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We compute the one-loop quark-photon vertex and the quark magnetic moment in three different models
with an infrared-modified gluon propagator, namely: the massive (Curci-Ferrari-like) model, the Gribov-
Zwanziger model, and the refined Gribov-Zwanziger model. We show results for the F2 form factor and
analyze the role played by the mass parameters associated with the confined gluon in these models. Using
the framework of the constituent quark model, we further construct the observable proton magnetic
moment including the effects of quantum chromodynamics (QCD) interactions generated by the different
confining models. Our results show that there is no qualitative observable difference stemming from the
presence of complex-conjugated poles. On the other hand, quantitative differences between the various
confining models can be sizable, so that observable constraints would in principle be possible, provided one
has sufficient information about the constituent quark mass and the QCD running coupling.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is well established
as the theory of strong interactions, describing several
observable phenomena at high energy experiments [1] using
quarks and gluons as fundamental degrees of freedom.
Despite the outstanding success of lattice QCD in computing
e.g. hadronmasses and other low energy properties [2–6], the
infrared (IR) regime of non-Abelian gauge theories still
encompasses several challenges, such as the mechanism
behind quark and gluon confinement (for an overview on
different approaches cf. [7] and references therein).
In the IR region of non-Abelian gauge theories like

QCD, naïve perturbation theory becomes ill behaved due to
the large running coupling and nonperturbative frameworks
are called for. Besides lattice QCD, a variety of analytic and
semianalytic methods have been developed in the last
decades. Among different approaches [8–20], it is worth-
while noting that (i) most studies are dedicated to analyzing
quark and gluon (as well as ghost) correlation functions
rather than observables and (ii) it is not uncommon to find
some type of dynamically generated gluon mass scale,
compatible with the deep IR gluon propagator observed on
gauge-fixed lattice data [21–27].

Here, we concentrate on confining models that display a
modified gluon propagator accounting for mass generation
and our ultimate goal would be to make predictions for
observables. A theoretical foundation of these models may
be constructed from first-principle formulations of the func-
tional integral of gauge fields that deal with the so-called
Gribov problem [28,29]. Back in 1977,Gribov demonstrated
the existence of multiple gauge configurations associated
with the same physical fields even after gauge fixing,
rendering the standard Faddeev-Popov quantization ill-
defined in the nonperturbative regime. In the region where
couplings and fields are small, these so-called gauge copies
do not affect the functional integral, as corroborated by the
success of the Faddeev-Popov formulation of perturbative
QCD in describing high-energy scatterings. Nevertheless, in
the IR, the gauge coupling and/or fields may assume large
values and addressing theGribov problembecomes therefore
important for continuum approaches.
The Gribov-Zwanziger (GZ) theory [30–32] was pro-

posed as a partial solution, introducing a local and renor-
malizable theory that restricts the gauge functional integral
via a gap equation (for a systematic review cf. [33]). There
are strong indications, however, that GZ theory is unstable
against the formation of dimension 2 condensates [34–36],
giving rise to the refined Gribov-Zwanziger (RGZ) theory.
Unlike the GZ theory, the RGZ tree-level gluon propa-

gator is compatible with the deep IR behavior observed on
Landau-gauge lattice QCD data [37]. Moreover, RGZ
theory is a self-consistent nonperturbative formulation that
can in principle be applied at all energy ranges, reducing to
QCD (or pure gauge Yang-Mills, in the absence of quarks)
in the ultraviolet region [38]. More recently, it has been
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shown [39–42] that RGZ displays a nilpotent Becchi-
Rouet-Stora–Tyutin symmetry [43–45], modified with
respect to Yang-Mills theory but nevertheless allowing
for the proof of gauge-parameter independence of physical
predictions. In this sense, the mass scale emerging in GZ
and RGZ models is totally different from the mass of a
Proca field, that breaks gauge invariance and BRST
symmetry in a straightforward way.
Even though both GZ and RGZ actions are constructed

using fundamental gluon fields, there are no gluon asymp-
totic states due to the nontrivial analytical structure of
the propagator in the form of complex-conjugated
poles. While this could be an indication of built-in confine-
ment, the nonstandard pole structure raises many issues
when trying to define Minkowski-space quantities. The
assumption is that in physical observables the standard
analytical structure would be recovered. Most of the RGZ
results so far involve, however, nonphysical correlation
functions [40,46–48], with few exceptions [49–58].
In this paper, the aim is to test the predictions of GZ and

RGZ models for a given observable, namely the anomalous
magnetic moment of nucleons. This physical quantity is
particularly interesting because it is an observable sensitive
to the deep IR behavior of the theory. Furthermore, high-
precision measurements [1] are available, so that developing
the current analysis could lead to constraints on confining
model parameters. Also, lattice QCD computations of the
quark-photon vertex are possible (cf., e.g., [59]) and a direct
comparison of the full momentum-dependent form factor
may be available in the near future.
For that matter, we compute the quark-photon vertex,

focusing on the F2 form factor and the anomalous magnetic
moment of quarks. To obtain the corresponding nucleon
observable, we resort to the simple yet widely used con-
stituent quark model (CQM) [60,61] that should provide a
good framework for a first scrutiny of confining models. For
comparison, we also show results from another IR confining
description: the Curci-Ferrari model [14,62–66].
This paper is organized as follows. In Sec. II we compute

the quark-photon vertex and the associated F2 function in
Euclidean space in the general case. Then, we discuss the
usual contributions that come from quantum electrodynam-
ics (QED) and perturbative QCD. In Sec. III, we show full

results for F2 obtained in the Curci-Ferrari, GZ and RGZ
confining models and discuss some interesting limits. In
Sec. IV we briefly review the constituent quark model in
the description of the nucleon magnetic moment. In Sec. V
we discuss the corrections to the proton magnetic moment
brought about by the Curci-Ferrari, GZ and RGZ con-
fining models. Finally, we show our summary and outlook
in Sec. VI.

