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The weak radiative decay of D0 → Vγ with V ¼ K̄0, and ϕ, ρ0, and ω, is systematically studied in the
vector meson dominance model. It allows us to distinguish the short-distance mechanisms which can be
described by the tree-level transitions in the nonrelativistic constituent quark model, and the long-distance
mechanisms which are related to the final-state interactions (FSIs). We find that the FSI effects play a
crucial role in D0 → Vγ and the SU(3) flavor symmetry can provide a natural constraint on the relative
phase between the short and long-distance transition amplitudes. Our analysis suggests that the D-meson
weak radiative decays can serve as a good case for investigating the nonperturbative QCD mechanisms at
the charm quark mass region.
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I. INTRODUCTION

The charm quark production and decay has been an ideal
place for probing the nonperturbative QCD effects due to
the reason that the charm quark mass is not heavy enough.
In recent years the accumulation of large D-meson samples
allows more precise measurements of its exclusive decays
and also access more channels which have not been
measured before. One of those interesting processes is
the weak radiative decay of D0 → Vγ with V denoting the
light vector mesons K̄�0, and ϕ, ρ0, ω. These four exclusive
decays are either Cabibbo-favored (D0 → K̄�0γ) or singly
Cabibbo-suppressed (D0 → ρ0γ=ωγ=ϕγ).
It is interesting to note that the D-meson weak decays

would be very different from B. The B-meson weak
radiative decays has been studied in the framework of
an effective Hamiltonian approach [1,2], where the
approximation of free-quark transition, namely the tran-
sition amplitude is dominated by the approximately free
quark decay, e.g., b → sγ, is well-confirmed. In contrast,
the dominance of the free-quark transition picture cannot be
justified forD → Vγ due to the relatively light charm quark
mass. As a natural consequence, nonperturbative contri-
butions may become important in D → Vγ. It was pointed
out in Ref. [3] that the naive factorization hypothesis

actually breaks down in the D-meson decay and the decay
amplitudes appear to be dominated by nonfactorizable
dynamics, e.g., through annihilation topologies, which
are particularly sensitive to long-distance hadronic con-
tributions. A direct confirmation of such effects should
provide crucial informations about the decay mechanisms.
In experiment, the decay of D0 → ωγ was first searched

by CLEO-c in Ref. [4] but with only an upper limit set, i.e.,
BRðD0 → ωγÞ < 2.4 × 10−4. The two decay channels, ϕγ
and K̄�0γ, were measured by the BABAR Collaboration in
2008 [5] with BRðD0 → ϕγÞ ¼ ð2.78� 0.30� 0.27Þ×10−5

and BRðD0 → K̄�0γÞ ¼ ð3.28� 0.20� 0.27Þ × 10−4. The
Belle Collaboration confirmed the BABAR result for
D0→ϕγ [6]. However, the branching ratio of D0 → K̄�0γ
measuredby theBelleCollaboration, i.e., BRðD0 → K̄�0γÞ ¼
ð4.66� 0.21� 0.21Þ × 10−4, turns out to be significantly
different from that from BABAR. Apart from the ϕγ and K̄�0γ
channels, Belle also measured the decay of D0 → ρ0γ, i.e.,
BRðD0 → ρ0γÞ ¼ ð1.77� 0.30� 0.07Þ × 10−5 [6], which
is the same order of magnitude as D0 → ϕγ. This may be
reasonable since both processes are color-suppressed and
singly Cabibbo-suppressed.
Theoretical studies of the D0 → Vγ can be found in the

literature. In Ref. [7] a modified quark model was applied
to estimate the decay of D0 → K̄�0γ which had under-
estimated the data by about a factor of 5. In Ref. [8] an
effective Lagrangian approach was developed for dealing
with the weak radiative decays of heavy flavor hadron
involving the bottom quark. Its extension to D0 → K̄�0γ
also yields an underestimated result by about a factor
of 4. In Ref. [9] the decay of D0 → K̄�0γ was studied by
combining the heavy quark effective field theory and chiral
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Lagrangian approach. Although the theoretical prediction
was consistent with the later measurement, it had large
uncertainties which covered a range larger than the exper-
imental value with errors. In Ref. [10] a detailed analysis of
the short-distance contributions to D0 → Vγ via the free
c → uγ transition was presented. It was also discussed that
the long-distance contributions via the pole terms and
VMD should be non-negligible. Similar approaches based
on the heavy quark effective theory and chiral Lagrangians
was presented in Refs. [11–13], where the long-distance
contributions are through the pole terms and vector meson
dominance (VMD). In Ref. [14] results for D0 → K̄�0γ and
ρ0γ by QCD sum rules were presented. It is interesting to
see that in all these approaches the predicted results are
systematically lower than the experimental data by a couple
of times up to nearly one order of magnitude. In Ref. [15] a
covariant light cone approach was adopted for calculating
the D → V;A; T form factors among which the D → V
transition can contribute to the weak radiative decay of
D → Vγ. Again, it shows that the long-distance contribu-
tions from the VMD are dominant over the short-distance
c → uγ dynamics. Meanwhile, the VMD contributions are
still insufficient for accounting for the experimental data.
In thisworkwe aremotivated tomake a combined analysis

of the Cabibbo-favored and singly Cabibbo-suppressed
decays of D → Vγ. Different from other approaches in the
literature [11–13], where the heavy-quark effective
Lagrangians are employed to describe the weak couplings
for D0 → VV, we calculate the couplings of the flavor-
neutral vector meson decays of D0 → VV in the nonrela-
tivistic constituent quark model (NRCQM). It means that the
breaking of the SU(3) flavor symmetry will arise partially
from the quark model wave functions due to the quark mass
difference. Despite the tree-level contributions, we argue that
the large branching ratios (BRs) of some of those inter-
mediate hadronic two-body decays, e.g.,D → VV, VP, and
PP, etc., imply that the final-state interactions (FSIs) via
rescatterings should be important. Note that the mass thresh-
old of K�þK�−, which involves the direct emission of K�þ

and is sizeable, is almost degeneratewith that ofϕρ0 andϕω.
As being investigated recently in Ref. [16], the FSIs play a
crucial role in the understanding of the puzzling polarization
results in D → VV. We will show in this work that this
mechanism also plays a crucial role in the description of

D0 → Vγ and provides a natural source for filling the deficit
between the theoretical calculations [11–13] and experimen-
tal measurements [4–6].
As follows, we first introduce the formalism in Sec. II.

The numerical results and discussions are presented in
Sec. III, and a brief summary is given in the end.

II. FORMALISM

The most general form of the S-matrix element for a
generic radiative weak decay of kind DðpÞ → Vðk1; ϵ1Þ þ
γðk2; ϵ2Þ, consistent with gauge invariance, is

S ¼ I − ið2πÞ4δ4ðp − k1 − k2ÞðMðPCÞ þMðPVÞÞ; ð1Þ

where

MðPCÞ ¼ iAðPCÞϵαβμνkα1p
βε�μ1 ε�ν2 ; ð2Þ

and

MðPVÞ ¼ AðPVÞðpμpν − gμνk2 · pÞε�μ1 ε�ν2 ; ð3Þ

where p, k1, and k2 are the four-momenta of the initial and
the final mesons and the photon, respectively. εμ1 and ε

ν
2 are

the vector-meson and the photon polarization vectors.
MðPCÞ and MðPVÞ are the parity-conserving (PC) and
parity-violating (PV) amplitudes. The parity-conserving
amplitude involves P wave in the final state while the
parity-violating amplitude involves S- and D-waves. From
Eqs. (1)–(3), the decay rate is calculated to be

ΓðD → VγÞ ¼ jk2j3
4π

ðjAðPCÞj2 þ jAðPVÞj2Þ; ð4Þ

where jk2j ¼ ðm2
D −m2

VÞ=2mD is the decay momentum in
the rest frame of D-meson.
At the tree level there are two types of two-body radiative

decay diagrams at the quark level as illustrated in Fig. 1.
The first corresponds to the internal W-emission process
c → q1q̄2q, followed by q̄2q → γ (or q1ū → γ) which is
depicted in Fig. 1(a). The second one corresponds to the
internal conversion processes cū → q1q̄2 with a photon
attached to any of the four quark (antiquark) lines which are
depicted in the remaining diagrams, Fig. 1(b)–(e). At the

FIG. 1. Schematic diagrams for the process D0 → Vγ at the quark level.
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hadronic level, these four processes give rise to the set of
contributions as shown in Figs. 2(a)–2(c). These are
actually the VMD contributions and pole terms considered
in some of those previous studies [10–13], but as discussed
earlier, these contributions are systematically smaller than
the experimental data and insufficient for accounting for the
observed results.
A possible solution is the FSIs via the intermediate

meson scatterings taking into account the large BRs for
some of the hadronic two-body decays which can rescatter
into VV. Then, in the framework of the VMD model,
contributions from such a mechanism to Vγ can be
included. It should be stressed that although the FSI
contributions are loop corrections, their effects may not
be small given that theD0 → VV couplings are large. To be
more specific and practical, we identify the Cabibbo-
favored decay channels or those processes involving the
color-allowed direct emission (DE) transitions as the
leading intermediate processes which can contribute to
Vγ via the triangle diagram of Fig. 2(d).
As follows, we first extract the tree-level amplitudes

which contain the contributions from the processes of
Figs. 2(a)–2(c), and then extract the amplitudes of the
FSIs via the triangle diagram of Fig. 2(d).

