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We study the role of renormalon cancellation schemes and perturbative scale choices in extractions of the
strong coupling constant αsðmZÞ and the leading nonperturbative shift parameter Ω1 from resummed
predictions of the eþe− event shape thrust. We calculate the thrust distribution to N3LL0 resummed
accuracy in soft-collinear effective theory (SCET) matched to the fixed-order Oðα2sÞ prediction, and
perform a new high-statistics computation of the Oðα3sÞ matching in EERAD3, although we do not include
the latter in our final αs fits due to some observed systematics that require further investigation. We are
primarily interested in testing the phenomenological impact sourced from varying amongst three
renormalon cancellation schemes and two sets of perturbative scale profile choices. We then perform a
global fit to available data spanning center-of-mass energies between 35–207 GeV in each scenario.
Relevant subsets of our results are consistent with prior SCET-based extractions of αsðmZÞ, but we are also
led to a number of novel observations. Notably, we find that the combined effect of altering the renormalon
cancellation scheme and profile parameters can lead to few-percent-level impacts on the extracted values in
the αs −Ω1 plane, indicating a potentially important systematic theory uncertainty that should be
accounted for. We also observe that fits performed over windows dominated by dijet events are typically of
a higher quality than those that extend into the far tails of the distributions, possibly motivating future fits
focused more heavily in this region. Finally, we discuss how different estimates of the three-loop soft
matching coefficient c3

S̃
can also lead to measurable changes in the fitted fαs;Ω1g values.
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I. INTRODUCTION

Electron-positron event shapes are amongst the oldest
and most established observables for testing the predictions
of perturbative QCD [1]. They typically measure geometric
configurations of hadronic final-state momentum distribu-
tions in detectors which, thanks to the absence of initial-
state color-charged particles, are free of many uncertainties
associated to hadron-hadron collisions. They are therefore

generally assumed to be theoretically clean observables,
permitting high-order perturbative calculations as well as
precision extractions of the fundamental parameter of
massless QCD—the strong coupling constant αs.
It is to this end that multiple experimental and theoretical

collaborations have pursued eþe− event shapes, utilizing
available data from the Large Electron-Positron collider
(LEP) and other experiments. Some of these results [2–11]
contribute along with analogous studies utilizing lattice
simulations, τ-decays, PDF fits, heavy quarkonia decays,
etc. to the 2022 Particle Data Group (PDG) world average,
which is found tobeαsðmZÞ ¼ 0.1179� 0.0009 [12].Thanks
to the desirable properties of eþe− event shapes and the
associatedprecisionof theoretical predictions nowavailable—
which exist up to the N3LL0 resummed perturbative accuracy
using soft-collinear effective theory (SCET) [13–16] and
Oðα3sÞ accuracy in fixed-order QCD [17,18]—determinations
basedonobservables suchas thrust [5] andC-parameter [9] are
among the most precise quoted in the PDG.
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One notices, however, that these extractions tend to yield
significantly lower values of αs as compared to the PDG
world average, which motivates further investigation. It is
generally observed in the literature that lower values of αs
emerge from event-shape predictions that account both for
the resummation of logarithms in perturbation theory and a
semianalytic description of nonperturbative power correc-
tions from hadronization. Recently, this discrepancy has
motivated studies of models of power corrections in the
three-jet region of event-shape distributions [19–21] and
associated impacts on the determination of αs [19,22],
indicating additional systematic uncertainties from such
effects. In the current work, we follow a somewhat orthogo-
nal approach that addresses the question whether there exist
theoretical uncertainties in the dijet factorized prediction for
the thrust distribution that have a similarly non-negligible
impact on the αs determination.We stress that the purpose of
this work is to identify such systematic effects that remain to
be better understood or controlled in future fits, and that we
do not aim at a competitive αs extraction here.
While multiple explanations for this tension could exist,

a definitive answer will at the very least require a better
understanding of the impact of (A) nonperturbative (NP)
physics effects and (B) perturbative scale uncertainties on
the error estimation of the extracted results. For example,
regarding (A), the SCET thrust and C-parameter fit results
mentioned above were performed in a two-dimensional
plane in αs andΩ1, where the latter is a universal parameter
encoding the leading NP shift in the tail regions of the
differential distributions [23–27],

dσ
de

ðeÞ!
NP

dσ
de

�
e − ce

Ω1

Q

�
; ð1Þ

where e denotes a generic event shape whose dominant
power corrections come from the soft sector, and where ce
is a calculable, observable-dependent scaling coefficient
given by cτ ¼ 2 for thrust and cC ¼ 3π for C-parameter.
While (1) is only valid in a region of e large enough to
justify an operator product expansion of the soft shape
function that describes the NP physics, its implication for
fitting analyses is evident: shifts in theory distributions due
to differing values of αs can partly be compensated by shifts
from differing values of Ω1. As a result, extractions are
often given in terms of ellipses in the combined αs −Ω1

plane, whose sizes correspond to a given statistical con-
fidence level and whose slopes encode the correlation
between the two fit parameters αs and Ω1. Furthermore,
often embedded in the definition of Ω1 is an implicit
scheme for simultaneously canceling the leading soft
infrared renormalon appearing in the perturbative dijet soft
function and certain hadronization model parameter(s)
[28]. This renormalon cancellation scheme amounts to a
choice, and as recently argued in [29], many reasonable
choices exist. We stress that when we make the same

choices as in prior SCET-based thrust analyses [5,9], we
obtain results entirely compatible with these works. But
here we will also show that multiple well-defined scheme
choices may well lead to a significant spread of the fit
values, implying a potential systematic theory uncertainty
that should be accounted for, while also motivating further
strategies to reduce or avoid such systematic effects.
As part of our investigations we will also find that αs

extractions that are constrained to a more restricted domain
of the observable—in particular the dominantly dijet region
of differential distributions—typically result in better-qual-
ity fits than those performed up to or even beyond the
multijet threshold. This represents a complementary per-
spective to the one that was recently presented in [22],
which advocated αs fits in the far-tail regions, where three-
jet and multijet events dominate, and where recent
advances in understanding three-jet NP power corrections
have focused. While the latter developments are important
to improve the theoretical understanding of event-shape
distributions, we note that these analyses are currently
model-dependent (based on the large-nf limit), and there-
fore not on the same footing as the corresponding dijet
studies, for example, in the generality of proofs of the
universality of the corresponding NP corrections.
In this work we study the thrust distribution T ¼ 1 − τ

[30,31], a canonical eþe− event shape defined as

τ ¼ 1

Q

X
i

jpi⊥je−jηij; ð2Þ

withQ the center-of-mass (c.m.) energy of the collision, and
pi⊥ and ηi respectively denoting the transverse momentum
and rapidity of the ith final-state particle measured with
respect to the thrust axis. Thrust is amongst the best studied
eþe− event shapes, a fact in part due to the ability to calculate
its spectra at N3LL0 þOðα3sÞ resummed and matched
accuracy [5,32]. As already mentioned, thrust has been
utilized for prior effective-field-theory-based extractions of
the strong coupling, and this provides a controlled environ-
ment for us to study the impacts of certain assumptions
embedded in the theoretical framework, and to comparewith
prior analyses. Indeed, in addition to revealing the novel
physics points mentioned above, our study provides the first
independent cross-check of the results in [5,9], despite a
number of minor systematic differences in our analysis that
will be described in detail in Sec. V D below.
The remainder of the paper develops as follows: in Sec. II

we will review the dijet SCET factorization theorem
employed to predict the thrust distribution, the various
perturbative ingredients required therein, and the matching
to the fixed-order QCD prediction up toOðα2sÞ accuracy. We
also describe a new high-statistics calculation of the three-
loop Oðα3sÞ remainder function using the public EERAD3
code [33], and highlight some systematic concerns about it
that lead us to not include the matching to this order in our
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final extraction code. In Sec. III we review the further
factorization of the soft function into a nonperturbative shape
function and a fully perturbative component, as well as the
formalism for achieving the leading infrared renormalon
cancellationbetween the two.Wewill then introduce the three
different renormalon cancellation schemeswe intend to study,
and in Sec. IV we review two alternative sets of profile
functions as well as our method of varying them to estimate
the overall perturbative uncertainty. Finally, in Sec. V we
present our method of extracting fαs;Ω1g, show our results
for these quantities in different schemes, discuss their
implications, and also touch on the uncertainties associated
with the three-loop soft constant c3

S̃
, which is the only N3LL0

ingredient that is currently not known exactly.We conclude in
Sec. VI. Appendixes A and B respectively collect details on
the fixed-order expansion of the resummed cross section and
the order-by-order expansion of the renormalon cancellation
formulas, while Appendix C provides more details of an
analysis of one of the renormalon schemes introduced in
Sec. III that does not play a central role in the comparison of
schemes in the main body of this paper nor in its conclusions.

II. PERTURBATIVE TREATMENT

The bulk of the theory we implement is thoroughly
presented in prior literature, and so for brevity we only
outline the core features of our calculation in what follows,
leaving many background details to those references (see
e.g. [5,34,35]).
We predict the singular part of the integrated (or

cumulative) thrust distribution,

σcðτÞ ¼
Z

τ

0

dτ0
dσ
dτ0

; ð3Þ

with methods from SCET, for which factorization theorems
for dijet eþe− event shapes are well established, and match
to fixed-order QCD to account for nonsingular contribu-
tions. Hence the overall perturbative cross section consists
of two parts,

σPTc ðτÞ ¼ σc;singðτÞ þ σc;nsðτÞ; ð4Þ

with the nonsingular matching contribution σc;nsðτÞ implic-
itly defined in (11) below. We will now address both of
these contributions in turn.

A. Singular contribution

The singular and resummed contribution σc;singðτÞ,
normalized by the Born cross section σ0, reads

1

σc;singðτÞ
σ0

¼ eK̃ðμH;μJ;μS;QÞþKγðμH;μJ;μSÞ
�
1

τ

�
ΩðμJ;μSÞ

×HðQ2; μHÞJ̃
�
∂Ω þ ln

μ2J
Q2τ

; μJ

�
2

× S̃

�
∂Ω þ ln

μS
Qτ

; μS

�
eγEΩ

Γð1 −ΩÞ ; ð5Þ

where the evolution kernels K̃, Kγ , and Ω are given by

K̃ðμH;μJ;μS;QÞ≡−κHK̃Γðμ;μH;QÞ
− 2jJκJK̃Γðμ;μJ;QÞ− κSK̃Γðμ;μS;QÞ;

KγðμH;μJ;μSÞ≡KγHðμ;μHÞ þ 2KγJðμ;μJÞ þKγSðμ;μSÞ;
ΩðμJ;μSÞ≡−2κJηΓðμ;μJÞ− κSηΓðμ;μSÞ: ð6Þ

The hard function H arises from the matching of the
effective theory to QCD, and it describes virtual corrections
to eþe− → qq̄ scattering, while collinear radiation along
the jet directions is encoded in the jet functions J̃ (with the
tilde denoting an evaluation in Laplace space). Finally,
background low-energetic radiation that communicates
between the two jets is described by the (Laplace-space)
soft function S̃. All of these functions are evaluated in (5) at
an associated ‘natural’ scale μH;J;S at which their logarith-
mic corrections are minimized and their perturbative series
well-behaved. In SCET the resummation is achieved via
renormalization group (RG) evolution, which generates the
kernels K̃, Kγ , Ω in (6) defined in terms of cusp (Γcusp) and
noncusp (γF) anomalous dimensions,

K̃Γðμ; μF;QÞ≡
Z

μ

μF

dμ0

μ0
Γcusp½αsðμ0Þ� ln

μ0

Q
;

KγFðμ; μFÞ≡
Z

μ

μF

dμ0

μ0
γF½αsðμ0Þ�;

ηΓðμ; μFÞ≡
Z

μ

μF

dμ0

μ0
Γcusp½αsðμ0Þ�: ð7Þ

The corresponding values for the parameters κF and jF are
given for the thrust distribution by

jH ¼ 1; jJ ¼ 2; jS ¼ 1;

κH ¼ 4; κJ ¼ −2; κS ¼ 4: ð8Þ

Given the perturbative expansions of the cusp and noncusp
anomalous dimensions, one can solve (7) order by order,
achieving approximate analytic expressions for the evolu-
tion kernels that resum the logarithmic corrections to the
thrust distribution to a given accuracy.2 The order to which1We use the form derived in [35], which depends at a given

order of perturbation theory on the factorization scales μH;J;S, but
is otherwise explicitly independent of the renormalization scale μ
at every order of perturbation theory.

2The systematic uncertainties of this approximation have been
studied e.g. in [36,37].
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each individual component of (5) must be calculated can be
read off e.g. from Table 6 of [35]. As our goal consists in
resumming the thrust distribution to N3LL0 accuracy, we
need the noncusp anomalous dimensions γF and the fixed-
order hard, jet, and soft functions H; J̃; S̃ up to Oðα3sÞ
corrections, while Oðα4sÞ ingredients are required for the
cusp anomalous dimension Γcusp and the QCD β-function.
Of these, only the three-loop matching correction c3

S̃
to

the Laplace-space soft function S̃ is currently unknown,
although an extraction of this quantity with the EERAD3
event-generator results from [38] was performed in [39],
which found

c3
S̃
jEERAD3 ¼ −19988� 5440; ð9Þ

where we have added the uncertainties quoted in [39]
linearly. However, in Sec. V E below we will also examine
scenarios with a Padé approximated value for c3

S̃
that has

been used in earlier studies of the thrust distribution (in
particular in [5]) with

c3
S̃
jPadé ¼ 691� 1000: ð10Þ

The goal of that exercise consists in understanding how
sensitive αs determinations are to this unknown N3LL0
coefficient in different perturbative schemes that we will
introduce below. In any case, despite the somewhat large
systematic difference between these two estimates of c3

S̃
,

and the remaining large uncertainty in (9), we will still label
results that depend on these estimates as N3LL0 in what
follows, in accord with previous analyses [5,9].

