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Scattering amplitudes involving three-particle scattering processes are investigated within the isobar
approximation which respects constraints from two- and three-body unitarity. The particular system
considered is the D0D�þ −DþD�0, where the D�þ ðD�0Þ enters as a p-wave Dþπ0 or D0πþ (D0π0 or
Dþπ−) resonance. The interaction potentials in the coupled-channel D0D�þ −DþD�0 system contain the
σ, ρ, ω, and π-exchange. The analytic continuation of the amplitudes across the three-body unitary cuts is
investigated to search for poles on the unphysical Riemann sheets. Associated with an unstable particleD�þ

ðD�0Þ is a complex two-body unitarity cut, through which one can further analytically continue into another
unphysical Riemann sheet. Dynamical singularities emerged from the π-exchange potential are stressed.
The pole generated from the D0D�þ −DþD�0 interaction and its line shape in D0D0πþ break-up
production are in agreement with double-charmed tetraquark Tþ

cc observed by the LHCb Collaboration.

DOI: 10.1103/PhysRevD.109.094010

I. INTRODUCTION

A large number of new hadron states have been observed
experimentally, especially the so-called exotic states which
are beyond the scope of the conventional quark model. For
a recent review on the experimental and theoretical status of
such exotic states, see Refs. [1–13]. Considerable progress
has been achieved recently in calculating the hadron
spectrum based on first principle lattice quantum chromo-
dynamics (QCD) [14–21]. Hadron spectrum emerges from
the internal dynamics of the QCD degrees of freedom. The
resonance mass characterizes the long-distance dynamics
of quarks and gluons, its width manifests on the coupling to
the decay channels. To extend our knowledge of this aspect
of QCD phenomenology, it is necessary to analytically
continue the partial wave amplitudes into the unphysical
region and extract resonance parameters from experimental
data or lattice QCD simulations, as resonances manifesting
as pole singularities in the scattering amplitudes [22–30].
Many of those newly observed exotic states can be

interpreted as a deuteron like molecular states generated
from various hadron-hadron interactions. Among those
newly observed exotic states, the most notable example in
charmonium sector is the D0D̄�0 −D�0D̄0 molecule candi-
date Xð3872Þ [31]. However, as discussed in Refs. [32–36],

the treatment of pions may differ from ordinary chiral
perturbative theory or the NN theory of Refs. [37,38].
First, since the D̄�0ðD�0Þ − D̄0ðD0Þ hypefine splitting and
the π0 mass is nearness, the π0-exchange will be charac-
terized by an anomalously small scale and generate anoma-
lously long-range effect. This suggests that if the binding
energy of Xð3872Þ is not much smaller than its upper limit,
the π0 should be included as explicit degrees of freedom
[32,33]. Second, the D̄�0 ðD�0Þ is very close to the D̄0π0

ðD0π0Þ threshold, and the π0 may go on shell in theD0D̄�0 −
D�0D̄0 system. This calls for proper inclusion of theD0D̄0π0

three-body intermediate state [34–36]. Moreover, the inclu-
sion of the D̄�0 andD�0 finite widths has a significant effect
on the line shape of the Xð3872Þ [39–41]. In Refs. [42,43],
a Galilean-invariant effective field theory for Xð3872Þ is
developed to study the interplay between the D0D̄�0 −
D�0D̄0 and D0D̄0π0 components. A similar phenomenon
happens in the case of newly observed double-charm
D0D�þ −DþD�0 molecule candidate Tþ

cc [44,45]. The
effects of the three-bodyDDπ dynamics on the pole position
ofTþ

cc and its line shape are first studied inRef. [46], and then
studied recently in Refs. [47,48]. In Refs. [49,50], the decay
process Tþ

cc → D0D0πþ including the dynamical pion inter-
action is studied, the contributions from the triangle singu-
larities generated from the π-exchange in this decay process
are discussed in Ref. [49]. Thus, to understand the nature of
the newly observed exotic states, such asXð3872Þ and Tþ

cc, it
is necessary to study the analytic structure of the amplitude
involving three-particle scattering.
The aim of this paper is to investigate the relativistic

scattering involving three-particle interaction using the
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isobar approximation [51–53] which respects constraints
from two- and three-body unitarity. The specific system
considered is the D0D�þ −DþD�0, where the D�þ ðD�0Þ
enters as a Dþπ0 or D0πþ (D0π0 or Dþπ−) resonance. We
provide a detailed prescription for the analytic continuation
of the amplitudes across the three-body and complex two-
body unitarity cuts. Dynamical singularities emerged from
π-exchange potential are stressed, and these singularities
are inherent to three-body dynamics.
Much consideration has been given to the problem of

calculating a relativistic three-body scattering within a
unitary S-matrix theory in the past [51–59]. And some
recent studies [60–64] extend these earlier works; new
insights into covariant vs time-ordered formulations for the
interaction kernel were obtained recently [65]; decay
amplitudes with three particles in the final-state may be
calculated using Khuri-Treiman equations [66–73], which
contains particular realization of constrain from thee-body
unitarity as shown in Refs. [67,68]. It turns out that the
resulting equations are quite involved and demanding
to solve.
Compared with the two-particle scattering, complications

arise for the three-particle scattering not only because of the
increase in the number of variables necessary to describe the
processes, but also the possible appearance of the dynamic
π-exchange, three-body, and complex two-bodyunitarity cuts
as shown in analysis the cut structure of the amplitude within
the S-matrix theory [74–76] and Faddeev equations [77,78].
Contour deformation of momentum has been employed as a
solution tool necessary to analytically continue the amplitude
into the unphysical region as shown in tracing the pole
trajectory of three-neutron interaction [79] and describing the
resonance pole generated from πd − NΔ interaction [80,81].
In Refs. [82–84], some aspects of this approach were
discussed in detail in extracting the pole position of
a1ð1260Þ in a three-body unitary framework. We closely
follow the approach inRefs. [79,80,83,84] and investigate the
analytic continuation of the three-body D0D�þ −DþD�0
scattering amplitude. In Refs. [85–87], similar three-body
unitary formulations were developed to determine the pole
positions of the resonances such as ηð1405=1475Þ. Recently,
in Ref. [88], a detailed and general prescription for analytic
continuation of relativistic three-particle scattering ampli-
tudes is studied, where the subsystem two-body interaction is
described in the leading order effective range expansion.
The paper is organized as follows. InSec. II,wepresent the

integral equation for relativistic D0D�þ −DþD�0 scattering
which respects constraints from two- and three-body unitar-
ity. The two-body subsystem Dþπ0 ðD0πþ; D0π0; Dþπ−Þ
interacts via a separable interaction. In Sec. III, we construct
the one-boson-exchange (OBE) potentials,which contain the
σ, ρ, ω, and π-exchange. In Sec. IV, we present the
prescription for the analytically continuation of the scattering
amplitude into the unphysical region. In Sec. V, we present
fitting results of the pole position generated from the integral

equation and show its line shape inD0D0πþ final state. In the
last section, some conclusions are given.

