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Using data samples with an integrated luminosity of 22.42 tb~! collected by the BESIII detector
operating at the BEPCII storage ring, we measure the cross sections of the ete™ — nJ/y process at center-
of-mass energies from 3.808 to 4.951 GeV. Three structures are observed in the line shape of the measured
cross sections. A maximum-likelihood fit with y(4040), two additional resonances, and a nonresonant
component are performed. The mass and width of the first additional state are (4219.7 £2.5+
4.5) MeV/c?* and (80.7 & 4.4 + 1.4) MeV, respectively, consistent with the /(4230). For the
second state, the mass and width are (4386 + 13 £ 17) MeV/c? and (177 £ 32 + 13) MeV, respectively,
consistent with the w(4360). The first uncertainties are statistical, and the second ones are systematic.
The statistical significance of y(4040) is 8.0c and those for w(4230) and w(4360) are more

than 10.0c.

DOI: 10.1103/PhysRevD.109.092012

I. INTRODUCTION

Hadron spectroscopy is a fascinating field full of dis-
coveries and surprises. Over the past decades, many
charmonium-like states with J*€ = 17—, called Y states,
have been discovered and confirmed by numerous
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experiments. As nonstandard hadron candidates beyond
the conventional quark model, these states have many
characteristics that are different from the traditional ones
and have stimulated great interests both experimental and
theoretical. The masses of these Y states are above DD
threshold, and they have strong coupling to hidden-
charm final states. Many theoretical interpretations, such
as hybrid mesons, compact tetraquark states and hadronic
molecules [1], have been proposed. However, none of them
can account for all unusual properties of these Y states.

Among these exotic states, y(4230), previously known
as Y(4260), and yw(4360), previously known as Y (4360),
were first discovered by BABAR and Belle using initial-
state-radiation (ISR) in the eTe™ — yra™n~J/y [2-5]
and eTe” — yra 7w (3686) [6-9] processes. With
higher statistics achieved by BESIII, they are observed
via more processes and measured with improved precision.
The y(4230) is observed in the et e™ — 777~ J /w [10,11],
ete™ = 2°2% )y [12], eTe™ — KOKOJ /y [13], ete™ —
KtK~J/y [14], ete™ —» xtny(3686) [15,16], ete™ —
xtnh, [17], ete” - wy, [18,19], and
atD°D*= [20] processes, and the w(4360) is observed
in the ete™ - nta w(3686) [15,16], eTe™ — ntnh,
[17], and ete™ — nTn~w,(3823) [21] processes. The
parameters of each of these two resonances, such as their
masses and widths, are similar, but there are still differences
between these decay modes.

In recent years, the branching fractions, partial decay
widths, and the quark components of y(4230) and y(4360)
have been predicted by many theoretical models. Assuming
the y(4230) is a conventional y(4S) state and using the
electronic partial widths provided by Refs. [22,23], the
upper limit of the w(4S) — nJ/w branching fraction is
predicted to be 1.9 x 1073 [24]. Assuming that y(4360) is
a pure 4(3°D,) state, the partial width of the y(4360) —
nJ /y decay is estimated in Ref. [25]. Assuming a hadronic

ete” =

092012-4
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molecular state, Refs. [26,27] predict the partial decay
widths or branching fractions of 7/ /y and other final states
for y(4230) and y(4360) decays.

In this paper, an updated analysis of eTe™ — nJ/y at
44 center-of-mass (c.m.) energies between 3.808 and
4.951 GeV is performed, using a similar approach as in
Ref. [28]. Additional data samples on the side of the
w(4230) peak and from 4.612 to 4.951 GeV are used,
which can describe y(4230), w(4360) and the nonreso-
nance more precisely than the previous measurement [28],
as well as allow a search for heavier Y states in the ete™ —
nJ/w process. In this analysis, the J/y is reconstructed
via J/y — 167 (¢ = e/u), and the 7 is reconstructed via
n = yy Mode I) and y — 7%2" 7z~ (Mode II).

II. THE BESIII DETECTOR AND DATA SAMPLES

The BESII detector [29] records symmetric e'e”
collisions provided by the BEPCII storage ring [30]. The
cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer
drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(TI) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0 T magnetic field. The
solenoid is supported by an octagonal flux-return yoke with
resistive plate counter muon identification modules inter-
leaved with steel. The charged-particle momentum reso-
lution at 1 GeV/c is 0.5%, and the specific ionization
energy loss dE/dx resolution is 6% for electrons from
Bhabha scattering. The EMC measures photon energies
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end
cap) region. The time resolution in the TOF barrel region is
68 ps, while that in the end cap region was 110 ps. The end
cap TOF system was upgraded in 2015 using multigap
resistive plate chamber technology, providing a time
resolution of 60 ps [31].