B. Nonsingular contribution

In the far-tail region of the distribution, where resum-
mation effects are less important, it is necessary to match
the singular SCET cross section from (5) to the full QCD
prediction. Obtaining the additional nonsingular compo-
nent in (4) is then a matter of determining remainder
coefficients ric by subtracting off the singular SCET
prediction from the QCD result, at a given order in
perturbation theory,

σPTc ðτÞ
σ0

−
σc;singðτÞ

σ0
¼ rcðτÞ

≃ θðτÞfr̄1cðQ; τÞ þ r̄2cðQ; τÞ þ r̄3cðQ; τÞg;
ð11Þ

where r̄icðQ; τÞ≡ ðαsðQÞ=ð2πÞÞiricðτÞ. The singular cross
section is obtained from (5) by expanding F ¼ H; J̃; S̃ at
μH ¼ μJ ¼ μS ¼ Q to fixed order in αs, multiplying out
these expressions, and then inverse Laplace-transforming
the result. This process is straightforward given the well-
known expressions for the fixed-order coefficients Fn
defined by

FðLF; μFÞ ¼
X∞
n¼0

�
αsðμFÞ
4π

�
n
FnðLFÞ; ð12Þ

which depend on (logarithmically weighted) anomalous
dimensions γnF, Γn

F, as well as unweighted singular con-
stants cnF, briefly discussed above for F ¼ S̃. In
Appendix A we have collected explicit expressions for
these functions up to Oðα3sÞ, in both momentum and
Laplace space. In terms of these quantities, the singular
cross section σc;singðτÞ is fully determined, and one only
needs to obtain the QCD result σPTc ðτÞ to determine the
remainder coefficients. At OðαsÞ this can be done analyti-
cally (from, e.g., [40]), while we have implemented the
relevant Oðα2sÞ matching from [35] in this work, which
used EVENT2 [41] to obtain r2c. This then leaves the Oðα3sÞ
remainder coefficient r3c.
While the differential analogue to r3c, r3 ¼ dr3c=dτ, is

available from the corresponding SCET matching per-
formed in [5], we have opted to perform our own extraction
using the EERAD3 generator, which yields a binned
approximation to the differential thrust distribution away
from τ ¼ 0,

1

σ0

dσc
dτ

����
EERAD3

≃
1

σ0

dσc
dτ

����
τ>0

¼ BðτÞ þ rðτÞ; ð13Þ

where BðτÞ is a singular function that is reproduced by the
SCET calculation. Critically, the unknown constant c3

S̃
mentioned above does not appear in this expression, as
it only contributes to the coefficient of the δðτÞ term. This
can be seen explicitly in (A11) in Appendix A, which can
also be used to obtain r3 using the differential analogue of
(11). The resulting object can then be integrated to obtain
the cumulative remainder function r3c.
Following this procedure, we have computed the remain-

der function r3 in EERAD3 with 1.5 × 1010 events with the
internal infrared cutoff parameter set to 10−7. The result is
shown in Fig. 1. We note that this number of events is
considerably greater than in prior determinations appearing
in the literature. With these statistics, we are able to learn
about the behavior of the fixed-order prediction of EERAD3
in a bit more detail than previously possible, especially in
the small τ region. The remainder r3 is obtained by
subtracting all the singular contributions predicted by
(A17) down to the single-logarithmic coefficient, i.e. the
logarithms with coefficients σ3k with k ≥ 1. However,
we have noticed that the coefficient σ31 of the single
logarithm at three loops is itself not predicted accurately by
EERAD3—it is off by nearly a factor of 2. Thus, the result
in Fig. 1 likely contains an uncanceled singular contribu-
tion. We have gone ahead with the exercise of fitting the
data in Fig. 1 to a basis of sub-leading (power-suppressed)
logarithmic functions as was done in [5], which is repre-
sented by the red line for τ < 0.2 (the red line for τ > 0.2 is
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simply a direct interpolation of the EERAD3 data). In this
way we could integrate r3 to obtain a cumulative remainder
function r3c. However, because of the uncanceled singular
contribution in the EERAD3 data, we do not believe we can
obtain a reliable prediction for r3c at this time, nor can we
use these data to obtain a reliable extraction of the unknown
three-loop soft constant c3

S̃
using the procedure described in

[42]. These observations should not, however, cast doubt
on previous extractions of αs using EERAD3 calculations of
r3, as the “missing logarithmic effect” is less pronounced at
larger values of τ where the αs fits are performed, and the
statistical uncertainties for the lower number of events that
were used in those works likely encompass the error,
anyway.
Nevertheless, as a result of these observations, we

choose to match only to the Oðα2sÞ remainder function
r2c in this work, effectively setting r3c to zero. Thus we label
our results as N3LL0 þOðα2sÞ. We stress, however, that our
study of renormalon cancellation scheme and perturbative
scale profile choices, and the conclusions drawn therefrom,
remain unaffected from this restriction. We have verified
this by performing extractions with r3 in Fig. 1 turned on or
off. We defer further study of r3 and its integral r3c to a
future publication. We also note that the more recent αs
determinations in [10,11] used CoLoRFulNNLO [43] to
determine the Oðα3sÞ remainder function.3

With this set of remainder functions ric at hand, the final
perturbative prediction for the cumulative thrust distribu-
tion is given by

σPTc ðτÞ ¼ σc;singðτ; μH; μJ; μSÞ
σ0

þ αsðμnsÞ
2π

r1cðτÞ

þ
�
αsðμnsÞ
2π

�
2
�
r2cðτÞ þ β0r1cðτÞ ln

μns
Q

�
; ð14Þ

where we have made the dependence of the singular cross
section on the hard, jet and soft scales μH;J;S explicit, and
we have allowed for an independent scale μns that can be
varied to probe the perturbative uncertainty of the non-
singular contribution. In Sec. IV we will discuss how we
vary these scales to estimate unknown higher-order cor-
rections in all sectors of our calculation.

III. NONPERTURBATIVE TREATMENT

A. Gapped shape function

A complete theoretical treatment of the thrust distribu-
tion must also take into account nonperturbative effects
due to hadronization. These effects are encoded in the dijet
soft function in (5) describing low-energy wide-angle
radiation between the two jets. We use a model for the
soft function [25,26,28],

Sðk; μSÞ ¼
Z

dk0SPTðk − k0; μSÞfmodðk0 − 2Δ̄Þ; ð15Þ

where fmod is a nonperturbative shape function that
modifies the perturbative prediction for the soft function,
and Δ̄ is a gap parameter modeling the minimum soft
momentum in a final state due to hadronization. This
implies the following formula for the cross section itself:

1

σ0
σcðτÞ ¼

Z
dkσPTc

�
τ −

k
Q
; μH; μJ; μS; μns

�

× fmodðk − 2Δ̄Þ: ð16Þ

In this prediction, the shape function is convolved with both
the (resummed) singular and the nonsingular parts of the
cross section in (14)—as in previous treatments [5,9,35]—
in order to smooth the transition from the resummation
region to the fixed-order region. This is an important point
to keep in mind in the following discussion, as any
modifications we make to the nonperturbative gap param-
eter will affect both regions.
For the gapped shape function in (15), we adopt the

form,

fmodðkÞ ¼
1

λ

�X∞
n¼0

bnfn

�
k
λ

��
2

; ð17Þ

FIG. 1. Differential remainder function r3ðτÞ=ð2πÞ3 as ex-
tracted from EERAD3. The data points are the EERAD3 data,
and the red line is a combined interpolation for large τ and a
fit to a basis of logarithmic functions for small τ as explained
in the text.

3Recently, the authors of [43] kindly provided us data for the
thrust distribution predicted therein. We note the remainder
function r3ðτÞ obtained from using this data differs significantly
from Fig. 1 for very small τ, and even noticeably though less
dramatically for larger values of τ. We defer a study of the impact
on fαs;Ω1g fits from the predictions in [43] to future work, which
we do not expect to substantially alter any conclusions in this
paper.
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where the functions fnðxÞ form a complete orthonormal
basis composed of Legendre polynomials [44]. For the
present analysis, we set b0 ¼ 1 and bn ¼ 0 for n > 0, since
we are only interested in the tail region of the distribution,
where the first moment λ of the shape function is the only
relevant parameter. In the absence of the nonperturbative
gap parameter Δ̄, one then recovers the leading shift from
(1) when the shape function is convolved with the pertur-
bative cross section. With a nonzero Δ̄, on the other hand,
the relationship between Ω̄1 and the shape function is
modified to

2Ω̄1 ¼ 2Δ̄þ
Z

dkkfmodðkÞ; ð18Þ

with Δ̄ ∼ ΛQCD, and where it is understood that the λ
parameter in (17) is given by λ ¼ 2ðΩ̄1 − Δ̄Þ. Note, how-
ever, that our notation in (18) has slightly changed from (1),
as the presence of the barred notation (Ω̄1; Δ̄) indicates
objects defined in an MS-like renormalization scheme,
where the soft function SPT has been calculated. However,
both the perturbative soft function and the gap parameter Δ̄
exhibit renormalon ambiguities [28], which must be can-
celed to obtain stable predictions.
To do so, one redefines the gap parameter in (15) as

Δ̄ ¼ Δðμδ; μRÞ þ δðμδ; μRÞ; ð19Þ

where Δ is renormalon free and δ is chosen to cancel the
ambiguity in the perturbative soft function. We will review
the procedure for calculating δ in various schemes in
Sec. III B below. In these schemes, the perturbative series
for δ is calculated starting from the perturbative soft
function that is renormalized at a “reference” scale μδ.
Moreover, the condition imposed on the Laplace-space soft
function is evaluated at an argument proportional to the
inverse of a second “subtraction” scale μR. The dependence
on these two scales, as well as the details on the chosen
subtraction scheme to compute δ, enters the final prediction
for the cross section.
Without repeating the details of the derivation, we quote

here the final result for our prediction of the renormalon-
free cross section [5,35,45],

1

σ0
σcðτÞ ¼

Z
dkσPTc

�
τ −

k
Q
; μH; μJ; μS; μns

�

× ½e−2δðμδ;μRÞ ddkfmodðk − 2Δðμδ; μRÞÞ�: ð20Þ

The scheme chosen to compute the renormalon subtraction
series, and thus the definition of the gap parameter Δ, must
be specified in computing the cross section. The scheme
includes a definition of the reference scale μδ, and in case it
is not equal to μS, the terms in brackets should be
reexpanded in powers of αsðμSÞ [29].

Independent of the chosen renormalon cancellation
scheme is the practical approach for evaluating (20). We
do so by collecting terms with the same explicit powers of
αs, such that the cross section necessary for N3LL0 accuracy
can be expanded as

σcðτÞ
σ0

¼ σ½0�c ðτÞ þ σ½1�c ðτÞ þ σ½2�c ðτÞ þ σ½3�c ðτÞ; ð21Þ

whose components are given order-by-order by

σ½i�c ðτÞ ¼
Z

dk

�Xi

n¼0

σN
nLO

c

�
τ −

k
Q

�
fði−nÞmod ðk − 2ΔÞ

�
; ð22Þ

where we have suppressed the scale dependence in both
σN

nLO
c [the purely perturbative resummed and matched

cross section from (14), with any fixed-order prefactors
truncated to NnLO accuracy, following the notation used in
Eq. (4.38) of [35] ] and the shape function fmod for brevity.

The component notation fðiÞmod represents the fact that in
practice we expand out the renormalon-corrected shape
function as

e−2δ
d
dkfmodðk − 2ΔÞ ¼

X
i

fðiÞmodðk − 2ΔÞ; ð23Þ

where the coefficients fðiÞmod refer to an expansion in αsðμSÞ,
given in (B1). Explicit expressions for these coefficients
can be found order-by-order in Appendix B, where it is
clear that these terms depend on the particular renormalon
cancellation scheme. It also follows that in the presence of a
gapped and renormalon-corrected shape function, the
actual shift of the differential distribution will no longer
be a constant, as in (1). Indeed, the scale dependence of
both Δ and δ, which will be discussed in upcoming
sections, leads to a τ-dependent “effective” shift, which
can be calculated as

ζeffðτÞ≡
Z

dkk

�X
i

fðiÞmodðk − 2ΔÞ
�
: ð24Þ

The behavior of this effective shift will guide in large part
our considerations below on a set of renormalon cancella-
tion schemes for the thrust distribution.