A. Tree-level amplitudes in the VMD model

Note that the decay of D0 → Vγ only involves the color-
suppressed process. The tree-level amplitudes include two
parts. One is the internal W-emission process (CS-process)
[Fig. 2(a)], and the other ones are the internal conversion
via the W exchange, where the pole contributions can be
identified [Figs. 2(b) and 2(c)].

1. CS processes

We describe briefly the formalism for extracting the
amplitude for the internalW-emission process (CS process)
of D0 → VV 0, which has been constructed in Ref. [16].
Then, the flavor neutral vector meson (we note it as V 0) will
propagate as a virtual particle and convert into a photon in
the VMD model. The CS process is essentially the 1 → 3
flavor-changing emission process at the quark level,
accompanied by the color suppression of quark-antiquark
hadronization into final mesons. The corresponding effec-

tive weak Hamiltonian operators ĤðPÞ
W;1→3 can reduce to the

form of four-fermion interaction in the nonrelativistic
approximation, and the detailed expressions which take
different forms for PC or PV transitions have been derived
in Ref. [17]. The corresponding weak-transition matrix
element which can be calculated at the quark level are
expressed as follows:

iMðPÞ
CS ¼ hV1ðP1; J1; J1zÞV2ðP2; J2; J2zÞjĤðPÞ

W;1→3j
×D0ðPD; Ji; JizÞi; ð5Þ

where P1 ¼ p1 þ p4 and P2 ¼ p0
2 þ p3. The above for-

mula contains spatial wave function integrals for which the
NRCQM wave functions [18–20] are adopted. Moreover,
the weak coupling strengths containing the polarization

information, i.e., gðPÞTWðCSÞ and gðPÞLWðCSÞ, are defined by match-

ing the transition matrix element of the corresponding spin
projection states at the quark level to the hadron-level
effective coupling, and the detailed derivation can be found
in the Appendix E,

gðPCÞTWðCSÞ ¼
hV1ðP1; 1;�1ÞV2ðP2; 1;∓1ÞjĤðPCÞ

W;1→3jD0ðPD; 0; 0Þi
mD0 jp⃗jVcqVuq

;

gðPVÞTWðCSÞ ¼
hV1ðP1; 1;�1ÞV2ðP2; 1;∓1ÞjĤðPVÞ

W;1→3jD0ðPD; 0; 0Þi
VcqVuq

;

gðPVÞLWðCSÞ ¼
hV1ðP1; 1; 0ÞV2ðP2; 1; 0ÞjĤðPVÞ

W;1→3jD0ðPD; 0; 0Þi
jp⃗j2þEV1

EV2
mV1

mV2
VcqVuq

: ð6Þ

FIG. 2. Schematic diagrams for the process D0 → Vγ in the VMD model at the hadronic level. (a) stands for the tree-level transitions,
(b) and (c) denote two types of pole-term contributions: type-I (b) and type-II (c), (d) stands for the hadronic triangle loop transitions.
Red squares, blue dots, and black dots represent weak, strong, and electromagnetic vertices, respectively.
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It should be noted that the mass differences within those
VV channels will lead to different values for the CS

couplings gðPÞT=LWðCSÞ after taking the wave function convolu-

tions. Since the NRCQM wave functions are constituent-
quark-mass dependent, it means that after the convolutions
the extracted couplings will contain additional contribu-
tions to the SU(3) flavor symmetry breaking. In Table I the

CS couplings gðPÞT=LWðCSÞ of the CF (D0 → K̄�0ρ0=K̄�0ω) and
SCS (D0 → ϕρ0=ϕω and ρ0ρ0=ωω) decay channels calcu-
lated in the NRCQM are listed. Since the outgoing photons

are only transversely polarized, only gðPÞTWðCSÞ contributes.
The amplitude of the tree diagram for the PC and PV

transitions shown in Fig. 2(a) are defined as

iMðPCÞ
TðaÞ ¼ igðPCÞDVγ ϵαβδλp

α
γp

β
Vε

δ
γε

λ
V;

iMðPVÞ
TðaÞ ¼ −igðPVÞDVγ ε

μ
γ εVμ; ð7Þ

where the tree-level effective coupling gðPÞDVγ can be
expressed as

gðPÞDVγ ¼ −igðPÞDVV 0
em2

V 0

fV 0
GV 0 ; ð8Þ

where (P) in the above equation can be either PC or PV, fV 0

is the decay constant of vector meson V 0, and it can be
extracted using the data for V 0 → eþe− [21]. We collect the
values for e=fV 0 in Table II for convenience. In the above
equation GV 0 is the propagator of the intermediate vector
meson V 0,

GV 0 ≡ −i
p2
γ −m2

V 0 þ imV 0ΓV 0
¼ −i

−m2
V 0 þ imV 0ΓV 0

: ð9Þ

The tree-level amplitudes forD0→Vγ (V ¼ K̄�0;ϕ;ρ0;ω)
can be parametrized in theVMDmodel as shown inTable III.
Note that the vector meson decay constant fV 0 in Table III
has a negative sign for ϕ, and is positive for ρ0 and ω which
can be explicitly determined in the quark model. It suggests
that the tree-level amplitude of D0 → ωγ will be relatively
suppressed due to the cancellation between the two terms in
Table III. In contrast, the two terms in Table III forD0 → ρ0γ
will have a constructive interference.

2. Pole terms

The pole contributions to charm meson radiative weak
decays are shown in Figs. 2(b) and 2(c). At the quark
level, they correspond to the internal conversion diagrams
cū → q1q̄2 with a photon attached to any of the four quark

TABLE I. The weak couplings gðPÞT=LWðCSÞ in units of 10−6 for the decays of D0 → VV including the PC and PV
transitions, which is estimated by calculating the CS process in the NRCQM and the uncertainty comes from the
model parameters (10%).

Decay channels D0 → K̄�0ρ0=K̄�0ω D0 → ϕρ0=ϕω D0 → ρ0ρ0=ωω

gðPCÞTWðCSÞ [GeV
−1] 1.47� 0.31 1.63� 0.34 1.31� 0.35

gðPVÞTWðCSÞ [GeV]
1.71� 0.29 1.90� 0.32 1.53� 0.33

gðPVÞLWðCSÞ [GeV]
1.15� 0.19 1.64� 0.28 0.81� 0.02

TABLE II. Vector meson decay constants determined by V 0 → eþe−. The data are taken from the PDG [21].

Channel Total width of V 0 BR ðV 0 → eþe−Þ e=fV 0 ð×10−2Þ
ϕ → eþe− 4.25 MeV ð2.98� 0.03Þ × 10−4 −2.26
ρ0 → eþe− 147.4 MeV ð4.72� 0.05Þ × 10−5 6.07
ω → eþe− 8.68 MeV ð7.38� 0.22Þ × 10−5 1.83
J=ψ → eþe− 92.6 keV ð5.97� 0.032Þ% 2.71

TABLE III. The tree-level amplitudes of all the Cabibbo-
favored and singly Cabibbo-suppressed radiative weak decay
channels for D0 → Vγ (V ¼ K̄�0;ϕ; ρ0;ω). (Note that there is no
CS process in D0 → ρ0ω.).

Modes Tree amplitudes [Fig. 2(a)]

K̄�0γ 1ffiffi
2

p gðPÞWðCSÞVcsVud

em2

ρ0

fρ0
Gρ0 þ 1ffiffi

2
p gðPÞWðCSÞVcsVud

em2
ω

fω
Gω

ϕγ 1ffiffi
2

p gðPÞWðCSÞVcsVus

em2

ρ0

f
ρ0

Gρ0 þ 1ffiffi
2

p gðPÞWðCSÞVcsVus
em2

ω
fω

Gω

ρ0γ − 1
2
gðPÞWðCSÞVcdVud

em2

ρ0

f
ρ0

Gρ0 þ 1ffiffi
2

p gðPÞWðCSÞVcsVus
em2

ϕ

fϕ
Gϕ

ωγ 1
2
gðPÞWðCSÞVcdVud

em2
ω

fω
Gω þ 1ffiffi

2
p gðPÞWðCSÞVcsVus

em2
ϕ

fϕ
Gϕ
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lines illustrated by Figs. 1(b)–1(e). At the hadronic level,
these give rise to the contributions which are part of the
long-distance mechanisms. The transition amplitudes are
denoted as type-I and type-II, respectively, depending on
that the photon emission occurs either before or after the
weak transition. It should be stressed that in both cases, all
possible spin-one (JP ¼ 1�) and spin-zero (JP ¼ 0�)
intermediate virtual particles can contribute, respectively.
Because of this, a reliable calculation of the pole terms is
nontrivial. In particular, at the energy region of the charmed
meson, such pole terms may become significant and cannot
be neglected. It has been shown in Ref. [16] that the internal
conversion processes can play a crucial role in some of

those D0 → VV channels. This pushes us to include these
contributions and make efforts on estimating their magni-
tude with some accessible constraints.