The data samples used in this analysis are listed in
Appendix A. Among them, 76.05% are collected after
the end cap TOF upgrade. The c.m. energy is measured
using dimuon events with a precision of 0.8 MeV for data
samples with /s lower than 4.612 GeV [32,33] and
using A7A; events with a precision of 0.6 MeV for data
samples with /s higher than or equal to 4.612 GeV [34].
The integrated luminosity is determined with an uncertainty
of 1.0% by analyzing large-angle Bhabha scattering
events [34-36].

Monte Carlo (MC) simulation is used to optimize event
selection criteria, estimate background, and determine event
selection efficiencies. The BESIII MC simulation frame-
work is based on GEANT4 [37] and includes the geometric
description [38] of the BESIII detector and the realistic
representation of the electronic readout. The beam energy
spread and ISR in the et e~ annihilation are modeled with
the KKMC generator [39,40]. The inclusive MC sample
includes the production of open charm processes, the ISR

production of vector charmonium(-like) states, and the
nonresonant processes incorporated in KKMC. All particle
decays are modeled with EVTGEN [41,42] using branching
fractions either taken from the Particle Data Group
(PDG) [43], when available, or otherwise estimated with
LUNDCHARM [44,45], CONEXC [46] and PHOKHARA [47].
Final state radiation from charged final state particles is
incorporated using PHOTOS [48]. Signal MC samples of
ete™ — nJ/y with the corresponding J/y and 5 decay
modes are generated using HELAMP [41] with parameters
(1000 -10) and EVTGEN at each c.m. energy. ISR is
simulated with KKMC, and the maximum energy of the ISR
photon is adjusted according to the 7J/y mass threshold.

III. EVENT SELECTION

The good charged tracks are required to be within the
angle coverage of the MDC, | cos 0| < 0.93, where the 0 is
defined with respect to the z axis, which is the symmetry
axis of the MDC. The distance of closest approach to the
e'e” interaction point must be less than 1 c¢cm in the
transverse plane, |ny| < 1 cm, and less than 10 cm along
the z axis, |V.| < 10 cm. Photon candidates are identified
using showers in the EMC. The deposited energy of each
shower must be more than 25 MeV in the barrel region
(| cos @] < 0.80) and more than 50 MeV in the end cap
region (0.86 < |cosf| < 0.92). To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required
to be within [0, 700] ns. To remove photons produced by
interactions of charged tracks, the opening angle between a
shower and its nearest charged track has to be greater than
20°. Candidate events are required to have two (Mode I) or
four (Mode II) charged tracks with zero net charge and at
least two photons.

For signal candidates, the pions and leptons are distin-
guished by their momenta. The charged tracks with
momenta above 1.0 GeV/c are assigned to be leptons,
while others are assumed to be pions. The separation of
electrons and muons is accomplished using the deposited
energy (E) in the EMC. Muons must satisfy £ < 0.4 GeV,
while electrons must satisfy E/pc > 0.8, where p is the
momentum of the charged track. For Mode I, signal
candidate events are required to have a lepton pair with
the same flavor and opposite charge, and at least two
photons. For Mode II, two additional pions with opposite
charge are required.

To improve the resolution and suppress the background
for Mode I, a four-constraint (4C) kinematic fit imposing
energy-momentum conservation is performed under the
hypothesis e™e™ — yy£*¢~. For Mode I, a five-constraint
(5C) kinematic fit is performed under the hypothesis
ete” = yynta ¢T¢~ with an additional z° mass con-
straint for the photon pair. For candidate events with more
than two photons, the combination with the smallest y% or
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Z%C of the 4C or 5C kinematic fit is retained. We require
X3 < 40 for Mode I and y%. < 80 for Mode II. For Mode
I, to suppress the background from radiative Bhabha and
dimuon processes, the energy of each selected photon after
the 4C kinematic fit is required to be greater than 0.08 GeV.