B. Renormalon cancellation schemes

As mentioned above, both the perturbative soft function
SPT and the subtraction term δ suffer from renormalon
ambiguities associated to infrared poles in their (all-order)
Borel-series representations. As in prior studies, we adopt a
formalism to cancel them against one another, thereby
rendering the overall cross section free of the leading soft
renormalon. A generalized set of schemes achieving this
cancellation was presented in [29], each defined by
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imposing a condition on the soft function in Laplace space
to render it free of the leading renormalon,

dn

dðln νÞn ln ½S̃PTðν; μδÞe
−2νδðμδ;μRÞ�ν¼ξ=μR ¼ 0; ð25Þ

where ν is the Laplace-space variable, μδ the reference
renormalization scale where S̃PT is evaluated, and μR the
renormalon subtraction scale, with the condition on the n-th
derivative of S̃PT imposed at the Laplace-space argument
ν ¼ ξ=μR. The parameters n, ξ, along with the choice of μδ,
define the renormalon cancellation scheme being used to
define the subtraction term δ and thus the gap parameter Δ.
From (25) one immediately obtains an expression for the
subtraction term δ in terms of the perturbative soft function,

δðμδ; μRÞ ¼
μR
2ξ

dn

dðln νÞn ln S̃PTðν; μδÞjν¼ξ=μR : ð26Þ

Here it is clear that we need to control the RG evolution of
the subtraction term, both in terms of the reference scale μδ
and the subtraction scale μR, which is governed by the
anomalous dimensions,

γΔ½αsðμδÞ� ¼
d

d ln μδ
Δðμδ; μRÞ ¼ −

d
d ln μδ

δðμδ; μRÞ;

γR½αsðμRÞ� ¼ −
d

dμR
ΔðμR; μRÞ ¼

d
dμR

δðμR; μRÞ: ð27Þ

The μδ-evolution is well-known [42], and is given in terms
of the cusp evolution function ηΓ defined in (7). The second
equation is the so-called “R-evolution” equation [42,46],
and its anomalous dimension γR explicitly depends on the
subtraction scheme defined in (26). Note that γR is
computed at μδ ¼ μR. We give the solution for the μδ-
and R-evolved gap parameter to three-loop order in (B3).
We now address the freedom in defining renormalon

cancellation schemes which, as is evident in (26), depend
on the choice of the derivative rank (the parameter n), the
overall normalization (the parameter ξ), and the reference
scale μδ. As long as an appropriate hierarchy of scales is
maintained, one may choose these parameters freely. In
[5,9], for example, the so-called R(-gap) scheme was
defined by

Rscheme∶ fn; ξ; μδ; μRg ¼ f1; e−γE ; μS; Rg; ð28Þ

where the functional form of the profile R will be given in
Sec. IVA below. Exact expressions for n ¼ 1 for both the
subtraction term δ and the anomalous dimension γR are
given in Appendix B up to Oðα3sÞ.
In Fig. 2 we plot the effective shift (24) of the differential

distribution that results from various scheme choices across
the τ-domain relevant for the αs fits. Specifically, the red
and green curves refer to the R scheme for two different

perturbative scale choices (“2010” and “2018”) that we will
introduce in Sec. IVA below. A notable feature of Fig. 2 is
that the effective shift of the cross section grows as τ
increases, even into the region of multijet configurations,
where the applied formalism for the description of NP
corrections, which is based on a dijet factorization theorem,
loses its validity. We stress that the growth of ζeff in (24) is a
direct consequence of the R evolution of the gap parameter
Δ, predicted by (27). Its lasting effect in the large τ region
of the cross section, in particular, is a result of the choice
made in (16) to convolve the shape function with both the
singular and nonsingular parts of the cross section. As
argued above, this choice was made in order to smooth
the transition between the dijet and multijet regions.
Interestingly, we note that similar effects of a growing
nonperturbative shift are also mimicked by models for
power corrections to the three-jet region, recently studied
in [21], although the quantitative effect found in that work
is more pronounced. In the context of renormalon cancel-
lation-induced effects in a dijet factorization formula,
however, the growth of the effective shift ζeff well into
the multijet region can appear surprising.
These observations led us to explore the space of

renormalon cancellation schemes that may yield an effec-
tive shift whose growth is mitigated for large τ values, while
still achieving the cancellation of the leading soft renor-
malon. As the growth of (24) is related to the RG evolution
of the gap parameter Δðμδ; μRÞ, and therefore the scale
profiles of Sec. IVA, this motivated us to look for other
choices of the reference scale μδ and/or the subtraction
scale μR to achieve this goal.
To that end, we also define the following R⋆ scheme:

R⋆ scheme∶ fn; ξ; μδ; μRg ¼ f1; e−γE ; R⋆; R⋆g; ð29Þ

FIG. 2. The effective shift (24) of the cross section due to
different renormalon cancellation and perturbative scale profile
schemes, evaluated using “central” profiles at Q ¼ mZ. The flat,
dashed line corresponds to the constant shift of (1), while the
vertical gray lines correspond to the two fitting windows
discussed below. All functions are calculated at N3LL0 þOðα2sÞ
accuracy.
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where we have chosen to identify the reference scale μδ not
with the soft scale μS, but rather with the subtraction scale
μR itself. This eliminates right away any logarithms of
μδ=μR in the renormalon subtraction term δ, as evident from
(B10) and (B15), though there will still be logarithms of
μS=μR when reexpanding the subtractions in αsðμSÞ. In this
particular scheme, however, these logarithms do not show
up until Oðα3sÞ, since the one-loop subtraction vanishes
exactly; see (B15a).
The scheme choice (29) gives us some freedom to tweak

the behavior of the subtraction scale R� without inducing
too large logarithms with respect to the soft scale μS. For
instance, we may freeze the growth of R� as a function of τ
with an appropriate choice of the profile functions in
Sec. IVA. In particular, we will choose a functional form
for this new scale, μδ ¼ μR ¼ R⋆, to be a piecewise
function,

R⋆ðτÞ ¼
�
RðτÞ RðτÞ < Rmax

Rmax RðτÞ ≥ Rmax;
ð30Þ

where RðτÞ is the profile function one might have chosen
for the R scheme, and the value Rmax is the value of RðτÞ at
the point τ ¼ t1, which marks the transition between the
nonperturbative and resummation regions, as will be
discussed in more detail in Sec. IVA. Importantly, due
to the choice μδ ¼ R⋆ all logarithms in μδ=R appearing in
the subtraction term δ are turned off in the (dominantly
nonperturbative) domain with τ < t1, while for τ > t1 we
allow for small logarithmic contributions in μδ=R. In
contrast to this, imposing the modified profile in (30)
directly in the R scheme would have induced large
logarithmic corrections in μδ=R, since the reference scale
μδ traces the soft scale μS in this case.
The resulting effective shift in the R⋆ scheme is plotted

in black and blue in Fig. 2, respectively, for the two
perturbative scale choices that we mentioned before. In
particular, one observes a leveling off in comparison to the
standard R scheme, for both scale choices, as intended.
This figure also illustrates that the range of n ¼ 1 scheme
choices we consider corresponds to a variation of power
corrections in the multijet region of order 10%.
As a third and entirely independent scheme, we also

consider an instance with n ¼ 0, which we refer to as the
R0 scheme:

R0 scheme∶ fn; ξ; μδ; μRg ¼ f0; 2π; μS; Rg: ð31Þ

We also give explicit expressions for δ and γR in the n ¼ 0
case in Appendix B, where one notices that the cancellation
ingredients generically appear with one higher logarithmic
power than in the n ¼ 1 case. The overall effective shift of
the R0 Scheme, with varying scale choices, is also shown in
Fig. 2 in brown and cyan, where one notices that while both

curves increase with τ with a much steeper slope, their
overall magnitude is noticeably reduced with respect to the
n ¼ 1 schemes for all τ (notice that the curves are
multiplied by 1.25 in the figure). These effects are jointly
associated to the additional power of logarithms appearing
in the n ¼ 0 cancellation terms with respect to n ¼ 1
counterparts (cf. Appendix C), and to the Oð10Þ difference
in the normalization factor ξ between Rð⋆Þ (e−γE) and R0

(2π) scheme definitions we have chosen.4 However, due to
less stable perturbative convergence and harder-to-control
uncertainties in this scheme, we will not consider it as a
candidate for our main analysis below. Regardless, for
completeness, we do show some results in this scheme in
Sec. V E and Appendix C.
The important point to emphasize is that there are a

number of consistent schemes that can be used to cancel the
leading soft renormalon of the perturbative soft function
SPT and the gap parameter Δ, and in upcoming sections we
will study the impact of this choice on the numerical
extraction of fαs;Ω1g. There are, of course, other consid-
erations one can use to determine if one scheme is
preferable or better behaved than another, e.g. perturbative
stability and convergence, and, if so, one could thus argue
that the theoretical uncertainty coming from varying
schemes can be removed (as we have so chosen for
n ¼ 0). However, in the absence of such arguments, the
variation of the subtraction scheme ought to be considered
to be its own source of systematic theoretical uncertainty.

IV. ESTIMATING THEORY UNCERTAINTIES

A. Profile functions

The resummed, matched and NP-corrected cross section
in (20) depends on a set of scales characterizing the physics
hierarchies present in our factorization framework, and
these should smoothly transition across the full τ domain
we study. Those in the perturbative cross section σPTc should
of course be chosen to live at values that minimize the
logarithms present in the hard, jet and soft functions in the τ
domain most sensitive to resummation effects, i.e. the tail
region of the distribution. For smaller values of τ, towards
the peak of the distribution, the full shape function of (20)
becomes necessary to describe the nonperturbative physics
at play, and we force all scales to plateau at some value μ0
just above ΛQCD. For larger values of τ, on the other hand,
in the far-tail region where matching to fixed-order QCD is
required, we merge the scales onto the hard scale μH. All of
these mergers are achieved with particular choices of
profile functions [5,44] and, as mentioned above, demon-
strating the impact of this choice on the αs extractions is
one of our central messages in this work. To that end we

4Note that the gap parameter Δ appearing in ζeff in (24)
evaluated at the reference scale RΔ remains the same between the
R0 and Rð⋆Þ schemes: ΔðRΔ; RΔÞ ¼ 0.1 GeV.
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will present the explicit forms for the profiles designed
in [35] (“2018 profiles”) and [5] (“2010 profiles”) in what
follows.

1. 2018 profiles

In [35] we designed a set of profile functions for a
generalized class of event shapes that encompasses thrust—
the angularity distributions. Specifically for thrust the
profiles, which were inspired by those presented in [9,45],
were chosen as

μH ¼ eHQ;

μSðτÞ ¼
�
1þ eSθðt3 − τÞ

�
1 −

τ

t3

�
2
�
μrunðτÞ;

μJðτÞ ¼
�
1þ eJθðt3 − τÞ

�
1 −

τ

t3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μHμrunðτÞ
p

;

μnsðτÞ ¼

8><
>:

1
2
ðμH þ μJðτÞÞ ns ¼ 1

μH ns ¼ 0

1
2
ð3μH − μJðτÞÞ ns ¼ −1

;

μRðτÞ ¼ RðτÞ≡ μSðτÞ with μ0 → R0; ð32Þ
where the function μrunðτÞ ensures that the profiles evolve
smoothly over the full τ domain. Its specific form is given by

μrunðτÞ ¼

8>>>>>><
>>>>>>:

μ0 τ ≤ t0
ζðτ; ft0; μ0; 0g; ft1; 0; 2rμHgÞ t0 ≤ τ ≤ t1
2rμHτ t1 ≤ τ ≤ t2
ζðτ; ft2; 0; 2rμHg; ft3; μH; 0gÞ t2 ≤ τ ≤ t3
μH τ ≥ t3

;

ð33Þ
where ζ controls the interpolation between different regions,
with

ζðτ; ft0; y0; r0g; ft1; y1; r1gÞ

¼
�
aþ r0ðτ − t0Þ þ cðτ − t0Þ2 τ ≤ t0þt1

2

Aþ r1ðτ − t1Þ þ Cðτ − t1Þ2 τ ≥ t0þt1
2

; ð34Þ

and the various coefficients therein are determined by
the continuity requirement of this function and its first
derivative,

a ¼ y0 þ r0t0; c ¼ 2
A − a

ðt0 − t1Þ2
þ 3r0 þ r1
2ðt0 − t1Þ

;

A ¼ y1 þ r1t1; C ¼ 2
a − A

ðt0 − t1Þ2
þ 3r1 þ r0
2ðt1 − t0Þ

: ð35Þ

As is clear, the shape of the scale μrunðτÞ in (33), and
therefore of all τ-dependent scales in (32), is controlled by
the transition points ti, which we choose to be

t0 ¼
n0
Q

; t2 ¼ 0.295n2;

t1 ¼
n1
Q

; t3 ¼ 0.5n3: ð36Þ

The particular forms in (36) were designed somewhat
empirically with particular purposes: t0;1 demarcate the
boundary between the fully nonperturbative and resumma-
tion regions; they roughly track the peak of the differential
distribution, and thus scale as the leading power correction
1=Q. Meanwhile t2 approximates the crossover where
singular and nonsingular contributions to the cross section
are of equal magnitude, which indicates that resummation
effects become less important and should hence be turned
off. Finally, we set t3 to be just below the maximal
thrust value of the spherically symmetric configuration,
τsph ¼ 1=2, so that our predictions reduce to their fixed-
order values slightly below this kinematic end point.