3. Type-I pole terms

Since for the type-I pole amplitude, the photon emission
occurs before the weak transition. Hence, the intermediate
state can be either a vector meson for the parity-conserving
case or an axial vector meson for the parity-violating one.
This intermediate state will propagate virtually until it
weakly decays into a vector meson V. The type-I pole
amplitude is then given by

MðPÞ
I ðD → VγÞ ¼

X
n

hVjHðPÞ
W;2→2

i
m2

V −m2
D�

n
þ imD�

n
ΓD�

n

jD�
nihD�

njHEMjDi; ð10Þ

where HðPÞ
W;2→2 is the weak effective Hamiltonian for the 2 → 2 internal conversion process.

(i) PC transition amplitude;

iMðPCÞ
I ¼ ðiMD→V 0D� ÞGV 0 ðiMV 0γÞGD�ðiMD�VÞ

¼ ðigDD�V 0ϵαβμλipα
V 0ip

β
D� Þ

−i
�
gμν −

pμ

V0p
ν
V0

p2

V0

�
p2
V 0 −m2

V 0 þ imV 0ΓV 0

�
iem2

V 0

fV 0
ενγ

� −i
�
gλδ − pλ

D�pδ
D�

p2
D�

�
p2
D� −m2

D� þ imD�ΓD�
ðigðPCÞD�V ε

δ
VÞ

× δðpV 0 − pγÞδðpD� − pVÞ

¼ iϵαβμλpα
γp

β
Vε

μ
γ ελV

�
gDD�V 0

em2
V 0

fV 0

−i
p2
γ −m2

V 0 þ imV 0ΓV 0
gðPCÞD�V

−i
m2

V −m2
D� þ imD�ΓD�

�

¼ igðPCÞDVγ ϵαβμλp
α
γp

β
Vε

μ
γ ελV; ð11Þ

where gðPCÞDVγ ¼ gDD�ð1−ÞV 0
em2

V0
fV0

GV 0gðPCÞD�VGV;D� , GV ≡ −i
p2
γ−m2

VþimVΓV
¼ −i

−m2
VþimVΓV

, and GV;V 0 ≡ −i
m2

V−m
2

V0þimV0ΓV0
.

(ii) PV transition amplitude;

iMððPVÞÞ
I ¼ ðiMD→V 0D� ÞGV 0 ðiMV 0γÞGD�ðiMD�VÞ

¼ ðigDD�V 0 Þ
−i
�
gμν −

pμ

V0p
ν
V0

p2

V0

�
p2
V 0 −m2

V 0 þ imV 0ΓV 0

�
iem2

V 0

fV 0
ενγ

� −i
�
gμδ − pμ

D�pδ
D�

p2
D�

�
p2
D� −m2

D� þ imD�ΓD�
ðigðPVÞD�V ε

δ
VÞ

× δðpV 0 − pγÞδðpD� − pVÞ

¼ ðigDD�V 0 Þ −i
p2
γ −m2

V 0 þ imV 0ΓV 0

�
iem2

V 0

fV 0
εμγ

�
−i

m2
V −m2

D� þ imD�ΓD�
ðigðPVÞD�V εVμÞ

¼ −igðPVÞDVγ ε
μ
γ εVμ; ð12Þ

where pγ · εγ ¼ pV · εV ¼ 0, gðPVÞDVγ ¼ gDD�ð1þÞV 0
em2

V0
fV0

GV 0gðPVÞD�VGV;D� , and functions GV 0 and GV;D� are the same as

the above.
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To estimate the coupling strength gDD�ð1−ÞV , the follow-
ing Lagrangians are invoked,

LVDD̄� ¼ gVDD̄�ϵαβμν∂
αVβ

∂
μD̄�νDþ H:c:;

LψDD̄� ¼ gψDD̄�ϵαβμν∂
αψβ

∂
μD̄�νDþ H:c:; ð13Þ

where V is the light vector meson field. In the chiral
and heavy quark limits, the following relations can be
obtained [22,23]:

gVDD̄� ¼
ffiffiffi
2

p
λgV; gV ¼ mρ

fπ
;

gJ=ψDD̄� ¼ gJ=ψDD̄

M̃D
; M̃D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDmD�
p

; ð14Þ

where λ is commonly taken as λ ¼ 0.56 GeV−1 and fπ ¼
132 MeV is the pion decay constant. The coupling gJ=ψDD̄

can be extracted by the VMD model and its value is
gJ=ψDD̄ ¼ 7.44 [24].
Unfortunately, we know little about the property of the

D0 couplings to the axial-vector meson D1 and a neutral
vector meson. Therefore, we do not consider the parity-
violating contributions of the type-I amplitudes here. But
we will put an estimate of the uncertainties from the PV
pole terms.

4. Type-II pole terms

For the type-II pole terms, the intermediate state is either
a scalar for the PV transition or a pseudoscalar meson for
the PC one. In the VMD scenario the intermediate state
will propagate virtually until it decays to a pair of vector
mesons. Then, the flavor-neutral one will transit into a
photon. The amplitude can be written in a similar way as
the type-I amplitude,

MðPÞ
II ðD → VγÞ ¼

X
n

hVjHEM
i

m2
D −m2

Pn
þ imPn

ΓPn

jPnihPnjHðPÞ
W;2→2jDi: ð15Þ

(i) PC transition amplitude;

iMðPCÞ
II ¼ ðiMDPÞGPðiMP→VV 0 ÞGV 0 ðiMV 0γÞ

¼ ðigðPCÞDP Þ i
p2
P −m2

P þ imPΓP
ðigPVV 0ϵαβμδipα

V 0ip
β
Vε

δ
VÞ

−i
�
gμν −

pμ

V0p
ν
V0

p2

V0

�
p2
V 0 −m2

V 0 þ imV 0ΓV 0

�
iem2

V 0

fV 0
ενγ

�

× δðpV 0 − pγÞδðpD − pPÞ

¼ iϵαβμδpα
γpδ

Vε
μ
γ εδV

�
gðPCÞDP

i
m2

D −m2
P þ imPΓP

gPVV 0
−i

p2
γ −m2

V 0 þ imV 0ΓV 0

em2
V 0

fV 0

�

¼ igðPCÞDVγ ϵαβμδp
α
γpδ

Vε
μ
γ εδV; ð16Þ

where gðPCÞDVγ ¼ gðPCÞDP GD;PgPVV 0GV 0
em2

V0
fV0

.

(ii) PV transition amplitude;

iMðPVÞ
II ðD→ VγÞ ¼ ðiMDSÞGSðiMS→VV 0 ÞGV 0 ðiMV 0γÞ

¼ ðigðPVÞDS Þ i
p2
S −m2

S þ imSΓS
ðigSVV 0εμVÞ

−i
�
gμν −

pμ

V0p
ν
V0

p2

V0

�
p2
V 0 −m2

V 0 þ imV 0ΓV 0

�
iem2

V 0

fV 0
ενγ

�

× δðpV 0 −pγÞδðpD −pSÞ

¼ −iεμγ εVμ
�
gðPVÞDS

i
m2

D −m2
S þ imSΓS

gSVV 0
−i

p2
γ −m2

V 0 þ imV 0ΓV 0

em2
V 0

fV 0

�

¼ −igðPVÞDVγ ε
μ
γ εVμ; ð17Þ

where gDVγ ¼ gðPVÞDS GD;SgSVV 0GV 0
em2

V0
fV0

.

For the PV transitions, we again encounter the problem of lacking the coupling information for the intermediate scalar
meson transitions into the vector meson pair. While it is impossible to provide a quantified prescription here, we will
estimate the magnitude of uncertainties arising from this process.
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We collect the PC amplitudes from the IC processes
which includes both type-I and type-II,

MðPCÞ
IC ¼ MðPCÞ

IðbÞ þMðPCÞ
IIðcÞ; ð18Þ

with

MðPCÞ
IðbÞ ≡ X

D�
nð1−Þ

hVð1−ÞjHðPCÞ
W;2→2

i
m2

V −m2
D�0

n
þ imD�0

n
ΓD�0

n

× jD�0
n ð1−ÞihD�0

n ð1−ÞjHEMjD0ð0−Þi; ð19Þ

MðPCÞ
IIðcÞ ≡

X
Pnð0−Þ

hVð1−ÞjHEM
i

m2
D −m2

Pn
þ imPn

ΓPn

× jPnð0−ÞihPnð0−ÞjHðPCÞ
W;2→2jD0ð0−Þi; ð20Þ

where a complete set of intermediate meson states D�
n (Pn)

with quantumnumbers1− (0−) have been included in process

of type-I and type-II, respectively. hPðVÞjHðPCÞ
W;2→2jDð�Þi is the

weak transition matrix element which can be parametrized
out as listed in Table IV.
To obtain the EM transition matrix element, we describe

the electromagnetic vertices in the VMD model. Taking a
pair of charm mesons D0D̄�0 couplings to the photon γ as
an example, the vertex can be written as

gD0D�0γ ¼ igρ0D0D̄�0
em2

ρ0

fρ0
Gρ0 þ igωD0D̄�0

em2
ω

fω
Gω

þ igJ=ψD0D̄�0
em2

J=ψ

fJ=ψ
RGJ=ψ ; ð21Þ

where R is an SU(4) flavor symmetry breaking parameter
and it distinguishes the production of a cc̄ from that of
uū (dd̄) and takes a value of 0.3. We present detailed
expressions for all electromagnetic vertices in the VMD
model in Appendix B and their values are listed in Table V.