II. THE BASIC FORMALISM

Since the D�0 and D�þ are unstable and have a width,
they can never have an asymptotic state. In this work, we
closely follow the isobar approach, the D0D�þ −DþD�0
system is studied using a relativistic three-body equation,
where the D�þ ðD�0Þ enters as a Dþπ0 or D0πþ ðD0π0 or
Dþπ−) resonance. Assuming only two- and three-body
intermediate states, the form of the isobar propagator and
the π-exchange potential are fixed by matching the effective
Bethe-Salpeter (BS) equation with unitarity condition as
derived in Refs. [51–53].

A. The coupled-channel D0D�+ −D+D�0 scattering

We start by constructing the D0D�þ −DþD�0 transition
amplitude Tðs; p0; pÞ in total angular momentum J ¼ 1
nonperturbatively. Within the isobar approach, the
D0D�þ −DþD�0 interaction is constructed by an effective
BS equation. The partial wave effective BS equation can be
written as

Tðs; p0; pÞ ¼ Vðs; p0; pÞ þ
Z

Λ

0

k2dk
ð2πÞ32ωðkÞ

× Vðs; p0; kÞτðσkÞTðs; k; pÞ; ð1Þ

where

Vðs; p0; pÞ ¼
 
V11
L0Lðs; p0; pÞ V12

L0Lðs; p0; pÞ
V21
L0Lðs; p0; pÞ V22

L0Lðs; p0; pÞ

!
;

τðσkÞ ¼
�
τ1ðσkÞ 0

0 τ2ðσkÞ

�
; ð2Þ

where, in each matrix element Vi0i
L0Lðs; p0; pÞ, the index

iði0Þ ¼ 1, 2 labels the particle channel (D0D�þ ¼ 1,
DþD�0 ¼ 2) and LðL0Þ denotes the orbital angular momen-
tum. The same structure holds for Tðs; p0; pÞ. The isobar
propagator will be given in Sec. II B. The particles in
channel 1 are

1 ¼ D�þ; 2 ¼ D0; ð3Þ

and in channel 2 are

1 ¼ D�0; 2 ¼ Dþ: ð4Þ

The energy ωðkÞ is ωi;2ðkÞ in channel i, where ωi;jðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i;j þ k2
q

and j labels a particle. The incoming and

outgoing momenta are denoted as p and p0, s denotes the
squared invariant mass of the three-body system, and σk
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denotes the square of the four-momentum of the inter-
mediate D�þ or D�0 subsystem,

σk ¼ s − 2
ffiffiffi
s

p
ωi;2ðkÞ þm2

i;2: ð5Þ

We take the masses of the mesons to be [31]

mD0 ¼ 1.86484 GeV; mD�þ ¼ 2.01026 GeV;

mDþ ¼ 1.86966 GeV; mD�0 ¼ 2.00685 GeV: ð6Þ

The integrations in Eqs. (1) and (21) will be regularized by
the same cutoff Λ in contrast to a form factor, since it
simplifies the analytic continuation of the effective BS
equation as discussed in Sec. IV.
As mentioned in the beginning of this section, in the

present work only the part projected to total angular
momentum J ¼ 1, the quantum number of Tþ

cc, is required.
The term Vi0i

L0Lðs; p0; pÞ in Eq. (2) represents the isobar-
spectator potential with total angular momentum J ¼ 1,
and the index J has been suppressed. To obtain the partial
wave interaction potentials in the JLS basis, we use the
method given in Refs. [89,90]. First, in the helicity basis the
relevant partial wave is extracted. We choose the incident p⃗
along the z-axis and outgoing p!0 to be in the x, z plane.
The plane-wave isobar-spectator potential is related to the
partial-wave potential as

Vλ0λðs; p!0;p⃗Þ¼ 1

4π

X
J

ð2Jþ1ÞdJλλ0 ðcosθÞVJ
λ0λðs;p0;pÞ; ð7Þ

where λðλ0Þ ¼ 0;�1 is the helicity eigenvalue of the spin-1
mesonD�þ orD�0, and θ is the angle between the outgoing
momenta p!0 and incoming momenta p⃗.
Using the orthogonality relation for the Wigner

dJλλ0 ðcos θÞ functions,Z þ1

−1
dJλλ0 ðcos θÞdJ

0
λλ0 ðcos θÞd cos θ ¼ 2

2J þ 1
δJJ0 ; ð8Þ

we can invert the above expression and obtain

VJ
λ0λðs;p0;pÞ¼2π

Z þ1

−1
dJλλ0 ðcosθÞVλ0λðs; p!0; p⃗Þdcosθ: ð9Þ

Then, the transition from the helicity to the JLS
representation is given by

VJ
L0Lðs;p0;pÞ¼

X
λ0λ

hJL0SjJλ0iVJ
λ0λðs;p0;pÞhJλjJLSi; ð10Þ

where

ULλ ¼ hJLSjJλi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
hL0SλjJλihSλ00jSλi: ð11Þ

Here, J and S denote the total angular momentum and D�þ

or D�0 spin, respectively. The symbols on the right-hand
side are standard SUð2Þ Clebsch-Gordan coefficients. In
the present work, the D0D�þ −DþD�0 system with quan-
tum numbers JP ¼ 1þ, the spin and parity of Tþ

cc, is
considered. The allowed angular momentum is LðL0Þ ¼
even number. We will only consider L ¼ L0 ¼ 0. Then for
J ¼ S ¼ 1, L ¼ 0 and λ ¼ 0;�1, we get

hJLSjJλi ¼ 1ffiffiffi
3

p : ð12Þ

B. The isobar propagator

The isobar propagator for D�þ and D�0 is shown in
Fig. 1. For the present work, we choose the renormalized
isobar propagator

τiðσkÞ¼
1

σk−m2
i;1−ΣR

i;34ðσkÞ−ΣR
i;3040 ðσkÞþ imi;1Γi;γþ iϵ

;

ð13Þ

where

ΣR
i;jkðσkÞ ¼ Σi;jkðσkÞ − ReΣsub

i;jkðm2
i;1Þ; ð14Þ

and

Σsub
i;jkðm2

i;1Þ ¼ Σi;jkðm2
i;1Þ þ ðσk −m2

i;1Þ

×

�
d
dσk

Σi;jkðσkÞjσk¼m2
i;1

�
: ð15Þ

Γi;γ is the radiative decay width of D�þ or D�0. Since the
radiative decayD�0 → D0γ has a large branching ratio B≡
ΓD�0;γ=ΓD�0;total ¼ 35.3% [31], we have included the radi-
ative decay widths of D�þ and D�0. To obtain the
renormalized isobar propagator τiðσkÞ in Eq. (13), twice
subtraction at the D�þ or D�0 physical mass has been used.
The self-energy Σi;jkðσkÞ is

Σi;jkðσkÞ¼
Z

∞

0

l2dl
ð2πÞ3

ωi;jkðlÞ
2ωi;jðlÞωi;kðlÞ

vijkðlÞ2
ðσk−ωi;jkðlÞ2þ iϵÞ ;

ð16Þ

where

FIG. 1. A graphical representation of the isobar propagator of
Eq. (13). The isobar propagator D�þ (D�0) is dressed by an
infinite number of D0πþ and Dþπ0 (D0π0 and Dþπ−) bubbles.
The solid and dashed lines denote theD0;þ and π�;0, respectively.

