsm2
π

2
; ð78Þ

where the constantsC1 andC2 can be fixed by fitting to two
data points at larger r. The comparisons with exact
numerical results are presented in Fig. 7 for different I2.
As we can see, the main features are captured by the
approximate solution (78) at larger r: the oscillation center

is located at
ffiffi
3

p
2
π − ϕ8

0, the wavelength is approximately
2π=m̃η, and the damping of the amplitude follows that of
Bessel functions. Furthermore, the approximate solution
works better when I2 is larger.

80
0

100

FIG. 7. The comparisons between the approximate solution
(78) (red dashed lines) and exact numerical results (black solid
and blue dotted lines) of ϕ8ðrÞ for I2=Ic2 ¼ 2 and 10. For clarity,
the results for I2=Ic2 ¼ 10 are shifted up by π. The constants C1

and C2 are fixed by fitting to two data points at r ¼ 60 and
70 GeV−1.
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Finally, take the case I2 ¼ 2Ic2 for example, we present
the more physical pseudoscalar order parameters in Fig. 8
by following the definitions in Eq. (55). As can be seen,

jhπu=dij ∼ fπ; hπsi ∼ 0 ð79Þ

at the origin, so chiral rotation has been completed for the
u=d quark sector but is still very small for the s quark
sector. Nevertheless, they all oscillate at larger r when
inhomogeneous effect becomes significant. In fact, the
wavelength of hπu=di decreases very quickly with increas-
ing I2ð< Ic

0
2 Þ, but that of hπsi does not change much by

following the lattice structure of ϕ8.

IV. SUMMARY AND PROSPECTS

In this work, we attack the problem of chiral phase
instability under a parallel and constant electromagnetic field
within the two- and three-flavor chiral perturbation theory. In
Sec. II, an effective Lagrangian density is obtained for the
chiral anglewithin the two-flavor ChPTand theWZW term is
found to play a role of chiral source. In the case I2 > Ic2, we
discover that the χPI actually implies an inhomogeneous

phase, where θðrÞ is proportional to r2 when the relevant
spatial scale r or the chiral charge ρ̃5 is large. The physics is
similar to that of an electric field produced in a system with
homogeneous distribution of electric charge density. But one
should be very careful with the results at large r as ∂rθ might
exceed the valid energy scale of ChPT, 4πfπ, then higher-
order corrections are needed. According to our detailed
discussions in Sec. II A 3, the phase transition is of topological
and second order at Ic2 with Φθ the topological order
parameter. To the best of our knowledge, this is the first time
a pure topological transition is discovered in a realistic QCD
system. In Sec. III, the work is extended to the three-flavor
case, where octuplet pseudoscalars are involved instead of the
triplet pions in the two-flavor case. As expected, an inhomo-
geneous η condensation is also found to be developed together
with π0 for I2>Ic2. Correspondingly, there is a second critical
point, Ic

0
2 ¼ rsIc2ðrs ¼ 24.3Þ, across which the transition is

also of topological and second order by its very nature.
However, this is not the end of the story at least for two

reasons: (1) The chiral symmetry breaking and restoration
is not self-consistently taken into account along with chiral
rotation. (2) The effect of singlet pseudoscalar η0 has not
been considered. According to our previous studies in the
Nambu–Jona-Lasinio model, the effect of chiral symmetry
restoration is small around Ic2 but would become significant
with a larger I2 [20]. In this sense, the second critical point
Ic

0
2 is not so reliable. Furthermore, a large I2 would induce
remarkable flavor mixing among π0; η, and η0 mesons [24],
so the EOM will be more involved and the features of
pseudoscalar condensations become more complicated. To
understand these effects more physically, we will extend
the study to both two- and three-flavor Nambu–Jona-
Lasinio models in the future.
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