The intermediate states of the pole terms contribute
differently in these four radiative decay processes. Since the
inclusion of all the intermediate states are impractical we
only consider the ground state as the leading contribution.
Namely, for the PC case, only D�ð2007Þ0 will contribute to
the type-I pole term of all four decays; K̄0 will contribute to
the type-II pole term in D0 → K̄�0γ; both η and η0 will
contribute to the type-II pole terms in D0 → ϕγ,D0 → ρ0γ,
and D0 → ωγ, and in addition, π0 will contribute to type-II
pole terms in D0 → ρ0γ and D0 → ωγ.
We summarize some of the main features of the pole

term contributions as follows:
(i) Since only the ground states are considered, the IC

pole terms will mainly contribute to the real part of
the transition amplitude due to the narrowness of
these intermediate states. Moreover, the type-I and
type-II amplitudes have opposite signs and will
cancel each other. For the same intermediate D0 →
VV 0 processes, the cancellation turns to be apparent
if an infinity mass limit is taken for the heavy quark,
e.g., mD�0

n
≫ mV and mD0 ≫ mPn

.
(ii) The relative sign between the weak transition matrix

element hVð1−ÞjHðPCÞ
W;2→2jD�0

n i for the type-I pole

terms and hPnð0−ÞjHðPCÞ
W;2→2jD0ð0−Þi is explicitly

fixed by the SU(3) flavor symmetry as shown in
Table IV.

(iii) In Table V it shows that the charmed meson coupling
to the photon gD0D�0γ in the type-I pole terms, is at
the same order of magnitude as that of the light
meson couplings to the photon in the type-II
pole terms.

(iv) The above properties lead to the cancellation be-
tween the amplitudes of the two types of pole terms
even in the physical D-meson mass region. We list
the amplitudes of the pole terms in Table VI and
compare them with the corresponding tree ampli-
tudes. One can see that the exclusive type-I or type-II
amplitudes can be sizeable. However, by comparing

TABLE IV. Weak transition matrix elements of the internal conversion processes. The coefficient includes flavor
factor and spin sign. αP is the mixing angle of the η and η0 on the quark-flavor basis and it takes a value of 42°.

Coupling gðPÞ
WðICÞ can be extracted by calculating the 2 → 2 internal conversion process in the NRCQM.

Processes hHðPCÞ
W;2→2i Processes hHðPCÞ

W;2→2i
D0 → K̄0 −VcsVudg

ðPCÞ
WðICÞ D�ð2007Þ0 → K̄�0

VcsVudg
ðPCÞ
WðICÞ

D0 → ηðss̄Þ sin αPVcsVusg
ðPCÞ
WðICÞ D�ð2007Þ0 → ϕ VcsVusg

ðPCÞ
WðICÞ

D0 → η0ðss̄Þ − cos αPVcsVusg
ðPCÞ
WðICÞ D�ð2007Þ0 → ρ0 − 1ffiffi

2
p VcdVudg

ðPCÞ
WðICÞ

D0 → ηðdd̄Þ − 1ffiffi
2

p cos αPVcdVudg
ðPCÞ
WðICÞ D�ð2007Þ0 → ω 1ffiffi

2
p VcdVudg

ðPCÞ
WðICÞ

D0 → η0ðdd̄Þ − 1ffiffi
2

p sin αPVcdVudg
ðPCÞ
WðICÞ

� � � � � �
D0 → π0ðdd̄Þ 1ffiffi

2
p VcdVudg

ðPCÞ
WðICÞ

� � � � � �
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the exclusive contributions from the tree and the sum
of the pole terms, we see that the cancellation has led
to rather small effects on the BRs as shown in
Table VII. We argue that the parity-violating inter-
mediate states in the IC processes have the similar
behaviors. As a result of the cancellation, the IC pole
terms turn to be much smaller than the CS process
[Fig. 1(a)].

B. Loop amplitudes in the VMD model

In the VMD model the mass of the intermediate vector
meson pairs are close to that of D0. Nevertheless, the mass
of the K�K̄� is almost degenerate with that of ϕρ0 and ϕω.
It suggests that FSIs via the VV → VV rescatterings can be
significant. In addition, other predominant intermediate

processes, which can rescatter into the flavor-neutral VV
channel, can also contribute if the quantum numbers are
allowed. This was recently investigated by Ref. [16]. To
some extent, the FSIs are anticipated in D0 → Vγ in the
VMD model.
The typical FSI processes can be illustrated by Fig. 2(d),

where the DE process as the intermediate channel should be
crucial. To benefit from the study of Ref. [16] where the
D0 → VV couplings have been extracted, we define the

leading short-distance couplings gðPÞWðSDÞ ≡ gðPÞWðDEÞ þ
eiθgðPÞWðICÞ where θ ¼ π is taken as determined in Ref. [16].

Then, we obtain the weak couplings gðPCÞWðSDÞ ¼ 2.0 ×

10−6 GeV−1 and gðPVÞWðSDÞ ¼ 2.4 × 10−6 GeV for the CF

TABLE V. The effective couplings for the electromagnetic vertices. The values extracted from the VMD model
are listed in the second column and their corresponding modules are presented in the round brackets. In the last
column the signs of the values are determined in the quark model. The couplings gK�K�γðgρργÞ and gKKγðgππγÞ are
treated as pure QED couplings. Thus their coupling strengths will be given by the charge of the hadron. Note that
e ≃ 0.33.

Electromagnetic couplings Values in VMD (Magnitude) Experimental values

gKþK�þγ [GeV−1] −0.288 − 0.063i ð0.294Þ −0.253� 0.012
gK0K�0γ [GeV−1] 0.369þ 0.062i ð0.374Þ 0.385� 0.016
gK�þK�þγ 0.324þ 0.036i ð0.326Þ e
gK�0K�0γ −0.046 − 0.034i ð0.057Þ 0
gKþKþγ 0.324þ 0.036i ð0.326Þ e
gK0K0γ −0.046 − 0.034i ð0.057Þ 0
gπþρþγ [GeV−1] −0.205 − 0.002i ð0.205Þ −0.219� 0.012
gπ0ρ0γ [GeV−1] −0.205 − 0.002i ð0.205Þ −0.222� 0.019
gρþρþγ 0.347þ 0.066i ð0.354Þ e
gρ0ρ0γ 0 0
gπþπþγ 0.347þ 0.066i ð0.354Þ e
gπ0π0γ 0 0
gηϕγ [GeV−1] −0.192 − 0.0008i ð0.192Þ −0.209� 0.002
gη0ϕγ [GeV−1] 0.213þ 0.0009i ð0.213Þ 0.217� 0.004
gηρ0γ [GeV−1] −0.488 − 0.093i ð0.496Þ −0.478� 0.017

gη0ρ0γ [GeV−1] −0.440 − 0.084i ð0.447Þ −0.434� 0.003

gηωγ [GeV−1] −0.152 − 0.002i ð0.152Þ −0.136� 0.006
gη0ωγ [GeV−1] −0.137 − 0.002i ð0.137Þ −0.134� 0.002
gπ0ωγ [GeV−1] −0.657 − 0.125i ð0.669Þ −0.707� 0.011

gD0D�0γ [GeV−1] −0.389 − 0.053i ð0.393Þ > − 3.297

TABLE VI. The tree and pole amplitudes for different processes and the unit is 10−8 GeV−1. Amplitudes APC
IðbÞ, A

PC
IIðc1Þ, A

PC
IIðc2Þ,

APC
IIðc3Þ, and APC

IIðc4Þ are given by the parity-conserving intermediate states D�ð2007Þ0, K̄0, η, η0, and π0, respectively.

Mode AðPVÞ
TðaÞ AðPCÞ

TðaÞ AðPCÞ
IðbÞ AðPCÞ

IIðc1Þ AðPCÞ
IIðc2Þ AðPCÞ

IIðc3Þ AðPCÞ
IIðc4Þ AðPCÞ

I þAðPCÞ
II

K̄�0γ 1.20 − 8.17i −1.13þ 7.68i 0.79 − 5.76i −0.93þ 5.57i 0 0 0 −0.14þ 0.19i
ϕγ 0.34 − 2.30i −0.29þ 1.97i 0.19 − 1.43i 0 −0.002þ 0.45 −0.003þ 0.69i 0 0.19 − 0.28i
ρ0γ −0.16þ 1.39i 0.16 − 1.40i −0.12þ 0.87i 0 0.16 − 0.89i 0.17 − 0.89i −0.005þ 0.47i 0.21 − 0.45i
ωγ 0.0004þ 0.32i −0.0005 − 0.32i 0.12 − 0.87i 0 0.003 − 0.27i 0.003 − 0.28i −0.28þ 1.46i −0.15þ 0.03i
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decay D0 → K�−ρþ, and gðPCÞWðSDÞ ¼ 1.5 × 10−6 GeV−1 and

gðPVÞWðSDÞ ¼ 4.5 × 10−6 GeV for the SCSdecayD0→K�þK�−.
These vertex couplingswill be adopted for the calculations of
the FSIs via Fig. 2(d).
The triangle loop amplitudes illustrated by Fig. 2(d) can

