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We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c̄cssn and
c̄csss, where mesons are pseudoscalars or vectors, and baryons have JP ¼ 1=2þ or 3=2þ. The aim is to
explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can
dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for
which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing
unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The
requiredPPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the
local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin
and flavor wave function to evaluate theBBV vertex.We find four different poles in the double strange sector,
some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction
insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
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I. INTRODUCTION

Over the past decade, pentaquark research has emerged
as one of the most active areas in hadronic physics.
A renewed interest was triggered by significant advance-
ments from the experimental side, namely the report by the
LHCb Collaboration, since 2015, of various hidden charm
pentaquark candidates without strangeness, Pcð4380Þ,
Pcð4312Þ, Pcð4440Þ, Pcð4457Þ, Pcð4337Þ [1–3] as well as
containing a strange quark, Pcsð4459Þ [4], Pcsð4338Þ [5].
Numerous theoretical models have competed to offer a
theoretical explanation of their nature (see Refs. [6–12]
for some reviews). Particularly satisfactory have been the
meson-baryon molecular interpretations on its nature,
with some of these states predicted [13–21] before their

discovery by LHCb. These interpretations rely on imple-
menting unitarity in coupled channels starting from poten-
tials grounded in t-channel vector meson exchange in
most cases.
A natural step forward would be to inquire about the

potential existence of hidden-charm pentaquarks with
strangeness S ¼ −2 or S ¼ −3, namely Pcss and Pcsss,
with quark content c̄cssn and c̄csss, respectively. Such
hypothetical states are yet to be substantiated by exper-
imental findings. However, for the S ¼ −2 channel, no
theoretical evidence of resonant or bound states was found
in [14,18] using as coupled channels DsΞ0

c, DsΞc, and
D̄Ωc. The reason for the null result was explained in
Ref. [22], where it was argued that while the D̄Ωc to D̄Ωc

potential is small by itself, it was crucial to obtain enough
attraction via the nonlinear interaction with other non-
diagonal terms of the potential, neglected in [14,18].
Notably, one pole for the PB interaction, with a mass
about 4493 MeV and width 74 MeV, and another one for
VB scattering, with a mass around 4633 MeV and width
80 MeV, were found in [22]. In Ref. [23], also within a
molecular picture, albeit a different formalism to [22], poles
were also found but using somewhat large regulator cutoffs.
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Other theoretical approaches regarding Pcss pentaquarks
are based on sum rules [24] and quark models [25,26].
Even more scarce is the theoretical study of possible triple-
strange hidden-charm pentaquarks [23,27,28].
In the present work, we evaluate the meson-baryon

interaction, where the mesons are either pseudoscalars or
vectors, and the baryons have JP ¼ 1=2þ or 3=2þ, with a
total flavour c̄cssn and c̄csss. We implement unitarity in
coupled channels building upon a kernel from potentials
derived from the t-channels vector meson exchange.
In addition to the consideration of the 3=2þ baryons and
the calculation of the S ¼ −3 channels, the main difference
with respect to the work in [22] is the simpler way we
evaluate the BBV vertex, by considering directly the flavor
and spin wave functions with their proper symmetrization,
as done in [29,30], in contrast to Ref. [22] where SUð4Þ
symmetry is invoked.
The unitarized scattering amplitudes considered in the

present work reveal four distinct poles across the various
channels examined within the double-strange sector, which
can be associated to pentaquark states of c̄cssn flavor (or
Pcss). Conversely, we find that the interaction in triple-
strange channels lacks the strength necessary to yield poles.

