
ρ-meson spectroscopy and diffractive production using the holographic
light-front Schrödinger equation and the ’t Hooft equation

Bheemsehan Gurjar ,1,* Chandan Mondal ,2,3,† and Satvir Kaur 2,3,‡

1Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

3School of Nuclear Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

(Received 29 January 2024; accepted 9 April 2024; published 10 May 2024)

We determine the mass spectroscopy and light-front wave functions (LFWFs) of the ρ-meson by solving
the holographic Schrödinger equation of light-front chiral QCD along with the ’t Hooft equation of (1þ 1)-
dimensional QCD in the large Nc limit. Subsequently, we utilize the obtained LFWFs in conjunction with
the color glass condensate dipole cross section to calculate the cross sections for the diffractive ρ-meson
electroproduction. Our spectroscopic results align well with the experimental data. Predictions for the
diffractive cross sections demonstrate good consistency with the available experimental data at different
energies from H1 and ZEUS collaborations. Additionally, we show that the resulting LFWFs for the
ρ-meson can effectively describe various properties, including its decay constant, distribution amplitudes,
electromagnetic form factors, charge radius, magnetic and quadrupole moments. Comparative analyses are
conducted with experimental measurements and the available theoretical predictions.
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I. INTRODUCTION

Experimental processes such as deep inelastic scattering
(DIS), deeply virtual Compton scattering (DVCS), and
exclusive diffractive vector meson production serve as
effective tools to investigate quantum chromodynamics
(QCD) [1]. Particularly, at small x, these processes are
predominantly influenced by gluon saturation. This phe-
nomenon has extensively been explored within the frame-
work of the color glass condensate (CGC) effective field
theory [2–6]. The CGC theory describes the balance of
gluons through recombination and multiple scattering
limitations within a dipole picture [7–10]. In this dipole
model, a virtual photon splits into a quark and an antiquark
pair (dipole), interacts with proton through gluon exchange,
and reforms into a vector meson or photon as illustrated
in Fig. 1.
The goal of this paper is to predict the cross section for

diffractive ρ-meson electroproduction, observed at the
HERA collider [11–16], using the QCD color dipole model

and the nonperturbative holographic meson LFWFs [17] by
taking into account the longitudinal dynamics generated by
the ’t Hooft equation in (1þ 1)-dim QCD at large Nc [18].
The holographic light-front QCD (hLFQCD) is devel-

oped within the chiral limit of light-front QCD, establishing
an exact correspondence between strongly coupled (1þ 3)-
dimensional light-front QCD and weakly interacting string
modes in (1þ 4)-dimensional anti-de-Sitter (AdS) space.
For a review of hLFQCD, see Ref. [19]. The primary
nontrivial prediction of this approach leads to the lightest
bound state, i.e., the pion is massless. Another crucial
prediction asserts that the meson masses align along the
universal Regge trajectories, mirroring experimental obser-
vations. Note that the predicted slopes are dictated by the
strength of the confining potential, κ. The form of the
confining potential in physical spacetime is determined
by a dilaton field that breaks the conformal symmetry of
AdS space. A phenomenologically successful choice
involves a quadratic dilaton in the fifth dimension of
AdS space, which corresponds to a light-front harmonic
oscillator in physical spacetime. The mass scale parameter,
κ, is fixed by fitting the experimentally observed slopes of
the meson mass spectrum Regge trajectories for different
meson groups. It is found that for all the light mesons,
κ ≃ 0.5 GeV [17].
Going beyond the semiclassical approximation, Brodsky

and de Téramond (BdT) proposed an invariant mass ansatz
(IMA) for including nonzero quark masses [20]. Using
IMA, one can calculate the shift in the meson masses as a
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first order perturbation. The predicted mass shift for the
pion (and kaon) appears as same as the physical mass of the
meson. These results have been obtained by fixing the scale
parameter as κ ¼ 0.54 GeV, and the light quark masses as
mu=d ¼ 0.046 GeV and ms ¼ 0.357 GeV, which vanish in
the chiral limit [17].
Previous works [21,22] reported predictions for vector

mesons production by utilizing the holographic wave
function with IMA together with the CGC dipole cross
section [23]. Reference [21] has investigated the process
of ρ-meson production using a light quark mass of
mq ¼ 0.14 GeV, which is consistent with the fitted param-
eters of CGC dipole cross section [24,25] from the
inclusive DIS data [26,27]. The most recent analyses of
dipole cross sections have utilized the 2010 DIS data at
HERA [28]. It has been acknowledged in Ref. [23] that the
DIS data prefers the lower light quark masses, but also
noted that the use of effective quark mass,mq ¼ 0.14 GeV,
yields satisfactory fit to the 2001 DIS structure func-
tion data. In a more recent study [29], a novel dipole
model has demonstrated that both current quark mass
and effective quark mass mq ¼ 0.14 GeV accurately fit
the 2010 DIS structure function data [28]. In Ref. [22],
the authors revisited the CGC dipole model and fit the
conclusive 2015 HERA data of inclusive DIS with the light
quark masses. They studied cross sections for the diffrac-
tive ρ and ϕ meson production using the fitted dipole
cross section [30], the perturbatively calculated photon
LFWFs [31,32], and the holographic meson LFWFs with
IMA, which contains no dynamical information of the
meson in the longitudinal direction [33].
In this work, the nonzero light quark masses are

incorporated through the chiral symmetry breaking and
the longitudinal dynamics governed by the ’t Hooft
equation of (1þ 1)-dimensional QCD in the large Nc
limit. The combined holographic Schrödinger equation
and the ’t Hooft equation provide a reliable picture of
the data to the ρ-meson spectrum with the universal κ.
We show that, together, they can simultaneously describe
various properties of the ρ-meson, including its decay con-
stant, parton distribution amplitude (PDA), electromagnetic

form factors, charge radius etc., as well as, in conjunction
with the CGC dipole cross section, the resulting wave
functions can provide good description of the HERA data
of the diffractive ρ-meson electroproduction.
The rest of the paper is organized as follows: In Sec. II,

we review the color dipole model. The holographic
meson LFWFs followed by the longitudinal dynamics
using the ’t Hooft equation are discussed in Sec. III. In
Sec. IV, we discuss the numerical results for the mass
spectroscopy, the diffractive cross sections using the dipole
cross section, PDAs, electromagnetic form factors, decay
constant, charge radius, magnetic and quadrupole moments
for the ρ-meson with the holographic meson wave function.
Finally, we conclude the paper in Sec. V.