2. 2010 profiles

In their earlier study [5], the authors designed the
following set of profile functions:

μH ¼ eHQ;

μSðτÞ ¼

8>>><
>>>:

μ0 þ b
2t1

τ2; τ ≤ t1;

bτ þ d; t1 ≤ τ ≤ t2;

μH − b
1−2t2

	
1
2
− τ



2
; τ ≥ t2

;

μJðτÞ ¼
�
1þ eJ

�
1

2
− τ

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μHμSðτÞ
p

;

μnsðτÞ ¼

8>><
>>:

μH ns ¼ 1

μJðτÞ ns ¼ 0

1
2
ðμJðτÞ þ μSðτÞÞ ns ¼ −1

;

μRðτÞ ¼ RðτÞ≡
�
R0 þ μ1τ þ μ2τ

2; τ ≤ t1
μSðτÞ; τ ≥ t1

; ð37Þ

with parameters ti that are akin to those introduced in (36),
whereas the parameters b, d are fixed by the continuity
requirement of the soft profile and its first derivatives at
τ ¼ ti—see Ref. [5] for complete details. We also note that
these profiles have been somewhat superseded by the 2015
thrust analysis of [9], in which the change of profile
functions was found to have only a minor impact on the
final fαs;Ω1g extractions. We nevertheless decided to
compare against the 2010 profiles here, since we will
see in the following that this impact can be greater in
different renormalon cancellation schemes.
Besides their overall functional form, the profiles in (32)

and (37) depend on multiple parameters that allow us to
vary these scales in order to estimate unknown perturbative
corrections in all sectors of our calculation. The parameters
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eH;J;S control the overall magnitude and width of the hard,
jet, and soft profile bands, R0 ≲ μ0 ensures that no large
logarithms between the soft and renormalon scales arise
while ensuring a nonzero subtraction in the peak region [5],
the adjustable parameters ni allow a variation about our
estimates for the transition points between the different
regions, the parameter r represents a variable slope in the
transition regions, and ns picks out different values of the
nonsingular scale μns entering the matching contributions to
σPTc in (14), whose variation probes the size of missing
higher-order terms in these fixed-order predictions. Varying
between the choices for μns in (32) and (37) that track the
scales μJ and/or μS also probes the missing effect of
resumming subleading logarithms present in the nonsin-
gular contribution. The choice of whether μH or μJ is the
default μns scale, and thus whether the range of variations
probe higher or lower values of μns, represents the primary
difference between the two sets of profile functions. Both
are valid and free choices based on considerations of
improving perturbative convergence and obtaining reason-
able theory uncertainty estimates. As we will see below,
however, this choice can have a measurable effect on the
(far-)tail region of the distribution and therefore the αs
extractions that include these bins.
Apart from these two sets of profile functions, we recall

that our purpose consists in comparing schemes that use
different prescriptions to subtract the leading soft renor-
malon, as described in Sec. III B. Specifically, we choose
μRðτÞ ¼ RðτÞ as shown in (32) and (37) in the R and R0

schemes, whereas we impose a cutoff on the subtraction
scale μR in the R� scheme via the modified profile μRðτÞ ¼
R�ðτÞ given in (30) (where the function RðτÞ that enters
(30) is the same function that is used in the R and R0

schemes). Where to impose the cutoff is a free choice, and
we have chosen, for both sets of profile functions, to define

Rmax ¼ Rðt1Þ; ð38Þ

i.e. we freeze the growth of μR to the value it takes at t1,
which marks the transition from the nonperturbative (peak)
region of the distribution to the resummed (tail) region. We
freely admit this is an arbitrary choice—it represents an
attempt to limit the growth of the effective shift ζeff as
illustrated in Fig. 2 to a mild but measurable extent and to
study its impact on the αs determination. This will be a
primary focus of our studies in the remainder of this paper.
There are certainly other choices of Rmax and/or the shape
of the μR profile one could choose to study.
In order to estimate the total perturbative uncertainty, we

adopt the procedure used in [5,35], where random values of
all parameters that enter the profile functions are scanned
over a predetermined range with each instantiation yielding
a different profile [including values of t1 and thus Rmax per
(38)]. The overall envelope of these profiles is then taken as

the total theory uncertainty. The ranges we scan over for
both sets of profile functions are shown in Table I.
The central values for the 2018 and 2010 μH;J;S;R profiles

are shown in the top left panel of Fig. 3, while the top right
panel gives the central values of the nonsingular scale μns
for each choice of ns ∈ f−1; 0; 1g in both scenarios. The
results of 64 random scans of profile parameters are then
illustrated in the bottom two panels of Fig. 3 for both sets of
profile functions.5 Note that in all panels we have plotted
the renormalon scale with the modified R⋆ prescription of
(29), as otherwise it would be visibly indistinguishable
from μS across the bulk of the domain. The hard scale
parameter eH furthermore controls the overall scale of all
profiles, and for illustration purposes the curves have been
normalized appropriately, whereas its variation is indicated
by the black arrows. All plots in Fig. 3 are shown for
Q ¼ mZ.
From Fig. 3 one notices that the choices embedded in the

two sets of profile functions in (32) and (37), which are
both legitimate and robust frameworks, lead to a qualita-
tively different behavior of the various scales throughout
the bulk of the τ domain. This statement is especially true
when considering the nonsingular scale μns in the top right
panel of Fig. 3. In Sec. V C we will study the impact this
has on the αs extractions.

B. Predictions for differential distributions

In addition to the uncertainties from unknown higher-
order corrections, which we estimate via the procedure

TABLE I. Parameter ranges for both sets of profile functions we
consider in this work. In both scenarios, all parameters are chosen
randomly within the ranges shown, and the “central” values are
the centers of the given ranges, except for the parameters eH and
r, whose central values are given by eH ¼ r ¼ 1. Note that we
have refined this variation for the R0 scheme—see Sec. V E for
details.

2018 profiles of [35] 2010 profiles of [5]

eH 0.5 ↔ 2 0.5 ↔ 2
eJ −0.75 ↔ 0.75 −1 ↔ 1
eS 0
n0 1 ↔ 2 GeV
n1 8.5 ↔ 11.5 GeV 2 ↔ 8 GeV
n2 0.9 ↔ 1.1 0.678 ↔ 1.017
n3 0.8 ↔ 0.9
μ0 0.8 ↔ 1.2 GeV 1.5 ↔ 2.5 GeV
R0 μ0 − 0.4 GeV 0.85μ0
r 0.75 ↔ 1.33
δc3

S̃
−1 ↔ 1 −1 ↔ 1

δr2 −1 ↔ 1 −1 ↔ 1

ns f−1; 0; 1g f−1; 0; 1g

5Our fαs;Ω1g fits in Sec. V will actually scan over
Oð500–1000Þ random profile parameters within the same ranges.
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described above, we must also account for systematic
errors associated to the numerical extraction of some of
the theory parameters from event generators. In our setup
there are two such parameters of concern, the three-loop
soft matching coefficient c3

S̃
, which we take from [39],

and the Oðα2sÞ remainder functions r2, which we have
extracted from EVENT2. Following [35], we assign an error
function to the central values found for these objects
X∈ fc3

S̃
; r2g as

X ¼ Xcentral þ
�
δXΔXupper ðδX > 0Þ
δXΔXlower ðδX < 0Þ ; ð39Þ

where δX is varied between�1 as presented in Table I, and
ΔX represents the associated uncertainty on the extracted
parameters, which is given in (9) for c3

S̃
, whereas we follow

the strategy described in [35] to assign an uncertainty to the
remainder function r2. This procedure allows us to account
for systematic uncertainties associated to these quantities,
despite the fact that these errors are not the primary focus of
our study.
Given the theory inputs described above, we can use (20)

to predict cumulative and differential thrust distributions

with well-defined theory uncertainties.6 We do so in Fig. 4
for the R and R⋆ schemes in the top and bottom row,
respectively, whereas we relegate a discussion of the R0

scheme to Sec. V E and Appendix C. Here the left (right)
column of panels corresponds to predictions made with the
2018 (2010) profile choices, and for convenience we
indicated the scale choice in each renormalon cancellation
scheme with a subscript. Each panel shows the prediction
for the differential cross section, normalized by the total
cross section and multiplied by a factor of τ, across the τ
domain that will be relevant for the αs fits in Sec. V. We
use the Oðα3sÞ fixed-order hadronic expression from [47]
for the total cross section normalization. The various colors
in Fig. 4 indicate different resummed and matched accu-
racies, ranging from NLL0 þOðαsÞ in gray to our best
N3LL0 þOðα2sÞ prediction in purple. All panels, including
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FIG. 3. The 2018 and 2010 profiles we implement. The top left figure compares the central values for μH;J;S;R, while the top right
figure shows the nonsingular scale μns. Bottom plots show the variations of the 2018 and 2010 profiles from a random scan of parameters
in the ranges shown in Table I (as μH controls the overall scale of all profiles, its variation is indicated by the black arrows). In the bottom
plots μS < μJ is realized for any given set of scales, despite the fact that the overall bands overlap. The R⋆ scales from (29) are shown in
all figures, and all plots correspond to Q ¼ mZ.

6We stress that all our predictions are based on the cumulative
cross section in (20). In order to determine uncertainty bands for
the differential distributions, we have calculated the derivative
of all cumulative distribution curves coming from individual
profile variations and then maximized/minimized these across
the τ domain, as opposed to simply taking the derivative of the
max/min cumulative curves.
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Fig. 5, are produced with Q ¼ mZ, αsðmZÞ ¼ 0.11,
Ω1ðRΔ; RΔÞ ¼ 0.4 GeV, and RΔ ¼ 1.5 GeV.
Broadly speaking, we observe excellent convergence

between different resummed and matched accuracies, using
both 2018 and 2010 profile scales and considering different
renormalon cancellation schemes. This convergence is
evident even towards large τ values where, at least for
the 2018 profiles, we observe a slight widening of the
uncertainty bands around the t2 transition point, which
controls the τ-dependent scales in these schemes via (33),
and which we also vary according to Table I. We also
observe from the bottom panels of Fig. 4 that logarithms of
μS=μδ, which are nonzero above t1 in the R⋆ scheme (but
absent in the R scheme), do not qualitatively impact the
perturbative convergence of the differential distributions—
these logarithms, which are of Oð1Þ across the relevant
domain, therefore seem safe. Finally, we have checked that
all schemes in Fig. 4 exhibit excellent qualitative agreement
when compared against data in the relevant fitting regime.
Independent of the renormalon cancellation scheme, we

also notice throughout Fig. 4 that the error bands associated
to 2010 profile variations are generally smaller than those
associated to 2018 profile variations; the latter can thus be
considered more conservative than the former. Of course,
this behavior could have been anticipated from the profile

variations shown in Fig. 3, where the width of the 2018
profiles is already wider than its 2010 counterpart. This
feature is largely due to the desire to predict a global set of
observables (angularities) in [35], where the 2018 profiles
were determined, all with well-behaved convergence and
uncertainties, as opposed to thrust alone. Doing so required
a somewhat more conservative set of variations. We have,
however, checked that narrowing the 2018 soft, jet, and
renormalon scale variations in Fig. 3 to widths heuristically
similar to the 2010 profiles does not alter our conclusions
below in Sec. V. We have therefore chosen to leave the
2018 variations in the range used in [35].
In Fig. 5 we examine the differences between the

differential distributions shown in Fig. 4 more closely.
Specifically, we display τ=σtot dσc=dτ for the four schemes
in Fig. 4, normalized to the central profiles of the R2010

scheme. All predictions are made at N3LL0 þOðα2sÞ accu-
racy with Q ¼ mZ. As can be seen, scheme variations can
lead to multipercent effects on the differential distributions,
and these effects are especially pronounced towards the far
tails of the distributions. Later, in Sec. V, we will explore
the possibility of performing fits within a restricted τ
domain isolated more towards the purely dijet region
(i.e. τ ≤ 0.225), where the differences between the various
schemes is less pronounced, rather than the default fitting
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FIG. 4. Top Row: Normalized thrust distribution across the τ domain relevant for the αs extractions in the R scheme at different
resummed and matched accuracies as indicated by the colors. The plots are generated with 64 variations of the embedded profile
parameters, with 2018 (2010) profiles shown in the left (right) column. Bottom Row: The same for the R⋆ scheme.
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window that is shown in Fig. 5. One should also keep in
mind that the results in Fig. 5 are computed with fixed
values of αsðmZÞ and Ω1ðRΔ; RΔÞ as reported above, and
therefore do not necessarily translate into overlapping best-
fit values for fαs;Ω1g for a given theory profile—this
merely provides a guide to a potentially more stable fit
window that we will analyze below.

V. GLOBAL fαs;Ω1g EXTRACTIONS

We will now fit the differential distributions that we
designed in the previous sections to the global thrust data in
order to extract the strong coupling αs and the dominant NP
parameter Ω1. To do so, we first collect the data and
describe the method we use for this extraction, before we
present our main observations regarding the impact of
varying renormalon schemes and perturbative profile scale
choices on the fit results. We also perform a more detailed
comparison of our theory framework to the one that was
used in prior SCET-based thrust analyses and briefly
explore other sources of systematic uncertainties that
may affect the extraction. Throughout this section, we
report values for the fit parameters at standard scales, i.e.
αsðmZÞ and Ω1ðRΔ; RΔÞ, where RΔ ¼ 1.5 GeV is an
arbitrary (perturbative) reference scale, although we will
suppress this scale dependence in the following for brevity.

A. Experimental data

As is already evident from (1) and the related discussion
in the introduction, the fit parameters αs and Ω1 will turn
out to be fairly correlated, since the effects of varying one
can to some extent be compensated by the other. In order to
lift this degeneracy, it will be important to include data
at varying c.m. energies Q. We will therefore perform a
global fit to the available thrust data that includes 52
different datasets with c.m. energies spread over
Q∈ f35; 207g GeV. Specifically, we include data from
ALEPH [48] at 91.2, 133, 161, 172, 183, 189, 200 and

206 GeV, DELPHI [49–51] at 45, 66, 76, 91.2, 133, 161,
172, 183, 189, 192, 196, 200, 202, 205 and 207 GeV, JADE
[52] at 35 and 44 GeV, L3 [53] at 41.4, 55.3, 65.4, 75.7,
82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8, 188.6,
194.4, 200 and 206.2 GeV, OPAL [54–56] at 91, 133, 161,
172, 177, 183, 189 and 197 GeV, SLD [57] at 91.2 GeVand
TASSO [58] at 35 and 44 GeV. We note that this dataset
largely mimics the one that was used in [5], in an effort to
minimize systematic differences between the two extrac-
tions that are associated to the experimental input.
In the following our default fits will include 488 bins

whose centers fall within the 6=Q ≤ τ ≤ 0.33 domain. This
fit window corresponds to the default choice that was also
used in [5]. Roughly speaking, it corresponds to a domain
which starts at the onset of the resummation-sensitive tail
region of the distribution, going up to the kinematic end
point of a three-parton final-state, beyond which further
corrections to those captured in the dijet factorization
theorem (5) become important.

