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In various high-energy physics contexts, such as neutrino-oscillation experiments, several assumptions
underlying the typical asymptotic confidence interval construction are violated, such that one has to resort
to computationally expensive methods like the Feldman-Cousins method for obtaining confidence intervals
with proper statistical coverage. By construction, the computation of intervals at high confidence levels
requires fitting millions or billions of pseudoexperiments, while wasting most of the computational cost on
overly precise intervals at low confidence levels. In this work, a simple importance sampling method is
introduced that reuses pseudoexperiments produced for all tested parameter values in a single mixture
distribution. This results in a significant error reduction on the estimated critical values, especially at high
confidence levels, and simultaneously yields a correct interpolation of these critical values between the
parameter values at which the pseudoexperiments were produced. The theoretically calculated performance
is demonstrated numerically using a simple example from the analysis of neutrino oscillations. The
relationship to similar techniques applied in statistical mechanics and p-value computations is discussed.
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I. INTRODUCTION

An essential part of any experiment is the statistical
analysis to extract information about the model parameters,
such as physics constants, from the measurement outcome.
As measurements inherently include statistical fluctuations,
one often reports these constraints in the form of confidence
intervals (or confidence regions in higher dimensions).
These are intervals over the parameter space calculated
from the observed data, which are constructed in such a
way that, for any true value of the parameters, at least a
predefined percentage of the possible experimental out-
comes would produce an interval that covers the true
parameter value. The predefined percentage over possible
experimental outcomes is called the confidence level (CL).
For the rest of this paper, we shall use the following

notation: x denotes the experimental outcome, which can
be a vector of many observations within the single experi-
ment. θ denotes the model parameters, which can contain
one or higher-dimensional continuous degrees of freedom
and may contain discrete degrees of freedom as well.
pðxjθÞ denotes the probability distribution function for the
experimental outcomes given some model parameters.
pðxjθÞ, seen as a function of θ for a given experimental

outcome, is called the likelihood function and denoted
LðθjxÞ ≔ pðxjθÞ. The parameter value for which the like-
lihood is maximized is denoted θ̂ðxÞ ≔ argmaxθLðθjxÞ,
and the difference of the log-likelihood at some parameter
value to the maximum likelihood is denoted as Δχ2ðθjxÞ ≔
−2 logLðθjxÞ=Lðθ̂ðxÞjxÞ. The confidence level is denoted
1 − α.
In many cases, a useful theorem by Wilks [1] can be

applied, which greatly simplifies the construction of such
confidence intervals. The theorem says that, in the asymp-
totic limit, Δχ2ðθjxÞ evaluated at the true parameter value is
distributed as a χ2 distribution with k degrees of freedom,
where k is the dimension of the parameter space θ, which
has to be continuous. The theorem holds under suitable
conditions that ensure that a maximum likelihood value can
be found in the neighborhood of the true parameter
value with a quadratic Taylor expansion of the likelihood.
Given this asymptotic distribution, one can thus construct
a confidence interval by all values of θ that satisfy
Δχ2ðθjxÞ ≤ Δχ2c, where the critical value Δχ2c is easily
computed from the quantile function of the χ2 distribution.
Because of the necessary assumptions, confidence inter-

vals based on Wilks’s theorem are not suitable if the
number of observations is small or the parameter space
is unsuitable because of physical boundaries (such as
θ ≥ 0), discrete degrees of freedom, or periodicities that
cannot be captured by the quadratic expansion. Neutrino-
oscillation experiments, for example, suffer from all of
these deficiencies, for which we will present an example
later. In this situation, one has to resort to actually
producing ensembles of pseudoexperiments for selected
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parameter values to study the distribution of a suitable
statistic to be used for the construction of the confidence
interval.
A commonly used method is the Feldman-Cousins (FC)

method [2], where for each pseudoexperiment x0 generated
assuming a true value θt, the Δχ2ðθtjx0Þ value at the true
parameter value is computed to obtain its distribution.
Then the critical value Δχ2c is obtained by the empirical
1 − α percentile of this distribution. Since the distribution
of Δχ2ðθtjx0Þ will, in general, be different for each true
parameter value, the critical values are now a function of
the true value at which they are computed, which we
denote as Δχ2cðθtÞ. Finally, the confidence interval for
the actually observed data x is constructed by choosing
Δχ2ðθjxÞ ≤ Δχ2cðθÞ. In practice, it is only possible to
compute Δχ2cðθÞ at selected parameter values, which need
to be interpolated, for example, linearly, in order to
compute the confidence intervals.
The Feldman-Cousins method is very inefficient for