II. FORMALISM

The formalism for the evaluation of the meson-baryon
interaction in s-wave relies upon implementing unitarity in
coupled channels, following the techniques of the chiral
unitary approach [31–36]. We consider in the present work
the following meson-baryon sets of channels:

PB½c̄cssn�
�
1

2

−
�
∶ ηcΞð4298Þ; D̄sΞ0

cð4546Þ; D̄Ωcð4560Þ

VB½c̄cssn�
�
1

2

−
;
3

2

−
�
∶ J=ΨΞð4411Þ; D̄�

sΞ0
cð4690Þ;

D̄�Ωcð4702Þ

PB�½c̄cssn�
�
3

2

−
�
∶ ηcΞ�ð4515Þ; D̄sΞ�

cð4613Þ; D̄Ω�
cð4630Þ

VB�½c̄cssn�
�
1

2

−
;
3

2

−
;
5

2

−
�
∶ J=ΨΞ�ð4628Þ; D̄�

sΞ�
cð4757Þ;

D̄�Ω�
cð4773Þ

PB�½c̄csss�
�
3

2

−
�
∶ ηcΩð4656Þ; D̄sΩ�

cð4734Þ

VB�½c̄csss�
�
1

2

−
;
3

2

−
;
5

2

−
�
∶ J=ΨΩð4769Þ; D̄�

sΩ�
cð4878Þ;

where P stands for pseudoscalar meson, V for vector
meson, B for baryon with JP ¼ 1

2
þ, and B� for a 3

2
þ baryon.

In square brackets, the flavor content of the channel is
represented (where n stands for either u or d), followed
by the possible JP values of the meson-baryon channel

(which are degenerate in our model). The number in
parenthesis following a particular channel represents its
threshold energy in MeV. The channels with 3

2
þ baryons,

B�, were not considered in Refs. [14,22], whereas they
were also taken into account in Ref. [23]. We do not
consider de mixing of different sets of channels, such as PB
and VB, as the PB to VB transition should proceed through
pseudoscalar exchange, which is subdominant to the vector
exchange [37]. On the other hand, the D̄sΞc channel is
neglected in the PB set since the Ξc flavor and spin wave
functions have opposite symmetry to the rest of baryons
(see, for instance, Table IV in Ref. [30]) and our BBV
vertex is spin independent in the limit of small three-
momentum. Note that in the model of Ref. [22], this
channel is included in their formalism but the coupling to
the other channels is very suppressed. In our formalism, it
could have been evaluated as an independent channel but it
turns out to be repulsive and hence, has no chance to
generate a bound state or resonance. An analogous reason-
ing applies to the D̄�

sΞc channel for VB interaction.
Similarly, in the S ¼ −3 sector, the PB channel D̄sΩc
does not mix with the PB� ones, and its self-transition is
positive, resulting in no attraction.
The MB tree level interaction within each channel set

proceeds through the exchange of a vector meson
between the meson and the baryon, as depicted in
Fig. 1, for which we need the vertices VPP, VVV,
BBV, and B�B�V. In order to account for these vertices
we use a formalism similar to [30,38,39] based on heavy
quark spin symmetry together with the local hidden
gauge approach (LHG) [40–44] extrapolated to the charm
sector. The LHG formalism is one of the most successful
realizations of chiral symmetry involving vector mesons.
In this framework, vector meson fields are regarded as
gauge bosons of a hidden local symmetry, undergoing
inhomogeneous transformations, and represent the most
natural means to incorporate vector meson dominance.
Extending the LHG framework to encompass the
charm [45,46] and beauty quark sectors [46–48] has
proven highly effective in addressing meson-meson
and meson-baryon interactions involving both hidden
and open charm and beauty mesons and baryons.
Additionally, studies such as those in Refs. [18,49] have
shown that LHG preserves the heavy quark spin sym-
metry, a feature of QCD in which the interaction of heavy
quarks remains independent of their spin.
Within the LHG formalism, the VPP and VVV

Lagrangians read

Mi M f

V

B fi B

FIG. 1. Tree level potentials through vector meson exchange.
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LVPP ¼ −igh½P; ∂μP�Vμi;
LVVV ¼ ighðVμ

∂νVμ − ∂νVμVμÞVνi; ð1Þ

with g ¼ MV
2f for which we take MV ¼ 800 MeV,

f ¼ 93 MeV, and P and V are qq̄ matrices (considering
u, d, s, and c quarks) expressed in terms of mesons,