B. Extraction method

Given the framework outlined above, we are now in the
position to compare various scheme-dependent theory
predictions to the available thrust data, with the aim of
extracting values for the strong coupling constant αs and
the leading NP shift parameter Ω1 in each setup. To assess
the quality of these fits quantitatively, we will perform a χ2

analysis at the binned level,

χ2 ≡X
i;j

ΔiV−1
ij Δj; ð40Þ

where we have defined Δi as the difference between the
theoretical prediction and the data in the ith bin,

Δi ≡ 1

σ

dσ
dτ

ðτiÞ
����
exp

−
1

σ

dσ
dτ

ðτiÞ
����
th
; ð41Þ

and where the theory predictions for a bin between ½τ1; τ2�
(with τ2 > τ1) are calculated from the difference of the
cumulative thrust distribution evaluated at the end points of
the bin, but with profile scales evaluated at the bin’s center
τ̄≡ ðτ1 þ τ2Þ=2,

1

σ

dσ
dτ

ðτiÞ
���th
MP

≡ 1

σtot

σcðτ2; μaðτ̄ÞÞ − σcðτ1; μaðτ̄ÞÞ
τ2 − τ1

; ð42Þ

as advocated in [5]. Here μa refers to any of the τ-dependent
scales present in our framework. We deem this themidpoint
(MP) binning procedure.
Then, for a given dataset, Vij incorporates the statistical

and systematic errors quoted by the experimental collab-
orations. The statistical errors of each bin, estati , are
considered to be independent and contribute to the diago-
nal entries of Vij. However, the correlated systematic

FIG. 5. Comparison of the differential distributions shown in
Fig. 4 for four renormalon-cancellation and profile-variation
schemes, normalized to the central profile of the R2010 scheme.
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uncertainties between different bins yield nonzero off
diagonal entries. As no information on these correlations
is available in the literature, we estimate them using
the minimal overlap model (MOM), as advocated by the
LEP QCD working group [48,56], and which was also
employed in the analyses of [5,9]. According to the MOM
prescription, the off diagonal elements of Vij can be
estimated as the minimum of the two systematic errors
of the individual bins i and j, such that

VijjMOM ¼ ðestati Þ2δij þminðesysi ; esysj Þ2: ð43Þ

For a given value of the c.m. energy Q and profile function
parameters, we may then find the values fαs;Ω1g that
minimize χ2.
To estimate the theoretical uncertainty on the extracted

fαs;Ω1g values, we repeat the same procedure for multiple
random draws of the profile function parameters within the
ranges given in Table I. In particular, for scans evaluated at
N3LL0 þOðα2sÞ accuracy we performOð1000Þ scans, while
we perform Oð500Þ scans at lower perturbative accuracies.
Upon collecting all of the minimized fαs;Ω1g pairs, we
then define the theoretical error estimate as the 68%/
95% confidence-level (CL) ellipse for the two parameters,
i.e. by the ellipse centered at the coordinates fμα; μΩg, with
μX the mean value from all theory draws, and with the
standard covariance matrix for the dataset multiplied by the
68th/95th percentile value for χ2 distributions with two
degrees of freedom (∼2.279=5.991), serving as a weight
matrix. We then recognize the overall error ellipse defined
by these two inputs (center and weight matrix) as an object
that can be parametrized as

Ktheory ¼
�

σ2α ραΩσασΩ

ραΩσασΩ σ2Ω

�
; ð44Þ

where we interpret σX as weighted variances for the two
parameters αs and Ω1, and with off diagonal entries
involving the weighted correlation coefficients ραΩ of the
two parameters. We report these parameters for our global
scans in the following sections. To conclude, we interpret
(44) as the area within which, upon randomly drawing new
sets of theory parameters and executing the χ2 minimiza-
tion procedure mentioned above, roughly 68%/95% of the
extracted fαs;Ω1g values will fall.
One could also consider incorporating a further exper-

imental uncertainty as described in [9], by constructing a χ2

distribution as a function of αs andΩ1 around the minimum
χ2 obtained using the central profiles in Table I. However,
this uncertainty is expected [9] to be much smaller in
comparison to the perturbative theory errors parametrized
in (44) and, given that our motivation consists in high-
lighting systematic theory uncertainties, we will only quote
the errors embedded in (44).

C. Results and discussion

We first study the convergence of the fαs;Ω1g extrac-
tions when progressively higher perturbative orders are
used in the theoretical predictions. Specifically, we dis-
play fit results for NLL0 þOðαsÞ up to N3LL0 þOðα2sÞ
resummed and matched accuracies for the R2018 scheme
(top panel) and the R⋆

2018 scheme (bottom panel) for Q ¼
mZ in Fig. 6.7 As expected from Fig. 4, the convergence to
the highest perturbative accuracy is excellent in each
scheme. In particular, the trend is towards lower values
of αs and Ω1 for these n ¼ 1 schemes, when the perturba-
tive accuracy is increased. This observation is consistent
with prior analyses [5,9]. We find a similar behavior for the
R2010 and R⋆

2010 schemes. However, the pattern turns out to
be rather different in the R0 schemes, as will be described in

FIG. 6. Extractions of fαs;Ω1g in the R2018 scheme (top panel)
and the R⋆

2018 scheme (bottom panel) for different resummed and
matched accuracies as indicated by the colors. HereQ ¼ mZ, and
we note that we have restricted Ω1 ≥ ΔðRΔ; RΔÞ ¼ 0.1 GeV in
these scans.

7Note that we have restricted Ω1 ≥ ΔðRΔ; RΔÞ in our extrac-
tion code; hence some lower-order scan results are artificially
aligned at this boundary, but we have verified that this does not
affect any of the N3LL0 þOðα2sÞ fits shown in the following. Also
note that the polygonal, lower-order results represent the bound-
ing region for all fits in this plot, not just those lying within a
certain confidence level.
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Appendix C. Because of the instabilities found in these
schemes, we do not consider the R0 schemes any further in
this section.
In Fig. 7 we show the result of global fαs;Ω1g

extractions at the highest perturbative accuracy in four
different renormalon-cancellation and profile-variation
schemes. For illustration purposes, we only display two
of these schemes in each panel. Although our framework
does not exactly correspond to the one used in [5,9] (a
detailed comparison will be given in Sec. V D below), the
results in red for the R2010 scheme are certainly closest to
these numbers, and they may hence serve as a proxy for
these results.
By comparing the uncertainty ellipses in all four

schemes, the one in the R2010 scheme clearly sticks out
to be significantly smaller than the others. From the upper
left panel, we furthermore observe that the impact of
switching profiles is only moderate in the R scheme, which
is in line with the observations made in [9]. This effect is,
however, more pronounced in the R� scheme, as can be
seen in the upper right panel. More importantly, the lower
panels compare different renormalon-cancellation schemes
for the same set of profile functions (2010=2018 in the

bottom left/right panel). It is worth emphasizing that
switching between the R and R� schemes changes the
formal definition of the Ω1 parameter, and one should
therefore be careful in interpreting the vertical axis in these
plots. For what concerns the horizontal axis, on the other
hand, αs is of course independent of the chosen renormalon
scheme and is defined by the usual MS prescription. The
definition of Ω1 does, however, affect the αs extraction in
an indirect way, since the fitting routine determines the best
fit values of the correlated fαs;Ω1g pair.
From the lower panels in Fig. 7 we observe that, relative

to the R scheme, the error ellipses are noticeably shifted to
larger αs values in the R� scheme, with the effect being
more significant for 2010 profiles mainly because of its
lower value of t1. On a more quantitative level, the results
from Fig. 7, which were obtained using the default fitting
window with 6=Q ≤ τ ≤ 0.33, are summarized in the
columns labeled “default” in Table II. Here σα and σΩ
are the weighted variances of αs and Ω1, respectively,
whereas ραΩ quantifies their correlation as described above.
In Fig. 8 we combine all of the 95% CL ellipses from

Fig. 7 into the left panel, and show the corresponding
αs-χ2dof plane in the right panel. We reemphasize that the
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FIG. 7. Extractions of fαs;Ω1g using N3LL0 þOðα2sÞ theory predictions fitted to global thrust data in our default fitting window,
6=Q ≤ τ ≤ 0.33. Upper panels compare the systematic impact of varying 2010 vs 2018 profile scales within a given renormalon
cancellation scheme, while bottom panels vary renormalon schemes within a given set of profile functions. Dashed (solid) ellipses
correspond to 68% (95%) CL. Note that Ω1 is formally defined differently in the R and R� schemes.
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vertical axis should not be misinterpreted in the left plot,
since the definition of the Ω1 parameter depends on the
chosen renormalon scheme. From the χ2dof distribution one
observes that all schemes provide good fits to the data, with
the R�

2010 scheme, which yields the largest αs values, being
slightly less preferred than the others. Moreover, the left
plot shows that, upon considering all four schemes, the
extracted 95% CL values of αs and Ω1, while largely
consistent with one another, span a range that extends well
beyond that of any one scheme alone. This represents the
first core observation of our work, namely that changing
between different, well-defined renormalon-cancellation
schemes and/or profile scale variations can lead to notice-
ably different extractions of fαs;Ω1g. This may be viewed
as an indication of additional systematic theory uncertain-
ties. On the other hand, a theoretically motivated reason to
stick to a single scheme could, of course, remove this
uncertainty. That being said, the schemes we include in
Fig. 8 represent only a subset of possible schemes exhibit-
ing reasonably good perturbative convergence and quality
of fit—two criteria that could be used to prefer a particular
scheme.
The NP corrections embedded in our framework have

been derived from a dijet soft function that enters the
factorization theorem (5). It has recently been argued
[19–21] that other (three-jet) sources of NP corrections
become relevant within the domain 6=Q ≤ τ ≤ 0.33 used in
the previous fits. We also observe in Fig. 5 that the scheme
dependence we consider has its most prominent effects in
the far-tail region. We therefore consider an alternative fit
window with 6=Q ≤ τ ≤ 0.225 in the remainder of this
section that concentrates more on purely dijet events. The
total number of bins in this setup is then reduced from 488
to 371. As an indication, the perturbative variations of the
Q ¼ mZ thrust distributions in the different schemes shown
in Fig. 5 can be reduced from ≲12% at the upper boundary
of our default fit window (τ ¼ 0.33) to ≲5% at the upper
boundary of the reduced fit window (τ ¼ 0.225). We
examine next if this has a noticeable imprint on the
fαs;Ω1g extractions.
In the two panels of Fig. 9 we compare results that were

obtained using this “dijet fit window” (dashed contours) to

the ones with the default fit window (solid contours) that
were already shown in Fig. 8. In the left plot one sees that
this change has only a mild effect on the fαs;Ω1g
extractions (as previously noted in [5]), with the most
prominent effect being a shift of the R2018 ellipse to slightly
larger αs values. As a result, the overall spread of the fit
results among the four considered schemes is just slightly
reduced in this setup. These observations are also given
numerically in the last two columns of Table II. In the right
panel of Fig. 9, on the other hand, one observes that the
more prominent effect of narrowing the fit window is a
universal trend towards lower χ2dof values among all
considered schemes, despite the fact that the number of
bins used in these analyses has been reduced significantly.
This improvement is especially noticeable for the R⋆

2010

scheme (in blue), where the overwhelming number of fits
drops below the χ2dof ¼ 1 contour, and which yields αs
values that are more compatible with the PDG world
average than the other schemes.
To summarize, we find that fits that are based on a more

central dijet-type τ domain seem to yield higher-quality
results for fαs;Ω1g extractions than those including data
from the far-tail region, where multijet events start to
dominate. This represents the second core observation of
our analysis, which suggests that precision fits on a more
limited dijet window may provide an alternative to the
strategy proposed e.g. in [22], while awaiting a deeper
field-theoretical understanding of NP corrections associ-
ated with tri- and multijet events. From Fig. 9, on the other
hand, we only see slight evidence for any substantial
qualitative improvement in the agreement between different
schemes when considering more central τ fits. In other
words, over the range of schemes we consider, using a
narrower, higher-quality fit window does not by itself
remove the potential systematic uncertainty on fαs;Ω1g
coming from this scheme dependence.

D. Comparison to prior results

While there exist a number of dedicated thrust-based αs
extractions in the literature (see e.g. [5,8,9,59]), our
framework is particularly close to the one used in [5,9],

TABLE II. Central values for the 95% CL fαs;Ω1g ellipses, and their associated weighted variances σα;Ω and correlation coefficient
ραΩ, in different renormalon-cancellation and profile-variation schemes. Values for Ω1 are given in units of GeV. The columns “default”
and “dijet” indicate different fitting windows—see text for details (the numbers in the “default” columns correspond to the ellipses
shown in Fig. 7).

Profiles Parameters R (default) R⋆ (default) R (dijet) R⋆ (dijet)

2018 profiles fαs;Ω1g f0.1124; 0.383g f0.1134; 0.364g f0.1126; 0.379g f0.1135; 0.353g
fσα; σΩg f0.0021; 0.102g f0.0022; 0.107g f0.0016; 0.098g f0.0021; 0.118g

ραΩ −0.847 −0.881 −0.872 −0.908

2010 profiles fαs;Ω1g f0.1132; 0.378g f0.1161; 0.320g f0.1133; 0.373g f0.1161; 0.308g
fσα; σΩg f0.0012; 0.045g f0.0024; 0.075g f0.0010; 0.049g f0.0023; 0.072g

ραΩ −0.633 −0.758 −0.703 −0.731
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and we will therefore perform a more detailed comparison
to these analyses in this section. First of all, both setups
have in common that they use methods from SCET to
resum large logarithmic corrections in the dijet limit, and
the SCET predictions are matched to fixed-order QCD
calculations to account for nonsingular corrections in the
far-tail region of the distributions. Even more importantly,
both setups use a gapped dijet shape function to account for
NP corrections in a scheme that is free of the leading soft
renormalon. Higher-order corrections are furthermore esti-
mated using a scan over profile scale parameters, and the
resulting theory predictions are fitted to global thrust data
for c.m. energies Q∈ f35; 207g GeV. Apart from these
similarities, there exist, however, a number of differences
between the two frameworks that we will now explain in
detail, but which do not make a significant impact on our
conclusions:

(i) There are two differences concerning the perturba-
tive treatment described in Sec. II. First, we only
match the N3LL0 resummed prediction to Oðα2sÞ
fixed-order calculations, due to our findings in

Sec. II B regarding instabilities of EERAD3 in the
small τ-region. In contrast to this, [5,9] do include
the Oðα3sÞ matching using EERAD3, though with
lower statistics and thus larger errors that over-
shadow these instabilities. In any case they do not
measurably affect the region used for the fits. The
second point concerns the three-loop soft constant
c3
S̃
, for which [5,9] used the Padé approximant in

(10), whereas we implemented the estimate in (9)
that only became available in 2018 [39]. As we will
show in the following section, switching to the Padé
value brings our predictions into even better quanti-
tative agreement with the ones from [5,9].