RELATIVISTIC THREE-BODY SCATTERING AND THE … PHYS. REV. D 109, 094010 (2024)

094010-3



ωi;jkðlÞ ¼ ωi;jðlÞ þ ωi;kðlÞ; ð17Þ

where jðkÞ ¼ 3ð4Þ or 30ð40Þ labels a particle, and the
particles in channel 1 are

3 ¼ D0; 4 ¼ πþ; 30 ¼ Dþ; 40 ¼ π0; ð18Þ

and in channel 2 are

3 ¼ D0; 4 ¼ π0; 30 ¼ Dþ; 40 ¼ π−: ð19Þ

The vertex vijkðlÞ in the self-energy will be given in Eq. (26)
in Sec. III A. The self-energyΣi;jkðσkÞ contains the two-body
intermediate state, and reflects the multi-Riemann sheet
structure of the scattering amplitude. The prescription for
the analytically continuation of the scattering amplitude into
the unphysical region is presented in Sec. IV.

C. Three-body break-up production process
in D0D0π + final state

Now, we calculate the three-body D0D0πþ production
rate using the constructed scattering amplitude Tðs; p0; pÞ.
This quantity was measured by the LHCb Collaboration
[44,45] and thus serves as an important link between theory
and experiment. We consider a process in which Tþ

cc
production at short ranges and subsequently decays to
D0D0πþ. And as point out in Ref. [39], the short-range
dynamics corresponding to Tþ

cc production can be absorbed
into an overall coefficient F .
In Fig. 2, we show a graphical representation for the Tþ

cc
decay process. The production amplitude is separated into
connected and disconnected parts using the LSZ reduction
[91,92]. The decay amplitude MΛλ describes the Tþ

cc
resonance at rest with helicity Λ measured along z axis
into a D0 and a D�þ → D0πþ with helicity λ and can be
written as [83,84,89,90]

MΛλðq⃗1; q⃗2; q⃗3Þ ¼
Fffiffiffi
2

p
" ffiffiffiffiffiffi

3

4π

r
D1�

Λλðϕ1; θ1; 0ÞMLðq1Þ

×ULλvλðq⃗2; q⃗3Þ þ ðq⃗1 ↔ q⃗2Þ
#
; ð20Þ

and

MLðq1Þ ¼
�
g1L þ

Z
Λ

0

p2dp
ð2πÞ32ωD0ðpÞ g

1
L0τ1ðσpÞT11

L0Lðp; q1Þ

þ
Z

Λ

0

p2dp
ð2πÞ32ωDþðpÞ g

2
L0τ2ðσpÞT21

L0Lðp; q1Þ
�

× τ1ðσq1Þ; ð21Þ

this term is related to the decay amplitude in Eq. (20) by
transforming back into plane waves and multiplying the
final D�þ → D0πþ vertex. Here, q⃗1, and q⃗2 are the out-
going D0 momentum, and q⃗3 is the outgoing πþ momen-
tum. D1�

Λλðϕ1; θ1; 0Þ denotes the capital Wigner-D function,
with θ1 and ϕ1 giving the polar and azimuthal angles of q⃗1,
respectively. The vertex vλðq⃗2; q⃗3Þ ¼ −igDD�πϵ

μ
λðq⃗2 þ

q⃗3Þq3μ is given from the Lagrangian in Appendix A.
The polarization vectors of the spin-1 particles are given
in Appendix B. In addition, giL is the effective coupling of
Tþ
cc to channel i. In the exact isospin limit, one would have

g1L ¼ −g2L for an isoscalar state.
The production rate is given by a phase space integral

over the decay amplitude, and can be written as

dΓð ffiffiffi
s

p Þ
d
ffiffiffi
s

p ¼
Z

1

ð2πÞ5
1

16s

�
1

3

X
Λ
j
X
λ

MΛλðq⃗1; q⃗2; q⃗3Þj2
�

× q�3q1dm23dΩ�
3dΩ1; ð22Þ

where q�3 and Ω�
3ðθ�3;ϕ�

3Þ are the momentum and angle of
particle 3 in the rest frame of particles 2 and 3, q1 and
Ω1ðθ1;ϕ1Þ are the momentum and angle of particle 1 in the
rest frame of the decaying particle. The momentum q�3 and
q1 are

q�3¼
λ1=2ðm2

23;m
2
2;m

2
3Þ

2m23

; q1¼
λ1=2ðs;m2

23;m
2
1Þ

2
ffiffiffi
s

p ; ð23Þ

where

λðx2; y2; z2Þ ¼ ½x2 − ðyþ zÞ2�½x2 − ðy − zÞ2�: ð24Þ

When one exploits the azimuthal symmetry, the integral
variable ϕ1 is trivial. In our calculation, we integrate over
four variables: m23, θ1, θ�3 and ϕ�

3.

FIG. 2. Graphical representation forD0D0πþ production. The short-range dynamics corresponding to Tþ
cc production can be absorbed

to an overall coefficient F .
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III. THE INTERACTION POTENTIAL

In the present work, a crucial input is the interaction
potentials between the charm mesons. The interaction
potentials, which enter the effective BS equation, contain
the σ, ρ and ω and π-exchange. The interaction potentials
will be constructed with the help of effective Lagrangian
given in Appendix A. For the σ, ρ, and ω-exchange, the
interaction potentials will be constructed in a covariant
form. For the π-exchange, the form of the interaction
potential is derived from dispersive techniques as shown
in Refs. [51–53]. Moreover, with the help of the effective
Lagrangian, the two-body input vijkðlÞ in the self-energy is
given in Eq. (26).

A. Two-body subsystem interaction

The fundamental ingredient of the three-body theory
developed in Sec. II is the assumption of an underlying
separable two-body interaction. This implies that the two-
bodyDþπ0 orD0πþ (D0π0 orDþπ−) scattering amplitude in
total angular momentum Jsub ¼ 1 channel is generated
exclusively by a D�þðD�0Þ pole diagram. To obtain the
partial wave projected vertex vijkðpÞ in the self-energy in
Eq. (16), we can consider the first-order Born series for the
jðpjÞkðpkÞ → jðp0

jÞkðp0
kÞ scattering in two-body rest frame

pð0Þ
j þ pð0Þ

k ¼ ð ffiffiffi
σ

p
; 0Þ. This amplitude can be written as

Aðσ; zÞ ¼ If · g2DD�π

P
λϵλ;μðpj þ pkÞpμ

kϵ
�
λ;νðp0

j þ p0
kÞpν0

k

σ −m2
i;1 þ iϵ

¼ If · g2DD�π
pp0z

σ −m2
i;1 þ iϵ

; ð25Þ

where z ¼ p⃗ · p!0=pp0, pj ¼ ðωi;jðpÞ; p⃗Þ, and analogous
variables for pk, p0

j and p0
k. If denotes the isospin factor.