II. QUARK-PHOTON VERTEX

The fermion-photon vertex [Fig. 1(a)] can be written as
(cf., e.g., [67,68]):

iMμ ¼−ieŪðq2Þ
�
F1ðp2Þγμþ i

pνσ
μν

2m
F2ðp2Þ

�
Uðq1Þ; ð1Þ

where Uðq1Þ and Ūðq2Þ are Dirac spinors, σμν ≡ 1
2
½γμ; γν�,

with γμ being Dirac matrices, pν ¼ q2ν − q1ν, and m is the
fermion mass. The functions F1 and F2 are standard form
factors: F1 is related to the renormalization of the electric
charge whereas F2 contributes to the magnetic moment of
the fermion.
In the quark-photon vertex up to one-loop order, the

contributions to the quark magnetic moment can be des-
cribed by the Feynman diagrams in Fig. 1(b). Corrections
from QED and QCD interactions are displayed by the
diagrams with an internal photon propagator (wavy line)
and an internal gluon propagator (coiled line), respectively.
Here, we focus on the QCD contribution to F2 and analyze
predictions from different confining models. The goal, as
already discussed in the Introduction, is to test these models
and constrain their parameters using observable informa-
tion that connects directly to this process.
In Euclidean space the one-loop contributions in

Fig. 1(b) can be written, in the linear covariant gauge, as

Mμ → eQqN Ūðq2Þ
Z

d4k
ð2πÞ4

�
Dððk − q1Þ2Þ

× ðδνα − Tξ
ναðk − q1ÞÞ

×
γνð=pþ kþ imqÞγμðkþ imqÞγα

½ðpþ kÞ2 þm2
q�½k2 þm2

q�
�
Uðq1Þ; ð2Þ

(a) (b)

FIG. 1. (a) Fermion–photon vertex. (b) Quark–photon vertex up to one loop. Straight, wavy and coiled lines represent quark, photon
and gluon, respectively.
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where N ¼ e2Q2
q for the diagram with the internal photon

propagator and N ¼ g2CF for the one with an internal
gluon propagator, eQq is the electric charge of quark q, CF

is the color factor, mq is the quark mass, and Tξ
ναðpÞ ¼

ð1 − ξÞpνpα=p2 is the longitudinal factor in the propagator
of the exchanged boson, which depends on the linear
covariant gauge parameter ξ. The scalar function in the
propagator of the exchanged gauge boson is represented by
Dðp2Þ, being 1=p2 for both the photon and the perturbative,
massless gluon. In the confining models we analyze here,
this function will be modified by the presence of non-
perturbative mass scales, becoming a sum of at most two
terms of the form ∼1=½p2 þm2

g�, as will be clear in the next
sections.
Following the standard procedure to compute the one-

loop amplitude Mμ (cf., e.g., [68]) for a gauge boson
propagator function of the form Dðp2Þ ¼ R=½p2 þ r2�, one
introduces Feynman parameters x, y, z, solves the Dirac
matrix algebra, and evaluates the momentum integrals,
so that one obtains the contribution proportional to pνσμν
(gauge independent)1:

F2ðp2Þ ¼R
N
4π2

�Z
1

0

dxdydzδðxþ yþ z− 1Þzð1− zÞm2
q

ΔE

�
;

ð3Þ

where ΔE ¼ xyp2 þ ð1 − zÞ2m2
q þ z r2. It is important to

note that, in the GZ and RGZ computations that we present
below, the r2 and R mass parameters will be complex in
general. Working directly in Euclidean space, all standard
steps in computing the triangle Feynman integral are
generalized to complex mass parameters as long as the
real part of ΔE stays positive, which will always be the
case. Also, since these Gribov-type confining models
display a pair of complex-conjugated poles, imaginary
parts are trivially canceled and the final result is real, as
physically expected.

A. QED contribution to F2

In QED the photon is massless, so that we have R ¼ 1,
N ¼ e2Q2

q and

ΔE ¼ xyp2 þ ð1 − zÞ2m2
q: ð4Þ

Then, Eq. (3) becomes

F2ðp2Þ ¼ Q2
q

�
α

π

��Z
1

0

dx dy dz δðxþ yþ z − 1Þ

×
zð1 − zÞm2

q

xy p2 þ ð1 − zÞ2m2
q

�
; ð5Þ

where α ¼ e2=4π. At p2 ¼ 0, the first QED correction to
the quark anomalous magnetic moment becomes:

F2ð0Þ ¼ Q2
q

�
α

π

�Z
1

0

dz
Z

1−z

0

dy
z

1 − z
¼ Q2

q

�
α

2π

�
; ð6Þ

Using Qe ¼ −1 for the electron, we recover the well-
known Schwinger’s result: F2ð0Þ ¼ α=2π.

B. Perturbative QCD contribution to F2

For the perturbative, massless gluon, we have R ¼ 1,
N ¼ g2CF, with CF ¼ ðN2 − 1Þ=ð2NÞ ¼ 4=3, and

ΔE ¼ xyp2 þ ð1 − zÞ2m2
q; ð7Þ

implying the same structure with a different pre-factor:

F2ðp2Þ ¼ CF

�
αs
π

�Z
1

0

dx dy dz δðxþ yþ z − 1Þ

×
zð1 − zÞm2

q

xy p2 þ ð1 − zÞ2m2
q
; ð8Þ

where αs ¼ g2=4π. At p2 ¼ 0:

F2ð0Þ ¼ CF

�
αs
2π

�
; ð9Þ

which is similar to the QED contribution with α → αsCF.
Unlike in the case of QED, the QCD coupling at zero

momentum is not simple to define or compute. However,
many studies show it could have a finite value at zero
momentum (see Ref. [69] and references therein).
For the analysis of confining models that will follow, it is

convenient to define a normalized F2 for QCD in general as

F̄2ð0Þ ¼
πF2ð0Þ
CFαs

; ð10Þ

such that, for the perturbative case, one has F̄pert
2 ð0Þ ¼ 1=2.

Confining models will naturally bring deviations from
this value.

III. RESULTS FOR F2 IN CONFINING MODELS

In this section we include the effects from confinement
in the one-loop quark-photon vertex as described within
the massive, GZ and RGZ models. They will modify the
propagator and, therefore, yield a different form for the
QCD contribution to F2. The behavior brought about by

1We omit the gauge-dependent term, Mξ
μ ∝ Tα

ναðk − q1Þ →
−ð1 − ξÞγμ

R
d4k
ð2πÞ4 Dððk − q1Þ2Þ=ðk − q1Þ2, since it is composed

solely of contributions ∼γμ that only affect the form factor F1,
which is not of our current interest. See Appendix A for more
details.
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each of these models can be compared as a function of
ratios of their mass parameters to the quark mass.