Figure 1 shows the distributions of the invariant mass of
the £7¢~ pair (M(£7¢7)) versus those of the yy pair
(M(yy)) or 2°ztn~ (M(z°z* 7)) for selected events of the
data sample at /s = 4.226 GeV. A clear enhancement
from the signal events appears at the intersection of the J /y
and 7 mass regions in data. Because of the much larger
cross section of the radiative Bhabha process, the back-
ground in J/w — ete” is more serious than for J/y —
u*pu~ in Mode I. Signal candidates are required to be within
the J/y mass region, defined as [3.067,3.127] GeV/c? on
M(£7¢7). The events in the J/y mass sideband regions,
defined as [3.027, 3.057] and [3.137,3.167] GeV/c?, are

315
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FIG. 1. (a), (b), (e), and (f) are the distributions of M(£*¢7)
versus M (yy/z’z"z~), where the region enclosed by red (blue)
long-dashed lines is the signal (sideband) region. (c), (d), (g), and
(h) are the distributions of M(yy/z°z*z~) in the J/y signal
region of the data sample at /s = 4.226 GeV, where the dots
with error bars show data, the green histogram shows the events
from the J/y mass sideband, the black solid, red long-dashed and
blue short-dashed lines denote the fit result, signal, and back-
ground, respectively. The top (bottom) four panels correspond to
Mode I (Mode II).

used to estimate the non-J /y background, and no peaking
background is observed in the M(yy) or M(z’z"zn")
distributions.

IV. CROSS SECTION MEASUREMENT

The Born cross section ¢® is determined by

N..
B sig
o~ = ’ (1)
Line - (14 65%) - \1—]11‘2 B-e
where N, is the signal yield observed from the fit of the

mass spectrum, as shown in Fig. 1, £;, is the integrated
luminosity, (1 + 8™R) is the ISR correction factor, W is

the vacuum polarization factor taken from Ref. [49], 5 is
the product of the branching fractions of the intermediate
states in the subsequent decays from the PDG [43], and € is
the signal detection efficiency. The ISR correction factor
and the detection efficiency are estimated based on signal
MC samples, and weighted by a dressed cross section
iterative weighting method [50]. The relationship between
the dressed cross sections and the Born cross sections is

: dressed _ _ o®
described by & = 1o

The measured cross section for each c.m. energy is
directly obtained by a simultaneous unbinned maximum-
likelihood fit to the M(yy) and M(z°z*zn~) spectra
extracted from the J/yw — ete™ and J/y — ptu~ modes
separately, where the cross section is considered as a shared
parameter between the four studied final states by Eq. (1).
The signal shape is described by a simulated shape
convolved with a Gaussian function, which accounts for
the difference of resolution between data and MC simu-
lation. Among different data samples, the parameters of this
Gaussian function are common and fixed to two different
sets of values for Mode I and Mode II. To determine the
parameters, simultaneous fits to the M (yy) and M(z°z" 7™)
are performed, using data samples with large statistics
(v/s =4.178,4.209,4.219, 4.226, 4.258 and 4.416 GeV).
The background shape is described by a linear function.

Our measurements are in good agreement with earlier
results from BESIII [28,51,52] and with Belle [53]. The
measured cross sections and comparison between different
experiments are shown in Fig. 2. The small differences
between this analysis and the previous BESIII results are
due to increased statistics of data samples with the same
c.m. energy and the updated parameters of the HELAMP
generator. The cross sections and quantities used for their
measurements are summarized in Appendix A.

For those collision energy points where the statistics are
insufficient to observe a signal significance above 5o, upper
limits are also estimated. The obtained normalized like-
lihood distribution as a function of the cross section,
denoted as F;(c9*%) for the jth energy point, is para-
metrized by a sum of two Gaussian functions with floated
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FIG. 2. The Born cross sections of e™e™ — 5J/y. The purple,
orange and pale blue dots with error bars are the Born cross
sections measured previously at BESIII [28,51,52]; the green
diamonds with error bars are the Belle results [53]; and the red
triangles with error bars are the nominal Born cross sections from
this work. The errors shown are the quadratic sum of statistical
and systematic uncertainties.

mean, width and coeffcient, respectively. And it will be
used in the subsequent cross section line shape fit men-
tioned in Sec. V. The red line shown in Fig. 3 is the
likelihood distribution at /s = 3.896 GeV as an example.
Thus, with a uniform prior probability density function, the
Bayesian upper limit for the cross section at 90% confi-
dence level (CL) is estimated by integrating the likelihood
distribution F;(¢%°¢d) from zero to the value that gives
90% of the total area as in Ref. [54]. Before integrating, the
systematic uncertainties are taken into account as in
Refs. [55-57].
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0.08

Likelihood
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= L s 5 10 15
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FIG. 3. The likelihood distribution as a function of the dressed
cross section at /s = 3.896 GeV. The blue arrow refers to the
90% C.L. upper limit on the cross section.