II. THE DIPOLE MODEL OF EXCLUSIVE
VECTOR MESON PRODUCTION

In the dipole picture, the scattering amplitude for
the diffractive process γ�p → Vp is expressed as the
convolution of the overlap of the LFWFs of the photon
and the vector meson, and the proton-dipole scattering
amplitude [24],

ℑmAγ�p→Vp
Λ ðs;t;Q2Þ¼

X
h;h̄

Z
d2r⊥dxΨγ�;Λ

h;h̄
ðx;r⊥;Q2Þ

×ΨV;Λ
h;h̄

ðx;r⊥Þ�e−ixr⊥·ΔN ðxm;r⊥;ΔÞ;
ð1Þ

where Q2 is the virtuality of the photon and t ¼ −Δ2 is
the squared of the transverse momentum transfer at the
proton vertex. The substantial value of the center-of-
mass energy squared, s, ensures the factorization of
the scattering amplitude for the diffractive process into a
convolution of the LFWFs of the photon, Ψγ;Λ

h;h̄
ðx; r⊥;Q2Þ,

and vector meson, ΨV;Λ
h;h̄

ðx; r⊥Þ, and a dipole cross section,

N ðxm; r⊥;ΔÞ. The variable r⊥ is the transverse size of the
dipole and x defines the longitudinal momentum fraction
carried by the quark as shown in Fig. 1. The indices h and h̄

FIG. 1. The γ�p elastic scattering amplitude for DIS (left) and for exclusive vector meson production (right) in dipole model. Here, x is
the fraction of the photon momentum carried by the quark and r⊥ is the transverse size of the dipole.
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are the helicities of the quark and the antiquark. The symbol
Λ in the superscript of the LFWFs denotes the polarization
of the photon and the vector meson. The systems can be
longitudinally polarized or transversely polarized; sym-
bolically, Λ ¼ 0 or �1, respectively. The dipole-proton
scattering amplitude depends upon the center-of-mass
energy of the photon-proton system (W), related to the

modified Bjorken variable as [34]: xm ¼ xBjð1þ M2
V

Q2 Þ,
where xBj ¼ Q2

W2. The dipole-proton scattering amplitude
encapsulates the high-energy QCD dynamics associated
with the dipole-proton interaction. Being a universal object,
it can be obtained via an approximate solution of the
Balitsky-Kovchegov equation [35–37] within the CGC
formalism [38–42].
The differential cross section for the exclusive vector

meson production is given by [15,23],

dσγ
�p→Vp
Λ
dt

¼ 1

16π
½ℑmAγ�p→Vp

Λ ðs; t ¼ 0Þ�2

× ð1þ β2ΛÞ expð−BDtÞ ð2Þ

with the parameter βΛ being the ratio of the real to
imaginary components of the scattering amplitude
expressed as [23,43],

βΛ ¼ tan

�
π

2
αΛ

�
with αΛ ¼ ∂ log jℑmAΛj

∂ logð1=xmÞ
; ð3Þ

and the diffractive slope parameter BD parametrized as [22],

BD ¼ N

�
14.0

�
1 GeV2

Q2 þM2
V

�
0.2

þ 1

�
ð4Þ

with N ¼ 0.55 GeV−2. The parametrization of this slope
parameter is consistent with the ZEUS data for ρ-meson
production [15,43]. However, the most recent H1 data [12]
favors somewhat larger value of BD accompanied by the
large uncertainty.
A simplified model for the dipole cross section was

proposed a long ago in Ref. [30], known as the CGC dipole
model. The dipole cross section is given by

σ̂ðxm; r⊥Þ ¼ σ0N ðxm; r⊥Qs; 0Þ ð5Þ

with

N ðxm; r⊥Qs; 0Þ

¼
8<
:

N 0

�
r⊥Qs
2

�
2½γsþ lnð2=r⊥QsÞ

κ0λlnð1=xmÞ� for r⊥Qs ≤ 2;

1 − exp½−Aln2ðBr⊥QsÞ� for r⊥Qs > 2

ð6Þ

where r⊥ ¼ jr⊥j and the saturation scale is Qs ¼
ðx0=xmÞλ=2 GeV. The coefficients A and B in Eq. (6)

are determined uniquely from the condition that
N ðxm; r⊥Qs; 0Þ and its derivative with respect to r⊥Qs
are continuous at r⊥Qs ¼ 2. This leads to

A ¼ −
N 2

0γ
2
s

ð1 −N 0Þ2 lnð1 −N 0Þ
; B ¼ 1

2
ð1 −N 0Þ−

ð1−N 0Þ
N 0γs :

ð7Þ

The free parameters of the CGC dipole model, σ0; λ; x0,
and γs are determined by a fit to the H1 and ZEUS (2015)
F2 structure function data [44] (for xBj ≤ 0.01 and
Q2 ∈ ½0.045; 45� GeV2) with a χ2=d:o:f ¼ 1.03 [22].
Here, we use the parameters as determined in Ref. [22]
as: σ0 ¼ 26.3 mb, γs ¼ 0.741; λ ¼ 0.219, and x0 ¼ 1.81 ×
10−5 for mu;d ∼ 0.046 GeV. The parameters N 0 and κ0 are
fixed as 0.7 and 9.9 (leading order Balitsky-Fadin-Kuraev-
Lipatov prediction), respectively.
To compute the scattering amplitude for exclusive

ρ-meson production, Eq. (1), we need to employ the
LFWFs of the incoming virtual photon and the outgoing
vector meson. In practice, the expressions for the photon
LFWFs are obtained perturbatively in light-front QED. The
lowest order perturbative LFWFs for the longitudinally and
transversely polarized photons are given by [31,32,45],

Ψγ;Λ¼0

h;h̄
ðx; r⊥;Q2; mqÞ ¼

ffiffiffiffiffiffi
Nc

4π

r
δh;−h̄eeq2xð1 − xÞ

×Q
K0ðϵr⊥Þ

2π
;