A. Massive model

In the massive model,ΔE is modified due to the presence
of the massive term, m2

g in the gluon propagator

DMassððk − q1Þ2Þ ¼
1

ðk − q1Þ2 þm2
g
; ð11Þ

which, in Eq. (3) yields R ¼ 1 and ΔE ¼ xyp2 þ
ð1 − zÞ2m2

q þ zm2
g. The contribution to F̄2 in the massive

model then reads:

F̄Mass
2 ð0; aÞ≡ πFMass

2 ð0; aÞ
CFαs

¼
Z

1

0

dz
zð1 − zÞ2

ð1 − zÞ2 þ za
; ð12Þ

where F̄Mass
2 ð0; aÞ depends only on a ¼ ðm2

g=m2
qÞ, i.e., the

ratio between the gluon mass and the quark mass. Solving
the integral above, we obtain:

F̄Mass
2 ð0; aÞ ¼ 1

2
−
a
2

�
2 − ða − 2ÞLog½a� þ ða − 2Þ2 − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aða − 4Þp

× Log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða − 4Þp þ a − 2

2

��
: ð13Þ

Let us now consider the limiting cases of very small and
very large ratios a in Eq. (13). For a → 0, we have

F̄Mass
2 ð0; a → 0Þ ¼ 1

2
−
π

2
a1=2 −

ð1þ 2Log½a�Þ
2

a

þ 15π

16
a3=2 þOða2Þ; ð14Þ

which shows that, in this limit, F̄Mass
2 ð0; aÞ has a maximum

value of 1=2, as expected. In the limit a → ∞, we find

F̄Mass
2 ð0; a → ∞Þ ¼ 1

3a
−
12Log½a� − 25

12a2
−
60Log½a� − 97

10a3

þO
�
1

a4

�
: ð15Þ

The complete behavior of F̄Mass
2 ð0; aÞ is shown in Fig. 2

(solid green line).

B. Gribov–Zwanziger model

In the Gribov–Zwanziger (GZ) model [28,70] there are
two contributions coming from the decomposition of the
GZ gluon propagator

DGZðp2Þ¼
�

p2

p4þγ4

�
¼1

2

�
1

p2þ iγ2
þ 1

p2− iγ2

�
: ð16Þ

Here γ is the Gribov mass, which is introduced in the theory
to restrict the domain of the gauge functional integral to
avoid multiple counting of Gribov copies. This propagator
modifies the denominator in Eq. (2), so that there will be
two contributions of the form displayed in Eq. (3), each
corresponding to one of the complex-conjugated poles
above, yielding R ¼ 1=2 and

ΔE → Δ�
GZ ¼ xyp2 þ ð1 − zÞ2m2

q þ zð�iγ2Þ: ð17Þ

At p2 ¼ 0, we obtain the following one-loop form factor in
the GZ model:

F2
GZð0; aÞ ¼ πFGZ

2 ð0; aÞ
CFαs

¼ 1

2

Z
1

0

dz

�
zð1 − zÞ2

ð1 − zÞ2 þ iza
þ zð1 − zÞ2
ð1 − zÞ2 − iza

�
;

ð18Þ

where F̄GZ
2 ð0; aÞ depends only on a ¼ ðγ2=m2

qÞ, i.e., the
ratio between the Gribov mass and the quark mass. Solving
the integral, we obtain:

F̄GZ
2 ð0; aÞ

¼ 1

2
−
a
2

�
aLog½a�− πþ ½ðaþ 2iÞ2 þ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðaþ 4iÞp

×Log

�þia− 2− i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 4iÞp

2

�

−
½ða− 2iÞ2 þ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aða− 4iÞp Log

�
−ia− 2− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða− 4iÞp

2

��
: ð19Þ

We can also explore the limiting cases of very small and
very large ratios a in F̄GZ

2 ð0; aÞ. For a → 0, we find

F̄GZ
2 ð0; a → 0Þ ¼ 1

2
−
π

2

� ffiffiffi
2

p

2

�
a1=2 þ π

2
a

−
15π

16

� ffiffiffi
2

p

2

�
a3=2 þOða2Þ; ð20Þ

showing that for γ ¼ 0 this function has a maximum value
of 1=2, as was expected. Moreover, comparing their
coefficients we can show that, for a < 0.2, F̄GZ

2 ð0; aÞ >
F̄Mass
2 ð0; aÞ (see Fig. 2, dashed orange line). For a → ∞,

we have:

F̄GZ
2 ð0;a→∞Þ ¼þ12Log½a�− 25

12a2
þ 3π

a3
þO

�
1

a4

�
: ð21Þ

Compared to the massive case, this expression lacks an
inverse linear term, so that it decays faster, as shown
in Fig. 2.
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From Fig. 2 one can see that the structure functions from
the massive and GZ confining models show a similar
qualitative behavior: they start from a maximum value
of 1=2 which decreases as the mass parameter of the
model increases for a fixed constituent quark mass. In other
words, the mass term that appears in these models has a
suppressing effect on the value of F̄2ð0Þ.
It may seem surprising that the GZ model, even having

imaginary poles in its gluon propagator [Eq. (16)], yields
a F̄2ð0Þ function similar to the massive model. This is
because in its decomposition the GZ model propagator is
similar to a pair of massive propagators with a conjugate
counterpart which makes that the additional imaginary
contributions end up canceling out leaving us with a real
result and similar behavior between such functions. Even
so, those additional contributions increase the value of the
GZ F̄2ð0Þ [compared with the massive F̄2ð0Þ] for small
values of the “a” parameter up to the value of 0.177,
approximately (for mq ¼ 363 MeV, mg ¼ γ ≈ 153 MeV).
For values of the a parameter greater than that, such
contributions make the GZ F̄2ð0Þ decrease faster than
the massive F̄2ð0Þ (See Fig. 2).