For D0πþ → D0πþ and Dþπ0 → Dþπ0 interactions, If are

1 and 1
2
, respectively. ForD0π0 → D0π0 andDþπ− → Dþπ−

interactions, If are 1
2
and 1, respectively. The second equal

sign in Eq. (25) is due to the helicity sum. Projecting this
amplitude to the P-wave amounts then to

A1ðσÞ ¼ 2π

Z
1

−1
dzP1ðzÞAðσ; zÞ

¼

�
gDD�π

ffiffiffiffiffiffiffiffiffi
4π
3
If

q
· p

��
gDD�π

ffiffiffiffiffiffiffiffiffi
4π
3
If

q
· p0
�

σ −m2
i;1 þ iϵ

¼ vijkðpÞvijkðp0Þ
σ −m2

i;1 þ iϵ
; ð26Þ

and we obtain the projected vertex vijkðpÞ.
The two-body dynamics are encoded in vijkðpÞ, but

also in the self-energy Σi;jkðσkÞ. The full two-body
jðpjÞkðpkÞ → jðp0

jÞkðp0
kÞ scattering amplitude can be

written as

AðσÞ ¼ vijkðpÞvijkðp0Þ
σ −m2

i;1 − ΣR
i;34ðσÞ − ΣR

i;3040 ðσÞ þ imi;1Γi;γ þ iϵ
;

ð27Þ

the renormalized self-energy is given in Eq. (14). It is
obvious that in the three-body system, the two-body
subsystem invariant mass is obtained by replacing
σ → σk, by the inclusion of the spectator D0 or Dþ.

B. The interaction potential

In this work, we consider two types of Feynman
diagrams for meson exchange between the charm mesons
as shown in Fig. 3. Then for coupled-channel D0D�þ −
DþD�0 interaction, with the Lagrangians given in
Appendix A, the interaction potentials can be written as

hp!0λ0jVA−VðEÞjp⃗λi ¼ −gDDV · gD�D�V · IF · ðp3 þ p1Þμ
−gμν þ q1μq1ν=m2

V

q21 −m2
V þ iϵ

ðp4 þ p2Þνϵ�αλ0 ðp3Þϵλαðp1Þ þ 2gDDV

· g0D�D�V · IF · ½ϵ�μλ0 ðp3Þϵαλðp1Þq1α − ϵ�αλ0 ðp3Þϵμλðp1Þq1α�
−gμν

q21 −m2
V þ iϵ

ðp4 þ p2Þν; ð28Þ

FIG. 3. Feynman diagrams for meson exchange between the charm mesons. The notations are the same as those in Fig. 1. The arrows
denote the direction of momenta.

RELATIVISTIC THREE-BODY SCATTERING AND THE … PHYS. REV. D 109, 094010 (2024)

094010-5



hp!0λ0jVB−VðEÞjp⃗λi ¼ g2DD�V · IF · εα0β0μ0ν0 ðp3 þ p2Þα0qβ
0

2 ϵ
�ν0
λ0 ðp3Þ

−gμ0μ
q22 −m2

V þ iϵ
εαβμνðp4 þ p1Þαqβ2ϵνλðp1Þ; ð29Þ

hp!0λ0jVB−PðEÞjp⃗λi ¼ g2DD�P · IF · ϵ�νλ0 ðp3Þq2ν
ωi;2ðpÞ þ ωi0;2ðp0Þ þ ωPðqÞ

ωPðqÞ½s − ðωi;2ðpÞ þ ωi;20 ðp0Þ þ ωPðqÞÞ2 þ iϵ� ϵ
μ
λðp1Þq2μ; ð30Þ

hp!0λ0jVA−SðEÞjp⃗λi ¼ gD�D�σgDDσϵ
�μ
λ0 ðp3Þϵλμðp1Þ

1

q21 −m2
S þ iϵ

; ð31Þ

with ωPðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p02 þm2

P þ 2pp0 cos θ
p

, and V, P,
and S denote the exchanged vector ρ0;�, pseudoscalar π0;�,
and scalar σ mesons, respectively. The four-momentum
of the incoming and outgoing particles are p1 ¼
ð ffiffiffi

s
p

− ωi;2ðpÞ; p⃗Þ, p2 ¼ ðωi;2ðpÞ;−p⃗Þ, p3 ¼ ð ffiffiffi
s

p
− ωi0;2

ðp0Þ; p!0Þ, and p4¼ðωi0;2ðp0Þ;−p!0Þ. The four-momentum
of the exchanged mesons are q1 ¼ p3 − p1 for type-A
diagram, and q2 ¼ p4 − p1 for type-B diagram. The iso-
spin factors IF for type-A and type-B diagrams are given in
Table I. We can see a cancellation between the neutral ρ0

and ω exchange potentials in both type-A and type-B
diagrams. And only the charged ρ� and π0;�-exchange
potentials contribute. Then we build DD� isoscalar I ¼ 0
and isovector I ¼ 1 combinations as

jDD�; I ¼ 0i ¼ −
1ffiffiffi
2

p ðD�þD0 −D�0DþÞ;

jDD�; I ¼ 1i ¼ −
1ffiffiffi
2

p ðD�þD0 þD�0DþÞ: ð32Þ

IV. ANALYTIC PROPERTIES OF THE INTEGRAL
EQUATION

Contour deformation of momentum has been employed
as a solution tool necessary to analytically continue the
amplitude into the unphysical region as shown in tracing
the pole trajectory of three-neutron interaction [79] and
describing the resonance pole generated from πd-NΔ
interaction [80,81]. Via complex momentum contour
deformation, the π-exchange cut can be avoided and the
analytic domain of the effective BS equation kernel is
extended. The method of constructing suitable contours to

access the Riemann sheet(s) of interest, was detailed
discussed in extracting the pole position of a1ð1260Þwithin
a three-body unitary framework in Refs. [83,84]. We
closely follow the approach in Refs. [79,80,83,84] and
investigate the analytic continuation of the three-body
D0D�þ −DþD�0 scattering amplitude.
Two types of integrations occur: (i) in k ≔ jk⃗j within the

effective BS equation in Eq. (1) and (ii) in l ≔ j⃗lj within the
self-energy term of the two-body subsystem in Eq. (13).
The corresponding integral contours can be chosen indi-
vidually and are refereed to in the following as as “spectator
momentum contour” (denoted by Γspe) and “self-energy
contour” (denoted by Γsef ), respectively. Both contours start
at the respective origins, k ¼ l ¼ 0, and end at k ¼ Λ and
l ¼ ∞, respectively. In between these limits, different
choices of the contours define different Riemann sheets
in

ffiffiffi
s

p
as talked in the following.