also be calculated in the VMD model. The loop amplitudes
can reduce to an effective coupling which contributes to the
DVγ coupling in the end. Within the triangle loops the
vertices for the photon couplings to the kaon (pion) and/or
K�ðρÞ pairs can be described by the VMD model. Taking
the K�þK− coupling to the photon γ as an example, the
photon can couple to the intermediate ρ0, ω, and ϕ mesons,
via the following amplitude,

gK�þKþγ ¼
X
q¼u;s

X
V 0¼ρ0;ω;ϕ

hðqq̄Þ1−− jV 0iigV 0VP
em2

V 0

fV 0
GV 0 ; ð22Þ

where V and P stand for the initial K�þ and pseudoscalar
meson K−, while V 0 stands for the intermediate vector
mesons, ρ0,ω, and ϕ, to which the photon can couple with a
strength of the decay constant e=fV 0 ; hðqq̄Þ1−− jV 0i is a favor
factor given by the decomposition of the qq̄ into flavor
eigenstate of the intermediate vector mesons. For instance,

hðuūÞ1−− jVi ¼
�
1

2
ðuū − dd̄Þ þ 1

2
ðuūþ dd̄ÞjV

�

¼ 1ffiffiffi
2

p hðρ0 þ ωÞjVi: ð23Þ

We present the detailed expressions by the VMD
model for the electromagnetic vertices in Appendix B.
In those equations the ground-state vector meson decay
constants e=fVðV ¼ ϕ; ρ0;ωÞ are extracted with the data
for V → eþe− [21].
Since the hadronic vertices can be related by the SU(3)

flavor symmetry their relative strengths and phases can
be fixed. There are five types of hadronic coupling vertices
in the loop amplitudes, i.e., VPP, VVP, VVV, SPP, and
SVV for which the corresponding effective Lagrangians are
as follows:

LVPP ¼ igVPPTr½ðP∂μP − ∂μPPÞVμ�;
LVVP ¼ gVVPϵαβμνTr½∂αVμ

∂
βVνP�;

LVVV ¼ igVVVTr½ð∂μVν − ∂νVμÞVμVν�;
LPPS ¼ gPPSTr½PPS�;
LVVS ¼ gVVSTr½VVS�; ð24Þ

where the vector (V), pseudoscalar (P), and scalar (S) fields
as the SU(3) flavor multiplets are listed respectively as
follows:

V ¼

0
BBB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA; ð25Þ

P¼

0
BBB@

sinαPη0þcosαPηþπ0ffiffi
2

p πþ Kþ

π− sinαPη0þcosαPη−π0ffiffi
2

p K0

K− K0 cosαPη0−sinαPη

1
CCCA;

ð26Þ

and

S ¼

0
BBB@

σþa0ð980Þffiffi
2

p aþ0 κþ

a−0
σ−a0ð980Þffiffi

2
p κ0

κ− κ̄0 f0ð980Þ

1
CCCA; ð27Þ

where the ideal mixing are adopted between ωð¼ ðuūþ
dd̄Þ= ffiffiffi

2
p Þ and ϕð¼ ss̄Þ.

With the effective Lagrangians in Eq. (24), we can write
down the loop transition amplitude for Fig. 2(d). We use the
notation Ĩ ½ðPÞ;M1;M3; ðM2Þ� to denote the loop ampli-
tude. Namely, the intermediateM1 andM3 rescatter into Vγ
by exchanging M2, and (P) [¼(PC) or (PV)] indicates the
PC or PV property of the corresponding amplitude. The
masses and 4-vector momenta of these internal particles are

TABLE VII. The BRs of the tree contributions shown in Fig. 2(a) and pole term contributions shown in Figs. 2(b)
and 2(c) in units of 10−5 for the decay D0 → Vγ (V ¼ K̄�0;ϕ; ρ0;ω).

BR K̄�0γ ϕγ ρ0γ ωγ

Experimental data [21] 41� 7 2.81� 0.19 1.82� 0.32 <24

Tree PC 11.03� 5 0.55� 0.23 0.45� 0.16 0.023� 0.020
PV 12.53� 4 0.75� 0.25 0.45� 0.13 0.023� 0.016

PCþ PV 23.57� 6 1.30� 0.34 0.90� 0.21 0.047� 0.026

Pole terms PC 0.011 0.016 0.055 0.005

Tree ðPCþ PVÞ þ Pole terms ðPCÞ 22.80 1.14 1.23 0.046
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denoted by ðm1; m3; m2Þ and ðp1; p3; p2Þ, respectively. The
4-vector momenta of the initial-state meson D0, final-state
photon, and vector meson are labeled as pD, pγ , and pV ,
respectively. The polarizations of the final-state photon and
vector meson are εγ and εV , respectively. For instance, the
intermediate K�þK�− rescattering amplitudes through the
triangle loops by exchanging K (K or K�) can be expressed
as follows:

iMðPÞ
loop ¼

X
K

Ĩ ½ðPÞ; K�þ; K�−; ðKÞ�; ð28Þ

where the sum is over the contributing meson loops
indicated by the different exchanged mesons.
Taking the PC loop transition ½ðPCÞ;K�; K̄�; ðKÞ� as an

example, the loop integral is

Ĩ ½ðPCÞ;K�; K̄�; ðKÞ�

¼
Z

d4p1

ð2πÞ4 V1μνDμμ0 ðK�ÞV2μ0DðKÞV3ν0Dνν0 ðK̄�ÞF ðp2
i Þ;

ð29Þ

where the vertex functions have compact forms as follows:

V1μν ¼ −igðPÞWðSDÞVcsVusϵαβμνpα
1p

β
3;

V2μ0 ¼ igK�K̄γϵα1β1μ0δp
α1
1 pβ1

γ ε�δγ ;

V3ν0 ¼ igVK̄�Kϵα2β2ν0λp
α2
3 pβ2

V ε
�λ
V ; ð30Þ

where functionsDμμ0 ðK�Þ andDðKÞ are the propagators for
K� and K, respectively, with 4-vector momentum p, i.e.,

Dμμ0 ðK�Þ ¼
−i
�
gμμ

0 − pμpμ0

p2

�
p2 −m2

K� þ iϵ
;

DðKÞ ¼ i
p2 −m2

K þ iϵ
: ð31Þ

We note that all the strong vertex couplings involving
the light pseudoscalar (P) and vector (V) meson couplings,
i.e., gVPP, gVVP, and gVVV , have been extracted by
Refs. [25,26], such as gVK̄�K in Eq. (30). In addition, the
electromagnetic couplings are extracted by the VMDmodel
and listed in Table V, such as gK�K̄γ in Eq. (30).
In order to cutoff the ultraviolet (UV) divergence in the

loop integrals, we include a commonly adopted form factor
to regularize the integrand,

F ðp2
i Þ ¼

Y
i

�
Λ2
i −m2

i

Λ2
i − p2

i

�
; ð32Þ

where Λi ≡mi þ αΛQCD with ΛQCD ¼ 220 MeV and
α ¼ 1 ∼ 2 as the cutoff parameter.

III. NUMERICAL RESULTS AND DISCUSSIONS

The final results for the D0 weak radiative decays
are given by the interfering contributions from both the
short-distance and long-distance dynamics. As studied in
Sec. II A the short-distance contributions include the tree-
level transitions which are calculated in the NRCQM. The
main uncertainties arises from the PV intermediate pole
terms for which the couplings cannot be well-constrained.
However, considering that the type-I and type-II terms
cancel each other in this case, we expect that the neglect
of the PV pole terms would not produce significant uncer-
tainties. For the long-distance contributions, the FSIs via the
triangle loops can be accommodated by theVMDframework
consistently, and the main uncertainties arise from the

TABLE VIII. Calculated BRs of each type of the hadronic loop diagrams in units of 10−5 with the cutoff parameter α ¼ 1 and α ¼ 2.

α ¼ 1 α ¼ 2

Diagrams Decay channels (PC) (PV) ðPCÞ þ ðPVÞ (PC) (PV) ðPCÞ þ ðPVÞ
½K�þ; K�−; ðKþÞ� ϕγ 5.79 × 10−5 1.14 × 10−2 1.15 × 10−2 5.33 × 10−4 5.24 × 10−2 5.29 × 10−2

ρ0γ 1.72 × 10−5 5.21 × 10−3 5.23 × 10−3 1.97 × 10−4 2.79 × 10−2 2.81 × 10−2

ωγ 1.74 × 10−5 5.22 × 10−3 5.23 × 10−3 1.98 × 10−4 2.79 × 10−2 2.81 × 10−2

½K�þ; K�−; ðK�þÞ� ϕγ 3.29 × 10−3 0.61 0.61 2.23 × 10−2 2.15 2.17
ρ0γ 1.10 × 10−3 0.18 0.18 9.93 × 10−3 0.84 0.85
ωγ 1.11 × 10−3 0.18 0.18 9.92 × 10−3 0.85 0.86

½K�−; ρþ; ðK−Þ� K̄�0γ 1.39 × 10−3 2.73 × 10−2 2.87 × 10−2 1.11 × 10−2 8.95 × 10−2 0.10
½K�−; ρþ; ðK�−Þ� K̄�0γ 7.24 × 10−2 1.18 1.25 0.44 3.60 4.04
½ρþ; K�−; ðπþÞ� K̄�0γ 1.18 × 10−4 1.42 × 10−2 1.43 × 10−2 2.33 × 10−3 5.98 × 10−2 6.21 × 10−2