obtaining high-CL intervals because, by definition, only a
small fraction of pseudoexperiments contribute to the
quantile computation. For example, in particle physics
the threshold for “discovery” is commonly chosen at
α ¼ 5.7 × 10−7 (the “5σ” threshold), in which case only
one in 1.7 × 106 pseudoexperiments would (by definition)
have a Δχ2ðθtjx0Þ value larger than the critical value. As a
result, one easily ends up with millions of pseudoexperi-
ments to be fitted in order to obtain the necessary critical
values, while simultaneously “wasting” most of this com-
putation time for overprecise critical values at lower CL. In
practice, FC confidence intervals are often computed only
up to 2σ (α ¼ 4.6 × 10−2) or 3σ CL (α ¼ 2.7 × 10−3) for
such reasons.
In this work, we show that it is actually extremely easy to

introduce an alternative sampling distribution that gener-
ates high-CL pseudoexperiments much more frequently:
one simply reuses the pseudoexperiments generated at the
values of the parameters in the form of a mixture distri-
bution. By appropriate reweighting, this results in an
exponential reduction in the errors on critical values for
high CL. The method also introduces a method for
correctly interpolating the critical values between the subset
of true parameter values, thus removing the need for naive
interpolation methods that are commonly employed.
The paper is organized as follows. First, we review

the conventional-FC method. Next, we define the new
method, deriving it from a discussion of an ideal impor-
tance sampling distribution. Bounds for the importance
sampling weights are calculated, which are used to calcu-
late the reduction of errors on the estimated critical values
compared to the conventional-FC method. The ability to
interpolate critical values and the calculation of errors and
other diagnostics are discussed. Next, a toy example from
the analysis of neutrino oscillations is used to compare the
two computation methods and the improvement is checked

against the theoretical upper bounds from the previous
section. Finally, we discuss the relationship to similar
techniques in statistical mechanics and p-value calcula-
tions, the relationship to Bayesian marginalized likeli-
hoods, and the limit of applicability in the presence of
nuisance parameters.

II. CRITICAL VALUES IN THE CONVENTIONAL
FELDMAN-COUSINS METHOD

To prepare the notation, we briefly review the compu-
tation of critical values in the conventional Feldman-
Cousins method. First, we make a choice of S points in
the parameter space, which we denote θs with s going from
1 to S. At each θs, we now generate an ensemble of nexp
pseudoexperiments fxgs by sampling from pðxjθsÞ. While
all pseudoexperiments are assumed to live in the same
space, the s suffix on the curly brackets representing the
ensemble keeps track of the distribution that generated the
experiments. For each pseudoexperiment x∈ fxgs, we now
compute Δχ2ðθsjxÞ and find the 1 − α quantile Δχ2c;s
through any suitable estimator. For example, one may
simply sort the Δχ2ðθsjxÞ values and take the bα × nexpc
largest value as Δχ2c;s, in which case we have

X
x∈ fxgs

IðΔχ2ðθsjxÞ ≥ Δχ2c;sÞ ¼ bα × nexpc: ð1Þ

Here, Ið·Þ is the indicator function returning 1 if the logical
statement in the parentheses is true, and 0 otherwise. b·c
denotes the floor function.
Finally, the critical value function Δχ2cðθÞ is obtained by

some interpolation scheme. For example, one may set
Δχ2cðθsÞ ≔ Δχ2c;s and linearly interpolate for any θ values in
between. To reduce the interpolation error, one typically
has to either manually or automatically [3] adjust the choice
of sampling parameter values fθgS in an iterative scheme.
The asymptotic variance on the critical values is propor-

tional to the binomial error αð1 − αÞ=nexp, so high CL
(α ≪ 1) generally means that one needs nexp ≫ 1=α
for reliable critical values. Since the whole process is
repeated for all S points in the parameter space, the total
number of generated (and fitted) pseudoexperiments
is S × nexp ≫ S=α.