A. Analytical continuation of the self-energy

As a function of energy
ffiffiffi
σ

p
, the self-energy Σi;jkðσÞ in

Eq. (16) is no longer single valued. We must therefore place
the complex

ffiffiffi
σ

p
plane by a Riemann surface of multisheet,

the different Riemann sheets are connected by a branch cut.
A branch point defines the thresholds, and at which a cut
begins is fixed. This is illustrated in Fig. 4 above threshold
at

ffiffiffi
σ

p ¼ mi;3 þmi;4. The placement of contour Γsef pro-
ducing physical amplitude is constrained by the þiϵ in
Eq. (16). In the figure, choosing the integral contour
passing the singularity at lcm þ iϵ on the right (ΓR),

lcm ¼ λ1=2ðσ; m2
i;3; m

2
i;4Þ

2
ffiffiffi
σ

p ; ð33Þ

yields a self-energy on the physical Riemann sheet. In
contrast, choosing the integral contour passing the singu-
larity at lcm þ iϵ on the left (ΓL) leads to a sign change in
ImΣi;jkðσÞ and a self-energy on the unphysical Riemann
sheet. The self-energy on physical Riemann sheet in the
upper half-plane of

ffiffiffi
σ

p
is connected along the real axis,ffiffiffi

σ
p

∈ ½mi;3 þmi;4;∞Þ, to the unphysical Riemann sheet in
the lower half-plane. For the energy Im

ffiffiffi
σ

p
< 0 (lower right

in Fig. 4), the self-energy on unphysical Riemann sheet can
be obtained by deforming the contour Γsef as shown to the

TABLE I. The isospin factors IF for type-A and type-B
diagrams and different exchange mesons.

Type-A Type-B

ρ0 ρ� ω ρ0 ρ� ω π0 π�

1 → 1 1
2

� � � − 1
2

� � � 1 � � � � � � 1
2 → 2 1

2
� � � − 1

2
� � � 1 � � � � � � 1

1 → 2 � � � −1 � � � − 1
2

� � � 1
2

− 1
2

� � �
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lower left in Fig. 4. In particular, the singularity at lcm also
acquires a negative imaginary part, but a smooth deforma-
tion of ΓR ensures that the contour Γsef still passes the
singularity to the right. This guarantees that the self-energy
has been analytically continued from physical Riemann
sheet to the unphysical Riemann sheet in the lower half-
plane, where the resonance resides.
To display the contour Γsef and the pole position of D�þ

(D�0) resonance evaluated from Eq. (27) in the same plot,
the contour Γsef is mapped to the

ffiffiffi
σ

p
plane according toffiffiffi

σ
p ¼ ½ωi;jðlÞ þ ωi;kðlÞ�1=2. In Fig. 5, the pink and green
lines in lower left panel (lower right panel) correspond to
the integral contours forD0πþ andDþπ0 (D0π0 andDþπ−)
self-energies, respectively. The pole position of D�þ (D�0)
at

ffiffiffi
σ

p
plane is shown in the upper left panel (upper right

panel) of Fig. 5. One can see as the D0πþ and Dþπ0
channels are on their unphysical Riemann sheets, the pole
position of D�þ evaluated from Eq. (27) is at

Remp
D�þ ¼ mD�þ ; Immp

D�þ ¼ −43.5 keV: ð34Þ

As the D0π0 and Dþπ− channels are on their unphysical
Riemann sheets, the pole position of D�0 evaluated from
Eq. (27) is at

Remp
D�0 ¼ mD�0 ; Immp

D�0 ¼ −32.5 keV: ð35Þ

B. Singularities in the π-exchange potential

Apart from singularities in two-body subsystem ampli-
tude, there are singularities in the π-exchange potential.
The singularity occurs when the denominator of Eq. (30)

vanishes for any x≡ cos θ∈ ½−1; 1� according to the partial
wave decomposition of Eq. (9). For a fixed three-body
energy

ffiffiffi
s

p
and outgoing spectator momentum p0, the

singularities are given by

k� ¼
2αp0x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2p02x2 þ ðβ2 − 4p02x2Þðα2 − β2m2

i;2Þ
q

ðβ2 − 4p02x2Þ ;

ð36Þ

where

α ¼ m2
π − s −m2

i;2 −m2
i0;2 þ 2

ffiffiffi
s

p
ωi0;2ðp0Þ;

β ¼ 2ωi0;2ðp0Þ − 2
ffiffiffi
s

p
; ð37Þ

and mπ is the exchanged π0 or π� mass. In Fig. 6, as an
example we show the positions of the singularities of k for a
fixed p0,

ffiffiffi
s

p
and x≡ cos θ∈ ½−1; 1� for solution of k� in

Eq. (36). In the complex k plane, as 0 < p0 < p0
1 (left panel

in Fig. 6), the singularities are located in the first and third
quadrants. Increasing the value of p0, as p0

1 < p0 < p0
2

(medium panel in Fig. 6), a circular cut arises from the
π-exchange potential. The circular cut grows with the
increase of the value of p0. Still increasing the value of
p0, as p0

2 < p0 (right panel in Fig. 6), the circular cut opens.
Here p0

1 and p0
2 are

p0
1 ¼

λ1=2ðð ffiffiffi
s

p
−mi;2Þ2; m2

i0;2; m
2
πÞ

2ð ffiffiffi
s

p
−mi;2Þ

;

p0
2 ¼

λ1=2ðs; ðmπ þmi;2Þ2; m2
i0;2Þ

2
ffiffiffi
s

p : ð38Þ

C. Continuation across the three-body and complex
two-body cuts

To explore the region of the complex
ffiffiffi
s

p
plane where the

Tþ
cc is located, the amplitude Tðs; p0; pÞ can be analytically

continued into the unphysical Riemann sheets via the
deformation of the integration contour. We make the
transformation [79–81]

p0 → p0e−iθ; k → ke−iθ; ð39Þ

with 0 < θ < π
2
. As shown in the left panel in Fig. 6, the

integration contour can be chosen along the orange line.
Since both p0 and k in Eq. (1) are rotated by a same angle θ,
the potential Vðs; p0; kÞ does not create any problem in
rotating the contour of integration. And we only need to
examine how the singularities from τiðσkÞ effect the
contour rotation.
For two-body scattering, with a choice of the l contour

along the real axis, the self-energy appearing in Eq. (27) has
a well-known right-hand cut along the real

ffiffiffi
σ

p
axis starting

at
ffiffiffi
σ

p ¼ mi;3 þmi;4. In the three-body case, the effective

FIG. 4. Integration contours for the self-energy in Eq. (16).
Upper row: momentum integral contour (left panel) and the
physical Riemann sheet of the self-energy at

ffiffiffi
σ

p þ iϵ (right
panel). Lower row: integral contour along the red line (left panel)
and the unphysical Riemann sheet of the self-energy at Im

ffiffiffi
σ

p
< 0

(right panel).
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BS equation has a three-body cut generated by the self-
energy appearing in the denominator of τiðσkÞ in Eq. (13).
And this cut is given by

σk − ωi;jkðlÞ2 ¼ 0; ð40Þ

where σk and ωi;jkðlÞ are given in Eqs. (5) and (17),
respectively. For real k and a l contour following the real

axis this equation defines a cut along the real
ffiffiffi
s

p
axis

starting at 2mD0 þmπþ (mD0 þmDþ þmπ0 and
2mDþ þmπ− ). These three-body cuts are indicated in
Fig. 7 with the orange dashed lines along the real

ffiffiffi
s

p
axis.