(ii) Our NP treatment in the R schemes, on the other
hand, closely resembles the one used in [5,9]
for what concerns both the renormalon scheme
definition and the profile functions used. The
differences between the two frameworks are abso-
lutely minor in this respect, and they concern e.g.
only slightly different input values for the gap
parameter ΔðRΔ; RΔÞ ¼ 0.05 GeV at a reference
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FIG. 9. The same as in Fig. 8 for the default fit window with 6=Q ≤ τ ≤ 0.33 (solid contours) and a reduced dijet fit window with
6=Q ≤ τ ≤ 0.225 (dashed contours).
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FIG. 8. Result of a global fit to thrust data using N3LL0 þOðα2sÞ theory predictions and a fitting window 6=Q ≤ τ ≤ 0.33. The plots
show the αs −Ω1 plane (left) and αs − χ2dof plane (right) for four different renormalon-cancellation and profile-variation schemes. The
ellipses in the left panel correspond to 95% CL.
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scale RΔ ¼ 2 GeV used in [5,9], compared to our
value ΔðRΔ;RΔÞ¼0.1GeV at RΔ ¼ 1.5 GeV. Note
that the gap parameter anyway gets absorbed into
Ω1, which we extract from data, according to (18).

(iii) The analyses in [5,9] furthermore include a number of
small effects (bottom and hadron masses, QED
effects), which we did not consider, mainly because
we were not aiming at a competitive αs extraction in
this work. In [5,9] the authors showed that these have
only a minor impact on the fits, and given that they
are unrelated to the main concern of our paper—
renormalon schemes and profile variations—we do
not expect that thesewill change any of our findings in
a significant way.

(iv) In addition we use a slightly different method for
calculating binned distributions. Whereas [5,9] in-
tegrate directly the resummed differential cross
section, we start from the cumulative distribution
(3) and calculate the bins according to the midpoint
prescription in (42). As explained in [5], this avoids
the presence of any spurious contributions, and
the difference to the method from [5,9] is expected
to be at the subpercent level in the considered fit
windows.

(v) Finally, there are some minor differences in the
applied fitting procedure. While the two approaches
use highly similar datasets, the authors of [5,9]
calculate the uncertainty ellipses by calculating
the best-fit values for fαs;Ω1g obtained from 500
profile variations, drawing the minimum ellipse
surrounding the minimum convex polygon encap-
sulating all of these points, and centered at the
average of max and min αs=Ω1 values obtained in
each direction. Our method for obtaining Ktheory

(and the associated error ellipse) is instead outlined
in Sec. V B above. Moreover, the authors of [5,9]
quote an additional experimental uncertainty in their
final results, which is however much smaller than the
theory error we also implement.

Despite these differences, it is a nontrivial result that our
final numbers in the R schemes shown in Fig. 8 and
summarized in Table II are very similar to the ones obtained
in [5,9]. To make this statement more quantitative, we
quote the final numbers obtained in [5],

αsðmZÞ ¼ 0.1135� 0.0011;

Ω1ðRΔ; RΔÞ ¼ ð0.323� 0.051Þ GeV; ð45Þ

which should be compared to our R2010 numbers, whereas
the results of the thrust analysis in [9],

αsðmZÞ ¼ 0.1128� 0.0012;

Ω1ðRΔ; RΔÞ ¼ ð0.322� 0.068Þ GeV; ð46Þ

were derived in a setup that is closer to our R2018 scheme.
Note that the NP parameter is evaluated here at a slightly
larger reference scale RΔ ¼ 2 GeV than for the numbers
quoted above (the evolution to 1.5 GeV is only a minor
effect that reduces the value of Ω1 by ∼4%). Roughly
speaking, these numbers translate into an error ellipse that
is similar in size to the red one in Fig. 8, but slightly shifted
downwards. We will, in fact, identify one effect that drives
the ellipse into this direction in the following section.
In view of this agreement, we may thus state that our

analysis, which is based on a completely independent set of
codes, for the first time confirms the results of [5,9],
regarding the degree to which their extracted value of αs sits
lower than the PDG world average. We consider this
important cross-check to be the third core conclusion of
our work.

E. On the three-loop soft constant c3
S̃

As mentioned in Sec. II, there exist two approximations
for the three-loop soft matching coefficient c3

S̃
in the

literature, namely the EERAD3 extraction from [39] we
have reported in (9) and which is used in our analysis, and
the Padé approximant given in (10) that was implemented
in prior αs fits [5,9]. A priori the impact of varying this
constant should be small, given that it represents a three-
loop effect. In this section we point out at least two ways
that this statement should be qualified.
First, we study the role of c3

S̃
in fαs;Ω1g fits, and provide

a more direct comparison between our results presented
above and those of [5,9]. To this end, we compare in Fig. 10
the 95% CL ellipses for fαs;Ω1g obtained when N3LL0 þ
Oðα2sÞ theory predictions are fitted to the global Q datasets
described in Sec. VA, in the R2010 scheme. In particular, the
red ellipse corresponds to our default choice of c3

S̃
given in

(9), including its error, whereas the brown ellipse in Fig. 10
uses instead the Padé approximant in (10), including again
its quoted error. The errors quoted in (9)–(10) are by

FIG. 10. Comparison of two fαs;Ω1g extractions that either use
the EERAD3 value c3

S̃
¼ −19988� 5440 (red) or the Padé

approximant c3
S̃
¼ 691� 1000 (brown).
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themselves actually very minor contributions to the total
error ellipses in Fig. 10. The differences in the two central
values, however, is much larger. As a result, one notices a
significant downward shift of our default 95% CL ellipse,
which in fact brings our numbers into even better agree-
ment with the results from [5], as can be verified by
comparing to the numbers quoted in (45). As the two values
of c3

S̃
differ by more than 3σ, on the other hand, the two

ellipses barely overlap. We thus consider the variation of c3
S̃

as another systematic theory uncertainty that may be larger
than previously expected (especially due to the instablities
in EERAD3 at small τ described in Sec. II B), although its
impact on the determination of αs itself may only be limited
as the plot in Fig. 10 suggests.
In addition there is a second reason why a better

determination of the three-loop soft constant may be
warranted, which is related to the R0 renormalon scheme
that we introduced in Sec. III B, but which we largely
disregarded in this section because of stability issues. To
illustrate these, we show in Fig. 11 the analogous plots to
the ones in Fig. 4, but for the R0 schemes. In particular, the
upper panels show the result for 2018 profiles (left) and
2010 profiles (right), when the default value of c3

S̃
from (9)

is used. Away from the central τ domain, one clearly

observes that the theoretical predictions are not improved
when increasingly higher perturbative orders are included.
This effect is particularly pronounced for the 2018 profile
scans, and it is true despite the fact that we have already
tuned the ranges for some of the parameters in Table I, and
only allowed for 0.25 ≤ eH ≤ 1.25 and −0.5 ≤ eJ ≤ 0.5
(−0.75 ≤ eJ ≤ 0.75) variations in the R0

2018 (R
0
2010) scenar-

ios. We recall that the R0 scheme is special, since it is
sensitive to one higher power of logarithms in its sub-
traction terms and, critical to the present discussion,
the three-loop soft constant c3

S̃
, which is not yet exactly

known—cf. Appendix B. We therefore expect that a
concrete determination of this constant, and perhaps a
more refined set of profile variations, could eventually
stabilize these curves as well. Regardless, to probe the
impact of different c3

S̃
values on the distributions we have

included in the lower panels of Fig. 11 the corresponding
distributions when the Padé approximant in (10) is used.
Here one notices that the convergence is somewhat
improved in comparison to the corresponding upper plots.
Indeed, we have also checked more generally that the
breadth of the purple N3LL0 þOðα2sÞ bands in the Rð⋆Þ
schemes of Fig. 4 is also artificially enhanced due to the
present uncertainty on c3

S̃
given in (9). Hence we can readily
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FIG. 11. The same as in Fig. 4 for the R0 scheme. The upper plots use the EERAD3 value for c3
S̃
from (9), and the lower plots the Padé

approximant given in (10). Left (right) plots refer to 2018 (2010) profile functions.
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conclude that c3
S̃
has a visually noticeable impact on the

quality of perturbative convergence across all the consid-
ered schemes.
To summarize, the three-loop soft matching coefficient

c3
S̃
is the only N3LL0 ingredient that is currently not known

precisely. Despite being a higher-order coefficient, the
spread of the two existing estimates for this coefficient
has a noticeable impact on both the fαs;Ω1g extraction and
the perturbative stabilty of the distributions in the R0

scheme, whose renormalon cancellation terms explicitly
depend on c3

S̃
. This issue also grows in importance in view

of our observations in Sec. II about the accuracy of
EERAD3 calculations for small τ values, which the estimate
in (9) has relied upon. A resolution could come from an
independent numerical extraction, or, ideally, a complete
analytic calculation of the three-loop thrust soft function, of
which partial results have already been published [60,61].
These observations about the importance of a more precise
c3
S̃
determination represent the fourth core conclusion of

our work.

VI. CONCLUSION

We have revisited extractions of the strong coupling αs
from a global fit to thrust data motivated by the current
tension between SCET-based extractions in [5,9] and the
PDG world average. To this end, we have used N3LL0

resummed theory predictions that are matched to Oðα2sÞ
fixed-order calculations, and we have implemented a
gapped, renormalon-free, dijet shape function to account
for nonperturbative (NP) corrections. In the tail region of
the distributions, where the fits are performed, the dom-
inant NP effects then manifest as a shift of the distributions
that is driven by the first moment of the shape function Ω1.
The fits are therefore formulated as two-parameter extrac-
tions in the αs −Ω1 plane.
Whereas recent analyses with similar motivations have

focused on NP effects from three-jet configurations [19–21],
our study addressed systematic effects in the dijet factori-
zation theorem itself. Specifically, we examined the impact
from changing between different renormalon cancellation
schemes and profiled scale variations. Concerning the
former, we observed that the specific implementation of a
renormalon-free gap parameter that models the minimal
energy of a hadronic final state leads to an effective
τ-dependent shift as shown in Fig. 2. We then selected
and studied alternative renormalon schemes, following the
approach in [29], that tame the growth of this shift for larger τ
values, and which amounts to aOð10%Þ variation of the NP
corrections in the considered fit windows. As for scale
variations, we implemented two different sets of profile
functions that are very close to the ones used previously
in [5,9], respectively. While the choice of profile functions
did not make a major difference in those extractions, we
found that it can be magnified if varied together with the

renormalon scheme. In total this defines six different
combinations of renormalon-cancellation and profile-
variation schemes.
As our predictions in the R0 schemes, which are more

sensitive to higher-order terms in the subtractions, turned out
to be less stable, we focused on the remaining four schemes
for the fαs;Ω1g extractions. In order to lift the degeneracy
between the fit parameters, we performed a global fit to
thrust data with c.m. energies Q∈ f35; 207g GeV. Our
results are shown in Fig. 8 and Table II. In particular, we
found that they are consistent with previous extractions
when the same renormalon-cancellation and profile-scale
choices are implemented, which can be viewed as an
independent confirmation of the analyses in [5,9]. The
scheme dependence of our fit results in the αs −Ω1 plane,
on the other hand, turned out to be unexpectedly large,
possible hinting at additional systematic theory uncertain-
ties. Whereas we do not advance any one particular scheme
to be favored over others on theoretical grounds, we remark
that some of our αs extractions are more consistent with the
PDG average. This provides significant motivation for
further scrutinizing the observed scheme dependence of
the dijet predictions in the future.
Since the scheme dependence is more pronounced in the

far-tail region of our predictions, we also performed fits that
concentrate more on a central dijetlike τ domain. While
these fits turned out to be of higher quality (see Fig. 9), the
pattern in the αs −Ω1 plane did not change significantly in
this case. Finally, we explored the impact of the three-loop
soft matching coefficient c3

S̃
on both the fαs;Ω1g extrac-

tions and the perturbative stability of the R0 schemes, and
we argued that an improved determination of this quantity
would help to further improve the theoretical predictions.
As our primary goal consisted in bringing the scheme

dependence of the SCET-based αs extractions to attention,
we did not include a number of subleading effects that will
not change the main conclusions of our analysis, but which
may nevertheless be included in future precision fits to
thrust data. These include, first and foremost, the Oðα3sÞ
remainder function r3c and the aforementioned soft three-
loop constant c3

S̃
, which we could not extract using

EERAD3 because of instabilities in the small τ region.
Furthermore, one may account for QED effects or nonzero
bottom and hadron masses that were included in the
analysis of [5,9]. Finally, depending on the chosen fit
window, it could be helpful to incorporate resummation
effects at the Sudakov shoulder τ ¼ 1=3 [62].
Our findings also motivate renewed attention to sub-

leading power contributions and the associated resumma-
tion of logarithmic effects. As discussed in Sec. IVA, the
main difference between the considered sets of profile
functions is sourced by the nonsingular scale μns, which
was chosen to track the other dynamical scales in order to
partially account for missing resummation effects that
appear in the nonsingular contribution. Hence a dedicated
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resummation analysis of next-to-leading power corrections
could eliminate the need to correlate μns to the other scales,
and in this way possibly alleviate the systematic uncertainty
due to scale-profile choices that our study indicates.
Resummations at subleading power to the thrust distribu-
tion have been studied e.g. in [63–65].
As a final point, we mention that, regardless of the rich

physics discussed in this analysis, a definitive extraction of
αs from eþe− event shapes will have to lift its degeneracy
with the NP shift parameter Ω1. While we have used thrust
data from different c.m. energies Q for this purpose in the
current analysis, an additional promising method consists
in extending the class of observables to eþe− angularity
distributions τa [66]. These observables generalize the
thrust variable, and their dominant NP effect is controlled
by the same parameter Ω1 [see (1)] with a coefficient
[27,67–69],

cτa ¼
2

1 − a
with a < 1; ð47Þ

that depends on the angularity a (a ¼ 0 corresponds to
thrust). This allows for the possibility of performing
fαs;Ω1g extractions globally in both Q and the new theory
parameter a, offering a dual probe in the decorrelation
effort. Since angularities have been resummed and matched
to N2LL0 þOðα2sÞ accuracy [35], a precision fit to available
data [70] is well overdue.
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APPENDIX A: PERTURBATIVE EXPANSIONS