½ρþ; K�−; ðρþÞ� K̄�0γ 0.12 1.78 1.91 0.72 5.20 5.92
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UVcutoff parameter for the triangle loop integrals. However,
since the FSIs inD0 → VV have been quantitatively studied
recently in Ref. [16], a consistent range of the cutoff
parameters has been determined. We adopt it as a prediction
for this analysis. The nontrivial aspect is that the SU(3) flavor
symmetry has determined all the relative phases among the
transition amplitudes, which means that we are obliged to
describe the existing data within the commonly adopted
values for the cutoff parameter.
In Table VI the amplitudes of the short-distance proc-

esses have been calculated, while in Table VII the corre-
sponding BRs are also obtained. One sees a systematic
underestimate of the experimental data [21], and it calls for
additional mechanism to account for the deficits.
The contributions from the long-distance processes via

the FSIs is shown by Table VIII, where the contributions
from exclusive triangle loop transitions to the BRs are
listed. It shows that the vector meson exchange terms are
dominant in all the triangle loop transitions. This is a
feature that we found in D0 → VV [16]. It is also interest-
ing to note that the FSI corrections are mainly to the PV
channel, while the PC corrections are negligibly small in
comparison with the tree-level transitions. It is under-
standable that the PV coupling for D0 to the intermediate
VV is an S-wave while the PC coupling is a P-wave which
will bring significant suppressions near threshold. In
addition, the yields of the loop integrals in the PV channel
are also found larger than in the PC channel due to the
different structures of the integrands.
As shown in Table VIII the exclusive BRs from the

FSIs indicate some sensitivities to the cutoff parameter for
α ¼ 1 and 2. This appears to be the main source of the
theoretical uncertainties. Combining the tree and triangle
loop amplitudes together, we obtain the full results for the
BRs for these four decay channels, i.e.,D0→Vγ (V ¼ K̄�0,
ϕ, ρ0, ω), with δ ¼ 0 as the natural phase in Table IX.
We also list the experimental data from the BABAR [5],

Belle Collaboration [6], and the PDG average [21] as a
comparison. It shows that the measurements of D0 → K̄�0γ
by these two experiments turn out to be quite different,
while their measurements of D0 → ϕγ are consistent with
each other. Meanwhile, the channel of D0 → ρ0γ was only
measured by Belle [6] and an upper limit for D0 → ωγ was
set by the CLEO Collaboration [4]. By best describing
D0 → ϕγ and ρ0γ with α ¼ 1.3� 0.13, we find that the
calculated BR for D0 → K̄�0γ is consistent with the
averaged value of the BABAR and Belle measurements,
and the BR for D0 → ωγ is much smaller than the
experimental upper limit. In comparison with D0 → ρ0γ
the suppressed BR of D0 → ωγ can be well-understood by
the destructive interference between the two tree-level
amplitudes in Table III as discussed earlier.
In Table IX we also include other theoretical calculations

[7,9–13,15,27] in the literature as a comparison. One can see
that most of these existing results have significantly under-
estimated the data except for Ref. [15] which has given the
results with the correct order of magnitude.
To see more clearly the role played by the FSIs, we plot

the cutoff parameterα dependenceof theBRs inFig. 3,where
“T+L” denotes the full calculations including both the tree
[Fig. 2(a)] and triangle loop [Fig. 2(d)] contributions.We also
show two interfering patterns between the tree and triangle
loop amplitudes denoted by δ ¼ 0 and π, respectively.
Namely, δ ¼ 0 means a natural phase determined by the
SU(3) flavor symmetry while δ ¼ π denotes an opposite
extreme. The horizontal bands are the PDG average [21] of
the experimental measurements. For these four decay chan-
nels, i.e.,D0 → Vγ (V ¼ K̄�0,ϕ, ρ0,ω), we find that the data
for D0 → K̄�0, ϕ, ρ0 can be accounted for within a range of
α ¼ 1.3� 0.13 with δ ¼ 0. In contrast, the results with
δ ¼ π cannot describe these three channels simultaneously.
This confirms our anticipation of the natural sign due to the
SU(3) flavor symmetry in this analysis.

TABLE IX. Calculated BRs containing both tree and loop contributions in units of 10−5 for the four radiative weak decays D0 → Vγ
(V ¼ K̄�0, ϕ, ρ0, ω). The uncertainties are given by α ¼ 1.3� 0.13.

D0 → K̄�0γ D0 → ϕγ D0 → ρ0γ D0 → ωγ

Experimental data 32.8� 2.0� 2.7 [5] 2.78� 0.32� 0.27 [5] 1.77� 0.30� 0.07 [6] <24 [4]
46.6� 2.1� 2.1 [6] 2.76� 0.19� 0.10 [6]

PDG average [21] 41� 7 2.81� 0.19 1.82� 0.32 <24
Burdman [10] 7–12 0.1–3.4 0.1–0.5 ∼0.2
Biswas [13] 4.6–18 0.48–0.64 0.512–1.8 0.32–0.9
Fajfer [11] 6–36 0.4–1.9 0.1–1 0.1–0.9
Shen [15] 19þ7þ1

−6−1 3.2þ1.3þ0.3
−1.0−0.0 1.1þ0.4þ0.1

−0.4−0.1 0.75þ0.30þ0.05
−0.25−0.04

de Boer [12] 2.6–46 0.24–2.8 0.041–1.17 0.042–1.12
Asthana [7] 0.86 � � � � � � � � �
Bajc [9] 28–65 � � � � � � � � �
Dias [27] 15.5–34.4 � � � � � � � � �
This work 35.9þ2.0

−2.2 2.76þ0.36
−0.35 1.79þ0.24

−0.22 0.58þ0.14
−0.13
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IV. SUMMARY

In this work we have systematically studied the Cabibbo-
favored and singly Cabibbo-suppressed D0 weak radiative
decays into Vγ in the framework of the VMD model. By
distinguishing the short and long-distance transition mech-
anisms we demonstrate that the long-distance FSIs have
played a crucial role in the understanding of the D0 → Vγ
decays. In particular, the intermediate K�þK�− rescatter-
ings by exchanging a vector meson into Vγ account for
most of the long-distance contributions. Since the same
mechanism also plays a crucial role in the understanding of
the hadronic weak decays of D0 → VV, this study can be
regarded as a self-consistent examination of the long-
distance dynamics in the D0 weak decays. We also
emphasize that the extraction of the tree-level amplitudes
is a consistent way to take into account the SU(3) flavor
symmetry breaking effects, which arises from the constitu-
ent quark mass differences. This mechanism may be
investigated in other decay channels given that more and
more data for the D-mesons have been accumulated in

experiment, and it can help us gain better insights into the
near-threshold dynamics via the weak transitions.
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APPENDIX A: WEAK EFFECTIVE
HAMILTONIAN FOR INTERNAL CONVERSION

PROCESS q1q̄2 → q01q̄
0
2

The nonrelativistic form of the weak effective
Hamiltonian for the 2 → 2 (q1q̄2 → q01q̄

0
2) internal con-

version process can be explicitly reduced as

FIG. 3. The dependence of the BRs on the cutoff parameter α for the four radiative weak decays of charm meson D0. “T+L” denotes
the full calculations including the tree [Fig. 2(a)] and loop [Fig. 2(d)] contributions. δ is the relative phase of the tree diagrams and loop
diagrams. The horizontal bands are the PDG averages of the corresponding experimental data [21].
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HðPCÞ
W;2→2 ¼

GFffiffiffi
2

p Vq1q01
Vq2q02

1

ð2πÞ3
X
i≠j

α̂ð−Þi β̂ðþÞ
j δ2ðp0i þ p0j − pi − pjÞðhsi0jIjsiihs0jjIjsji − hsi0jσijsii · hs0jjσjjsjiÞ;

HðPVÞ
W;2→2 ¼

GFffiffiffi
2

p Vq1q01
Vq2q02

1

ð2πÞ3
X
i≠j

α̂ð−Þi β̂ðþÞ
j δ2ðp0i þ p0j − pi − pjÞ

	
−ðhsi0jσijsiihs0jjIjsji − hsi0jIjsii · hs0jjσjjsjiÞ

·


�
pi
2mi

−
pj
2mj

�
þ
�

p0i
2m0

i
−

p0j
2m0

j

��
iðhsi0jσijsii × hs0jjσjjsjiÞ ·


�
p0i
2m0

i
þ p0j
2m0

j

�
−
�

pi
2mi

þ pj
2mj

���
; ðA1Þ

where si andmi are the spin and mass of the ith quark (si stands for the spin of particle iwhich is an antiquark), respectively;

the subscripts i and j indicate the quarks experiencing the weak interaction; α̂ð−Þi and β̂ðþÞ
j are the flavor-changing operators,

e.g., α̂ð−Þi cj ¼ δijsj, β̂
ðþÞ
j ui ¼ δijdj for Cabibbo-favored process.