V. FIT TO THE CROSS SECTION
According to the three evident peaks in the dressed cross
section spectrum, a simplified fit model is parametrized as a
coherent sum of three Breit-Wigner functions, describing
the structures around 4040, 4220 and 4390 MeV/c?, and a
nonresonant component:

) | o () + 3 0 e

2

(2)

where the i is the imaginary unit, the ¢; is the relative
phases between three resonances and the nonresonant.
Under this physical assumption, the value of the cross
section 6™(,/s) should be non-negative.

The resonance is parametrized as the Breit-Wigner
function BW; with the two-body phase space factor

®(V/5):

BW,(V5)

V122B LT o /5)
(M;) ®

pr— 2 ;

(/s) = L. ()

In Eq. 3), B s Ffe_, ['; and M; denote the resonance
decay branching fraction to the nJ/y final state, the partial
width of its decay to eTe™, the full width, and the mass of
the jth resonance. In Eq. (4), g is the daughter momentum
in the rest frame of its parent.

The non-resonant part is parametrized following the
method of BABAR [4] as

Vonr(vs) = \/@(Vs)erip,. (5)

where p, and p; and u =

\/E - (Mn + M//l/l)'

To study these possible resonances in the ete™ — nJ/y
process, a maximum-likelihood fit is performed to the
dressed cross sections. For each data sample with large
statistics, the likelihood that represents the deviation
between the fit cross section and the measured one is
evaluated by a normalized Gaussian distribution as

are free parameters,

| (ot

e_ 207 ’ 6
0.\ 2n (6)

where the mean o; and the width 6, is the measured cross
section and the corresponding statistical uncertainties of the
ith energy point. In cases where the data sample lacks a

significant signal, the likelihood shape F;(c}") obtained

from the process of upper limit estimation is used to

Gi(cM;0:,0;) =
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TABLE 1.  Results of the fits to the eTe™ — nJ/y cross sections. M;, T';, Ff“’_, B, and ¢; represent the parameters shown in Eq. (2),
Eq. (3) and Eq. (5). The label i = 1, 2 and 3 symbolizes y(4040), w(4230), and w(4360), respectively. The uncertainties are statistical

only.

Parameter Solution I Solution II Solution III Solution IV
M, (MeV/c?) 4039 (fixed)

I, (MeV) 80 (fixed)

rT*e’ -By (eV) 1.0£0.2 7.1+£0.6 1.1+0.2 7.8+0.6
M, (MeV/c?) 4219.7£2.5

I, (MeV) 80.7+4.4

rs*e’ - B, (eV) 40+0.5 5.5+0.7 87+1.0 119+ 1.1
M; (MeV/c?) 4386.4 +12.6

I'; (MeV) 176.9 £ 32.1

rg*e‘ -Bs (eV) 1.8+£0.6 2.1+0.7 43+13 50+1.5
¢, (rad) 3.1+£0.6 —-1.8£0.1 33+04 -1.6£0.1
¢, (rad) —2.8+0.1 29+0.2 -2.0+0.1 —2.6+£0.2
@3 (rad) -29+0.1 3.0£0.1 2.8 £0.1 24+0.7
po MeV) 1.5+£04 1.5+04 1.5+04 1.6 £04
p1 (GeV™?) 390.0 £ 155.3 389.3 +155.6 389.5 + 155.1 389.5 £ 154.5

describe the cross section at the jth energy point, as
mentioned before.

Therefore, the likelihood function of all data samples is
composed of two parts as

N =22 N,=22
L= [ Gie™- ] Fie™. (7)
i=1 =1

where the N denotes the number of the data samples with
large statistics, and the N, denotes those lacking a
significant signal.

In this fit, the structure around 4040 MeV /c? is assumed
to be y(4040). Because of the lack of data samples around
this energy region, the mass and width of the y(4040) are
fixed to the values given in the PDG [43]. By scanning
three relative phases, four solutions with similar fit quality
and identical masses and widths of the resonances around
4220 and 4390 MeV/ ¢? are found, consistent with the
mathematical analysis of multiple solutions shown in
Ref. [58]. The fit quality is y*/d.o.f. = 66.9/44, estimated
by a y?-test approach, where d.o.f. is the number of degrees
of freedom. The fit results are shown in Table I and Fig. 4.
To estimate the significance of the three structures and the
nonresonant part, the fits are repeated removing one of
these four terms at a time. The statistical significances of
both the nonresonant part and y(4040) are 8.0c, and those
of the y(4230) and w(4360) are more than 10.0c.