C. Refined Gribov–Zwanziger model

The gluon propagator of the Refined Gribov-Zwanziger
model can also be decomposed as a pair of massivelike
propagators through the following parametrization:

DRGZðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þ λ4 þM2m2

≡ Aþ
p2 þ α0−

þ A−

p2 þ α0þ
; ð22Þ

where M2 and m2 come from the dynamical generation
of dimension 2 condensates and λ2 is related to the Gribov
mass introduced to take into account the Gribov ambiguity
in the RGZ action [37,71]. The residues A� and the poles
α0� can be written in terms of the RGZ mass parameters
as follows:

A� ¼ 1

2

�
1� M2 −m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2 −m2Þ2 − 4λ4
p

�
≡ 1

2
ð1 ∓ iκÞ; ð23Þ

α0� ¼ M2 þm2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 −m2Þ2 − 4λ4

p
2

≡ ðs� itÞ: ð24Þ

Here we defined κ to make explicit the presence of a pair of
complex-conjugated poles, since ðM2 −m2Þ2 − 4λ4 < 0,
as indicated by fits to lattice QCD data (cf., e.g.,
Refs. [26,72]). The same fits show that m2 < 0, so that
it is convenient to define m̄2 ≡ −m2 > 0.
The computation of the structure function is analogous to

the one for the GZ case, so that one has

Δ∓
RGZ ¼ xyp2 þm2

q½ð1 − zÞ2 þ zða ∓ ibÞ�; ð25Þ

corresponding to residues ð1 ∓ iκÞ=2, where

κ ¼ M2 þ m̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðM2 þ m̄2Þ2

p ; a ¼ M2 − m̄2

2m2
q

;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðM2 þ m̄2Þ2

p
2m2

q
: ð26Þ

Following the procedure discussed for the previous models,
one obtains at p2 ¼ 0:

F2
RGZð0; a; b; κÞ ¼ 1

2

Z
1

0

dz

� ð1 − iκÞzð1 − zÞ2
ð1 − zÞ2 þ zða − ibÞ

þ ð1þ iκÞzð1 − zÞ2
ð1 − zÞ2 þ zðaþ ibÞ

�
: ð27Þ

The complete analytic result for the remaining integral
for general values of the mass ratios a, b and κ can be found
in Eq. (B3) in Appendix B. Due to the presence of three
independent parameters, the RGZ form factor has a more
intricate structure than the massive or GZ cases. A clearer
comparison can be made if we consider extreme values for
a and b.
In the limit a ¼ b → 0, Eq. (27) reduces to:

F̄RGZ
2 ð0; a ¼ b → 0; κÞ ≈ 1

2
þ π

ffiffiffi
2

p ð3κ − 1Þ
8

a1=2

þ ðκðπ þ 1Þ þ π − 3

þ 2ðκ − 1ÞLog½a�Þ a
2
: ð28Þ

One can see that this structure function achieves a value
greater than 1=2 for a fixed κ > 1=3 and a ∼ b ∼ 0, since its
leading-order terms would be positive in contrast to the
massive and GZ cases [cf. Eqs. (14) and (20)]. On the other
hand, for large gluon mass parameters (a ¼ b → ∞), one
finds a result that is similar to the one for the massive
model, except for the additional factor of κ:

FIG. 2. F̄2ð0Þ as a function of the dimensionless ratiom=mq for
the massive model (wherem is the gluon mass) and the GZ model
(where m is the Gribov mass).
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F̄RGZ
2 ð0; a ∼ b → ∞; κÞ ≈ κ

3a
−
12Log½a� − 25

12a2
: ð29Þ

As a consequence, the RGZ form factor decays more
slowly than those of the massive and GZ cases. Of course,
setting to zero all mass parameters of the confining models,
one recovers the perturbative QCD result [Eq. (9)].

D. RGZ parameters from lattice QCD

In the RGZ model, the confining gluon propagator
[Eq. (22)] has three independent mass parameters that give
rise to complex-conjugated poles [26,72]. As a conse-
quence, the behavior of the one-loop RGZ quark form
factor F̄2ð0Þ will be more intricate algebraically and we
shall resort to Landau-gauge lattice gluon propagator fits to
fix or at least restrict the space of parameters. In contrast to
the perturbative approach and the massive and GZ models,
the RGZ F̄2ð0Þ value could be greater than 0.5 at a certain
combination of small values of the a and b parameters

[Eq. (28) and Fig. 3(a)]. For large values of a and b, the
RGZ F̄2ð0Þ decreases [cf. Eq. (29) and Fig. 3(b)], becom-
ing smaller than the massless gluon reference F̄2ð0Þ ¼ 1=2
as the other confining models.
Fits of SU(3) lattice data for the gluon propagator

provide fixed values for the RGZ parameters. For com-
parison, we consider the three different fits shown in
Table I. The first set is from Ref. [26], which we call
O.S. DATA, while the other two are taken from Ref. [72],
which we call D.O.S. 1 (with trivial gluon wave function
renormalization and ZL) and D.O.S. 2 DATA. With this
combination of values and for a constituent quark mass
mq ¼ 363 MeV, the quark form factor becomes smaller
than 1=2, as displayed in Fig. 3(b) and Table II. The similar
values for O.S. and D.O.S. 2 DATA are due to the very
similar values of their parameters. They share a similar
(lower than one) value for the normalization factor ZL,
which is compensated by a larger value for the parameterM
in the RGZ model. The D.O.S. 2 DATA has a value of ZL
equal to 1, which makes the value of the parameterM lower
than in the two previous cases.

IV. NUCLEON MAGNETIC MOMENT
IN THE CONSTITUENT QUARK MODEL:

A SHORT REVIEW

For a particle of mass m, spin S and charge e the spin
magnetic moment is given by:

μpart ¼ g

�
e
2m

�
S; ð30Þ

where g is the Landé factor which represents the relative
strength between the magnetic moment and its spin-orbit
coupling. The spin magnetic moment or just the mag-
netic moment of relativistic particles is derived from the
fermion-photon vertex [Fig. 1(a)] and represents an excel-
lent observable to test quantum field theory corrections.

TABLE II. RGZ parameters used to calculate its F̄2ð0Þ function
for a quark mass mq ¼ 363 MeV.

a b κ F̄2ð0Þ
O.S. DATA 2.6713 3.9579 7.9017 0.2458
D.O.S. DATA 1 1.9352 3.5211 4.8925 0.1944
D.O.S. DATA 2 2.2471 3.7742 7.7635 0.2658

FIG. 3. Comparison of the behavior of F̄2ð0Þ yielded by the massive, GZ and RGZ models with κ fixed to lattice data (cf. Table II).
Parameters a and b represent ratios between confining mass parameters and the quark mass. The massive and GZ models have no b
dependence.

TABLE I. RGZ parameters from Refs. [26] (O.S.) and [72]
(D.O.S.).