III. THE MIXTURE FELDMAN-COUSINS
METHOD

A. Definition

Our new method, which we shall refer to as the “mixture
Feldman-Cousins” method, differs from the conventional
method mainly in the reuse of all generated pseudoexperi-
ments for the critical-value computation of each target
parameter space point θt with an additional weight
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wðxjθtÞ≔
pðxjθtÞ

1
S

P
S
s¼1pðxjθsÞ

¼ 1

1
S

P
S
s¼1 exp

h
− 1

2
fΔχ2ðθsjxÞ−Δχ2ðθtjxÞg

i : ð2Þ

The value in the denominator is the asymptotic sampling
probability distribution of x∈ fxgmix ≔ ∪S

s¼1fxgs, which is
the mixture distribution of pðxjθsÞ for all θs values (see
Appendix A). A mixture distribution is the distribution one
obtains by randomly sampling from several separate
probability distributions to form a single ensemble, which
results in a probability distribution function equal to the
weighted sum of the individual probability distribution
functions. Since the weights from Eq. (2) are based on the
sampling probabilities, which are nothing but the likelihood
function, they are computable using the same procedure
that calculates the Δχ2ðθjxÞ for each pseudoexperiment.
Because of taking the difference of two Δχ2 values, the
contribution from the minimum χ2 at θ̂ðxÞ, as well as any
θ-independent offsets (e.g., the n! factor in the Poisson
likelihood) vanishes in the denominator and hence does not
need to be known accurately. While in the conventional
method one only needs to compute Δχ2ðθsjxÞ for the θs
value at which the pseudoexperiment was generated, here
we need it for all θs0 (including s0 ≠ s) and θt.
Now we can define the critical value Δχ2c;t as the

w-weighted 1 − α quantile of Δχ2ðθtjxÞ for x ∼ fxgmix,
for example,

X
x∈fxgmix

wðxjθtÞIðΔχ2ðθtjxÞ≥Δχ2c;tÞ≲α×Snexp; ð3Þ

where the ≲ is meant to represent that we take the smallest
Δχ2c;t that satisfies the inequality.

B. Derivation

In order to obtain more pseudoexperiments at large Δχ2
values, which would yield more precise high-CL critical
values, we use an importance sampling approach: instead
of directly sampling from the target distribution pðxjθtÞ,
we sample from a different distribution and weight the
sampled pseudoexperiments by the ratio of probability
distributions to calculate the relevant quantities under the
target distribution (the critical values). The question there-
fore becomes: what is the ideal sampling distribution to
generate the desired pseudoexperiments?.
Note that it is important to find a sampling distribution

that is as close as possible to the target distribution
apart from generating high-Δχ2 pseudoexperiments with
higher probability. In particular, if each experiment x
consists of m measurements, the experiments are points
in an m-dimensional space and there are m dimensions in
which we can stretch or shrink the sampling distribution.

Instead of thinking about estimating quantiles, let us think
of estimating the probability density pðYðxÞjθtÞ using
histograms for YðxÞ ≔ Δχ2ðθtjxÞ. When using reweighting,
in addition to the binomial error nexppð1 − pÞ for the
number of pseudoexperiments falling into a bin, there will
be an additional contribution due to the variance of weights
(Appendix B).
We therefore want to increase the number of pseudoex-

periments falling into a high-YðxÞ bin to reduce the
binomial error, while at the same time keeping the weight
variance within the bin as small as possible. This means the
ideal case of 0 variance would be for the weights to depend
on x through YðxÞ alone. Or equivalently, since the weights
are the ratio of the target and sampling distribution, we
want to use a sampling distribution that differs from the
target distribution only by a functional factor of Δχ2ðθtjxÞ.
The key idea is to think about the meaning of a high-

Δχ2ðθtjxÞ value. The likelihood LðθjxÞ is the probability to
sample the given pseudoexperiment x from θ. A high
Δχ2ðθtjxÞ ¼ −2 logLðθtjxÞ=Lðθ̂ðxÞjxÞ means there exists
a value θ̂ðxÞ where it is more likely to sample the given
pseudoexperiment than at the “target” θt value. Thus by
using pseudoexperiments generated at θ ≠ θt, we can more
efficiently obtain ones with high Δχ2ðθtjxÞ.
The naive choice of simply using pseudoexperiments

generated at some θ0 (≠ θt) weighted by the ratio of
sampling probabilities pðxjθtÞ=pðxjθ0Þ, however, will do
worse than before. This is because θ̂ðxÞ depends on the
pseudoexperiment x, such that for some pseudoexperi-
ments it may be preferable to sample x from pðxjθtÞ than
from pðxjθ0Þ, resulting in an exponentially large (often
unbounded) variance of weights.
The solution is simple: by using a mixture distribution

psampleðxÞ¼ 1
S

P
S
s¼1pðxjθsÞ over a set fθgS≔fθ1;θ2;…;θSg

which includes θt, we can guarantee the weights to be
bounded from above, because psampleðxÞ ≥ 1