Here we expand the prediction (5) for the resummed τ
cross section in fixed order to Oðα3sÞ, which we will use to
extract the nonsingular remainder functions from numerical
computations. It is expedient to begin by computing the
fixed-order expansion of the Laplace-transformed cross
section,

σ̃ðνÞ ¼ 1

σ0

Z
∞

0

dτeντ
dσ
dτ

; ðA1Þ

which obeys the factorized form,

σ̃ðνÞ ¼ HðLH; μÞJ̃2ðL̃J; μÞS̃ðL̃S; μÞ; ðA2Þ

where LH ¼ lnðμ=QÞ, LJ ¼ lnðμjeγEν=QjÞ (where j ¼ 2),
LS ¼ lnðμeγEν=QÞ, and μ is generic factorization scale.
Each function H; J̃; S̃ obeys a perturbative expansion
predicted by their RG evolution,

FðLF; μÞ ¼ Fð0; QFÞeKFðμ;μFÞ; ðA3Þ

where QH ¼ Q;QJ ¼ QeγE=ν1=j, and QS ¼ QeγE=ν, and
KF is given by

KFðμ; QFÞ ¼ −jFκFKΓðμ; QFÞ þ KγFðμ; QFÞ; ðA4Þ

with κH ¼ 4; κJ ¼ −2 and κS ¼ 4. KΓ; Kγ have the fixed-
order expansions [34],

KΓðμ;QFÞ¼
αsðμÞ
4π

Γ0

2
ln2

μ

QF

þ
�
αsðμÞ
4π

�
2
�
1

3
Γ0β0ln3

μ

QF
þΓ1

2
ln2

μ

QF

�

þ
�
αsðμÞ
4π

�
3
�
1

3
Γ0β

2
0ln

4
μ

QF

þ1

3
ðΓ0β1þ2Γ1β0Þln3

μ

QF
þΓ2

2
ln2

μ

QF

�
; ðA5Þ

and
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KγFðμ; QFÞ ¼
αsðμÞ
4π

γ0F ln
μ

QF

þ
�
αsðμÞ
4π

�
2
�
γ0Fβ0ln

2
μ

QF
þ γ1F ln

μ

QF

�

þ
�
αsðμÞ
4π

�
3
�
4

3
γ0Fβ

2
0ln

3
μ

QF
þ ðγ0Fβ1

þ 2γ1Fβ0Þln2
μ

QF
þ γ2F ln

μ

QF

�
; ðA6Þ

where Γn; γnF are the coefficients in the perturbative
expansions of the anomalous dimensions,

Γcusp½αsðμÞ� ¼
X∞
n¼0

�
αsðμÞ
4π

�
nþ1

Γn;

γF½αsðμÞ� ¼
X∞
n¼0

�
αsðμÞ
4π

�
nþ1

γnF: ðA7Þ

In (A3), the functions F evaluated at their “natural” scale
QF have no explicit logs in their expansions,

Fð0; QFÞ ¼ 1þ
X∞
n¼1

�
αsðQFÞ
4π

�
n
cnF: ðA8Þ

Combining all the pieces in (A2), we can express the fixed-
order Laplace-space cross section in the form,

σ̃ðνÞ ¼ C̃ðLν; QÞeKðLν;QÞ; ðA9Þ

with Lν ¼ lnðeγEνÞ, and the ‘constant’ in front has the form,

C̃ðL;QÞ¼1þαsðQÞ
4π

C10þ
�
αsðQÞ
4π

�
2

ðC20þC21LÞ

þ
�
αsðQÞ
4π

�
3

ðC30þC31LþC32L2Þþ���; ðA10Þ

where the extra log terms come from expanding out
αsðQJ;SÞ appearing in FðQJ;SÞ in (A8) in powers of
αsðQÞ. These coefficients are given up to Oðα3sÞ by

C10 ¼ c1H þ 2c1
J̃
þ c1

S̃
;

C20 ¼ c2H þ 2c2
J̃
þ ðc1

J̃
Þ2 þ c2

S̃
þ c1Hð2c1J̃ þ c1

S̃
Þ þ 2c1

J̃
c1
S̃
;

C21 ¼ 2β0

�
2c1

J̃

j
þ c1

S̃

�
;

C30 ¼ c3H þ 2ðc3
J̃
þ c2

J̃
c1
J̃
Þ þ c3

S̃
þ c2Hð2c1J̃ þ c1

S̃
Þ

þ c1H½2c2J̃ þ ðc1
J̃
Þ2 þ c2

S̃
þ 2c1

J̃
c1
S̃
� þ 2c1

J̃
c2
S̃

þ ½2c2
J̃
þ ðc1

J̃
Þ2�c1

S̃
;

C31 ¼ 2β1

�
2c1

J̃

j
þ c1

S̃

�
þ 4β0

�
2c2

J̃
þ ðc1

J̃
Þ2

j
þ c2

S̃

�

þ 2β0

�
2c1

J̃

j
ðc1H þ c1

S̃
Þ þ ðc1H þ 2c1

J̃
Þc1

S̃

�
;

C32 ¼ 4β20

�
2c1

J̃

j2
þ c1

S̃

�
: ðA11Þ

Meanwhile, the expansion of the exponent K in (A9) is
given by

KðL;QÞ ¼
�
αsðQÞ
4π

�
ðK12L2þK11LÞ

þ
�
αsðQÞ
4π

�
2

ðK23L3þK22L2 þK21LÞ

þ
�
αsðQÞ
4π

�
3

ðK34L4þK33L3 þK32L2þK31LÞ

þ � � � ; ðA12Þ

with coefficients given up to Oðα3sÞ by

K12¼−
Γ0

2

�
2κJ
j

þκS

�
; K11¼

2γ0J
j
þγ0S;

K23¼−
1

3
Γ0β0

�
2κJ
j2

þκS

�
;

K22¼−
Γ1

2

�
2κJ
j

þκS

�
þ
�
2γ0J
j2

þγ0S

�
β0; K21¼

2γ1J
j
þγ1S;

K34¼−
1

3
Γ0β

2
0

�
2κJ
j3

þκS

�
;

K33¼−
1

3
ðΓ0β1þ2Γ1β0Þ

�
2κJ
j2

þκS

�
þ4

3
β20

�
2γ0J
j3

þγ0S

�
;

K32¼−
Γ2

2

�
2κJ
j

þκS

�
þ
�
2γ0J
j2

þγ0S

�
β1þ2β0

�
2γ1J
j2

þγ1S

�
;

K31¼
2γ2J
j
þγ2S; ðA13Þ

recalling γ0S ¼ 0 (though we have kept it to make the
patterns more obvious).
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Plugging the expansions (A11)–(A13) into (A9), we
obtain the fixed-order expansion of the Laplace-space cross
section,

σ̃ðνÞ ¼ 1þ
X∞
n¼1

�
αsðQÞ
4π

�
n X2n
k¼0

σ̃nkLk
ν; ðA14Þ

where up to Oðα3sÞ,

σ̃12¼K12; σ̃11¼K11; σ̃10¼C10;

σ̃24¼
K2

12

2
; σ̃23¼K11K12þK23;

σ̃22¼
K2

11

2
þC10K12þK22;

σ̃21¼C21þC10K11þK21; σ̃20¼C20;

σ̃36¼
K3

12

6
; σ̃35¼K12

�
K23þ

K11K12

2

�
;

σ̃34¼K12

�
K22þ

K2
11

2
þC10K12

2

�
þK11K23þK34;

σ̃33¼C10ðK11K12þK23ÞþC21K12þK12K21

þK11K22þK33þ
K3

11

6
;

σ̃32¼C32þC21K11þC20K12þK11K21

þC10

�
K22þ

K2
11

2

�
þK32;

σ̃31¼C31þC20K11þC10K21þK31; σ̃30¼C30: ðA15Þ

It is also useful to know how to transform (A14) back to
momentum space. A quick way to do this is from (5), which
implies that the fixed-order τ cross section is given
simply by

1

σ0
σcðτÞ ¼ σ̃ðν;Lν → ∂Ω þ LτÞ

eγEΩ

Γð1 − ΩÞ
����
Ω→0

; ðA16Þ

where each log Lν in (A14) is replaced by the differential
operator shown, with Lτ ¼ lnð1=τÞ. Then the cross section
is expanded in the form,

1

σ0
σcðτÞ ¼ 1þ

X∞
n¼1

�
αsðQÞ
4π

�
nX2n
k¼0

σnkLk
τ ; ðA17Þ

where the coefficients σnk are given in terms of the Laplace-
space coefficients σ̃nk in (A15) by

σ12¼ σ̃12; σ11¼ σ̃11; σ10¼ σ̃10−
π2

6
σ̃12;

σ24¼ σ̃24; σ23¼ σ̃23; σ22¼ σ̃22−π2σ̃24;

σ21¼ σ̃21−
π2

2
σ̃23−8ζ3σ̃24;

σ20¼ σ̃20−
π2

6
σ̃22−2ζ3σ̃23þ

π4

60
σ̃24

σ36¼ σ̃36; σ35¼ σ̃35; σ34¼ σ̃34−
5π2

2
σ̃36;

σ33¼ σ̃33−
5π2

3
σ̃35−40ζ3σ̃36;

σ32¼ σ̃32−π2σ̃34−20ζ3σ̃35þ
π4

4
σ̃36;

σ31¼ σ̃31−
π2

2
σ̃33−8ζ3σ̃34þ

π4

12
σ̃35þð20π2ζ3−144ζ5Þσ̃36;

σ30¼ σ̃30−
π2

6
σ̃32−2ζ3σ̃33þ

π4

60
σ̃34þ

�
10π2ζ3

3
−24ζ5

�
σ̃35

þ
�
40ζ23−

5π6

168

�
σ̃36: ðA18Þ

In obtaining these expressions we made use of the follow-
ing handy identities:

GðΩÞ≡ eγEΩ

Γð1 −ΩÞ ; ∂ΩGjΩ→0 ¼ 0;

∂
2
ΩGjΩ→0 ¼ −

π2

6
; ∂

3
ΩGjΩ→0 ¼ −2ζ3;

∂
4
ΩGjΩ→0 ¼

π4

60
; ∂

5
ΩGjΩ→0 ¼

10π2

3
ζ3 − 24ζ5;

∂
6
ΩGjΩ→0 ¼ 40ζ23 −

5π6

168
:

APPENDIX B: RENORMALON
CANCELLATION FORMULAS

In this appendix we list all of the renormalon-cancella-
tion formulae required for our N3LL0 þOðα2sÞ thrust
calculation. Beginning at the level of the unexpanded,
renormalon-corrected cross section in (22)–(23), and fur-
ther defining

fðiÞmodðk − 2ΔÞ≡
�
αsðμSÞ
4π

�
i
f̄ðiÞmodðk − 2ΔÞ; ðB1Þ

the components of (23) can be written explicitly as

f̄ð0Þmodðk − 2ΔÞ ¼ fmodðk − 2ΔÞ; ðB2aÞ

f̄ð1Þmodðk − 2ΔÞ ¼ −2δ1
�
μR
ξ

�
f0modðk − 2ΔÞ; ðB2bÞ
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f̄ð2Þmodðk − 2ΔÞ ¼
�
−2δ2

�
μR
ξ

�
f0modðk − 2ΔÞ þ 2

�
δ1

μR
ξ

�
2

f00modðk − 2ΔÞ
�
; ðB2cÞ

f̄ð3Þmodðk − 2ΔÞ ¼
�
−2δ3

�
μR
ξ

�
f0modðk − 2ΔÞ þ 4δ1δ2

�
μR
ξ

�
2

f00modðk − 2ΔÞ − 4

3

�
δ1

μR
ξ

�
3

f000modðk − 2ΔÞ
�
; ðB2dÞ

where the subtraction terms δn and Δ have an implicit functional dependence on the soft and renormalon scales,
fδn;Δg≡ fδnðμS; μRÞ;ΔðμS; μRÞg. Indeed, the form of Δðμδ; μRÞ for arbitrary reference μδ and subtraction μR scales [i.e.
accounting for RGE in both scales, according to (27)] is known to the required three-loop order, and is given by

Δðμδ; μRÞ ¼ ΔðRΔ; RΔÞ þ 2

�
μR
ξ

�
ηΓðμδ; μRÞ

þ RΔ

2β0
e−G½αsðRΔÞ�

�
2π

β0
eiπ

� β1
2β2

0

�
γ0R

�
Γ
�
−

β1
2β20

;−
2π

β0αsðμRÞ
�
− Γ

�
−

β1
2β20

;−
2π

β0αsðRΔÞ
��

−
1

2β0

�
γ1R −

γ0R
β0

�
β1 þ

B2

2

���
Γ
�
−

β1
2β20

− 1;−
2π

β0αsðμRÞ
�
− Γ

�
−

β1
2β20

− 1;−
2π

β0αsðRΔÞ
��

þ 1

4β20

�
γ2R −

γ1R
β0

�
β1 þ

B2

2

�
þ γ0R

�
B2 þ

B2β1
2β20

−
B3

4β0
þ B2

2

8β20

��

×
�
Γ
�
−

β1
2β20

− 2;−
2π

β0αsðμRÞ
�
− Γ

�
−

β1
2β20

− 2;−
2π

β0αsðRΔÞ
���

; ðB3Þ

where we take the input gap parameter to be ΔðRΔ; RΔÞ ¼
0.1 GeV at an arbitrary reference scale RΔ ¼ 1.5 GeV (the
exact value for this reference scale is not expected to be
particularly consequential in the tail regions relevant to our
fits [5]) and where G is the antiderivative of 1=β½α�,

G½α� ¼ 2π

β0

�
1

α
þ β1
4πβ0

ln α −
B2

ð4πÞ2 αþ B3

ð4πÞ3
α2

2

�
: ðB4Þ

Here B2;3 are given as

B2 ≡ −
β2
β0

þ β21
β20

; B3 ≡ −
β3
β0

þ 2
β1β2
β20

−
β31
β30

; ðB5Þ

in terms of the QCD β-function coefficients defined
through

μ
dαsðμÞ
dμ

¼ −2β0
αsðμÞ2
4π

�
1þ

�
αsðμÞ
4π

�
β1
β0

þ
�
αsðμÞ
4π

�
2 β2
β0

þ
�
αsðμÞ
4π

�
3 β3
β0

�
: ðB6Þ

The solution to (B6) for the running coupling up to four
loops is

1

αsðμÞ
¼ 1

αsðmZÞ
�
XþαsðmZÞ

4π

β1
β0

lnX

þ
�
αsðmZÞ
4π

�
2
�
β2
β0

�
1−

1

X

�
þ β21
β20

�
lnX
X

þ 1

X
−1

��

þ
�
αsðmZÞ
4π

�
3 1

X2

�
β3
2β0

ðX2− 1Þ

þ β1β2
β20

ðXþ lnX−X2Þþ β31
2β30

½ð1−XÞ2− ln2X�
��

;

ðB7Þ

where

X ≡ 1þ αsðmZÞ
2π

β0 ln
μ

mZ
: ðB8Þ

The actual functional dependence of the subtraction terms
δn in (B2) on the reference and subtraction scales is
scheme-dependent, as is the structure of the μR-anomalous
dimensions appearing in (B3). We now present the ingre-
dients δi and γiR in both the n ¼ 0 and n ¼ 1 schemes
considered in the main text.