APPENDIX B: DETAILED EXPRESSIONS OF THE ELECTROMAGNETIC
COUPLEDIN IN THE VMD MODEL

In this appendix, we present the detailed expressions for the electromagnetic couplings extracted in the VMD model. In
the following equations, R takes a value of 0.8 to distinguish the production of an ss̄ from uū and dd̄ due to the SU(3) flavor
symmetry breaking,

gKþK�þγ ¼ i

�
gρ0K�þK−

em2
ρ0

fρ0
Gρ0 þ gωK�þK−

em2
ω

fω
Gω þ gϕK�þK−

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
gVVP

em2
ρ0

fρ0
Gρ0 þ gVVP

em2
ω

fω
Gω

�
þ igVVP

em2
ϕ

fϕ
RGϕ;

gK0K�0γ ¼ i

�
gρ0K�0K̄�0

em2
ρ0

fρ0
Gρ0 þ gωK�0K̄�0

em2
ω

fω
Gω þ gϕK�0K̄�0

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
−gVVP

em2
ρ0

fρ0
Gρ0 þ gVVP

em2
ω

fω
Gω

�
þ igVVP

em2
ϕ

fϕ
RGϕ;

gK�þK�þγ ¼ i

�
gρ0K�þK�−

em2
ρ0

fρ0
Gρ0 þ gωK�þK�−

em2
ω

fω
Gω þ gϕK�þK�−

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
−gVVV

em2
ρ0

fρ0
Gρ0 − gVVV

em2
ω

fω
Gω

�
þ igVVV

em2
ϕ

fϕ
RGϕ;

gK�0K�0γ ¼ i

�
gρ0K�0K̄�0

em2
ρ0

fρ0
Gρ0 þ gωK�0K̄�0

em2
ω

fω
Gω þ gϕK�0K̄�0

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
gVVV

em2
ρ0

fρ0
Gρ0 − gVVV

em2
ω

fω
Gω

�
þ igVVV

em2
ϕ

fϕ
RGϕ;

gKþKþγ ¼ i

�
gρ0KþK−

em2
ρ0

fρ0
Gρ0 þ gωKþK−

em2
ω

fω
Gω þ gϕKþK−

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
−gVPP

em2
ρ0

fρ0
Gρ0 − gVPP

em2
ω

fω
Gω

�
þ igVPP

em2
ϕ

fϕ
RGϕ;

gK0K0γ ¼ i

�
gρ0K0K̄0

em2
ρ0

fρ0
Gρ0 þ gωK0K̄0

em2
ω

fω
Gω þ gϕK0K̄0

em2
ϕ

fϕ
RGϕ

�

¼ iffiffiffi
2

p
�
gVPP

em2
ρ0

fρ0
Gρ0 − gVPP

em2
ω

fω
Gω

�
þ igVPP

em2
ϕ

fϕ
RGϕ; ðB1Þ
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gπþρþγ ¼ igωρþπ−
em2

ω

fω
Gω ¼ i

ffiffiffi
2

p
gVVP

em2
ω

fω
Gω;

gπ0ρ0γ ¼ igωρ0π0
em2

ω

fω
Gω ¼ i

ffiffiffi
2

p
gVVP

em2
ω

fω
Gω;

gπ0ωγ ¼ igπ0ωρ0
em2

ρ0

fρ0
Gρ0 ¼ i

ffiffiffi
2

p
gVVP

em2
ρ0

fρ0
Gρ0 ;

gρþρþγ ¼ igρ0ρþρ−
em2

ρ0

fρ0
Gρ0 ¼ ið−

ffiffiffi
2

p
gVVVÞ

em2
ρ0

fρ0
Gρ0 ;

gρ0ρ0γ ¼ 0;

gπþπþγ ¼ igρ0πþπ−
em2

ρ0

fρ0
Gρ0 ¼ ið−

ffiffiffi
2

p
gVPPÞ

em2
ρ0

fρ0
Gρ0 ;

gπ0π0γ ¼ 0; ðB2Þ

gηϕγ ¼ igηϕϕ
em2

ϕ

fϕ
RGϕ ¼ ið−2sinαPgVVPÞ

em2
ϕ

fϕ
RGϕ;

gη0ϕγ ¼ igη0ϕϕ
em2

ϕ

fϕ
RGϕ ¼ ið2cosαPgVVPÞ

em2
ϕ

fϕ
RGϕ;

gηρ0γ ¼ igηρ0ρ0
em2

ρ0

fρ0
Gρ0 ¼ ið

ffiffiffi
2

p
cosαPgVVPÞ

em2
ρ0

fρ0
Gρ0 ;

gη0ρ0γ ¼ igη0ρ0ρ0
em2

ρ0

fρ0
Gρ0 ¼ ið

ffiffiffi
2

p
sinαPgVVPÞ

em2
ρ0

fρ0
Gρ0 ;

gηωγ ¼ igηωω
em2

ω

fω
Gω ¼ ið

ffiffiffi
2

p
cosαPgVVPÞ

em2
ω

fω
Gω;

gη0ωγ ¼ igη0ωω
em2

ω

fω
Gω ¼ ið

ffiffiffi
2

p
sinαPgVVPÞ

em2
ω

fω
Gω: ðB3Þ

APPENDIX C: THE FLAVOR SU(3) RELATIONSHIP OF THE COUPLING CONSTANTS

The relative strengths and phases of the vector-pseudoscalar couplings can be fixed and expressed by overall coupling
coefficients, i.e., gVPP, gVVP, and gVVV , considering the SU(3) flavor symmetry,

(i) VPP vertices:

gϕKþK− ¼ −gϕK−Kþ ¼ gϕK0K̄0 ¼ −gϕK̄0K0 ¼ gVPP;

gωKþK− ¼ −gωK−Kþ ¼ gωK0K̄0 ¼ −gωK̄0K0 ¼ −
1ffiffiffi
2

p gVPP;

gρ0KþK− ¼ −gρ0K−Kþ ¼ −gρ0K0K̄0 ¼ gρ0K̄0K0 ¼ −
1ffiffiffi
2

p gVPP; ðC1Þ

(ii) VVP vertices:

gϕK�þK− ¼ gϕK�−Kþ ¼ gϕK�0K̄0 ¼ gϕK̄�0K0 ¼ gVVP;

gωK�þK− ¼ gωK�−Kþ ¼ gωK�0K̄0 ¼ gωK̄�0K0 ¼ 1ffiffiffi
2

p gVVP;

gρ0K�þK− ¼ gρ0K�−Kþ ¼ −gρ0K�0K̄0 ¼ −gρ0K̄�0K0 ¼ 1ffiffiffi
2

p gVVP;

gωD0D̄�0 ¼ gρ0DD̄�0 ; ðC2Þ

(iii) VVV vertices:

gϕK�þK�− ¼ −gϕK�−K�þ ¼ gϕK�0K̄�0 ¼ −gϕK̄�0K�0 ¼ gVVV;

gωK�þK�− ¼ −gωK�−K�þ ¼ gωK�0K̄�0 ¼ −gωK̄�0K�0 ¼ −
1ffiffiffi
2

p gVVV;

gρ0K�þK�− ¼ −gρ0K�−K�þ ¼ −gρ0K�0K̄�0 ¼ gρ0K̄�0K�0 ¼ −
1ffiffiffi
2

p gVVV: ðC3Þ

APPENDIX D: AMPLITUDES OF THE HADRONIC LOOP DIAGRAMS

In this section, we present the loop amplitudes for the convenience of tracking the calculation details. For simplicity, we
do not distinguish the coupling constants at the hadronic vertices, but just denote them as gi with i ¼ 1, 2, 3. The amplitudes
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for different processes are listed explicitly as follows, and we employ LoopTools (https://www.feynarts.de/looptools/) to
accomplish the numerical calculations:

(i) Ĩ ½ðPCÞ; K�; K̄�; ðKÞ�

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3

�
gμμ

0 − pμ
1
pμ0
1

p2
1

�
ϵα1β1μ0δp

α1
1 pβ1

γ εδ�γ ϵα2β2ν0λp
α2
3 pβ2

V ε
λ�
V

�
gνν

0 − pν
3
pν0
3

p2
3

�
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3 × ϵα1β1μδp

α1
1 pβ1

γ εδ�γ × εα2β2νλp
α2
3 pβ2

V ε
λ�
V

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fϵαβδλpα
γp

β
Vε

δ�
γ ελ�V ½ðp1 · pγÞðp1 · pγ þ p1 · pVÞ − p2

1ðpγ · pVÞ� − ϵαβδλpα
1p

β
Vε

δ�
γ ελ�V ðp1 · pγÞ2

þ ϵαβδλpα
γp

β
1ε

δ�
γ ελ�V ½ðp1 · pVÞ2 − p2

Vp
2
1� − ϵαβδλpα

γp
β
Vp

δ
1ε

λ�
V ½ðp1 · ε�γÞðp1 · pγÞ þ ðpV · ε�γÞðp1 · pγÞ

− ðp1 · ε�γÞðpγ · pVÞ� þ ϵαβδλpα
γp

β
Vε

δ�
γ pλ

1ðp1 · pVÞðp1 · ε�VÞg; ðD1Þ

(ii) Ĩ ½ðPCÞ; K�; K̄�; ðK�Þ�

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3

�
gμμ

0 − pμ
1
pμ
1
0

p2
1

��
gρσ − pρ

2
pσ
2

p2
2

��
gνν

0 − pν
3
pν0
3

p2
3

�
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pγÞρεδ�γ gμ0δ þ ðp2 − pγÞμ0εδ�γ gδρ − ðp1 þ p2Þδεδ�γ gμ0ρ�
× ½ðp3 þ pVÞσελ�V gν0λ − ðp2 þ pVÞν0ελ�V gλσ þ ðp2 − p3Þλελ�V gν0σ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3