P ¼

0
BBBB@

0 0 0 D̄0

0 0 0 D−

0 0 0 D−
s

D0 Dþ Dþ
s ηc

1
CCCCA; ð2Þ

V ¼

0
BBBBB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ D̄�0

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0 D̄�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA
; ð3Þ

where we have shown in the Pmatrix only the pseudoscalar
mesons needed in the present work.
For the BBV interaction, we adopt an analogous for-

malism to [29,30] (see those references for further details),
and this is one of the main differences from the approaches
in Refs. [14,22]. Instead of employing an effective
Lagrangian, the approach involves expressing the wave
function of the baryons in terms of quarks, implementing
the corresponding flavor symmetry of each baryon and
hence considering the spin flavour to ensure overall wave
function symmetry, (see Table IV in [30]). For these states,
rather than using SUð4Þ symmetry, we single out the heavy
quarks and impose the symmetry on the light quarks,
following the approach of Refs. [50,51] This formalism
allows also for a very similar evaluation of the B�B�V
vertex, which were not considered in [14,22] since it would
have required the use of much more involved effective
Lagrangians. The vertex is then given by [29,30],

L̃VBB ¼ gqq̄γμϵμ; ð4Þ

where qq̄ is the flavor wave function of the vector meson,
and we keep only the time component of γμϵμ ∼ γ0ϵ0 ∼ ϵ0,
valid for slow baryons.
The tree level transition potentials for the MB mecha-

nisms depicted in Fig. 1 take the following form (see
Appendix in Ref. [29] for an explicit example of a detailed
evaluation for a different case):

Vij ¼ g2Cijðp0 þ p00Þ; ð5Þ

where p0ðp00Þ are the on-shell center of mass energy of
the initial (final) meson, and the coefficients Cij ¼ Cji

are given in Tables I–III. Note the dependence of the

coefficients on the inverse of the mass squared of the
exchanged vector meson in the t-channel, for which we use
the mass of the actual meson exchanged in each particular
channel. This is also a refinement with respect to [22],
where the mass of the light vectors were assumed identical,
those with one charm were twice the mass of the light ones,
and the mass of the J=Ψ was 3 times that of the light ones.
Note that Eq. (5) is not Lorentz covariant, but it is a very

good approximation for the present case. Indeed, a rela-
tivistic expression for meson-baryon interaction obtained
from meson baryon chiral Lagrangians and adapted to the
present case would be of the form [52],

Vij ¼ g2CijūðpÞγμuðp0Þðkμ þ k0μÞ; ð6Þ

where p, p0, (k, k0) are the initial (final) momenta of the
baryons (mesons). Then, the s-wave projection of the
amplitude can be written as

Vij ¼ g2Cijð2
ffiffiffi
s

p
−M −M0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ E
2M

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 þ E0

2M0

r
: ð7Þ

This expression is indeed analogous to that used in
Ref. [22]. Nevertheless, we have checked that the use of
Eq. (7) instead of Eq. (5) has a numerical effect of less than
half an MeVon the position of the poles and less than 1% in
the value of the couplings.
In Table I, we show the Cij coefficients for the PB

channels with S ¼ −2. For the VB channel, the table is
the same, except for substituting the pseudoscalar by the
corresponding vector meson. The coefficients for the
channels involved in the double-strange PB� interaction
are given in Table II, which are also the same for VB� if we

TABLE I. Cij coefficients of the PB interaction in the c̄cssn
sector.

ηcΞ D̄sΞ0
c D̄Ωc

ηcΞ 0 1ffiffi
6

p
m2

D�
s

− 1ffiffi
3

p
m2

D�

D̄sΞ0
c

1
m2

ϕ
− 1

m2
J=Ψ

ffiffi
2

p
m2

K�

D̄Ωc − 1
m2

J=Ψ

TABLE II. Cij coefficients of the PB� interaction in the c̄cssn
sector.