ZL M2
1 M2

2 M4
3 M m λ

O.S. DATA 0.8333 4.473 0.704 0.3959 2.1150 1.9414i 2.0381
D.O.S. DATA 1 1 2.525 0.510 0.2803 1.5890 1.4195i 1.5222
D.O.S. DATA 2 0.7296 4.157 0.5922 0.3350 2.0389 1.8881i 1.9730
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Proof of that is the agreement between the high precision
experimental measurement of the electron magnetic
moment and the theoretical prediction stemming from
the computation of the electron-photon vertex in perturba-
tive QED [73–75].
It is well known [67,68] that one can obtain the g factor

as a function of the form factors in the fermion-photon
vertex:

g ¼ 2½F1ð0Þ þ F2ð0Þ� ¼ 2½1þ F2ð0Þ�; ð31Þ

where F1ð0Þ ¼ 1 due to the electric charge conservation
and F2 is responsible for the anomalous contributions due
to interactions, being absent at tree level. For elementary
particles at weak coupling, it is clear that the g factor will be
very close to 2.
For the proton, however, the same procedure clearly does

not apply. Indeed, unlike the electron (ge ≈ 2.002319 [74]),
the experimental proton magnetic moment has a very
different value (gp ≈ 5.585694 [74]) than the one expected
for an elementary particle. This is a strong observable
indication of the intricate structure of the proton, which is
composed of three valence quarks and a sea of virtual
quarks and gluons.
An analytic or semianalytic calculation of the proton

magnetic moment from first principles is not available, due
to the effects of the confinement phenomenon and the
infrared behavior of the strong coupling. In order to obtain
a prediction for observables from confining model calcu-
lations of the quark F2 form factors presented in the last
section, we adopt a simple yet widely used effective model
that we review in what follows.
The constituent quark model [60,76] describes hadron

structure considering only valence quark degrees of free-
dom: the so-called constituent quarks, dressed by inter-
actions and correlations with the sea partons. As a
consequence of the dressing by the interaction with the
cloud of virtual quarks and gluons, the constituent quark
mass is much larger than the current mass, being about 1=3
of the mass of the nucleon for the light quarks, up (u) and
down (d).
The standard CQM assumes that the quarks behave like

free pointlike Dirac particles (spin 1=2, g ¼ 2 and electric
charge eQq), so that their magnetic moment will be:

μq ¼ gQq

�
e

2mq

�
S→ μq ¼

g
2
Qq

�
Mp

mq

�
μN ¼Qq

�
Mp

mq

�
μN;

ð32Þ

where mq is the constituent quark mass, Mp is the proton
mass and μN ¼ e=2Mp is the nuclear magneton. For our
analysis, it is important to point out that the quark magnetic
moment above, Eq. (32), already implies the absence of
quark-quark interactions, so that F2 ¼ 0. Naturally, this

assumption will be lifted in our improved calculation of the
proton magnetic moment in confining models.
A crucial parameter that is left to be determined is the

constituent quark mass mq. Even though it is not fixed
directly from measurements, one can e.g. extract it from
fittings of the hadron mass spectrum. The general pro-
cedure is to model the hadron masses within the CQM and
then fit free parameters to experimental data [1,60,61].
Following Refs. [61,77] and supposing that up and down
constituent quarks have the same massmq, the proton mass
will be

Mp ¼ 3mq þ
a0

m2
q
4
X3
i<j

Si · Sj ¼ 3mq − 3
a0

m2
q
; ð33Þ

where the second term corresponds to the binding energy,
with Si being the spin operator of the ith quark in the proton
and a0 is a free parameter. The specific expression of this
contribution is obtained as a hyperfine splitting coming
from a Coulomb-type color potencial interaction between
pairs of constituent quarks. A combined fit of the baryon
octet mass spectrum yields a0

m2
q
≈ 50 MeV, so that, using the

proton mass Mp ¼ 938.2720 MeV [74] in Eq. (33), we
obtain the constituent quark mass mq ¼ 363 MeV.
Finally, in the CQM, the proton magnetic moment comes

from vector sums of the magnetic moments of its con-
stituent quarks. Using the totally symmetric SU(6) [flavor
SUð3Þ× spin SUð2Þ] wave functions for the three-quark
states, one predicts for the proton:

μp ¼ 4

3
μu −

1

3
μd: ð34Þ

In what follows, we use this setup to investigate how
confining gluon propagators affect this observable.

V. CORRECTIONS TO THE PROTON MAGNETIC
MOMENT FROM CONFINING MODELS

From Eq. (31) and the results of Sec. III for the F2 form
factor in different models, the quarks g factors can be
obtained directly, including effects from confinement in the
anomalous contributions:

μq ¼ Qq

�
e

2mq

�
1

2
½2ð1þ Fq

2ð0ÞÞ�

¼ Qq

�
Mp

mq

�
½1þ Fq

2ð0Þ�μN; ð35Þ

where Qu ¼ þ2=3, Qd ¼ −1=3, mu ¼ md ¼ mq ¼
363 MeV, Mp ¼ 938.2720 MeV, and μN ¼ e=2Mp. The
various models of QCD interactions will enter through the
result for the Fq

2 form factors of the quark-photon vertex.
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For one-loop perturbative QED and QCD [Eqs. (6)
and (9)], the magnetic moment of the quark will be
(CF ¼ ðN2 − 1Þ=ð2NÞ ¼ 4=3):

μPTq ¼ Qq

�
Mp

mq

��
1þQ2

q

�
α

2π

�
þ CF

�
αs
2π

��
μN: ð36Þ

At one loop, for the confining models used in our
analysis [Eqs. (6), (12), (18), and (27)], we have:

μq ¼ Qq

�
Mp

mq

��
1þQ2

q

�
α

2π

�
þ CF

�
αs
π

�
F̄2ð0Þ

�
μN;

ð37Þ

where F̄2ð0Þ depends on the ratio of the confining models’
masses vs the constituent quark mass.
It is now straightforward to write, using Eq. (34), the

proton magnetic moment for the standard constituent quark
model:

μCQMp ¼ 4

3
μu −

1

3
μd ¼

�
4

3
Qu

�
Mp

mq

�
−
1

3
Qd

�
Mp

mq

��
μN

¼ Mp

mq
μN; ð38Þ

as well as an improved expression, including anomalous
contributions from QED and QCD interactions:

μþQFT
p ¼ μCQMp

�
1þ

�
4

3
Q3

u −
1

3
Q3

d

�
α

2π
þ ½CFF̄2ð0Þ�

αs
π

�
:

ð39Þ

The QED anomalous term will be fixed to the well-known
value (α ¼ 1=137), and we concentrate on how the QCD
contribution ∝ F̄2ð0Þ affects the equation above within
different approaches.