Alternative fits are carried out by replacing the second
resonance with y(4160) parameters and the third resonance
with y(4360) or y(4415) parameters from the PDG [43].
However, their fit qualities are significantly worse than the
nominal results and cannot describe the data well. To search
for the existence of other potential resonances, fits are
performed by adding the y(4160) or y(4415) component

with the fixed parameters from the PDG [43]. The
significances of y(4160) and w(4415) are 3.26 and
1.10, respectively. A fitis also performed with an additional
Breit-Wigner function with free parameters, whose
significance is 3.30. In this case, the significances of
previous three resonances have not decreased, and those
of y(4230) and w(4360) are still much greater than 10.0c.
The mass and width of this extra resonance are (4151 £
20) MeV/c? and (110 £ 36) MeV, and the parameters of
w(4230) and w(4360) turn out to be (4226.5+
3.3) MeV/c? and (56.84+7.4) MeV, and (4412.0 +
6.9) MeV/c? and (82 £ 20) MeV, respectively.

VI. SYSTEMATIC UNCERTAINTY

A. Systematic uncertainties
for cross section measurement

The following sources of systematic uncertainties are
considered in the cross section measurement listed in
Appendix B. The uncertainty of the integrated luminosity
is estimated to be 1.0% using large-angle Bhabha scattering
events [34-36]. The uncertainty of the charged track
reconstruction efficiency is estimated to be 1.0% for each
lepton [59]. The charged pion is only reconstructed in
Mode II. The uncertainty from the pion pair reconstruction
efficiency for Mode II is 2.0%, [60]. The uncertainty of the
reconstruction efficiency per photon is estimated to be
1.0% [61]. The uncertainties of the branching fractions of
the intermediate decays are taken from the PDG [43]. The
uncertainty of the radiative correction includes two parts.
The first part stems from the precision of the ISR
calculation in the generator KKMC. The other part stems
from (1 + 8™R) and € in Eq. (1), and depends on the input
line shape of the cross section. Therefore, in order to
estimate the uncertainty related to ISR correction,
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FIG. 4. The fits to the dressed cross sections of ete™ — nJ/y
corresponding to the four solutions in Table I. The black dots with
error bars are the measured dressed cross sections, and the blue solid
curves represent the best fit results of the following interfering
amplitudes: y(4040) (dashed red), w(4230) (short-dashed pink),
w(4360) (short-dashed purple), and the nonresonant component
(long-dashed green).

(1 + 6SR) - ¢ is evaluated 500 times by varying the input
cross section line shape parameters with the uncertainties
and the covariance matrix obtained from the nominal result.
The standard deviation of the (1 4 §R) - ¢ distribution is
considered as the systematic uncertainty. The uncertainty
associated with the J/y mass requirement is estimated by
smearing the M (£*¢~) distribution of MC samples accord-
ing to the resolution difference between data and
MC simulation, and the resulting uncertainties in signal
efficiencies are obtained. For the uncertainty from the
kinematic fit, we correct the helix parameters of the charged
tracks in the MC to match the pull distributions in
the data [62] and reevaluate the selection efficiencies.
The resulting changes of cross sections are considered
as the systematic uncertainties. The systematic uncertainty
of the photon-energy criteria in Mode I is considered by the
“Barlow-test,” following the procedure described in
Refs. [63,64]. The uncertainties related to the fit procedure
are estimated by changing the fit range, replacing the first-
order polynomial function by a second-order polynomial
function for the background description, and varying the
width of the convolved Gaussian function for the signal
shape by 1 standard deviation. The uncertainties from the
other selections, trigger simulation, event start time deter-
mination, and final-state-radiation simulation and other
sources, are conservatively taken as 1.0%. Assuming all
sources of systematic uncertainties to be independent, the
total uncertainties in the ete™ — nJ/y cross sections are
assigned as the quadratic sum of the individual items,
which are 3.8% ~ 27.9% and shown in Appendix C.