ηcΞ� D̄sΞ�
c D̄Ω�

c

ηcΞ� 0
ffiffi
2
3

q
1

m2
D�
s

1ffiffi
3

p
m2

D�

D̄sΞ�
c

1
m2

ϕ
− 1

m2
J=Ψ

ffiffi
2

p
m2

K�

D̄Ω�
c − 1

m2
J=Ψ
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replace again the name of the pseudoscalar by the vec-
tor meson.
For the S ¼ −3 sector, the coefficients Cij are given in

Table III for the PB� interaction, and analogous for VB�,
changing the pseudoscalar by the corresponding vec-
tor meson.
It is worth noting that the coefficients in the first row of

Tables I–III are suppressed by the squared mass of a heavy
vector meson. However, since the first channel is the only
one open at the energy where the pole of the generated
states appears, it is the only source of the width of the
generated resonance. Despite this, it has minimal influence
on the mass of the generated state. On the other hand, the
terms proportional to 1=m2

J=Ψ are also suppressed compared
to those arising from the exchange of lighter vector mesons.
Indeed, we have numerically verified that the impact of the
J=Ψ contribution on our outcomes merely entails a shift in
the pole position of the generated states by approximately
5 MeV and a modification of the coupling values by
roughly 10%.
It is interesting to comment on the analogies between the

matrix elements obtained in Ref. [22] and those in Table I
(see Table I of [22]). The diagonal terms coincide (beware
of a global sign difference). The large nondiagonal term for
D̄sΞ0

c to D̄Ωc transition,
ffiffiffi
2

p
, also coincides (there is a

misprint in the sign of this term in Table I of [22]) but the
transitions from D̄sΞ0

c and D̄Ωc to ηcΞ are a factor −1=
ffiffiffi
3

p
smaller in our case. This difference is important, because
the only decay channel for the states that we obtain is ηcΞ,
which means that we expect to obtain much smaller widths
than in Ref. [22]. These features were already observed
in the study of the Ωc states in [29,53]. The large terms in
the matrix elements (the 1 and the

ffiffiffi
2

p
) come from the

exchange of light vectors. In this case, the heavy quarks are
spectators, and one is projecting SUð4Þ to SUð3Þ, and the
matrix elements obtained are the same in both schemes.
Yet, when it comes to the exchange of heavy vectors, our
approach and the use of SUð4Þ give different results, and
that was the case in [29,53], as well as in the present study.
These differences do not matter much in the evaluation of
the masses of the states, but they are relevant in the width
which goes trough terms involving the exchange of heavy
vectors in the present case.
Within the framework of the coupled channels unitary

approach, exact unitarity can be incorporated into the

meson-baryon interaction using as kernels the tree level
potentials of Eq. (5). To this aim, we use the Bethe-Salpeter
equation, which is analogous to the N=D [33,34] or
IAM [35,36] formalisms,

T ¼ ð1 − VGÞ−1V; ð8Þ

where we have factored out a global ϵ⃗i · ϵ⃗j term for the
channels involving a vector meson in the external states

and after neglecting factors of order q2

M2
V
in internal vector

propagators. In Eq. (8), G represents a diagonal matrix
containing the meson-baryon loop functions,

Glð
ffiffiffi
s

p Þ ¼
Z
q<Λ

d3q
ð2πÞ3

1

2ωlðqÞ
Ml

ElðqÞ
·

1ffiffiffi
s

p
− ωlðqÞ − Elðq⃗Þ þ iϵ

; ð9Þ

where q ¼ jq⃗j, ωlðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ q2
q

and El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

l þ q2
q

with ml and Ml representing the mass of the meson and
baryon in the loop, respectively. To control the logarithmic
divergence of the loop function, regularization is necessary.
We opt for the cutoff method, bounding the three-
momentum integral to a value Λ ¼ 600 MeV, as used
in Ref. [39] in the generation of Pcs pentaquarks with
strangeness ‐1 and similar to the value of 650 MeV used in
Ref. [29] in the generation of molecular Ωc states. The
value of this cutoff is the only free parameter of our model,
but it has a natural size linked to the dynamical scale
integrated out in the model, such as the mass of the lighter
vector mesons exchanged in the t-channel diagram. It is,
hence, the main source of uncertainty of the results. We
estimate the uncertainty from this source by considering
also the value Λ ¼ 800 MeV used in Ref. [22], since it
would be a measure of the sensitivity of our results on the
regularization parameter. The loop functions can also be
regularized by means of dimensional regularization but,
although both regularization techniques typically yield
equivalent outcomes, several works [39,47,54,55] have
shown that in the heavy flavor domain the cutoff
approach proves more suitable. Indeed, and in addition
to the naturalness of the regularization scale discussed
above, the cutoff method respects heavy quark symmetry
since the three-momentum cutoff value remains indepen-
dent of the heavy flavor [56,57].
Should the meson-baryon interactions investigated in