Ψγ;Λ¼�1

h;h̄
ðx; r⊥;Q2; mqÞ ¼ �

ffiffiffiffiffiffi
Nc

2π

r
eeq½ie�iθr⊥ ðxδh�;h̄∓

− ð1 − xÞδh∓;h̄�Þ∂r⊥
þmqδh�;h̄��

K0ðϵr⊥Þ
2π

; ð8Þ

where ϵ2 ¼ xð1 − xÞQ2 þm2
q and e2 ¼ 4παem with αem

being the QED coupling constant, eq and mq represent the
effective charge and mass of the quark, respectively. Nc
corresponds to the color factor, K0 denotes the second kind
of Bessel function and r⊥eiθr⊥ is the complex notation for
the transverse distance between the quark and the anti-
quark. On the other hand, a nonperturbative model for the
meson LFWFs is discussed in Sec. III.
The total cross section is expressed as the linear

combination of the transverse and longitudinal cross
sections by integrating them (given in Eq. (2)) over t.
Therefore,

σγ
�p→Vp
tot ðx;Q2Þ ¼ σγ

�p→Vp
Λ¼�1 ðx;Q2Þ þ εσγ

�p→Vp
Λ¼0 ðx;Q2Þ; ð9Þ

where ε is the photon polarization parameter, with hεi ¼
0.98 in the kinematic domain corresponding to the HERA
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measurement for the ρ-meson production [12]. We consider
the same value of ε for predicting the total cross section and
compare it with the HERA data.

III. HOLOGRAPHIC MESON WAVE FUNCTIONS
WITH LONGITUDINAL CONFINEMENT

In the previous section, we reviewed the photon wave
functions, which are obtained from the perturbative QED.
The vector meson LFWFs appearing in Eq. (1) cannot be
obtained in perturbation theory. Nevertheless, they can be
considered to have the same spinor and polarization
structure as in the photon case, together with an uniden-
tified nonperturbative wave function. Various ansatz for the
meson nonperturbative wave functions have been reported
in literature [8,21,32]. However, the most popular is the
boosted Gaussian wave function [8,46], which has recently
been employed in Refs. [43,47] to simultaneously repro-
duce the cross-section data for diffractive ρ;ϕ and J=Ψ
production. Explicitly, the spin-improved LFWFs for
longitudinally and transversely polarized vector meson
can be written as [21,46,48,49]

ΨV;Λ¼0

h;h̄
ðx; r⊥Þ ¼

1

2
δh;−h̄

�
1þ m2

q −∇2
r⊥

xð1 − xÞM2
V

�
Ψðx; r⊥Þ; ð10Þ

and

ΨV;Λ¼�1

h;h̄
ðx; r⊥Þ ¼ �½ie�iθr⊥ ðxδh�;h̄∓ − ð1 − xÞδh∓;h̄�Þ∂r⊥

þmqδh�;h̄��
Ψðx; r⊥Þ
2xð1 − xÞ ; ð11Þ

respectively, where Ψ represents the spin independent part
of the vector meson wave functions.
Brodsky and de Téramond proposed a nonperturbative

approach to construct the hadronic LFWFs based on
hLFQCD [33,50,51]. To connect with AdS space, a holo-
graphic variable, ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
r⊥ is introduced, and the

wave function is written in a factorized form in terms of x,
ζ, and φ variables:

Ψðx; ζ;φÞ ¼ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p eiLφXðxÞ; ð12Þ

where XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

χðxÞ and ϕðζÞ are referred as the
longitudinal and transverse modes, respectively and L is the
orbital quantum number. In hLFQCD, only the transverse
mode, ϕðζÞ, is dynamical and it is generated by the
holographic Schrödinger-like equation [19,52–54],

�
−

d2

dζ2
þ 4L2 − 1

4ζ2
þU⊥ðζÞ

�
ϕðζÞ ¼ M2⊥ϕðζÞ; ð13Þ

where the confinement potential is given by

U⊥ðζÞ ¼ κ4ζ2 þ 2κ2ðJ − 1Þ; ð14Þ

with J ¼ Lþ S being the total angular momentum of the
meson. The analytical expression of Eq. (14) is uniquely
determined by a holographic mapping to AdS5, where
light-front variable ζ maps onto the fifth dimension of AdS
space and the underlying conformal symmetry [55]. The
emerging mass scale, κ, fixes the confinement scale and
produces meson masses in the chiral limit. Using Eq. (14)
in Eq. (13) yields

M2⊥ðn⊥; J; LÞ ¼ 4κ2
�
n⊥ þ J þ L

2

�
; ð15Þ

and

ϕn⊥LðζÞ ∝ ζ1=2þL exp
�
−κ2ζ2

2

�
LL
n⊥ðκ2ζ2Þ; ð16Þ

with n⊥ being the transverse principle quantum number. An
important outcome of Eq. (15) is that the lowest-lying
hadronic bound state, with n⊥ ¼ L ¼ S ¼ 0, is massless.
This is inherently recognized as the pion, which is
anticipated to exhibit zero mass in the chiral limit of QCD.
Meanwhile, the longitudinal mode, χðxÞ, is not dynami-

cal in hLFQCD. The longitudinal wave function, XðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

is explicitly obtained by the holographic map-
ping of the electromagnetic or gravitational form factor in
physical spacetime and AdS5 [56,57]. This results
χðxÞ ¼ 1. Inserting Eq. (16) in Eq. (12) yields the holo-
graphic LFWFs in the chiral-limit. For the ground state
mesons (n⊥ ¼ 0; L ¼ 0), the holographic LFWFs become

Ψmq¼0ðx; ζ2Þ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
exp

�
−κ2ζ2

2

�
: ð17Þ

A two-dimensional Fourier transform results

Φmq¼0ðx; k2⊥Þ ∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp exp

�
−

k2⊥
2κ2xð1 − xÞ

�
; ð18Þ

where k⊥ ¼ jk⊥j, the Fourier conjugate of r⊥, defines the
transverse momentum of the quark. Going beyond the
chiral limit, Brodsky and de Téramond proposed a pre-
scription to describe the longitudinal mode as [20]:

XðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
exp

�
−

1

2κ2

�
m2

q

x
þ m2

q̄

1 − x

��
; ð19Þ

based on the observation that the chiral-limit of invariant
mass of quark-antiquark pair,

M2
qq̄ ¼

k2⊥
xð1 − xÞ þ

m2
q

x
þ m2

q̄

1 − x
; ð20Þ
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appears in Eq. (18). Consequently, the bound-state mass
eigenvalue receives a first-order correction such that

ΔM2 ¼
Z

dx
xð1 − xÞX

2ðxÞ
�
m2

q

x
þ m2

q̄

1 − x

�
: ð21Þ

Note that there are two shortcomings with the above
prescription. First, it indicates that [58] M2

π ¼ ΔM2 ∝
2m2

qðlnðκ2=m2
qÞ − γEÞ with γE ¼ 0.577216 being the

Euler’s constant, in contrast to the Gell-Mann-Oakes-
Renner (GMOR) relation, M2

π ∝ mq. Second, the longi-
tudinal mode, given by Eq. (19), with no nodes, remains
same for all the radially excited states. However, this
prescription has successfully been implemented to describe
the light as well as heavy mesons [19,20,59–65].
It has been reported in Ref. [59] that, in practice, the

longitudinal dynamics can be included by performing an
expansion of the IMA longitudinal mode, Eq. (19), using
the convenient basis of complete orthonormal eigenfunc-
tions generated by the effective potential [66]

UkðxÞ ¼ −σ2
d
dx

�
xð1 − xÞ d

dx

�
; ð22Þ

with σ being the strength of the potential. The longitudinal
mode can be expressed as,

XðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1− xÞ

p
χIMAðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1− xÞ

p X
i

CiχiðxÞ; ð23Þ

where χiðxÞ, the solution of the longitudinal dynamical
equation with the effective potential UkðxÞ, is given by

χiðxÞ ¼ Nxα=2ð1 − xÞβ=2Pðα;βÞ
i ð1 − 2xÞ; ð24Þ

with α ¼ 2mq=σ, β ¼ 2mq̄=σ. P
ðα;βÞ
i represents a Jacobi

polynomial of order i, and N is a normalization constant.
The expansion coefficientsCi are obtained from the overlap

Ci ¼
Z

1

0

dxχiðxÞχIMAðxÞ; ð25Þ

with hχIMAjχIMAi ¼
P

i C
2
i ¼ 1. The corresponding longi-

tudinal contribution to a meson mass is given by [59]

M2
k ¼ ðmq þmq̄Þ2 þ σðmq þmq̄Þ

þ
X∞
i¼1

C2
i ½ð2iσðmq þmq̄Þ þ iðiþ 1Þσ2�: ð26Þ

Meanwhile, Refs. [67,68] consider longitudinal dynam-
ics, generated by the ’t Hooft equation, in order to describe
the full meson spectrum, while the pion dynamics has been
predicted in Ref. [69]. The concept of employing the ’t

Hooft equation to extend beyond the invariant mass
prescription was initially suggested in Ref. [70], aiming
to forecast meson decay constants and parton distribution
functions. Recently, in Refs. [58,59], the prescription
was surpassed using a phenomenological longitudinal
confinement potential, which was initially introduced in
Ref. [66] within the framework of basis light-front quan-
tization. While both Refs. [58,59] concentrate on the chiral
limit and the occurrence of chiral symmetry breaking,
Ref. [59] broadens their investigation to heavy mesons in
their ground state and explores the connection of their
approach to the ’t Hooft equation. It is worth mentioning
that there has been a notable surge in interest regarding
the incorporation of longitudinal dynamics within
hLFQCD [58,59,67,71–73]. Recently, in Ref. [74], the
authors reported the production of diffractive J=Ψ and
Ψð2SÞ mesons using the hLFQCD framework, incorporat-
ing longitudinal dynamics with the ’t Hooft model.
The ’t Hooft equation can be derived by using the

QCD Lagrangian in (1þ 1)-dim with large Nc approx-
imations as [18]

�
m2

q

x
þ m2

q̄

1 − x

�
χðxÞ þ g2

π
P
Z

dy
χðxÞ − χðyÞ
ðx − yÞ2 ¼ M2

kχðxÞ;

ð27Þ

where g is the longitudinal confinement scale and P
denotes the Cauchy principal value. It is important to note
that in the conformal limit, the ’t Hooft equation has a
gravity dual on AdS3 [75] and has been widely studied
in the literature [67,69,76–82]. Unlike the holographic
light-front Schrödinger equation, the ’t Hooft does not
admit analytical solutions. We solve it numerically using
the matrix method illustrated in Ref. [70]. Using both the
holographic Schrödinger equation and the ’t Hooft equa-
tion, the meson mass is then given by

M2ðn⊥; nk; J; LÞ ¼ 4κ2
�
n⊥ þ J þ L

2

�

þM2
kðnk; mq;mq̄; gÞ; ð28Þ

where nk defines the longitudinal quantum number. Since,
the holographic Schrödinger equation predicts a massless
pion, it follows that the only contribution to the pion mass
is produced by the ’t Hooft equation. Note that together, the
holographic Schrödinger equation and the ’t Hooft equation
correctly predict the GMOR relation M2

π ∼mu;d [59,69].
With the universal transverse confinement scale κ ¼
0.523 GeV and the light quark mass mu=d ¼ 0.046 GeV,
which is the value considered in hLFQCD together with the
IMA [19], the longitudinal confining scale g ¼ 0.109 GeV
leads to excellent agreement of the mass spectroscopy for
the pion family with the experimental data [69]. In this
work, we use the same set of parameters in order to predict
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the spectroscopic data for the ρ-meson family and obtain
the corresponding wave functions.
The complete spin-independent part of the meson

LFWFs can then be expressed as,

Ψðx; ζÞ ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
χðxÞ exp

�
−
κ2ζ2

2

�
; ð29Þ

where χðxÞ is the solution of the ’t Hooft equation. N is a
normalization constant, which depends on polarization of
the meson and can be fixed by using the normalization
condition as,

X
h;h̄

Z
d2r⊥dxjΨV;Λ

h;h̄
ðx; r⊥Þj2 ¼ 1; ð30Þ

where the forms of the spin-improved wave functions ΨV;Λ
h;h̄

are given in Eqs. (10) and (11). The numerical solutions for
the longitudinal modes χðxÞ of the ground state meson can
approximately be fitted to the following polynomial form:

χðxÞ ≃ xβ1ð1 − xÞβ2 ; ð31Þ

with βi being the quark mass dependent variables, which
vanish in the chiral limit. For the ground state of ρ-meson,
we find that β1;2 ¼ 0.51.