B. Systematic uncertainties for resonance parameters

The systematic uncertainties for the resonance parame-
ters in the cross section fit are as follows. The systematic
uncertainty associated with the collision energy is con-
servatively estimated to be 0.8 MeV [32,33]. It is common
for all data samples and causes a global uncertainty of the
mass measurement of Y states. The uncertainty due to the
energy spread is estimated by convolving the fit formula
with a Gaussian function with a width of 1.6 MeV, which is
the energy spread determined by the beam energy meas-
urement system [65]. The uncertainties associated with the
cross section measurement are estimated by incorporating
the correlated and uncorrelated systematic uncertainties of
the measured cross sections in the fit as shown in
Appendix C. The uncertainties from the y(4040) resonance
parameters are studied by varying the parameters within
their uncertainties from the PDG [43]. To estimate the
uncertainty related to the parametrization of the nonreso-
nant part, we replace its amplitude in Eq. (5§) with
% ®(/s), where C is a free parameter and ®(1/s) is
defined in Eq. (4). To estimate the uncertainty from the
parametrization of the Breit-Wigner function, I'; is set to

the mass dependent width I'; = I'? - géﬁ‘fg where I'? is the
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TABLE II.

Systematic uncertainties of resonance parameters, including the c.m. energy (1/s), the energy spread (y/s spread), the

w(4040) parameters (y(4040)), the systematic uncertainty in the cross section measurement (Cross section), the parametrization of

nonresonant amplitude (Fit model), and the parametrization of the Breit-Wigner function (I'y,). The symbol - -

-7 represents that the

uncertainty is neglected. The label i = 1, 2 and 3 symbolizes w(4040), w(4230), and w(4360), respectively.

Source Solution Vs \/s spread w(4040) Cross section Fit model oot Total
M, (MeV/c?) - 0.8 0.7 0.7 0.2 4.3 4.5
I, (MeV) - 1.1 0.9 0.2 0.3 1.4
M5 (MeV/c?) - 0.8 0.4 0.8 0.1 16.8 16.9
I'; (MeV) - 9.9 6.7 4.7 2.0 13.0

1 e 0.05 0.09 0.04 0.01 0.05 0.12

Ff“i By (eV) 1I 0.03 0.87 0.04 0.01 0.31 0.93

It e 0.05 0.11 0.05 0.01 0.06 0.15

v e 0.04 1.06 0.03 0.01 0.38 1.13

1 e 0.02 0.03 0.10 0.02 0.01 0.11

1"5”7 B, (eV) I 0.12 0.26 0.06 0.00 0.10 0.31

I e 0.18 0.05 0.34 0.12 0.03 0.41

v e 0.05 0.40 0.30 0.10 0.23 0.57

1 e 0.18 0.00 0.16 0.09 0.01 0.26

Fg”i B3 (eV) I 0.22 0.04 0.18 0.10 0.02 0.30

I e 0.30 0.05 0.30 0.16 0.01 0.45

v e 0.36 0.14 0.34 0.17 0.03 0.54

nominal width of the resonance. We perform the fit to the
cross section line shape with the above scenarios individu-
ally, and the resultant differences are taken as the system-
atic uncertainties, listed in Table II. The total systematic
uncertainty is obtained by summing all sources of system-
atic uncertainties in quadrature, under the assumption that
they are uncorrelated.

VII. SUMMARY AND DISCUSSION

In summary, we measure the cross sections of e*e™ —
nJ /w at c.m. energies between 3.808 and 4.951 GeV using
data samples with an integrated luminosity of 22.42 fb~!
collected by the BESIII detector operating at the BEPCII
collider. The measured Born cross sections are consistent
with the previous BESII measurements [28,51,52].
However, additional cross sections are measured on both
sides of the w(4230) peak, and from 4.612 to 4.951 GeV,
allowing the line shape to be studied more precisely than
before.

The dressed cross sections are fitted with a simplified
model based on the evident peaks in the cross section
spectrum, which includes three resonances and a nonreso-
nant component. Assuming the lowest lying structure as
w(4040), the w(4230) and w(4360) structures are clearly
observed with statistical significance much greater than
10.00. The masses and widths of these two states are
determined as M = (4219.7 £2.5+4.5) MeV/c?, T'=
(80.7+4.4+1.4) MeV fory(4230), and M = (4386 + 13+
17)MeV/c?, T'= (1774324 13) MeV for w(4360),
respectively. A comparison of the parameters of y(4230)
and y(4360) obtained in this analysis and the previous

BESIII ones is shown in Fig. 5. The parameters of y(4360)
are consistent within uncertainties. However, the width of
w(4230) obtained in this analysis is larger than those
obtained in other processes [11,12,16,19].