S pðxjθtÞ and
hence

wðxjθtÞ ≤ S: ð4Þ

C. Bounds on pseudoexperiment weights
for a good grid

If we choose the grid fθgS dense and wide enough
(a “good” grid) such that we may assume to have a good
minimum θ̂SðxÞ on fθgS in the following sense, we can put
a much stricter bound on the weights than Eq. (4). Given
the minimum Δχ2 on the grid,

Δχ2ðθ̂SðxÞjxÞ ≔ min
s
Δχ2ðθsjxÞ; ð5Þ

which corresponds to the difference between the smallest
χ2 over θ∈ fθgS and over the full continuous parameter
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space of θ, we assume this difference to be bounded from
above by

Δχ2ðθ̂SðxÞjxÞ ≤
�
ϵ if Δχ2ðθtjxÞ ≤ Δχ2max

Δχ2ðθtjxÞ otherwise
ð6Þ

for all possible x. This upper bound is characterized by the
two parameters ϵ≲ 1 and Δχ2max related to the grid spacing
and the range covered by the grid, respectively. The upper
bound due to ϵ applies to pseudoexperiments for which the
true minimum θ̂ðxÞ is within the range covered by the grid,
with ϵ being smaller for denser spacing of fθgS. Δχ2max is a
parameter that limits the range to which the ϵ bound can be
applied and has to be introduced because it is not possible
to fully cover the parameter space of θ with a finite grid
unless the parameter space is bounded. It gives the fraction
of pseudoexperiments whose minimum θ̂ðxÞ lies outside of
the grid range. With larger fluctuations of this minimum
away from the grid points, the minimum over the grid
Δχ2ðθ̂SðxÞjxÞ can become arbitrarily large, such that it
would not be possible to impose an upper bound in the
most general sense. However, since in this case Δχ2ðθtjxÞ
will be large as well, we can keep the ϵ bound by
restricting its applicability to pseudoexperiments satisfying
Δχ2ðθtjxÞ ≤ Δχ2max. For pseudoexperiments that violate
this inequality, we still have an upper bound of
Δχ2ðθtjxÞ by definition of θ̂SðxÞ, if θt ∈ fθgS. Since the
upper bound due to ϵ is significantly stronger, it is
preferable to increase the value of Δχ2max by preparing a
grid fθgS that covers a wider range of values in θ. In the
later example, we will briefly show how ϵ andΔχ2max can be
estimated for practical problems. In order to extend the
following discussion to the case of θt ∉ fθgS as well, we
define a symbol C which is 1 if θt ∈ fθgS and 0 otherwise.
Note that to guarantee Eq. (6) under C ¼ 0 one generally
needs to have parameter values in fθgS that surround θt
sufficiently well. For example, with a one-dimensional
continuous θ parameter, one needs mins θs ≤ θt ≤ maxs θs.
First, we focus on the pseudoexperiments with

Δχ2ðθtjxÞ ≤ Δχ2max, which are our primary interest, and
note that

pðxjθ̂SðxÞÞ
pðxjθtÞ

¼ exp

�
1

2
fΔχ2ðθtjxÞ − Δχ2ðθ̂SðxÞjxÞg

�

≥ exp

�
1

2
Δχ2ðθtjxÞ −

ϵ

2

�
: ð7Þ

The sum of probability ratios is now bounded from
below by

XS
s¼1

pðxjθsÞ
pðxjθtÞ

≥
pðxjθ̂SðxÞÞ
pðxjθtÞ

≥ exp

�
1

2
Δχ2ðθtjxÞ −

ϵ

2

�
ð8Þ

with first inequality following from θ̂SðxÞ∈ fθgS and non-
negativity of probability. This means that, for any pseu-
doexperiment with ϵ < Δχ2ðθtjxÞ ≤ Δχ2max, it is more likely
to be sampled in Snexp samples from 1