We take the analytic continuation of the amplitude
Tðs; p0; pÞ across the three-body D0D0πþ cut as an
example. By deforming the integration contour, the ampli-
tude Tðs; p0; pÞ can be analytically continued across the

FIG. 5. Upper row: the pole position ofD�þ (D�0) at the
ffiffiffi
σ

p
plane. TheD�þ (D�0) pole at

ffiffiffi
σ

p
plane is highlighted with the white star in

the left (right) panel. Lower row: example for the contours Γsef in the complex
ffiffiffi
σ

p
plane. The pink and green lines in left (right) panel

correspond to the integral contours for D0πþ and Dþπ0 (D0π0 and Dþπ−) self-energies, respectively.

Im k

Re k

Im k

Re k

k1

k0

Im k

Re k

FIG. 6. The blue lines are positions of the singularities of k for a fixed p0,
ffiffiffi
s

p
and x≡ cos θ∈ ½−1; 1� for the solution of k� in Eq. (36).

In the medium panel, the momentum k0 is the position where the contour is squeezed between the logarithmic cuts. The k1 is the
endpoint of the circular cut k− in Eq. (36) by setting x ¼ þ1.
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D0D0πþ cut, for Im
ffiffiffi
s

p
< 0 and Re

ffiffiffi
s

p
> 2mD0 þmπþ .

The inserts in Fig. 7 show the
ffiffiffi
σ

p
plane with the contours

Γspe and Γsef . The position of the inserts in the
ffiffiffi
s

p
plane

qualitatively corresponds to
ffiffiffi
s

p
used to map the contour

Γspe to the
ffiffiffi
σ

p
plane, via Eq. (5). Note the position of

the contour Γspe relative to the D0πþ branch point at
mD0 þmπþ and D�þ pole at mp

D�þ (upper left insert in
Fig. 7). Moreover, there is no across between the contours
Γspe and Γsef in

ffiffiffi
σ

p
plane. This ensures that the integrand is

always analytic. With the similar method, the amplitude
Tðs; p0; pÞ can be analytically continued across the three-
body D0Dþπ0 or DþDþπ− cut.
Other singularities appear at the zero of the denominator

of Eq. (13),

σk −m2
i;1 − ΣR;II

i;34ðσkÞ − ΣR;II
i;3040 ðσkÞ þ imi;1Γi;γ ¼ 0: ð41Þ

Note that the self-energies are evaluated on their unphysical
Riemann sheets. The pole positions of the resonances D�þ

andD�0 are given by Eqs. (34) and (35), respectively. Usingffiffiffiffiffi
σk

p ¼ ffiffiffi
s

p
−mi;2 at k ¼ 0, we obtain the positions of the

complex branch points at complex
ffiffiffi
s

p
plane,

ffiffiffi
s

p ¼ mp
i;1 þmi;2; ð42Þ

where mp
i;1 is the pole position of D�þ or D�0. Thus, the

complex branch points in
ffiffiffi
s

p
plane are directly related to

the poles of the unstable particles.
Translated into complex k plane, the singularities cor-

responding to the vanishing of denominator of Eq. (13)
are at

kb ¼
λ1=2ðs; ðmp

i;1Þ2; m2
i;2Þ

2
ffiffiffi
s

p : ð43Þ

For Re
ffiffiffi
s

p
> mi;1 þmi;2, and Im

ffiffiffi
s

p
< Immp

i;1, those
branch points are in the fourth quadrant of the k plane
and at an angle of ϕb, where

tanϕb ¼
Imkb
Rekb

: ð44Þ

Thus, as far as the complex branch point is concerned, we
can take θ > jϕbj in Eq. (39) to analytically continue the
amplitude Tðs; p0; pÞ into another unphysical Riemann
sheet. See Refs. [80,81] for a more detailed discussion.
In Fig. 8, we show the cut structure of the effective BS

equation in complex
ffiffiffi
s

p
plane for the momentum contour

rotated by an angle of θ ¼ π=8 in Eq. (39). From Fig. 8, it is
clear we have extended the energy domain over which
Tðs; p0; pÞ is defined to that part of the unphysical Riemann
sheet where resonances are normally located. As shown in
the complex

ffiffiffi
s

p
plane, the Tþ

cc pole is always to the left of
the complex branch points atmp

D�þ þmD0 andmp
D�0 þmDþ ,

to the right of the branch points at 2mD0 þmπþ and
mD0 þmDþ þmπ0 , and to the left of the branch point at
2mDþ þmπ− . Therefore, the qualitative positions of Γspe

and contours Γsef in the
ffiffiffi
σ

p
plane, corresponding to

ffiffiffi
s

p
taking the value of Tþ

cc pole, are given by the inserts in
Fig. 7. The contours Γspe pass both the D�þ and D�0 poles
to the left. Both the D0πþ and Dþπ0 self-energy contours
Γsef pass the D�þ pole on the right. The D0π0 and Dþπ−

self-energy contours Γsef pass the D�0 pole on the right and
left, respectively.

FIG. 7. Analytic structure of the three-body amplitude in theffiffiffi
s

p
plane. The real and complex branch points (orange dots) are

shown together with their respective cuts (orange dashed lines).
The inserts show the contours Γspe mapped to the

ffiffiffi
σ

p
plane (blue

lines), in a qualitative way. In the
ffiffiffi
σ

p
plane, the contours Γsef

(black lines) starting at the two-body thresholds (black dots) do
not change if

ffiffiffi
s

p
changes, but the contours Γspe do.

3.870 3.872 3.874 3.876 3.878 3.88

0

100

200

Re s [GeV]

Im
s
[k
eV
]

FIG. 8. The cut structure of the effective BS equation in
complex

ffiffiffi
s

p
plane for the momentum contour rotated by an

angle of θ ¼ π=8 in Eq. (39). The real and complex branch points
(orange dots) are shown together with their respective cuts
(orange dashed lines). The Tþ

cc pole observed by the LHCb
Collaboration at

ffiffiffi
s

p
plane is highlighted with the red star.
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D. The Tðs; p0; pÞ for real momentum p and p0