this study give rise to pentaquark resonances, they would
manifest as poles in the Tij scattering amplitudes on the
second Riemann sheet. If a pole, at

ffiffiffiffiffi
sR

p
, is not very far

from the real axis, it can be associated to the mass, M, and
width, Γ, of a resonance as ffiffiffiffiffi

sR
p ¼ M − iΓ=2. On the other

hand, the couplings of the generated resonance to a given
channel, i, can be evaluated from the residue at the pole of

TABLE III. Cij coefficients of the PB� interaction in the c̄csss
sector.

ηcΩ D̄sΩ�
c

ηcΩ 0 1
m2

D�
s

D̄sΩ�
c

2
m2

ϕ
− 1

m2
J=Ψ
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the amplitude, since close to the pole the dominant term of
the Laurent expansion of the amplitude is

Tij ¼
gigjffiffiffi
s

p
− ffiffiffiffiffi

sR
p : ð10Þ

In addition, we can evaluate the compositeness, Xi, of a
generated resonance for a given channel, i, which repre-
sents the weight of a molecular component in the wave
function of the state, as [58–60]

Xi ¼ −g2i
∂Gi

∂
ffiffiffi
s

p
���� ffiffi

s
p : ð11Þ

Higher compositeness would suggest a more molecular
nature for the resonance, while lower values may indicate a
more compact structure.

III. RESULTS

The results of our analysis for the mass, M, width, Γ,
couplings, gi, and the compositeness jXij for different

channels are presented in Table IV. The upper values in the
numerical cells correspond to the calculations with a cutoff
Λ ¼ 600 MeV, while the lower values represent the results
for Λ ¼ 800 MeV. As discussed in the formalism section,
the difference between these two numbers reflects the
sensitivity of the results to the regularization parameter
and can be taken as an estimate of the uncertainty of our
calculation. However, by analogy to the work done with the
Pcs states [39], we favor the result with Λ ¼ 600 MeV. For
the strangeness S ¼ −3 channels, we do not find poles, and
therefore, there are no results to be shown in the table
for them.
Going into the details of the results, for the PB channel

with flavor content c̄cssn (that is, JP¼ 1
2
−, isospin I ¼ 1=2,

S ¼ −2), we predict a resonance with a mass in the range
M ¼ 4479–4535 MeV and width Γ ¼ 9–12 MeV, consid-
ering the uncertainty from the cutoff dependence. It is
worth comparing this result with the value obtained in
Ref. [22], M ¼ 4493 MeV and Γ ¼ 74 MeV. While the
mass aligns with our results within the uncertainty, our
result for the width is significantly smaller. This discrep-
ancy mainly stems from the fact that there is roughly a

TABLE IV. Results for the mass,M, width, Γ, couplings, gi, and the compositeness jXij for the different channels.
The upper number in the numerical cells represent the value obtained with the cutoff Λ ¼ 600 MeV and the lower
one using Λ ¼ 800 MeV. (Masses and widths in MeV).