Based on the four solutions including the statistical
and systematic uncertainties and combining with the
electronic partial widths, which are 0.63-0.66 keV for
w(4230) and 0.523 keV for w(4360) in Refs. [24,25],
the branching fraction B(y(4230) — nJ/y) is estimated to
be in the range of (6.0640.76+0.17) x 1073 to
(18.89 4 1.75 4 0.90) x 1073, and the partial decay width

220 -
—#- nJ/ (this work) KK Sy
200 4 rrdy K'KJy
180 77 w(3686) - 197%/ v
160 [ % AL ‘
7DD PDG
_t40p Jr
E, 120
: 100 ?
8OF +
60 T
s0f *
20f *

CL . PR Y S S SR AT SO ST A NI ST SO S MY

04200 4250 4300 4350 4400
Mass (MeV/c?)

FIG. 5. Comparison of masses versus widths of y(4230) and
w(4360) from the previous BESIII measurements [11-
14,16,17,19,20] and the average values in the PDG [43]. The
results in the bottom left are for y(4230), and the ones in the top
right are for y(4360).
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I'(y(4360) — nJ/y) is estimated to be in the range of
(0.61 £0.23 +0.10) MeV to (1.70 £ 0.59 + 0.22) MeV.
But neither of them can cover the predictions of
Refs. [24,25] based on a conventional charmonium state
model. Comparing with T¢ ¢ - B(y(4360) = zt7~h,)

w(4360)
from Ref. [17], we obtain the ratio % =

0.16706% +£0.03 ~ 043707 + 0.08, which is beyond the
expected range under the D*D,+ H.c.' molecular scenario
in Ref. [27]. Further theoretical and experimental studies
are still needed to interpret the nature and the structures of
these states.
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APPENDIX A: SUMMARY OF THE BORN
CROSS SECTIONS

Table III shows the values relating to the details of the
calculation of the Born section. VL denotes an estimate of
the upper limit of the cross section at the 90% confi-
dence level.

APPENDIX B: SYSTEMATIC UNCERTAINTIES
ON THE CROSS SECTIONS

All systematic uncertainties at individual c.m. energies
are summarized in Table IV. The sources with the symbol
“#” are the correlated systematic uncertainties for different
data samples. Due to the limited statistics of most data
samples, the items with the symbol “{”, are estimated with
the data sample with the highest statistics
(v/s =4.226 GeV). The total systematic uncertainties
are obtained with the quadrature sum of individual uncer-
tainties by assuming all of them are independent.

APPENDIX C: DEFINITION OF LIKELIHOOD
FUNCTION CONSIDERING THE SYSTEMATIC
UNCERTAINTIES OF CROSS SECTIONS

In the maximum-likelihood fit of the dressed cross
sections of ete™ — nJ/y, to consider the systematic
uncertainties of resonance parameters from the cross
section measurement, the systematic uncertainties of cross
section measurement are divided into two parts, uncorre-
lated and correlated. Assuming all sources to be indepen-
dent, the total uncorrelated and correlated relative
systematic uncertainties are obtained by adding their
individual values in quadrature separately.

(1) Uncorrelated part

The likelihood function of the ith data sample,
considering the uncorrelated uncertainty from cross
section measurement as the nuisance parameter
following the Gaussian distribution, is defined as

L= /Li(alﬁt <€) x Gauss(e; 1, e ) de,  (Cl1)

where L; is the likelihood function with only
statistical uncertainties, o is the expected value
of cross section and €;"°" is the total uncorrelated
systematic uncertainty in the cross section measure-
ment of the ith data sample.
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TABLE IV. Relative systematic uncertainties (%) in the Born cross section measurement. The sources with “*” are the common
systematic uncertainties for different c.m. energies. The items with the symbol “{” are estimated with the data sample with the highest
statistics (/s = 4.226 GeV). The systematic uncertainties include Luminosity (L;,), Branching fraction (8), ISR correction, y
detection, Tracking (utu~/e*e™) (Trackl), Tracking (zz~) (Track2), Lepton pair mass window M (£*¢~), Kinematic fit, Photon-
energy criteria (E,), Fit (including background shape, fit range and signal shape), and Others.