S

P
S
s¼1 pðxjθsÞ than in

nexp samples from the target distributionpðxjθtÞ. The sumof
probability ratios is further bounded from above by

XS
s¼1

pðxjθsÞ
pðxjθtÞ

¼ C ×
pðxjθtÞ
pðxjθtÞ

þ
X
sð≠tÞ

LðθsjxÞ
LðθtjxÞ

≤ Cþ ðS − CÞ exp
�
1

2
Δχ2ðθtjxÞ

�
ð9Þ

because LðθsjxÞ ≤ Lðθ̂ðxÞjxÞ. This means the weights are
bounded by

S

Cþ ðS − CÞ exp
h
1
2
Δχ2ðθtjxÞ

i

≤ wðxjθtÞ ≤
S

exp
h
1
2
Δχ2ðθtjxÞ − ϵ

2

i : ð10Þ

We see that the bounds depend on the pseudoexperiments
through Δχ2ðθtjxÞ only and also note that, for sufficiently
largeΔχ2ðθtjxÞ, the ratio of upperwmax to lower boundwmin
converges to

wmax

wmin
→ ðS − CÞeϵ=2; ð11Þ

which indicates a small relative variance of weights as long
as the number of grid points S is not a very large number.
For pseudoexperiments with Δχ2ðθtjxÞ above the thresh-

old Δχ2max, we have

pðxjθ̂SðxÞÞ
pðxjθtÞ

¼ exp

�
1

2
fΔχ2ðθtjxÞ − Δχ2ðθ̂SðxÞjxÞg

�

≥ 1 ð12Þ

by Eq. (6) and hence an upper bound on the weights

wðxjθtÞ ≤
S × pðxjθtÞ
pðxjθ̂SðxÞÞ

≤ S: ð13Þ
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D. Critical value estimator performance
with a good grid

Since quantiles (the critical values) are just the inverse
function of the cumulative distribution function (CDF), we
can estimate the relative reduction of the quantile estima-
tion variance by the reduction of the CDF estimation
variance. The relationship for an observable y ∼ fðyÞ is
given by Var½ŷðPÞ� ¼ fðyÞ−2Var½P̂ðyÞ� where ŷðPÞ is the
quantile function estimator, P̂ðyÞ is the CDF estimator, and
fðyÞ is the probability distribution function.
Following Eq. (3) and using the shorthand notation

YðxÞ ≔ Δχ2ðθtjxÞ, our CDF estimator is

P̂ðyjθtÞ ¼
1

Snexp

X
x∈ fxgmix

wðxjθtÞIðYðxÞ ≥ yÞ ð14Þ

with x ∼ 1
S

P
S
s¼1 pðxjθsÞ. This is an unbiased estimator for

the target CDF PðyjθtÞ,

E½P̂ðyjθtÞ� ¼ E½wðxjθtÞIðYðxÞ ≥ yÞ� ð15Þ

¼ Et½IðYðxÞ ≥ yÞ� ð16Þ

¼ PðyjθtÞ; ð17Þ

where E½·� means to take the expectation with
x ∼ 1

S

P
S
s¼1 pðxjθsÞ, and Et½·� means to take the expectation

with x ∼ pðxjθtÞ. Now, defining
ymax ≔ maxfΔχ2max; yg; ð18Þ

the variance from a single pseudoexperiment is

Var½wðxjθtÞIðYðxÞ ≥ yÞ� ð19Þ

¼ E½wðxjθtÞ2IðYðxÞ ≥ yÞ2�
− E½wðxjθtÞIðYðxÞ ≥ yÞ�2 ð20Þ

¼ Et½wðxjθtÞIðYðxÞ ≥ yÞ� − PðyjθtÞ2 ð21Þ

≤ Et

�
S × Iðy ≤ YðxÞ ≤ ymaxÞ

exp
h
1
2
ðYðxÞ − ϵÞ

i
�

þ S × Et½IðYðxÞ ≥ ymaxÞ� − PðyjθtÞ2 ð22Þ

≤
S

exp
h
1
2
ðy − ϵÞ

iEt½Iðy ≤ YðxÞ ≤ ymaxÞ�

þ S × PðymaxjθtÞ − PðyjθtÞ2 ð23Þ

¼ S ×

�
PðyjθtÞ − PðymaxjθtÞ

exp
h
1
2
ðy − ϵÞ

i þ PðymaxjθtÞ
�

− PðyjθtÞ2; ð24Þ

where in going from the second to the third line, we used
Ið·Þ2 ¼ Ið·Þ and reduced a power of w to replace E½·� by
Et½·�; in going to the fourth line, we used the upper bound
from Eqs. (10) and (13); in going to the fifth line, we used
YðxÞ ≥ y from the argument of the indicator function. The
variance of the CDF estimator is therefore