The effective BS equation is solved numerically by
replacing the integrals by sums using Gaussian quadratures
and inverting the resulting matrix equation [93]. The
number of Gauss points determines the numerical precision
of this method. We have checked, a 140-point Gaussian
quadrature yields accurate results in this work.
To obtain Tðs; p0; pÞ for real momentum p and p0, a

major difficulty in doing this is the treatment of the
singularities of the kernel. These arise both from the isobar
propagator and the π-exchange potential. In the present
work, we use the contour deformation method developed in
Refs. [94–97]. Some formal aspects of this method were
also described in detail in Appendix B in Ref. [98]. The
method consists of two steps. First, the analytically
continuation of the effective BS equation for complex
momentum is made. The effective BS equation is solved for
complex momenta which is free from singularities. Then
the solution for real momenta is obtained using Cauchy’s
theorem, starting with the solution for complex momenta.
For example, as in the Appendix B in Ref. [98], taking the
initial and final momenta p and k0 to be real, the Eq. (B1)
can be used for a second time to get the solution for real
momenta. The integration path C is along the chosen
contour as before for accessing the solution for complex
momenta.
Here, we would like to describe the detailed treatment of

the singularities of the potential Vi0i
L0Lðs; p0; pÞ having the

configuration shown in Fig. 6. For 0 < p0 < p0
1 (left panel in

Fig. 6), and forp0
2 < p0 (right panel in Fig. 6), the integration

contours can be chosen along the orange lines in the fourth
quadrant of the complex k plane. Forp0

1 < p0 < p0
2 (medium

panel in Fig. 6), integration contour may be chosen along the
gray line. It is important that when integrating along this
contour, one has to go onto the second sheet ofVi0i

L0Lðs; p0; pÞ
(dashed line part in the medium panel in Fig. 6). And the
knowledge of the amplitude Tðs; p0; pÞ in the interval ½0; k1�

is needed, where k1 ¼ k−ðx ¼ þ1Þ in Eq. (36). However,
one can find that the inequalityp0

1 > k1 does not always hold
in this work. In the present work, for p0

1 < p0 < p0
2, we use

another integration contour (the orange line in the medium
panel in Fig. 6). This contour has been employed in
Refs. [96,99]. The potentials Vi0i

L0Lðs; p0; pÞ are always
calculated on the physical Riemann sheet. A certain dis-
advantage of this method lies in the fact that the position of
the momentum k0, where the contour is squeezed between
the logarithmic cuts, depends on the value of the momentum
p0. For this reason one has to solve the set of equation
separately for each value of p0 of the chosen mesh.

V. NUMERICAL RESULTS AND DISCUSSION

In the following we present the results of the approach in
terms of the line shape dΓð ffiffisp Þ

d
ffiffi
s

p calculated from Eq. (22). The
free parameters of the model are the cutoffΛ and the overall
normalization factor F. The two parameters are fixed by a
fitting to the D0D0πþ line shape obtained by the LHCb
Collaboration [44,45]. When fitting the LHCb data, the
coupling constants giL can be absorbed into the overall
factor F. To take into account the experimental resolution,

the line shape dΓð ffiffisp Þ
d
ffiffi
s

p in Eq. (22) is convolved with an energy

resolution function,

dΓ̃ð ffiffiffi
s

p Þ
d
ffiffiffi
s

p ¼
Z

d
ffiffiffiffi
s0

p
RLHCbð

ffiffiffi
s

p
;
ffiffiffiffi
s0

p
Þ dΓð

ffiffiffiffi
s0

p Þ
d
ffiffiffiffi
s0

p : ð45Þ

The resolution function RLHCbð
ffiffiffi
s

p
;
ffiffiffiffi
s0

p
Þ is parametrized by

a sum of two Gaussian functions,

RLHCbð
ffiffiffi
s

p
;
ffiffiffiffi
s0

p
Þ ¼

X
i¼1;2

αi
1ffiffiffiffiffiffi
2π

p
σi
exp

�
−
ð
ffiffiffiffi
s0

p
−

ffiffiffi
s

p Þ2
2σ2i

�
;

ð46Þ
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FIG. 9. Fitting results of the D0D0πþ line shapes before (left panel) and after (right panel) convolution with the energy resolution
function. The green dashed and pink lines correspond to schemes I and II, respectively. The vertical dashed lines represent the D0D�þ

and DþD�0 thresholds. The experimental binning with the bin size of 200 keV is included in the fits.
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where α1 ¼ 0.778, α2 ¼ 0.222, σ1 ¼ 1.05 × 263 keV,
σ2 ¼ 2.413σ1 [45].
In order to investigate the role played by the π-exchange

potential, we consider the following two different fit
schemes:

(i) Scheme I: The OBE potentials excluding π-exchange
potential.

(ii) Scheme II: The full dynamical calculation, the
π-exchange potential is included.

Once the cutoff Λ is fixed through the fit to the
experimental data, the position of the pole of the amplitude
can be searched in the complex energy

ffiffiffi
s

p
plane. The

physical Tþ
cc signal is associated with the corresponding

pole in the D0D�þ −DþD�0 scattering amplitude
Tðs; p0; pÞ. The effective coupling gi to channel i can be
obtained from the residue of the amplitude Tðs; p0; pÞ at the
pole position,

gi
0
gi ¼ lims→spole

1

4π
ðs − spoleÞTi0iðs; kb; kbÞ; ð47Þ

and the on shell momentum kb is given in Eq. (43).
The fitted line shapes for the two schemes are shown in

Fig. 9. The parameters of the fits and extracted pole
positions are given in Table II. These fitting quantities
can be assessed through the corresponding values of
χ2=d:o:f: given in Table II. The fitting results of the two
schemes are comparable.
The three-body and complex two-body cuts imply the

multi-Riemann sheets of the amplitude Tðs; p0; pÞ. As
shown in Fig. 8, in the energy near the Tþ

cc pole, the
D0D0πþ and DþD0π0 channels are on their unphysical
Riemann sheets, while the DþDþπ− is on its physical
Riemann sheet. In scheme I, where OBE potentials
excluding π-exchange potential, the position of the pole

is at
ffiffiffiffiffiffiffiffiffi
sthrpole

q
¼ −332þ37

−36 − ið18� 1Þ keV. In scheme II,

where the π-exchange potential is included, the position of

the pole is at
ffiffiffiffiffiffiffiffiffi
sthrpole

q
¼ −351þ37

−35 − ið28� 1Þ keV. The

width of Tþ
cc in scheme II is larger than in scheme I by

a factor of 1.5. Our results indicate that the inclusion of
π-exchange mainly influences the width of Tþ

cc. For a
bound state with a small binding energy, the π-exchange
can be dealt with using perturbation theory. This is agree-
ment with the findings in Refs. [32,35,36,42].
In Table III, we show the values of the effective coupling

constants to different channels obtained from Eq. (47).
In the exact isospin limit, one would have g1L ¼ −g2L
(g1L ¼ g2L) for an isoscalar (isovector) state. We find that
the coupling constants g1L and g2L are very close to each
other with an opposite sign. This indicates that we have
basically a state with an isospin I ¼ 0. The values of the
coupling constants obtained here are similar to those
obtained in Refs. [46,100,101].