IV. RESULTS AND DISCUSSION

A. Mass spectroscopy and longitudinal mode

The parity and charge conjugation quantum numbers of
meson states are given by [67–69]:

P ¼ ð−1ÞLþ1; C ¼ ð−1ÞLþSþnk : ð32Þ

Using Eq. (28) and the parameters determined for the pion
family: mu=d ¼ 0.046 GeV, κ ¼ 0.523 GeV, and g ¼
0.109 GeV [69], we are able to describe the spectroscopic
data for the ρ-meson family. We present our computed

masses of the ρ-meson and its excited states in Table I.
Our results (last column) are in good agreement with
the experimental data (second column, in parentheses).
Note that an emerging condition nk ≥ n⊥ þ L in Table I
is observed to remain true across the full hadron spec-
trum [68]. The resulting Regge trajectories for the ρ-meson
family in our calculation are shown in Fig. 2.
Figure 3 shows our numerical results for the dynamical

longitudinal mode of the ground-state meson (ud̄) com-
pared to those outlined in Ref. [59], Eq. (23), and the
IMA. Note that the effective quark mass employed in our
calculations and in the IMA is mq ¼ 46 MeV, while a
different quark mass, mq ¼ 28 MeV, has been considered

TABLE I. Quantum numbers and masses of the ρ-meson family
with S ¼ 1. M⊥ and Mk are obtained by solving the transverse
and longitudinal dynamical equations, the holographic Schrö-
dinger equation and the ’t Hooft equation, respectively.

JPðCÞ Name n⊥ nk L Mk [MeV] M⊥ [MeV]
Mtot [MeV]
(This work)

1−− ρð770Þ 0 0 0 134 740 752
2þþ a2ð1320Þ 0 2 1 296 1281 1315
3−− ρ3ð1690Þ 0 4 2 401 1654 1702
4þþ a4ð1970Þ 0 6 3 484 1957 2016
1−− ρð1450Þ 1 2 0 296 1281 1315
2þþ a2ð1700Þ 1 4 1 401 1654 1702
1−− ρð1700Þ 2 4 0 401 1654 1702

FIG. 2. Our Regge trajectories for the ρ-meson family.

X' t Hooft XIMA XBdT [59]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 3. Comparison of the longitudinal mode of the light meson
(ud̄). The longitudinal mode obtained by solving the ’t Hooft
equation (blue-solid line) is compared with that outlined in
Ref. [59] (referred as BdT) (black-dash-dotted line) and the
IMA (magenta-dashed line).
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in Ref. [59]. We highlight that our longitudinal mode
features a narrower distribution compared to others. In
principle, according to Eq. (23), one would expect that the
IMA and the mode in Ref. [59] are exactly same. Here, the
IMA is slightly different from that due to use of a different
quark mass.

B. ρ-meson diffractive cross section

The exclusive vector meson production cross section
depends upon the overlap of the qq̄ component of the
virtual photon wave functions with the vector meson
wave functions as illustrated in Eq. (1). We present the
overlap of the LFWFs after integrating over x at different
photon virtualities Q2 ¼ 2, 4.8 and 19.7 GeV2 in Fig. 4.

We compare three different overlap functions, which are
different in considering the longitudinal modes in the
meson wave functions: (i) the IMA that does not contain
dynamical mode along the longitudinal direction, (ii) the
BdT longitudinal dynamics outlined in Ref. [59], and
(iii) the one containing longitudinal dynamics incorporated
through the ’t Hooft equation. However, we find that they
lead to more or less similar behavior of the overlap
functions. The peaks of the distributions undergo a shift
toward lower values of r⊥ and decrease in magnitude as the
virtuality of the photon increases.
In Fig. 5, we illustrate the three-dimensional pro-

babilistic distributions, jΨΛ
h;h̄
ðx; r⊥Þj2, as a function of x

and r⊥ for a longitudinally (left panel) and a transversely

FIG. 4. The transverse (left) and the longitudinal (right) overlap functions between the photon and the ρ-meson LFWFs integrated over
x as a function of the dipole transverse size r⊥ (in fm) at different photon virtualities predicted by the light front holography ’t Hooft
(solid), the light front holography IMA (dashed), and the BdT longitudinal mode [59] (dot-dashed) approaches, respectively.

FIG. 5. Distributions of the longitudinal jΨΛ¼0
h;h̄

ðx; r⊥Þj2 (left) and transverse jΨΛ¼�1
h;h̄

ðx; r⊥Þj2 (right) LFWFs of the ρ-meson as
functions of longitudinal momentum fraction carried by the quark x and the dipole separation r⊥ (in fm).
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(right panel) polarized ρ-meson from our resulting holo-
graphic LFWFs incorporated with longitudinal modes
generated by the ’t Hooft equation. We notice that the
wave function peaks at x ¼ 0.5 and r⊥ ¼ 0, and go rapidly
to zero as x → 0, 1 and r⊥ increases. Our results behaves
similar to the wave functions reported in Ref. [46]. We have
now all the ingredients (photon and vector meson LFWFs,
and the dipole cross section) to compute the diffractive
vector meson production cross section. We calculate
ρ-meson production utilizing the CGC dipole model with
parameters fitted to DIS data from HERA, as detailed in
Ref. [22]. In Fig. 6, we show the total cross section as a
function of W for different Q2 bins. On the left panel, we
compare our predictions with the experimental data for 0 ≤
Q2 ≤ 35.6 GeV2 from the H1 Collaboration [12,13],
whereas, the right panel compares our results with the
experimental data from the ZEUS Collaboration [12] in
the range 0.47 ≤ Q2 ≤ 27.0 GeV2. From the comparison,
we observe that our predictions are in reasonable agreement

with the experiments within the range of allowed uncer-
tainty. We also note that the longitudinal dynamics imple-
mented through the ’t Hooft equation improves the
predictions compared to those calculated using IMA in
Ref. [22]. The differential cross section, dσ=dt, as a
function of t for the elastic ρ-meson production are shown
in Fig. 7, where we compare our results with the exper-
imental data from the H1 [12] (left panel) and ZEUS [15]
(right panel) Collaboration at different values of Q2.
Again, we observe that our predictions show a good
agreement with the measurements. However, at large t
and smallQ2, our results are somewhat underestimated for
the ZEUS data.
The Figs. 8(a) and 8(b) present the longitudinal and

transverse cross sections, respectively, for the diffractive
ρ-meson production as a function of photon virtually for the
fixed value ofW ¼ 75 GeV. We find good agreement with
the experiment at HERA [12]. The total γ�p elastic cross
section for ρ-meson production is also found to be in good