Flavor IðJPÞ M Γ gi jgij jXij
PB c̄cssn 1

2
ð1
2
−Þ 4535 9 ηcΞ 0.39þ i0.01 0.39 0.01

4479 12 0.64 − i0.00 0.64 0.03

D̄sΞ0
c −1.47 − i0.16 1.48 0.44

−2.56 − i0.07 2.56 0.38

D̄Ωc 2.12þ i0.20 2.13 0.53
3.42þ i0.09 3.42 0.59

VB c̄cssn 1
2
ð1
2
−; 3

2
−Þ 4675 10 J=ΨΞ 0.41þ i0.01 0.41 0.01

4617 12 0.66 − i0.00 0.66 0.04

D̄�
sΞ0

c −1.59 − i0.17 1.60 0.42
−2.70 − i0.08 2.70 0.38

D̄�Ωc 2.25þ i0.21 2.26 0.56
3.58þ i0.11 3.58 0.60

PB� c̄cssn 1
2
ð3
2
−Þ 4602 0 ηcΞ� 0.02þ i0.00 0.02 0.04

4548 0 0.01þ i0.00 0.01 0.00

D̄sΞ�
c −1.42 − i0.00 1.42 0.45

−2.48 − i0.00 2.48 0.38

D̄Ω�
c 2.13 − i0.00 2.13 0.49

3.37 − i0.00 3.37 0.57

VB� c̄cssn 1
2
ð1
2
−; 3

2
−; 5

2
−Þ 4743 0 J=ΨΞ� 0.02þ i0.00 0.02 0.02

4686 0 0.00þ i0.00 0.00 0.00

D̄�
sΞ�

c −1.56 − i0.00 1.56 0.43
−2.63 − i0.00 2.63 0.38

D̄�Ω�
c 2.27 − i0.00 2.27 0.52

3.54 − i0.00 3.54 0.58
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−1=
ffiffiffi
3

p
factor difference in the ηcΞ couplings to the other

channels compared to [22] (first row in Table I), from
where roughly a factor of 3 reduction in the width would
result. Indeed, as discussed in the formalism section, this
channel is responsible for the finite imaginary part of the
amplitude. This −1=

ffiffiffi
3

p
factor comes from the different

formalism used, as was discussed above. A similar
comparison and discussion can be made for the VB
channel. In our analysis, we find, for the dynamically
generated state, a mass range of M ¼ 4617–4675 MeV
and Γ ¼ 10–12 MeV, degenerate in spin ð1

2
−; 3

2
−Þ, and in

Ref. [22] a value of M ¼ 4633 MeV and Γ ¼ 80 MeV
was obtained.
We can also see from the values of the coupling strengths

to the different channels, that the state generated in the PB
channel couples dominantly to D̄Ωc. This channel, along
with D̄sΞ0

c, has a significant weight (compositeness) in the
wave function of the generated resonance. Consequently,
the resulting state can predominantly be characterized as a
molecular state of the D̄Ωc, D̄sΞ0

c components. An analo-
gous conclusion can be drawn for the VB channel.
We also show, in Table IV, the resulting values of jXij.

Actually, Xi is complex but the imaginary part is negligible
in the present case. This still allows us to interpret jXij as
probabilities, consistently with the interpretation of the
complex Xi in the case of open channels discussed in detail
in Ref. [60]. Note that the sum of probabilities for the
closed channels in Table IV is of the order of 0.94–1.00 in
all cases, indicating a clean molecular structure.
For the channels involving JP ¼ 3

2
þ baryons, not con-

sidered in [22], namely PB� and VB�, our analysis predicts
two exceedingly narrow resonances with a flavor c̄cssn
and IðJPÞ ¼ 1

2
ð3
2
−Þ with a mass M ¼ 4548–4602 MeV for

the PB� state and M ¼ 4686–4743 MeV for the VB� with
IðJPÞ ¼ 1

2
ð1
2
−; 3

2
−; 5

2
−Þ. In these cases, also the strongest

coupling and the dominant molecular weight correspond to
the heaviest channel, D̄Ω�

c and D̄�Ω�
c, respectively. Note

that the coupling strengths of these states to the lowest mass
channels, ηcΞ� or J=ΨΞ�, are minimal, resulting in a
negligibly small width for the generated states. Another
interesting observation is that the poles are consistently
located at a similar distance below the threshold of the
dominant channel, amounting to approximately 25 MeV
for Λ ¼ 600 and 85 MeV for Λ ¼ 800.
Regarding the hidden-charm S ¼ −3 channel, no poles

are found of the unitarized scattering amplitudes, indicating
a lack of resonant or bound state behavior in those
channels. This can be understood within our model by
taking into account the specific coefficients in Table III, all
of which are positive. For these channels, the V matrix
takes the form,