Vs (GeV) Ly B* ISR correction ydetection”” Trackl* Track2* M(£7¢7)" Kinematicfitt E, Fit' Others* Total

14

3.8077 1.0 09 0.5 2.0 2.0 0.4 0.1 0.8 1.2 1.0 1.0 3.8
3.8694 1.0 09 0.5 2.0 2.0 0.9 0.1 0.8 12 1.0 1.0 39
3.8962 1.0 09 0.5 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 3.8
4.0076 1.0 09 0.7 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 39
4.0855 1.0 09 1.2 2.0 2.0 04 0.1 0.8 1.2 1.0 1.0 4.1
4.1285 1.0 09 1.1 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 4.0
4.1574 1.0 0.9 0.7 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 39
4.1784 1.0 09 0.6 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 3.8
4.1888 1.0 09 0.6 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 3.8
4.1989 1.0 09 0.6 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 3.8
4.2091 1.0 09 0.6 2.0 2.0 04 0.1 0.8 1.2 1.0 1.0 3.8
4.2186 1.0 09 0.6 2.0 2.0 04 0.1 0.8 1.2 1.0 1.0 39
4.2263 1.0 09 0.7 2.0 2.0 04 0.1 0.8 1.2 1.0 1.0 39
4.2357 1.0 09 0.8 2.0 2.0 04 0.1 0.8 12 1.0 1.0 39
4.2436 1.0 09 0.9 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 4.0
4.2580 1.0 09 1.4 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 4.2
4.2668 1.0 09 1.6 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 43
4.2777 1.0 0.9 22 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 4.6
4.2879 1.0 09 2.0 2.0 2.0 0.6 0.1 0.8 12 1.0 1.0 4.5
4.3079 1.0 09 2.0 2.0 2.0 04 0.1 0.8 12 1.0 1.0 4.5
4.3121 1.0 09 1.7 2.0 2.0 0.6 0.1 0.8 12 1.0 1.0 43
4.3374 1.0 09 12 2.0 2.0 04 0.1 0.8 1.2 1.0 1.0 4.1
4.3583 1.0 09 0.9 2.0 2.0 0.6 0.1 0.8 12 1.0 1.0 4.0
4.3774 1.0 09 0.9 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 4.0
4.3874 1.0 09 0.8 2.0 2.0 04 0.1 0.8 12 1.0 1.0 39
4.3965 1.0 09 0.9 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 4.0
4.4156 1.0 09 0.9 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 4.0
4.4362 1.0 09 1.1 2.0 2.0 0.6 0.1 0.8 12 1.0 1.0 4.0
4.4671 1.0 09 12 2.0 2.0 03 0.1 0.8 1.2 1.0 1.0 4.1
4.5271 1.0 09 2.1 2.0 2.0 03 0.1 0.8 1.2 1.0 1.0 4.5
4.5745 1.0 0.9 14.9 2.0 2.0 0.5 0.1 0.8 1.2 1.0 1.0 15.9
4.5995 1.0 09 27.2 2.0 2.0 0.2 0.1 0.8 1.2 1.0 1.0 27.9
4.6119 1.0 09 17.9 2.0 2.0 0.5 0.1 0.8 12 1.0 1.0 18.8
4.6280 1.0 09 23 2.0 2.0 0.3 0.1 0.8 12 1.0 1.0 4.6
4.6409 1.0 09 1.2 2.0 2.0 03 0.1 0.8 1.2 1.0 1.0 4.1
4.6612 1.0 09 1.0 2.0 2.0 0.3 0.1 0.8 1.2 1.0 1.0 4.0
4.6819 1.0 0.9 0.8 2.0 2.0 0.3 0.1 0.8 1.2 1.0 1.0 3.9
4.6988 1.0 09 0.7 2.0 2.0 0.3 0.1 0.8 12 1.0 1.0 39
4.7397 1.0 09 0.6 2.0 2.0 1.0 0.1 0.8 12 1.0 1.0 4.0
4.7501 1.0 09 0.6 2.0 2.0 03 0.1 0.8 12 1.0 1.0 3.8
4.7805 1.0 09 0.6 2.0 2.0 03 0.1 0.8 1.2 1.0 1.0 3.8
4.8431 1.0 09 0.6 2.0 2.0 0.3 0.1 0.8 12 1.0 1.0 3.8
4.9180 1.0 09 0.6 2.0 2.0 0.2 0.1 0.8 1.2 1.0 1.0 3.8
4.9509 1.0 09 0.5 2.0 2.0 0.2 0.1 0.8 12 1.0 1.0 3.8
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(2) Correlated part
Considering the correlated systematic uncertain-
ties, which obey a Gaussian distribution, as the
nuisance parameter of the overall likelihood function
in the line shape fit, the likelihood function of total
data samples is defined as

14
L{Ot:/[HL;(alﬁt-e)} x Gauss(e; 1,e°™)de, (C2)
i1

where € is the total correlated relative systematic

uncertainty. Some correlated uncertainties are differ-
ent for each energy point; to be conservative, the
largest value is used.
Finally, using Lj, to repeat the fit, the differences of the
results are considered as the systematic uncertainties from
the cross section measurement.
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