FIG. 6. Our predictions of the total diffractive cross section for γ�p → ρp as a function of W (in GeV) in different Q2 bins (in GeV2)
and compared with experimental data from H1 2010 [12,13], ZEUS 2000 data (at Q2 ¼ 0) [16] (left) and ZEUS 2010 data [12] (right).

FIG. 7. Our predictions of differential cross section, dσ=dt (in nb=GeV2) for γ�p → ρp as a function of jtj (in GeV2) compared with
H1 2010 [12] (left) and ZEUS 2007 [15] (right) data, respectively.
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agreement with the experiments [11,15] as can be seen in
Fig. 8(c). Finally, in Fig. 8(d), we illustrate the ratio of
the longitudinal to transverse cross section, σΛ¼0=σΛ¼�1,
for ρ production. We compare our prediction with the H1
2010 [12], ZEUS 2007 [15] and old 2000 H1 [11] data.
Here, we notice that for the low values of Q2, i.e.,
Q2 ≤ 10 GeV2, our results show a good agreement with
all the three datasets, whereas it slightly deviates at largeQ2

from the measured data.

C. Decay constants and distribution amplitudes

In this section, we compute the decay constants and
distribution amplitudes for the ρ-meson and compare
them with the experimental data along with the theoretical
predictions from other models. The vector and tensor
coupling constants, fV and fTV respectively, are defined
as the local vacuum-to-hadron matrix elements [83]

h0jq̄ð0Þγμqð0ÞjVðP;ΛÞi ¼ fVMVϵ
μ
Λ; ð33Þ

and

h0jq̄ð0Þ½γμ; γν�qð0ÞjVðP;ΛÞi ¼ 2fTVðϵμΛPν − ϵνΛP
μÞ; ð34Þ

where qðq̄Þ are the quark(anti-quark) field operators at
same space-time points. The momentum and polarization
vectors are denoted as Pμ and ϵμΛ, respectively. In terms of
LFWFs, the decay constant can be expressed as [84]

fV ¼
ffiffiffiffiffiffi
Nc

π

r Z
1

0

dx

�
1þ m2

q −∇2
r⊥

xð1 − xÞM2
V

�
Ψðx; r⊥Þjr⊥¼0; ð35Þ

and

fTVðμÞ ¼
ffiffiffiffiffiffi
Nc

2π

r
mq

Z
1

0

dx
Z

dr⊥μJ1ðμr⊥Þ
Ψðx; r⊥Þ
xð1 − xÞ ; ð36Þ

where Ψ is the meson LFWF given in Eq. (29) and μ is the
ultraviolet cutoff scale. We note that our predictions for the
tensor coupling are scale independent for μ2 ≥ 1. However,
it is sensitive to the quark mass mq, as can be seen from
Eq. (36). In the chiral limit, mq → 0, the tensor coupling
vanishes, whereas the vector coupling has a nonzero value.

FIG. 8. Our predictions for the Q2 dependence of (a) longitudinal, (b) transverse, (c) Total γ�p cross sections for elastic ρ meson
production with W ¼ 75 GeV and (d) longitudinal to transverse cross section ratio compared to the H1 at W ¼ 75 GeV [11,12] and
ZEUS at W ¼ 75 GeV [15] data.
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The vector coupling can be used to calculate the electronic
decay width

ΓV→eþe− ¼ 4πα2emC2
V

3MV
f2V; ð37Þ

where, for the ρ-meson,Cρ ¼ 1=
ffiffiffi
2

p
. In Table II, we present

our predictions for the vector coupling constant, which is
associated with the decay width of the ρ-meson. These
predictions are compared with the results from LFhQCD
with IMA approach [21,22] and experimental data [85].
Additionally, in Table III, we compare our model predic-
tions for decay constants when ρ-meson is considered to be
longitudinally and transversely polarized, as well as their
ratio f⊥ρ =fρ. We compare our results with the predictions
from other theoretical approaches in Table III. Our pre-
diction for the vector coupling constant demonstrates good
agreement with both the theoretical and experimental
studies. However, the tensor coupling constant is signifi-
cantly smaller as compared to the other predictions in the
literature.
PDAs are obtainable through the vacuum-to-meson

transition matrix elements of quark-antiquark nonlocal
gauge-invariant operators [95–97]. The longitudinal and
transverse components of the distribution amplitude for the
vector meson are defined as [98]

fρϕ
k
ρðx; μÞ ¼

Z
dx−eixP

þx−h0jq̄ð0Þγþqðx−ÞjVðP;Λ ¼ 0Þi;

ð38Þ

and

f⊥ρ ϕ⊥
ρ ðx; μÞ ¼

1

2

Z
dx−eixP

þx−h0jq̄ð0Þ½ϵ�Λð�Þ:γ; γ
þ�

× qðx−ÞjVðP;Λ ¼ �1Þi: ð39Þ

After calculating the matrix elements, the above Eqs. (38)
and (39) lead to

ϕk
ρðx; μÞ ¼ Nc

πfρMρ

Z
dr⊥μJ1ðμr⊥Þ½M2

Vxð1 − xÞ

þm2
q −∇2

r⊥ �
Ψðx; r⊥Þ
xð1 − xÞ ; ð40Þ

and

ϕ⊥
ρ ðx; μÞ ¼

Ncmq

πf⊥ρ

Z
dr⊥μJ1ðμr⊥Þ

Ψðx; r⊥Þ
xð1 − xÞ ; ð41Þ

where fρ and f⊥ρ are the vector and tensor couplings, which
are given in Eq. (35) and (36), respectively. The longi-

tudinal (ϕk
ρ) and transverse (ϕ⊥

ρ ) components of the PDAs
can be normalized as [99]