V ¼
�

0 V12

V12 V22

�
: ð12Þ

While it is true that all elements in the V matrix are
positive, this does not necessarily rule out the possibility of
a global attraction in the whole couple-channel dynamics.
Attraction could still arise if the nondiagonal term of the
potential were sufficiently large. However, in the present
analysis, this is not the case. Indeed, in order to have a pole
of the T matrix in Eq. (8), we need that

detð1 − VGÞ ¼ 0 ⇒ 1 − V22G2 − V2
12G1G2 ¼ 0: ð13Þ

Note that G2 < 0 and V22 > 0 in this case, which implies
−V22G2 > 0 and cannot contribute to cancel the term “1”.
However, there is still a possibility of finding a solution to
Eq. (13) if V2

12G1G2, which is > 0, is big enough to cancel
the remaining 1 − V22G2 term. However, we have checked
that in the present case V2

12G1G2 is about 2 orders of
magnitude smaller than V22G2. Equivalently, V22 þ V2

12G1

can be interpreted as an effective potential for the channel 2,
which can only be negative (attractive) if V12 is sufficiently
large, (bear in mind that the real parts of the loop functions
are negative). This negative conclusion concerning S ¼ −3
states contrasts with the one of Ref. [27], where some states
are obtained in particular cases using relatively large
regulator cutoffs.
The previous argument underscores the intricate nonlinear

dynamics inherent in the unitarization process. Another
illustration of the nontrivial behavior of the unitarization
was previously emphasized in Ref. [22] concerning the
S ¼ −2 channels. Indeed, for these channels, attraction
primarily originates from the strong nondiagonal term C23

in Tables I or II, without which the C33 term would lack
sufficient strength to generate a pole by itself. The impor-
tance of coupled channels to generate states in the S ¼ −2
sector was also emphasized in Ref. [23]. If we consider the
analogue of Eq. (13), neglecting the weak ηcΞ channel, we
encounter the pole condition 1 − ðV33 þ V2

23G2ÞG3 ¼ 0. In
this case, V33 is attractive but too small to cancel out the term
“1” by itself, requiring the contribution of V2

23G2 to provide
enough attraction to get a solution of Eq. (13) and con-
sequently, a pole in the T matrix.

IV. CONCLUSIONS

Motivated by the experimental discovery of a pentaquark
with hidden charm and single strangeness, Pcs, we have
studied theoretically the possible existence of states with
hidden charm and double or triple strangeness, Pcss and
Pcsss, respectively. To this end, we evaluate the meson-
baryon scattering amplitudes, with the mesons being
pseudoscalars or vectors and the baryons having JP ¼
1=2þ or 3=2þ, with total flavor c̄cssn and c̄csss. Our
approach implements the techniques of the chiral unitary
approach to resum the coupled channels multiple final
state interaction, inherent to the unitarization procedure,
starting from kernel potentials based on t-channel vector
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meson exchange. The required VPP and VVV vertices are
obtained from suitable Lagrangians provided by the local
hidden gauge symmetry approach, properly extended to the
charm sector in a way validated in numerous previous
studies. For the BBV and B�B�V vertices, we use a
simplified model that capitalizes on the symmetry of the
spin and flavor wave function of the intervening hadrons,
which is notably simpler, albeit accurate, than previous far
more complicated Lagrangians used in the literature.
By searching for poles in unphysical Riemann sheets of

the unitarized scattering amplitudes, we find four distinct
poles for the different channels considered in the double-
strange sector, which can be associated to four different
pentaquarklike states of c̄cssn flavor, Pcss. However, for
the triple-strange channels, we discuss that the interaction is
not strong enough to generate poles.
It is important to emphasize that the emergence of the

poles is solely a result of the intricate nonlinear dynamics
inherent in the unitarization in coupled channels via the
Bethe-Salpeter equation. These poles manifest themselves
without the necessity of incorporating them as explicit
degrees of freedom, relying solely on the input of tree-level
potentials. While there are approximations done in the
approach, we have tested that they are under control, and
the remaining freedom of the model, and thus, the main

source of uncertainty, is the value of the three-momentum
cutoff which acts as the regulator of the logarithmically
divergent meson-baryon loop function inherent to the
unitarization formalism.
Despite the inherent uncertainty, the conclusion drawn

from the current study remains robust and well-founded:
these pentaquark-type double-strange hidden-charm states
are practically compelled to exist, and it ought to encourage
experimental efforts aimed at their discovery.
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