A. Running coupling in the deep IR

To obtain a quantitative prediction for the proton
magnetic moment a crucial parameter that we have not
yet discussed is the strong coupling constant αs appearing
in Eq. (39). A consistent calculation implies that one has
actually a running coupling evaluated at the typical scale of
the process: p2 → 0 in this case.
The deep IR limit of the strong running coupling is

however unknown and very hard to define in the non-
perturbative region. Even in standard perturbative QCD at
high energies, the running coupling is a scheme-dependent
quantity that relies heavily on observable input. The most
up-to-date determination of αs uses information, e.g.,
from τ decay data described with next-to next-to next-to
leading order (N3LO) predictions [1], yielding a value of
αsðp ≈ 2 GeVÞ ≈ 0.3. It is thus reasonable from the per-
turbative renormalization group evolution to expect a value
larger than αs ¼ 0.3 as one decreases the momentum below
2 GeV. Nevertheless, in the deep IR one has to resort to
nonperturbative approaches and different models provide
scenarios varying from a vanishing αs to a diverging one as
the scale goes to zero. A large collection of results can be
found in Ref. [69], where it becomes clear that a variety
of descriptions arrive at a saturating running coupling,
with 0≲ αsð0Þ ≲ 4.
For the upper values in this range, αs ≈ 4, a diagram-

matic one-loop technique could only be justified if the
effective expansion parameter is actually lower than αs,
as suggested by the convergence and success of perturba-
tion theory within the Curci-Ferrari model for correla-
tion functions of gluons and ghosts in SUð3Þ [62,78].
There, the effective expansion parameter is argued to be
λCF ¼ 3αs=4π. Even though a detailed analysis of this type
is still not available for GZ and RGZ theories, the good
qualitative results at tree level and a few one-loop calcu-
lations encourage the same assumption.
In what follows, we fix αs within the interval [0, 4] and

compare different confining models for the same coupling.

(a) (b)

FIG. 4. Comparison between the experimental (Expt) proton magnetic moment μp, the CQM result and that from CQM modified by
MM. The zero mass limit is labeled “þQCD.” (a) μp vs αs. (b) μp vsmg. The black point corresponds to αs ¼ 4 andmg ¼ 703.83 MeV.
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B. Results for the massive model

Let us now analyze the behavior of the proton magnetic
moment in the CQM modified with corrections from the
Massive gluon model (MM) at one-loop order for the quark
form factor F2. The final expression is given by Eq. (39)
with F̄2ð0Þ given by Eq. (13), where a ¼ ðmg=mqÞ2,
with mq ¼ 363 MeV.
Figure 4 displays the MM results for the proton magnetic

moment in units of the nucleon magneton as a function of
the strong coupling constant αs and the gluon massmg. One
can notice that, for any fixed nonzero coupling, the MM
provides a larger proton magnetic moment with respect to
the free/standard CQM prediction, becoming closer to the
measurement for low αs. As can be seen in the analytic limit
shown in Eq. (15), the absence of interactions, i.e., the
standard CQM, is recovered when the gluon mass becomes
extremely large. Indeed, in Fig. 4(b), the gluon mass is
shown to decrease the value of μp. Moreover, low values of
the strong coupling, αs < 0.38, render the MM corrections

too small to attain the experimental magnetic moment in
this setup. Nevertheless, the overall discrepancy is less than
10% for this small αs regime which could still be
considered reasonable for an effective description.
On the other hand, for strong couplings, αs > 0.38,

there is always a nonzero gluon mass that reproduces
the experimental value. We collect a few parameter sets
(mg, αs) that provide a MM prediction for the proton
magnetic moment in agreement with data in the first lines
of Tables III and IV.

C. Results for the Gribov–Zwanziger model

Turning to the Gribov-Zwanziger confining model and
using again the Eq. (39), where F̄2ð0Þ now comes from
Eq. (18), we analyze the GZ prediction for the proton
magnetic moment. Since the GZ F̄2ð0Þ behaves very
similarly to the F̄2ð0Þ of the massive model (cf. Fig. 2),
it is straightforward to conclude that the magnetic moment
coming from the GZ model behaves in a similar way to the
massive model in this fixed coupling setup. In fact, that can
be verified by comparing Figs. 4 and 5. Moreover, it is
important to notice that the presence of a set of imaginary
poles in the gluon propagator brought about by Gribov
quantization does not bring any nonphysical behavior to the
proton magnetic moment obtained in this approximation.
Figure 5(a) displays the proton magnetic moment in

units of the nucleon magneton as a function of the strong
coupling αs. It shows a larger value for the calculated
magnetic moment with a massless gluon (solid, oblique red
line) and GZ corrections than for the μCQMp . As in the
massive case, the larger the confining mass scale intro-
duced in the gluon propagator, the smaller is the modifi-
cation with respect to the free CQM model, which is
recovered when the Gribov mass γ → ∞.
In Tables III and IV, we can appreciate the quan-

titative difference between the massive and GZ parameters
that reproduce the measured proton magnetic moment.
In Fig. 2, the GZ form factor F̄2ð0Þ is shown to be slightly

(a) (b)

FIG. 5. Comparison between the experimental (Expt) proton magnetic moment (μp), the CQM result and that from CQMmodified by
GZ. (a) μp vs αs (b) μp vs mg. The black point corresponds to αs ¼ 4 and γ ¼ 516.80 MeV.

TABLE IV. Parameter set where results from QCD, the massive
model and the GZ model agree with the experimental value of μp.
αs was fixed. λCF ¼ 3αs=4π is the expansion parameter of the
Curci-Ferrari (massive) model.

αs k λCF 0.38 k 0.091 0.40 k 0.095 1.00 k 0.239 4.00 k 0.955
Mass mg [MeV] 0 7.30 185.64 703.83
G.Z. γ [MeV] 0 9.70 179.77 516.80

TABLE III. Parameter set where results from QCD, the massive
model and the GZ model agree with the experimental proton
magnetic moment μp. The mass m stands for the gluon mass mg
in the MM and the Gribov mass γ in GZ.

m [MeV] 0 140 600

Mass αs k λCF 0.38 k 0.091 0.83 k 0.198 3.24 k 0.773
GZ 0.82 k 0.196 5.30 k 1.265
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smaller (larger) than the massive result for masses lower
(higher) than ≈153 MeV. Since the proton magnetic
moment depends on the combination F̄2ð0Þαs, the GZ
model requires stronger couplings for Gribov masses larger
than 141 MeV, while the massive model remains in the
λCF < 1 region even for gluon masses around 600 MeV.