�
gρσ − pρ

2
pσ
2

p2
2

�
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞF ðp2

i Þ

× ½ðp1 þ pγÞρεδ�γ gμδ þ ðp2 − pγÞμεδ�γ gδρ − ðp1 þ p2Þδεδ�γ gμρ�
× ½ðp3 þ pVÞσελ�V gνλ − ðp2 þ pVÞνελ�V gλσ þ ðp2 − p3Þλελ�V gνσ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
4F ðp2

i Þ
p2
2ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fϵαβδλpα
1p

β
Vε

δ�
γ ελ�V ½−p2

1ðpγ · pVÞ þ ðp1 · pγÞðp1 · pVÞ þ ðp1 · pγÞðpγ · pVÞ�
þ ϵαβδλpα

γp
β
1ε

δ�
γ ελ�V ½p2

1ðpγ · pVÞ − ðp1 · pγÞðp1 · pVÞ − ðp1 · pγÞðpγ · pVÞ�
þ ϵαβδλpα

γp
β
Vp

δ
1ε

λ�
V ðp2

1 − 2p1 · pγÞð2p1 · ε�γ − pV · ε�γÞ
þ ϵαβδλpα

γp
β
Vε

δ�
γ pλ

1ðp2
1 − 2p1 · pγÞð2p1 · ε�γ − pV · ε�γÞg; ðD2Þ

(iii) Ĩ ½ðPVÞ; K�; K̄�; ðKÞ�

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵα1β1μδp

α1
1 pβ1

γ εδ�γ
�
gμρ − pμ

1
pρ
1

p2
1

�
ϵα2β2νλp3α2pVβ2ε

�
Vλ

�
gνρ −

p3νp3ρ

p2
3

�
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵα1β1μδp

α1
1 pβ1

γ εδ�γ × ϵα2β2μλp3α2pVβ2ε
�
Vλ

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K� þ iϵÞF ðp2
i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2

i Þ
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K þ iϵÞðp2

3 −m2
K� þ iϵÞ

× fðε�γ · ε�VÞ½p2
1ðpγ · pVÞ − ðp1 · pγÞðpγ · pVÞ − ðp1 · pγÞðp1 · pVÞ� − ðp1 · ε�γÞðp1 · ε�VÞðpγ · pVÞ

þ ðp1 · ε�γÞðpγ · ε�VÞðp1 · pVÞ þ ðpV · ε�γÞðp1 · ε�VÞðp1 · pγÞ þ ðpV · ε�γÞðpγ · ε�VÞ½ðp1 · pγÞ − p2
1�g; ðD3Þ
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(iv) Ĩ ½ðPVÞ; K�; K̄�; ðK�Þ�

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4

�
gμλ − pμ

1
pλ
1

p2
1

��
gρσ − pρ

2
pσ
2

p2
2

��
gνλ −

p3μp3λ

p2
3

�
ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pγÞρεδ�γ gμδ þ ðp2 − pγÞμεδ�γ gδρ − ðp1 þ p2Þδεδ�γ gμρ�
× ½ðp3 þ pVÞσε�Vβgνβ − ðp2 þ pVÞνεβ�V gβσ þ ðp2 − p3Þβεβ�V gνσ�F ðp2

i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ðp2

1g
μλ − pμ

1p
λ
1Þðp2

2g
ρσ − pρ

2p
σ
2Þðp2

3gνλ − p3νp3λÞ
p2
1p

2
2p

2
3ðp2

1 −m2
K� þ iϵÞðp2

2 −m2
K� þ iϵÞðp2

3 −m2
K� þ iϵÞ

× ½ðp1 þ pγÞρεδ�γ gμδ þ ðp1 − 2pγÞμεδ�γ gδρ − ð2p1 − pγÞδεδ�γ gμρ�
× ½ð2pV þ pγ − p1Þσε�Vβgνβ − ðp1 − pγ þ pVÞνεβ�V gβσ þ ð2p1 − 2pγ − pVÞβεβ�V gνσ�F ðp2

i Þ: ðD4Þ

APPENDIX E: DETAILS ABOUT WEAK
COUPLING CONSTANTS

AT THE HADRONIC LEVEL

For the weak decay D0 → V1V2, there are two types
of contributions and the corresponding hadronic level
effective Lagrangian are as follows:

LVVP ¼ igðPCÞW ϵαβμνTr½∂αVμ
1∂

βVν
2P�;

LVVS ¼ gðPVÞW Tr½VVS�; ðE1Þ

where both P and S stand for D0 meson, just the quantum
number JP of the latter can be regarded as 0þ (this is the
result of the weak interaction and not the true quantum

number of D0 meson). It is worth noting that gðPCÞW has only

transverse polarization [gðPCÞTW ], while gðPVÞW has both trans-

verse and longitudinal polarization [gðPVÞTW and gðPCÞLW ].
We define the kinematic variables in the rest frame of the

initial state D0,

pD0 ¼ ðmD0 ; 0; 0; 0Þ; pV1
¼ ðEV1

; 0; 0; jp⃗jÞ;
pV2

¼ ðEV2
; 0; 0;−jp⃗jÞ: ðE2Þ

In the above convention, the polarizations of the vector
meson are written as

ε� ¼ ∓ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ε0 ¼
�jp⃗j
m

; 0; 0;
E
m

�
; ðE3Þ

where ε� are transverse polarizations and ε0 is longitudinal
polarization. No matter which polarization state the vector
meson is, Lorentz gauge invariance condition p · ε ¼ 0 is
always satisfied:

(i) Parity-violating transition
In the interaction Hamiltonian, one has, for εV1

,
the nonvanishing longitudinal component is
εμV10

hενV20
igμν, where hενV20

i is the polarization vector
ενV20

rotated from the V2 frame to the V1 frame,

εμV10
hενV20

igμν ¼
jp⃗V1

jjp⃗V2
j

mV1
mV2

− ε⃗V1
R̂ε⃗V2

¼ jp⃗V1
jjp⃗V2

j
mV1

mV2

−
EV1

EV2

mV1
mV2

Z X
m0

d1m00ðθÞY1m0 ðΩV1
Þ × Y10ðΩV1

ÞdΩV1

¼ jp⃗V1
jjp⃗V2

j
mV1

mV2

−
EV1

EV2

mV1
mV2

Z X
m0

d1m00ðθÞð−1Þm
0
Y�
1−m0 ðΩV1

Þ × Y10ðΩV1
ÞdΩV1

¼ jp⃗V1
jjp⃗V2

j
mV1

mV2

−
EV1

EV2

mV1
mV2

d100ðθÞjθ¼π

¼ jp⃗V1
jjp⃗V2

j þ EV1
EV2

mV1
mV2

¼ jp⃗j2 þ EV1
EV2

mV1
mV2

; ðE4Þ
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where jp⃗j ¼ jp⃗V1
j ¼ jp⃗V2

j. Therefore, the longitudinal component of the effective Lagrangian at the hadronic level
in this case becomes

LL
VVS ¼ gðPVÞLW

jp⃗j2 þ EV1
EV2

mV1
mV2

: ðE5Þ

Similarly, the nonvanishing transverse components, εμV1þhενV2þigμν and εμV1−hενV2−igμν, can be calculated as

εμV1þhενV2þigμν ¼ ε⃗V1þ · hε⃗V2þi
¼ ε⃗V1þ · R̂ε⃗V2þ

¼
Z

Y11ðΩV1
Þ
X
m0

d1m01ðθÞY1m0 ðΩV1
ÞdΩV1

¼
Z X

m0
d1m01ðθÞð−1Þm

0
Y�
1−m0 ðΩV1

ÞY11ðΩV1
ÞdΩV1

¼ −d1−11ðθÞjθ¼π

¼ −
1 − cos θ

2






θ¼π

¼ −1;

εμV1−hενV2−igμν ¼ −1: ðE6Þ

The corresponding amplitude below will be
matched to the quark-level transition amplitude

for extracting gðPVÞTW ,

LT
VVS ¼ −gðPVÞTW : ðE7Þ

Note that for a threshold decay, i.e., jp⃗j ¼ 0, the
longitudinal and transverse components have the
same structure as expected. But for heavy initial
state decaying into light vector meson pair, e.g.,
B → VV, the dominance of the longitudinal com-
ponent is evident;

(ii) Parity-conserving transition
The nonvanishing components are ϵαβδλpα

V1
pβ
V2
×

εδV1þhελV2þi and ϵαβδλpα
V1
pβ
V2
εδV1−hελV2−i, both of

which are transverse polarizations and their
values are

ϵαβδλpα
V1
pβ
V2
εδV1þhελV2þi ¼ iðEV1

þ EV2
Þjp⃗j

¼ imD0 jp⃗j;
ϵαβδλpα

V1
pβ
V2
εδV1−hελV2−i ¼ −iðEV1

þ EV2
Þjp⃗j

¼ −imD0 jp⃗j: ðE8Þ
Thus, the corresponding effective Lagrangian can be
expressed as

LT
VVP ¼ �igðPCÞTW mD0 jp⃗j; ðE9Þ

where gðPCÞTW can be extracted by matching the
hadronic amplitudes to the quark-level ones.
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