Var½P̂ðyjθtÞ� ð25Þ

¼ 1

Snexp
Var½wðxjθtÞIðΔχ2ðθtjxÞ ≥ yÞ� ð26Þ

≤
1

nexp

�
PðyjθtÞ − PðymaxjθtÞ

exp½1
2
ðy − ϵÞ�

þ PðymaxjθtÞ −
PðyjθtÞ2

S

�
; ð27Þ

where we note that the S factors in the first two terms were
canceled thanks to being able to reuse the pseudoexperi-
ments generated at all S values for the CDF estimation of
each θt value.
For reference, the variance on the CDF estimator in the

conventional-FC method (denoted in the following equa-
tions by “conv”) is given by the binomial error

Vart½P̂convðyÞ� ¼
1

nexp
ðPðyjθtÞ − PðyjθtÞ2Þ; ð28Þ

with Vart½·� being the variance under x ∼ pðxjθtÞ. Hence
the variance on the estimated critical values ŷðPjθtÞ in the
mixture-FC method is smaller by the factor

γ ≔
Var½ŷðPjθtÞ�

Vart½ŷconvðPjθtÞ�
ð29Þ

¼ Var½P̂ðyjθtÞ�
Vart½P̂convðyjθtÞ�

ð30Þ

≤
AðyÞ þ BðyÞPðymaxjθtÞ=P − 1

S P

1 − P
; ð31Þ

AðyÞ ≔ 1

exp
h
1
2
ðy − ϵÞ

i ; ð32Þ

BðyÞ ≔ 1 − AðyÞ; ð33Þ

where y is the true P quantile satisfying PðyjθtÞ ¼ P, and
the important behavior will be the exponential decrease of
AðyÞ as a function of y. The typical functional shape of the
upper bound is shown in Fig. 1(a). Let us first consider the
case of PðymaxjθtÞ ≪ P. For the P ≤ 1=2 values one is
typically interested in, the mixture-FC method obtains
more precise critical values than the conventional method
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(i.e., γ ≤ 1) for all y ≥ ϵþ 2 ln 2. As y increases, the
relative variance starts to decrease exponentially as
γ ≲ expð−y=2Þ. As y further increases toward Δχ2max,
and PðymaxjθtÞ ≪ P fails to hold anymore, the
BðyÞPðymaxjθtÞ=P term becomes dominant, which satu-
rates to PðymaxjθtÞ=P ¼ 1 for y ≥ Δχ2max. Hence, the
improvement flattens out to γ ≤ 1 for y ≥ Δχ2max to lead-
ing order in P, which is still at least as good as the
conventional-FC method. By choosing suitable parameter
points fθgS and thus a suitable Δχ2max, critical values of the
desired precision can be calculated. As the exponential
reduction in variance cancels the typically exponential
dependence of the CDF on the test statistic [expð−y=2Þ
in the case of a χ2 distribution], the relative error on the
estimated CDF becomes approximately flat over a wide
range of test-statistic values [Fig. 1(b)], which is much
more efficient than for the conventional FC where low-CL
become overprecise with more pseudoexperiments, while
high-CL still suffers from large errors.

E. Interpolation

While for the conventional-FC method one can only
compute the critical values at the parameter value θs where
the pseudoexperiments were generated, in the mixture-FC
method it is sufficient to guarantee that the target parameter
value θt is sufficiently close and surrounded by the
sampling points fθgS such that condition (6) holds.
Considering that for a typical setup the pseudoexperiments

to be generated are the same as those used in the conven-
tional-FC method, this means that the mixture-FC method
not only reduces the uncertainty on the critical values at
the sampling points fθgS, but also allows interpolating
the critical values between these points with similar
performance.