D. Results for the refined Gribov–Zwanziger model

Finally, for the refined-Gribov–Zwanziger model, the
one-loop result for the form factor F̄2ð0Þ is given in
Eq. (27) and the proton magnetic moment in the
RGZ-improved CQM framework is computed as before
using the general expression in Eq. (39). As discussed
previously, the RGZ model has three parameters that can
be adjusted to fit the lattice gluon propagator. For the
moment we will use the lattice QCD values that we call
O.S., D.O.S. 1, and D.O.S. 2 DATA (cf. Tables I and II).
The corresponding results for the proton magnetic moment
are shown in Fig. 6.
The general features brought about by confining mass

scales in the gluon propagator are also seen in the RGZ
results, namely: (i) corrections from interactions increase
the proton magnetic moment with respect to the free CQM
prediction, (ii) the modification is smaller than the massless
gluon limit, and (iii) there are strong coupling values that
render the RGZ prediction equal to the experimental value.
In particular, it is interesting to note that, within this setup,
fixing the three mass parameters from Landau-gauge lattice
QCD data we are able to describe quantitatively the lattice

FIG. 7. μp as a function of different RGZ parameters (M, m, λ). For m fixed: (a) αs ¼ 1 and (b) αs ¼ 4. For λ fixed: (c) αs ¼ 1 and
(d) αs ¼ 4, where m̄ ¼ −im. The black plane corresponds to the experimental proton magnetic moment μExptp . The white dots correspond
to the case in which two mass parameters assume the values of the lattice fits, while the third one can be found in (Table V).

FIG. 6. Comparison between the experimental (Expt) proton
magnetic moment (μp), the CQM result and that from CQM
modified by RGZ contributions as a function of the coupling
constant αs.
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gluon propagator, the proton mass and the proton magnetic
moment with αs ¼ 0.85� 0.15.
We can also explore further the parameter space of the

RGZ model, relaxing the requirement that the correspond-
ing gluon propagator represents the best fit of available
lattice data. The behavior of the magnetic moment in the
CQM-RGZ for different values of fM;m; λg is displayed in
Fig. 7. It is clear that there many mass parameter sets that
reproduce the measured proton magnetic moment, so that
this observable alone, i.e., without the lattice gluon propa-
gator information, does not impose a strong constraint on
the RGZ parameters.
In Fig. 7, we have chosen strong coupling values in the

range discussed in Sec. VA to illustrate the results for larger
couplings as well. We have αs ¼ 1.0 in Figs. 7(a) and 7(c)
and αs ¼ 4.0 in Figs. 7(b) and 7(d). Furthermore, in
Table V we show the quantitative difference in the para-
meters when one of the mass parameters in the propagator
is allowed to change to reproduce the measured proton
magnetic moment for different values of αs. Overall, the
modification in the parameters is no greater than 10%,
which is still a reasonable ballpark for the approximations
made in the current description.

VI. SUMMARY AND OUTLOOK

Confining models based on infrared modifications of the
gluon propagator by the presence of mass scales have been
used to describe different correlation functions of quarks
and gluons with reasonable success when compared to
results from lattice simulations. In this paper we have
focused on the quark-photon vertex and the QCD anoma-
lous contribution to the quark magnetic moment to obtain
predictions within these confining models for the observ-
able proton magnetic moment.
For that matter, we have computed the one-loop con-

tributions to the quark-photon vertex using gluon propa-
gators associated with the massive or Curci-Ferrari-like
model, the Gribov-Zwanziger model and the refined
Gribov-Zwanziger model. To construct the proton magnetic
moment from the quark form factor, we have adopted
the simple, yet widely used constituent quark model as a
general framework for comparison between the interactions
mediated by different confining gluon descriptions.
The first important observation that can be extracted

from our results is that the confinement ingredients here

introduced did not bring qualitative changes to the observ-
able predicted. This statement should not be taken for
granted, especially since GZ and RGZ present a nonstand-
ard analytical structure in the form of complex-conjugated
gluon poles. Moreover, all three models display the general
features of increasing the predicted value for the proton
magnetic moment with respect to the free CQM case.
This enhancement caused by the presence of confining
mass scales in the gluon correlation function is however
smaller than a naïve calculation with a massless gluon
propagator would provide. Furthermore, quantitative
differences between the various confining models can
be sizable, so that observable constraints would in principle
be possible.
We recall that the setup used throughout the paper

involves mainly the following parameters: (i) the constitu-
ent quark mass, (ii) the strong coupling constant in the deep
IR limit, and (iii) confining mass scales (one, in the MM
and GZ cases, and three in the RGZ model). Therefore, in
order to have constraints from the observed proton mag-
netic moment on confining mass parameters, one needs
sufficient information on the constituent quark mass and
the strong coupling constant. The former is better known
and we have fixed from the observed baryon octet mass
spectrum (including the proton mass), using a CQM
description in the presence of hyperfine interactions stem-
ming from Coulomb-like potentials between pairs of
quarks inside the proton. The latter, however, is much less
under control, since a nonperturbative unique definition
of the QCD running coupling is not available. We have
therefore shown results for a set of finite αsð0Þ values
inspired by a variety of descriptions, collected in Ref. [69].
On the other hand, if the QCD running coupling goes
to zero in the deep IR, as suggested, e.g., in the gluon-
sector of the renormalization-group-improved Curci-Ferrari
model in the infrared-safe scheme, the anomalous QCD
contribution to the quark—and thus the proton—magnetic
moments are of course trivial. It is important to note,
however, that the relevant coupling here is the one for the
quark sector, which is probably larger than the one in the
gluon (and ghost) interactions [79]. Finally, the proton
magnetic moment could be a good observable to obtain
information on the behavior of the running coupling
constant in the deep IR, so that the further development
of predictions from infrared QCD models is called for.
There are several directions of improvement to be

investigated in the future. Our results can be straightfor-
wardly extended to full momentum dependence and other
form factors of the quark-photon vertex to be confronted
with Dyson-Schwinger equations [80] and future lattice
results [59]. Higher loop calculations in the setup presented
here within each of the confining models would be useful
to verify the convergence of perturbation theory in these
nontrivial backgrounds for an actual observable instead
of gauge-dependent correlation functions of quarks and
gluons.