Z
1

0

dxϕk
ρðx; μÞ ¼ 1; and

Z
1

0

dxϕ⊥
ρ ðx; μÞ ¼ 1: ð42Þ

Figure 9 illustrates the normalized longitudinal and trans-
verse components of ρ-meson PDAs and their comparison
with hLFQCD associated with IMA predictions at nonzero
light quark mass, mq ≃ 0.046 GeV, as well as with the
dynamical longitudinal mode reported in Ref. [59]. We find

TABLE III. Using the value of light quark masses, mu;d ¼ 0.046 GeV, we predict the longitudinal and transverse
decay constants for the ρ-meson, as well as the ratio between them and compared with other model estimate. Our
predictions are at a scale of μ ¼ 1 GeV.

Reference Approach fρ [MeV] f⊥ρ [MeV] f⊥ρ =fρ
This work LFH (‘t Hooft) 208 36 0.17
Ref. [22,86] LFH (IMA) [211, 214] [95, 36] [0.45, 0.17]
Ref. [87] LFQM 208� 7 152� 9
Ref. [88] Sum Rules 198� 7 152� 9
Ref. [89] Sum Rules 206� 7 145� 9 0.70� 0.04
Ref. [90] Lattice (continuum) 0.72� 0.02
Ref. [91] Lattice (finite) 0.742� 0.014
Ref. [92] Lattice (unquenched) 159� 0.008 0.76� 0.04
Ref. [93] Dyson-Schwinger 212 156 0.73
Ref. [94] LFQM: Linear [HO] 246[215] 187[163] 0.76[0.80]

TABLE II. Our predictions for the electronic decay widths
of the ρ-meson using ’t Hooft equation with mu;d ¼
0.046 GeV. The LF holography IMA predictions correspond
to mu;d ¼ ½0.046; 0.14� GeV.
ρ-meson fV [MeV] Γeþe− [KeV]

This work 208 6.294
LFH (IMA) [21,22] [210, 211] [6.355, 6.66]
Exp. (PDG) [85] 216(5) 7.04� 0.06
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that our ϕk
ρðxÞ exhibits narrower distribution, while ϕ⊥

ρ ðxÞ
shows flat distribution compared to those evaluated using
hLFQCD associated with IMA and the longitudinal mode
in Ref. [59].
We calculate the moments of the PDAs, also known as ξ-

moments, in order to quantitatively compare with other
approaches. The nth moment is defined as [99],

hξni ¼ hð2x − 1Þni ¼
Z

1

0

dxð2x − 1ÞnϕðxÞ: ð43Þ

In Table IV, we compare our model results for the computed
ξ-moments at μ ∼ 1 GeV with other theoretical estimations
for n ¼ 2; 4, 6, 8, and 10. For the odd values of n, the
moments vanish due to the isospin symmetry. Our ξ-
moments are more or less consistent with other theoretical
studies.

D. ρ-meson form factors

The LFWFs also provide direct access to electromag-
netic form factors. The Lorentz-invariant electromagnetic

BdT [59]IMA't Hooft

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5
IMA BdT [59]'t Hooft
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0.0

0.5
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FIG. 9. Our results for the PDAs for longitudinally (left) and transversely (right) polarized ρ-mesons (in solid blue). We compared
them with IMA PDAs (magenta-dashed) and BdT PDAs [59] (black-dot dashed).

TABLE IV. Computed moments of the ρ-meson PDAs, Eq. (43), compared with selected results obtained
elsewhere, using: AdS/QCD models for LFWFs fitted to HERA data [100]; QCD sum rules [98,101]; nonlocal
condensates [102,103]; light-front quark model [94]; light-front holographic QCD [22], and lattice-QCD [104,105].

hð2x − 1Þmi m ¼ 2 4 6 8 10

This work k 0.20 0.087 0.048 0.031 0.022
⊥ 0.25 0.13 0.079 0.055 0.042

φ ¼ φasy 0.20 0.086 0.048 0.030 0.021
φ ¼ constant 0.33 0.2 0.14 0.11 0.091

[22] k 0.25 0.12 0.075 0.052 0.038
⊥ 0.26 0.13 0.079 0.054 0.039

[106] k 0.22 0.103 0.066 0.046 0.035

[100] k 0.23 0.11 0.062 0.041 0.029
⊥ 0.26 0.13 0.079 0.054 0.039

[101] k 0.26
⊥ 0.27

[102] k 0.23(1) 0.095(5) 0.051(4) 0.030(2) 0.020(5)
⊥ 0.33(1)

[103] k 0.22(2) 0.089(9) 0.048(5) 0.030(3) 0.022(2)
⊥ 0.11(1) 0.022(2)

[94] k 0.20(1) 0.085(5) 0.045(5)
⊥ 0.21(1) 0.095(5) 0.05(1)

[104,105] 0.25(2)(2)
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Form factors Fi (i ¼ 1, 2, 3) for a vector meson (spin-1)
can be obtained by calculating the matrix elements of the
electromagnetic current Jμ as [107,108],

hVðP0;Λ0ÞjJμjVðP;ΛÞi ¼ −ϵ�Λ0 · ϵΛðPþ P0ÞμF1ðQ2Þ
þ ðϵμΛq · ϵ�Λ0 − ϵ�μΛ0q · ϵΛÞF2ðQ2Þ

þ ðϵ�Λ0 · qÞðϵΛ · qÞ
2M2

V

× ðPþ P0ÞμF3ðQ2Þ ð44Þ
where ϵΛ and ϵΛ0 are the polarization vectors of the initial
and final mesons, respectively. We employ the Breit frame,
where the momentum transfer occurs only in one transverse
direction, i.e., (qþ ¼ 0; qx ¼ Q; qy ¼ 0), and P⊥ ¼ −P0⊥
[109,110]. The momenta of the initial and final states
are defined as: Pμ ¼ ðMV