F. Diagnostics and error estimation

As the mixture-FC method exploits the relationship of
the Δχ2 statistic to the probability of sampling pseudoex-
periments, it is essential that the calculation ofΔχ2 matches
the process used to generate the pseudoexperiments. It is,
for example, not allowed to sample from a Poisson random
number generator while using an approximation like
Pearson’s χ2 for Δχ2 instead of the Poisson log-likelihood.
A simple diagnostic is to calculate the average weight
across all pseudoexperiments in fxgmix and check that this
is equal to 1 up to statistical fluctuations. Since the same
pseudoexperiments will be used for all target parameter
values θt (of which the weights are a function), the
statistical fluctuations of these average weights will be
correlated for different θt values.
To estimate the error of the computed critical values, we

recommend using resampling methods such as the non-
parametric bootstrap [4] or jackknife [5] instead of simple
methods like binomial errors, in order to capture not only
the statistical fluctuations in the number of pseudoexperi-
ments that fall into a range of Δχ2 values, but also the
statistical fluctuations in their weights.
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FIG. 1. (a) Example functional shape of upper bound on the ratio of estimated critical value variance from Eq. (31). The red line
indicates the error contribution from pseudoexperiments with y ≤ YðxÞ < Δχ2max [first term with AðyÞ], which is responsible for the
exponential reduction of total uncertainty until the contribution from pseudoexperiments with y ≥ Δχ2max [second term with BðyÞ shown
by green line] takes over for very high-CL critical values. (b) The relative error on the calculated CDF estimator P̂ðyjθtÞ assuming
nexp ¼ 10; 000 pseudoexperiments at each sampling value θs. A reference 10% error threshold is indicated by the dotted line. The
example used for both plots is constructed assuming ϵ ¼ 1, S ¼ 10, Δχ2max ¼ 35, and the true YðxÞ CDF is assumed to be χ2 with
1 degree of freedom. In (a), the exponential growth factor for the green line depends on the assumed CDF, unlike the red line whose
decay factor is given by Eq. (31).
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IV. EXAMPLE WITH A SINGLE
CYCLIC PARAMETER

We consider a simple example that uses a binned-
Poisson model, inspired by the search for CP violation
in a long-baseline neutrino-oscillation experiment, here, in
particular, the T2K experiment [6]. The model has a single
angular parameter called the “CP violation phase”
δCP ∈ ½−π; π� which is constrained by B ¼ 10 Poisson-
distributed observations nb ∼ PoissonðλbÞ with the pre-
dicted event rate

λbðδCPÞ ≔ 10 × ð1 − ϕ2
bÞ ×

�
1 −

1

4
sinðδCP þ ϕbÞ

�
; ð34Þ

ϕb ≔
b − 5.5
10

ð35Þ

for each bin with index b ¼ 1; 2;…; 10 (Fig. 2). The
main feature of this model is that one is mostly sensitive
to sin δCP through the overall normalization of approx-
imately 100 total observations (

P
b nb) and weakly sensi-

tive to the cos δCP component through the “shape” of the
observations as a function of b (meant to represent bins of
increasing neutrino energy). Deviations from Wilks’s
theorem are caused by sin δCP having physical boundaries
at �1 (resulting in reduced critical values around
sin δCP ¼ �1), the sign of cos δCP acting as an effectively
discrete degree of freedom (resulting in increased critical
values at some sin δCP ≠ �1 values), as well as the Poisson
nature of the observations. In an actual experiment, one
would have further continuous and discrete physics param-
eters degenerate with δCP as well as various systematic
uncertainties treated as nuisance parameters. For simplicity
and clarity, however, we focus on δCP alone, which for

continuity with the earlier sections will be referred to as
θ ¼ ðδCPÞ and the observations as x ¼ ðn1; n2;…; n10Þ.
We generate nexp ¼ 10; 000 pseudoexperiments at each