TABLE V. RGZ parameters used to calculate the μp for a
quark mass mq ¼ 363 MeV. Fixed fM;m; λg values come from
D.O.S. 1 (Ref. [72]).

αs k λCF 0.40 k 0.095 1.00 k 0.239 4.00 k 0.955
fm; λg fixed kM 1.6234 1.5870 1.3662
fM; λg fixed km 1.4487i 1.4178i 1.2013i
fM;mg fixed k λ 1.5064 1.5231 1.6262
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APPENDIX A: GAUGE-PARAMETER DEPENDENT CONTRIBUTION
TO THE QUARK-PHOTON VERTEX

The one–loop contribution to the quark–photon vertex [Eq. (2)] is

Mμ → eQqN Ūðq2Þ
Z

d4k
ð2πÞ4

�
Dððk − q1Þ2Þðδνα − Tξ

ναðk − q1ÞÞ
γνð=pþ kþ imqÞγμðkþ imqÞγα

½ðpþ kÞ2 þm2
q�½k2 þm2

q�
�
Uðq1Þ; ðA1Þ

where, Tξ
ναðpÞ ¼ ð1 − ξÞpνpα=p2. Therefore, the term proportional to (1 − ξ) is

Mξ
μ → −ð1 − ξÞeQqN Ūðq2Þ

Z
d4k
ð2πÞ4 Dððk − q1Þ2Þ

ðk − =q1Þð=pþ kþ imqÞγμðkþ imqÞðk − =q1Þ
½ðk − q1Þ2�½ðpþ kÞ2 þm2

q�½k2 þm2
q�

Uðq1Þ; ðA2Þ

In the above Eq. (A2), the numerator can be rewritten like:

Ūðq2Þððk=pþ imqk − =q1kþ k2 − =q1=p − imq=q1Þγμðk2 þm2
qÞÞUðq1Þ; ðA3Þ

where we have used that =qf1;2gUðqf1;2gÞ ¼ imqUðqf1;2gÞ. Also, Eq. (A3) can be simplified using the spinor and gamma
matrix relations (fγμ; γνg ¼ 2δμν), and the on–shell expressions q2f1;2g ¼ −m2

q and p:q1 ¼ −p:q2 ¼ −p2=2 (p ¼ q2 − q1),
yielding:

k=pþ imqk − =q1k ¼ 2k:p& k2 − =q1=p − imq=q1 ¼ k2 þ p2 þm2
q: ðA4Þ

So, the numerator [Eq. (A3)] reduces to ððkþ pÞ2 þm2
qÞðk2 þm2

qÞγμ, and the factor proportional to the gauge term
(1 − ξ) in Eq. (A1) will be:

Mξ
μ → −ð1 − ξÞγμeQqN Ūðq2Þ

Z
d4k
ð2πÞ4

Dððk − q1Þ2Þ
½ðk − q1Þ2�

Uðq1Þ: ðA5Þ

The contribution above is divergent and will only affect the F1 function (∝ γμ). Thus, the gauge term (1 − ξ) in Eq. (A1) will
not contribute to the F2 function and, as a consequence, neither will it modify the magnetic moment.

APPENDIX B: REFINED GRIBOV-ZWANZIGER F̄2ð0Þ INTEGRAL

Unlike the massive and GZ case, the RGZ function will be characterized by two parameters, a, and b, which will be a
ratio between the RGZ mass terms and the quark mass as was detailed in the Eqs. (26) and (27):

F̄RGZ
2 ð0; a; b; κÞ ¼ 1

2

Z
1

0

dz

� ð1 − iκÞzð1 − zÞ2
ð1 − zÞ2 þ zða − ibÞ þ

ð1þ iκÞzð1 − zÞ2
ð1 − zÞ2 þ zðaþ ibÞ

�
; ðB1Þ

where as in the previous cases we separate the equation into integrable parts and integrate it for an arbitrary z what will gives
us an expression like:

F̄RGZ
2 ð0; a; b; κÞ → z2

2
þ zðbκ − aÞ þ ð1 ∓ iκÞ

2

�
ða ∓ ibÞ zða ∓ ib − 2Þ þ 1

ð1 − zÞ2 þ zða ∓ ibÞ
�

ðB2Þ
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which was rewritten in a convenient form to obtain the solution of the RGZ F̄2ð0; aÞ function:

F̄RGZ
2 ð0; a; b; κÞ ¼ 1

2
þ ðbκ − aÞ þ ð1 − iκÞ

2

�ða − ibÞða − ib − 2Þ
2

��
Log½a2 þ b2�

2
− iTan−1

�
b
a

��

þ ð1þ iκÞ
2

�ðaþ ibÞðaþ ib − 2Þ
2

��
Log½a2 þ b2�

2
þ iTan−1

�
b
a

��

−
ð1 − iκÞ

2

�ða − ibÞ½ða − ib − 2Þ2 − 2�
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where for RGZ data from QCD lattice (see Table II):

κ ¼ M2 þ m̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðM2 þ m̄2Þ2

p ≥ 0; a ¼ s
m2

q
≥ 0; b ¼ t

m2
q
≥ 0 ðB4Þ

s ¼ M2 − m̄2

2
≥ 0& t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðM2 þ m̄2Þ2

p
2

≥ 0: ðB5Þ

We will also explore the borderline cases of RGZ F̄2ð0; aÞ [Eq. (B3)] for a → 0 and a → ∞, such that:

F̄RGZ
2 ð0; a → 0; b → 0; κÞ ¼ 1

2
þ π

2

� ffiffiffi
2

p

2

�
ðκ − 1Þb1=2 þ b

2
ðπ þ κð1þ 2Log½b�ÞÞ þOðb3=2Þ

× a
�
−
π

4

� ffiffiffi
2

p

2

�
κ þ 1

b1=2
þ πκ − 3 − 2Log½b�

2
−
45π

32

� ffiffiffi
2

p

2

�
ðκ − 1Þb1=2

þ 8κ − 3π − 6κLog½b�
6

bþOðb3=2Þ
�
þOða2Þ; ðB6Þ

whereas at the other end we have that:

F̄RGZ
2 ð0; a → ∞; b → ∞; κÞ ¼ 1

3a
þ 1

a2

�
bκ
3
−
12Log½b� − 25

12

�

þ 1

a3

�
−
b2

3
−
180Log½a� − 291

30
−
bκ
30

ð60Log½a� − 155Þ
�
þO

�
b3

a4

�
: ðB7Þ
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