1. n= 0 schemes

From (26) and the fixed-order expansion of the soft
function that can be constructed from (A3), one reads
off that
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δðμδ; μRÞ ¼
μR
2ξ

ln S̃

�
v ¼ ξ

μR
; μδ

�
≡ μR

2ξ

X
n¼1

�
αsðμδÞ
4π

�
n
δnðμδ; μRÞ; ðB9Þ

for a generic ξ scheme and reference scale μδ. Given the known three-loop expansion of the Laplace-space soft function S̃,
one can then easily obtain the order-by-order expressions for δ as follows:

δ1ðμδ; μRÞ ¼ Γ0
sL2 þ c1

S̃
; ðB10aÞ

δ2ðμδ; μRÞ ¼
2

3
Γ0
sβ0L3 þ Γ1

sL2 þ ðγ1s þ 2c1
S̃
β0ÞLþ c2

S̃
−
1

2
ðc1

S̃
Þ2; ðB10bÞ

δ3ðμδ; μRÞ ¼
2

3
Γ0
sβ

2
0L

4 þ 2

3
ð2Γ1

sβ0 þ Γ0
sβ1ÞL3 þ ðΓ2

s þ 2γ1sβ0 þ 4c1
S̃
β20ÞL2 þ ðγ2s þ 2c1

S̃
β1 þ 4c2

S̃
β0 − 2ðc1

S̃
Þ2β0ÞL

− c1
S̃
c2
S̃
þ 1

3
ðc1

S̃
Þ3 þ c3

S̃
; ðB10cÞ

with L ¼ ln μδeγEξ
μR

. Then, from (27) and (B6), one immediately obtains the relevant μR-anomalous dimensions in this
scheme,

γ0R ¼ 1

2ξ
ðΓ0

sL2 þ c1
S̃
Þ; ðB11aÞ

γ1R ¼ 1

2ξ

�
2

3
Γ0
sβ0L3 þ Γ1

sL2 þ ðγ1s þ 2c1
S̃
β0ÞLþ c2

S̃
−
1

2
ðc1

S̃
Þ2 − 2β0ðΓ0

sL2 þ c1
S̃
Þ
�
; ðB11bÞ

2ξγ2R¼
2

3
Γ0
sβ

2
0L

4þ2

3
ð2Γ1

sβ0þΓ0
sβ1ÞL3þðΓ2

s þ2γ1sβ0þ4c1
S̃
β20ÞL2þðγ2s þ2c1

S̃
β1þ4c2

S̃
β0−2ðc1

S̃
Þ2β0ÞL

−c2
S̃
c1
S̃
þ1

3
ðc1

S̃
Þ3þc3

S̃
−2

�
4

3
Γ0
sβ

2
0L

3þðΓ0
sβ1þ2Γ1

sβ0ÞL2þβ0ð4c1S̃β0þ2γ1sÞLþ2c2
S̃
β0þc1

S̃
β1− ðc1

S̃
Þ2β0

�
; ðB11cÞ

where now L ¼ ln ξeγE [μδ ¼ μR in this calculation; see
(27)]. This log of course vanishes in schemes where
ξ ¼ e−γE .
In practice, the subtraction series (B9) appears in (20) as

part of a renormalon-subtracted soft function that is
expanded in powers of αsðμSÞ, not αsðμδÞ, when μδ and
μS are not chosen to be equal (which is a choice we are free
to make). In this case, we need to know the coefficients of
the powers of αsðμSÞ when expanding (B9) in αsðμSÞ,

δðμδ; μRÞ≡ μR
2ξ

X∞
n¼1

�
αsðμSÞ
4π

�
n
δnðμS; μδ; μRÞ; ðB12Þ

where, up to order α3s,

δ1ðμS; μδ; μRÞ ¼ δ1ðμδ; μRÞ; ðB13aÞ

δ2ðμS;μδ;μRÞ¼ δ2ðμδ;μRÞþ2β0 ln
μS
μδ

δ1ðμδ;μRÞ; ðB13bÞ

δ3ðμS; μδ; μRÞ ¼ δ3ðμδ; μRÞ þ 2β1 ln
μS
μδ

δ1ðμδ; μRÞ

þ 4β20ln
2
μS
μδ

δ1ðμδ; μRÞ

þ 4β0 ln
μS
μδ

δ2ðμδ; μRÞ; ðB13cÞ

having somewhat abused our notation by using the same
symbols for δn on both sides—the number of arguments
distinguishes them. The expansion (B12) with coefficients
(B13) are the expressions we use at each order of the
expansion of the renormalon-free shape function in (23).

2. n= 1 schemes

Setting n ¼ 1 in (26), one then defines the subtraction
terms as

δðμδ; μRÞ ¼
μR
2ξ

d
d ln v

ln S̃ðv; μδÞ
���
v¼ξ=μR

≡ μR
2ξ

X
n¼1

�
αsðμδÞ
4π

�
n
δnðμδ; μRÞ: ðB14Þ
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Upon solving for δiðμδÞ and again running up to the soft
scale μS using (B6), the generalized expressions for δi are
finally found to be

δ1ðμδ; μRÞ ¼ 2Γ0
sL; ðB15aÞ

δ2ðμδ; μRÞ ¼ 2Γ0
sβ0L2 þ 2Γ1

sLþ γ1s þ 2c1
S̃
β0; ðB15bÞ

δ3ðμδ; μRÞ ¼
8

3
Γ0
sβ

2
0L

3 þ 2ð2Γ1
sβ0 þ Γ0

sβ1ÞL2

þ 2ðΓ2
s þ 2γ1sβ0 þ 4c1

S̃
β20ÞL

þ γ2s þ 2c1
S̃
β1 þ 4c2

S̃
β0 − 2ðc1

S̃
Þ2β0; ðB15cÞ

with L ¼ ln μδeγEξ
μR

. We can again use these expressions to
derive the μR-anomalous dimensions γnR, finding

γ0R ¼ 1

2ξ
ð2Γ0

sLÞ; ðB16aÞ

γ1R ¼ 1

2ξ
ð2Γ0

sβ0L2 þ 2ðΓ1
s − 2Γ0

sβ0ÞLþ γ1s þ 2c1
S̃
β0Þ;

ðB16bÞ

2ξγ2R ¼ 8

3
Γ0
sβ

2
0L

3 þ 2ð2Γ1
sβ0 þ Γ0

sβ1 − 4Γ0
sβ

2
0ÞL2

þ 2ðΓ2
s þ 2γ1sβ0 þ 4c1

S̃
β20 − 4Γ1

sβ0 − 2Γ0
sβ1ÞL

þ γ2s þ 2c1
S̃
β1 þ 4c2

S̃
β0 − 2ðc1

S̃
Þ2β0

− 4γ1sβ0 − 8c1
S̃
β20; ðB16cÞ

for L ¼ lnðeγEξÞ [again, μδ ¼ μR here, cf. (27)].
As above for the n ¼ 0 scheme, when the series (B14) is

expanded in powers of αsðμSÞ rather than αsðμδÞ, the
expansion takes the same form as (B12) with coefficients
given by (B13), this time with the n ¼ 1 scheme sub-
traction terms (B15).

TABLE III. The same as Table II, but for the R0 cancellation
schemes. These numbers correspond to central values of the
95% CL ellipses presented in the top-right panel of Fig. 12, and
associated Ktheory parameters as defined in Sec. V B.

Profiles Parameters R0 (default)

2018 profiles fαs;Ω1g f0.1086; 0.654g
fσα; σΩg f0.0048; 0.175g

ραΩ −0.318

2010 profiles fαs;Ω1g f0.1081; 0.658g
fσα; σΩg f0.0071; 0.234g

ραΩ −0.764

FIG. 12. Extraction results for the R0 schemes, in analogue to those from Figs. 6–9. The top-left panel represents the convergence of
fαs;Ω1g fits at various logarithmic accuracies, and with Q ¼ mZ data. The top-right panel represents our global fαs;Ω1g extractions in
these schemes. The bottom panels present the R0 fits relative to Rð⋆Þ results. See the text for further discussion.
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APPENDIX C: FURTHER ANALYSIS
OF R0 SCHEMES

In this appendix we collect additional results from our
study of the R0 scheme defined in (31), which as mentioned
in the main text suffers from perturbative instabilities in
comparison to the Rð⋆Þ schemes.
In Table III we first collect the numerical values for the

centers of the 95% CL ellipses, their variances, and their
correlation coefficients (in analogue to Table II) obtained in
our default R0

2010;2018 fits, while in Fig. 12 we collect
numerous plots that also serve as analogues to the Rð⋆Þ
scheme studies in the main text. In the top left panel we
show the convergence of the R0

2018 scheme forQ ¼ mZ data
only, where one observes a slightly erratic behavior, with
final N3LL0 þOðα2sÞ results settling between the extremely
low (high) αs extractions found for accuracies at or below
(above) N2L LþOðαsÞ.8 This is a manifestation of the
instability presented in Fig. 11 and represents a noticeable
departure from the behavior shown in Fig. 6 for Rð⋆Þ
schemes. Then in the top right panel of Fig. 12 we show the
fully global results for fαs;Ω1g extractions in R0

2010;2018

schemes at 68% and 95% CL, in analogue to Fig. 7 for the
Rð�Þ schemes. There one sees a rather large spread of
fαs;Ω1g values, especially for the R0

2010 scheme. Indeed,
relative to the Rð⋆Þ scheme ellipses from Fig. 8, which we
also plot in the bottom left panel of Fig. 12, the overall size
of the R0 ellipses is dramatically increased. Furthermore,
while schemes within either the n ¼ 1 and n ¼ 0 renor-
malon cancellation classes are largely consistent with one
another, there is only minimal overlap between the n ¼ 1
and n ¼ 0 schemes. Also, with respect to extracted values
of αs (Ω1), the qualitative impact of changing to the R0

scheme is to shift the error ellipse centers towards smaller
(larger) values, regardless of the profile functions utilized.
Finally, we also plot the αs − χ2dof data from our global Q
extractions in the bottom-right panel of Fig. 12. There we
see that a smaller proportion of n ¼ 0 extractions fall below
the χ2dof ¼ 1 contour than do their n ¼ 1 counterparts, and
that a number of n ¼ 0 fits (especially those towards
extremely low αs) have particularly large χ2dof , and cannot
yet be considered good fits.
We examine the R0 schemes closer in Fig. 13, where in

the top (bottom) panel we have plotted 95% CL regions in
the αs −Ω1 (αs − χ2dof) plane obtained using global Q
datasets over the default fit window (solid lines) and those
obtained using Q ¼ mZ data over a reduced fit window

with 6=Q ≤ τ ≤ 0.225 (dashed lines). There we observe
another odd feature: including more data in the global-Q
scan actually widens the αs −Ω1 ellipses and simultane-
ously reduces their quality, trends which are counter-
intuitive and contrary to those observed for n ¼ 1 schemes
in Fig. 9 above. This may indicate that R0 theory compar-
isons to data at Q ≠ mZ may not exhibit the same stability
as those seen in Fig. 11.
Indeed, from the results of Figs. 12–13 and those

regarding convergence mentioned in Sec. V E, it seems
clear that the stability of the R0 scheme is currently tenuous
and may hence be a too aggressive subtraction scheme for
general eþe− event-shape predictions. This may possibly
be resolved upon a concrete, analytic determination of c3

S̃
and a more refined set of profile variations tuned for global
Q values. On the other hand, n ¼ 0 schemes are not
uninteresting; indeed [29] finds them to be superior for
top-quark-initiated event shapes, and a significant fraction
of the Q ¼ mZ fits in Fig. 13 exhibit very good quality in
terms of their χ2dof.

FIG. 13. fαs;Ω1g (Top) and fαs; χ2d:o:fg (Bottom) fits for the R0

schemes, comparing results from global Q data and default τ
windows (solid lines) to those with Q ¼ mZ data restricted to a
central τ region (dashed lines).

8We have checked that N3L LþOðα2sÞ results mimic those
from the light blue N2LL0 þOðα2sÞ scans.
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