VI. SUMMARY

In this work, we discussed the analytic continuation of
the three-body D0D�þ −DþD�0 scattering amplitude
Tðs; p0; pÞ. Compared with the two-particle scattering,
complications arise for the three-particle scattering not
only because of the increase in the number of variables
necessary to describe the processes, but also the possible
appearance of the dynamic π-exchange, three-body and
complex two-body unitarity cuts. In particular, we find that
the logarithmic singularities of the π-exchange potential
can form into a circular cut. Via the contour deformation,
this cut can be circumvented, and the integration of
the effective BS equation does not pose any numerical
problem.
Employing the contour deformation, the effective BS

equation can be analytically continued to the unphysical
region. As we have shown, one can choose a self-consistent
integration contour, which defines a smooth continuation of

TABLE II. The values of the parameters Λ and the pole positions from fitting of the D0D0πþ line shape obtained
by the LHCb Collaboration. The pole positions are given relative to the D0D�þ threshold. The uncertainties of the
cutoff Λ are obtained by χ2 fitting to the LHCb data and propagate to the pole position.

Scheme χ2=d:o:f: Λ GeV
ffiffiffiffiffiffiffiffiffi
sthrpole

q
keV

I 18.11=ð20 − 1Þ ¼ 0.95 0.4551� 0.0018 −332þ37
−36 − ið18� 1Þ

II 14.47=ð20 − 1Þ ¼ 0.76 0.3701� 0.0017 −351þ37
−35 − ið28� 1Þ

TABLE III. The effective coupling constants extracted as defined in Eq. (47).

Scheme g1 g2 gI¼0 gI¼1

I 3.90þ0.09
−0.09 − i0.04þ0.00

−0.00 −4.11þ0.09
−0.09 þ i0.04þ0.00

−0.00 −5.66þ0.13
−0.13 þ i0.06þ0.00

−0.00 0.15þ0.00
−0.00 þ i0.00þ0.00

−0.00
II 4.00þ0.09

−0.09 þ i0.04þ0.00
−0.00 −4.13þ0.09

−0.09 þ i0.05þ0.00
−0.00 −5.75þ0.13

−0.13 þ i0.01þ0.00
−0.00 0.09þ0.00

−0.00 − i0.07þ0.00
−0.00
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the amplitude to the domain of analyticity. As an imple-
mentation, we find the π-exchange term has a significant
effect on the pole position of the Tþ

cc. Including the
π-exchange term, the width of Tþ

cc will be increased by
a factor of 1.5.
Systematic analysis the newly observed hadronic states

requires building the amplitude that satisfies the constrains
such as unitarity and analyticity. The present work dis-
cussed the prescription for solving and analytically con-
tinuing the effective BS equation describing the three-body
reactions. Such an analysis is expected to provide an
important theoretical background for determining the
parameters of the newly exotic candidates. In the near
future, we will extend our framework to calculate the 3π −
KKπ coupled system suggested to be responsible for the
exotic candidate a1ð1420Þ [102–105].
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APPENDIX A: THE INTERACTION
LAGRANGIAN

The interaction Lagrangian between pseudo-Goldstone
bosons and the mesons containing a heavy quark can be
constructed by imposing invariance under both heavy quark
spin-flavor transformation and chiral transformation
[106–110]. The light vector mesons nonet can be introduced
by using the hidden gauge symmetry approach [110–112].
The Lagrangian containing these particles can be written as

LDD�P ¼ gDD�PðDbD
�μ†
a þD�μ

b D†
aÞð∂μMÞba þ gD̄D̄�PðD̄�μ†

a D̄b þ D̄†
aD̄

�μ
b Þð∂μMÞab;

LDDV ¼ igDDVðDb∂μ

$
D†

aÞVμ
ba þ igD̄ D̄ VðD̄b∂μ

$
D̄†

aÞVμ
ab;

LD�D�V ¼ igD�D�VðD�
bν∂μ

$
D�ν†

a ÞVμ
ba þ ig0D�D�VðD�μ

b D�ν†
a −D�μ†

a D�ν
b Þð∂μVν − ∂νVμÞba

þ igD̄�D̄�VðD̄�
bν∂μ

$
D̄�ν†

a ÞVμ
ab þ ig0̄D�D̄�VðD̄�μ

b D̄�ν†
a − D̄�μ†

a D̄�ν
b Þð∂μVν − ∂νVμÞab;

LD�DV ¼ igD�DVελαβμðDb ∂

↔λ
D�μ†

a þD�μ
b ∂

↔λ
D†

aÞð∂αVβÞba þ igD̄�D̄VελαβμðD̄b ∂

↔λ
D̄�μ†

a þ D̄�μ
b ∂

↔λ
D̄†

aÞð∂αVβÞba: ðA1Þ

The matrix M contains π, K, η fields, which is a 3 × 3
Hermitian and traceless matrix. Vμ is analogous to M
containing ρ, K�, ω and ϕ. The matrix M and Vμ are
expressed as

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCA;

V ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA: ðA2Þ

The isospin doublets are D ¼ ðDþ;−D0Þ and D� ¼
ðD�þ;−D�0Þ. The coupling constants are as follows,

gDD�P ¼ −gD̄D̄�P ¼ −
2g
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDMD�

p
;

gDDV ¼ −gD̄ D̄V ¼ 1ffiffiffi
2

p βgV;

gD�D�V ¼ −gD̄�D̄�V ¼ −
1ffiffiffi
2

p βgV;

g0D�D�V ¼ −g0̄D�D̄�V ¼ −
ffiffiffi
2

p
λgVMD� ;

gDD�V ¼ gD̄D̄�V ¼
ffiffiffi
2

p
λgV: ðA3Þ

The effective Lagrangian between σ and heavy mesons are

LDDσ ¼ gDDσDaD
†
aσ þ gD̄ D̄ σD̄aD̄

†
aσ;

LD�D�σ ¼ gD�D�σD
�μ
a D�†

aμσ þ gD̄�D̄�σD̄
�μ
a D̄�†

aμσ; ðA4Þ

and the relevant coupling constants are

gDDσ ¼ gD̄ D̄ σ ¼ −2gσMD;

gD�D�σ ¼ gD̄�D̄�σ ¼ 2gσMD� :

XU ZHANG PHYS. REV. D 109, 094010 (2024)

094010-12



In this work, we choose the coupling constants g ¼ 0.59, gV ¼ 5.8, β ¼ 0.9, λ ¼ 0.56 GeV−1, fπ ¼ 0.132 GeV, and
gσ ¼ 0.76 as in Refs. [109,113].

APPENDIX B: THE POLARIZATION VECTORS AND KINEMATICS

Spin-1 helicity polarization vectors are given by

ϵμ0ðpÞ ¼
1

m

0
BBB@

jp⃗j
E sin θ cosϕ

E sin θ sinϕ

E cos θ

1
CCCA; ϵμ�1ðpÞ ¼

1ffiffiffi
2

p

0
BB@

0

∓ cos θ cosϕþ i sinϕ

∓ cos θ sinϕ − i cosϕ

� sin θ

1
CCA; ðB1Þ

where pμ ¼ ðE; p⃗Þ is the particle four-momentum, m is the particle mass and

p⃗ ¼ ðjp⃗j sin θ cosϕ; jp⃗j sin θ sinϕ; jp⃗j cos θÞ: ðB2Þ

The helicity sum gives

X
λ

ϵλ;μðpÞϵ�λ;νðpÞ ¼ −gμν þ
pμpν

m2
: ðB3Þ
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