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
;MV

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
;−Q=2; 0Þ

and P0μ ¼ ðMV
ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
;MV

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
; Q=2; 0Þ, respectively

with η ¼ Q2=4M2
V . We follow the notation pμ ¼

ðpþ; p−; p1; p2Þ. We compute the form factors by con-
sidering the plus component of the electromagnetic
current, Jþð0Þ. The matrix elements of Jþð0Þ can be
expressed as [111,112]

IþΛ0;ΛðQ2Þ≜hVðP0;Λ0Þ
				 J

þð0Þ
2Pþ

				VðP;ΛÞi
¼

X
h;h̄

Z
1

0

Z
∞

0

dxd2k⊥
16π3

ΨΛ0�
hh̄

ðx;k⊥ þ ð1 − xÞq⊥Þ

×ΨΛ
hh̄
ðx;k⊥Þ; ð45Þ

where Λ and Λ0 denote the helicities of the incoming and
outgoing vector mesons, respectively. There are a total of
nine matrix elements of the electromagnetic current, IþΛΛ0

for Λ;Λ0 ¼ 0;�1. Using the light-front parity and time
reversal invariance, one can reduce it to only four matrix
elements: Iþ1;1; I

þ
1;−1; I

þ
1;0, and Iþ0;0. Note that the physical

charge (GC), magnetic (GM), and quadrupole (GQ) form
factors are often employed to describe the electromagnetic
properties of a hadron, instead of the Lorentz invariant

electromagnetic form factors, Fi. However, these two types
of form factors are related to each other such that

GC ¼ F1 þ
2

3
ηGQ; GM ¼ −F2;

GQ ¼ F1 þ F2 þ ð1þ ηÞF3:

We obtain the static charge (e), magnetic moment (μ) and
quadrupole moment (Q) of the hadron from the above form
factors at zero momentum transfer,

eGCð0Þ ¼ e; eGMð0Þ ¼ 2MVμ; −eGQ ¼ M2
VQ:

Notably, there are different prescriptions, for example,
Grach and Kondratyuk (GK) [113], and Brodsky and
Hiller (BH) [114], to calculate such type of form factors.
Nevertheless, we compute these physical form factors
following the BH prescription, which includes the zero-
mode contributions. In the BH prescription, the form
factors are defined as,

GBH
C ðQ2Þ ¼ 1

2Pþð1þ 2ηÞ
�
3 − 2η

3
Iþ0;0 þ

16

3
η
Iþ1;0ffiffiffiffiffi
2η

p

þ 2

3
ð2η − 1ÞIþ1;−1

�
;

GBH
M ðQ2Þ ¼ 2

2Pþð1þ 2ηÞ
�
Iþ0;0 þ

ð2η − 1Þffiffiffiffiffi
2η

p Iþ1;0 − Iþ1;−1

�
;

GBH
Q ðQ2Þ ¼ −

1

2Pþð1þ 2ηÞ
�
Iþ0;0 − 2

Iþ1;0ffiffiffiffiffi
2η

p þ 1þ η

η
Iþ1;−1

�
:

ð46Þ

We show the variation of the charge, magnetic, and
quadrupole elastic form factors with Q2 in Fig. 10, where
we include the results generated using the IMA and the
longitudinal mode in Ref. [59], and Lattice QCD [115,116]
for comparison. We observe a good agreement of our results
with the latice QCD simulations. From the charge form
factor, we further calculate the charge root-mean-squared
(rms) radius of the ρ meson, which is defined as [117],

't Hooft
IMA
BdT [59]
Lattice 2008
Lattice 2015
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FIG. 10. Left: the charge ðGρ
CÞ; middle: the magnetic ðGρ

MÞ; and right: the quadrupole ðGρ
QÞ form factors for the ρ-meson as a functions

of Q2. Our results are compared with Lattice QCD predictions [115,116].
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hr2ρi ¼ −
6

GCð0Þ
lim
Q2→0

∂GCðQ2Þ
∂Q2

: ð47Þ

We present our results for the static properties of the ρmeson:
rms charge radius, magnetic moment, and quadrupole
moment in Table V, where we compare them with the
predictions from various theoretical approaches. We observe
that our result for the charge radius is close to the results from
BSE [118], lattice QCD [119], and NJL model [120]. On the
other hand, our magnetic moment is more or less consistent
with all other studies summarized in Table V. The quadrupole
moment agrees well with the results from BSE [118],
LFQM [108], and lattice QCD [121], and they differ from
other predictions.

V. CONCLUSION

The ’t Hooft equation is complementary to the light-front
holographic Schrödinger equation, in governing the longi-
tudinal dynamics of quark-antiquark mesons. We have
shown that together, they predict remarkably well the mass
spectroscopy of ρ-meson family without further adjusting
parameters: the universal transverse confinement scale
κ ¼ 0.523 GeV, the longitudinal confinement scale g ¼
0.109 GeV, and the light quark mass mq ¼ 0.046 GeV,
which were determined to predict the pion spectroscopy and
its structure [69]. In conjunction with the CGC dipole cross
section, the ρ-meson holographic LFWFs after incorporating
the longitudinal mode generated by the ’t Hooft equation
lead to a good description of the cross-section data for the

diffractive ρ-meson electroproduction at different energies.
Using the resulting LFWFs, we have calculated the decay
constant, distribution amplitude, electromagnetic form fac-
tors, charge radius, magnetic moment, and quadrupole
moment of the ρ-meson. Interestingly, we have noticed that
although, the electromagnetic form factors in our approach
agree well with the LFH-IMA predictions, they differ from
each other in describing the distribution amplitudes.We have
found that the vector coupling is close to the experimentally
measured data and various theoretical predictions; however,
the tensor coupling constant is significantly smaller com-
pared to the other predictions in the literature.Meanwhile, the
moments of distribution amplitudes and the static properties:
charge radius, magnetic moment, and quadrupole moment
have been found to be consistent with other theoretical as
well as lattice QCD results.
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[50] G. F. de Téramond and S. J. Brodsky, Hadronic spectrum
of a holographic dual of QCD, Phys. Rev. Lett. 94, 201601
(2005).

[51] S. J. Brodsky and G. F. de Téramond, Hadronic spectra and
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