of S ¼ 16 values of θ evenly distributed in the parameter
range ½−π; π�. We first focus on the target value of
θt ¼ −π=2. Figure 3(a) shows the distribution of
Δχ2ðθtjxÞ obtained for pseudoexperiments x sampled from
different θs values. In the conventional-FC method, only
those generated at θs ¼ θt are used, which correspond to
the black histogram that falls off quickly for large
Δχ2t ≔ Δχ2ðθtjxÞ. In the mixture-FC method, we further
make use of the pseudoexperiments generated at all other θs
values, of which θs ¼ 0 and the other extreme of θs ¼ π=2
are shown by the red and green histograms, respectively.
Clearly, the pseudoexperiments sampled from the shifted θs
values have a significantly higher fraction of large Δχ2t
values. At the same time, one can see one of the problems
arising from using only the pseudoexperiments generated at
θs ¼ π=2, in that one would need to apply very large
weights for the smallΔχ2t region where θs ¼ π=2 has a very
small sampling probability. The mixture of pseudoexperi-
ments generated at all 16 θ values, however, shown by the
blue histogram, is able to generate more pseudoexperi-
ments for all Δχ2t values, with the difference in slope
compared to the black target histogram showing the
exponential increase is pseudoexperiments for larger Δχ2t
values. This is even clearer to see in Fig. 3(b), where the
mixture distribution was reweighted using the assigned
weights. Good agreement with the target distribution as
simulated by the conventional-FC method is seen, and the
total number of unweighted pseudoexperiments in the
mixture-FC method exceeds the theoretical lower bound.
In order to gauge the consistency of the test-statistic

distribution for large Δχ2t values, the conventional-FC
calculation was repeated with 1000 times more pseudoex-
periments (10 × 106 in total for the shown θt value), and is
shown by the thick black error bars with appropriate scaling
to allow comparison. We see good agreement within
statistical errors (χ2 ¼ 65 over 62 degrees of freedom
for Δχ2t ≤ 20). Despite the significantly larger computa-
tional overhead, the errors for the high-statistics conven-
tional FC at large Δχ2t > 20 are still much larger compared
to the mixture-FC method.
We now check some of the diagnostics for the mixture-

FC method. The distribution of importance sampling
weights wðxjθtÞ are shown in Fig. 4(a) and are found to
be mostly a function of Δχ2t with small additional variance.
The weights are found to be well contained by the
theoretical bounds from Eq. (10), which were drawn
assuming a ϵ¼0.3 value by looking at the Δχ2ðθ̂SðxÞjxÞ
distributions in Fig. 4(b). The sum of weights is found to be
consistent with 1 (Fig. 5).
Next, we look at the critical values. Figure 6 shows the

critical values as function of the (true/target) parameter
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value θ using both the conventional-FC method (black error
bars) and the mixture-FC method. Despite using the same
set of pseudoexperiments, the critical values obtained with
the mixture-FC method have significantly smaller uncer-
tainty, especially at higher CL, and also provide access to
details of the functional shape between the 16 sampling
values of θ.
For the 1σ critical values [Fig. 6(b)], we see that,

despite the relatively fine spacing of sampling values,

the interpolation error as indicated by the nonoverlap of
red and gray error bands next to the θ ¼ �π=2 values is
larger than the size of the binomial error band in the
conventional method. As these binomial error bands do not
capture the interpolation error, their smallness can be
misleading and render the interpolation feature of the
mixture-FC method very useful.
For the 2σ [Fig. 6(c)] and 3σ critical values [Fig. 6(d)],

we see good consistency between the two methods, while
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also noting the significantly smaller errors in the mixture-
FC calculation. For 3σ CL [Fig. 6(d)], we see the errors in
the conventional method are already so large that some of
the features of the critical values are not recognizable, such
as the bumps at θ ¼ 0; π and the asymmetry of critical
values for a flip of the sin δCP sign, caused by Poisson
statistics.
For 4σ and higher CL [Fig. 6(a)], the conventional-FC

method is unable to determine the critical values except for
a lower limit. The mixture-FC method, on the other hand,
still produces critical values with comparable relative error
sizes to the lower CL critical values.
The estimated relative errors are plotted in Fig. 7 and are

consistent with the typical shape from theoretical argu-
ments [Fig. 1(b)]. To draw the upper bound from γ in
Eq. (31), we conservatively assume Δχ2max ¼ 32 based on
Fig. 4(b), i.e., we will only assume Δχ2ðθ̂SðxÞjxÞ ≤ ϵ up to
Δχ2t ≤ 32. In this example, the actual mixture-FC error
estimated with the bootstrap is smaller than the theoretical
upper limit from γ by about a factor of 2 for Δχ2t < 16. This
can be interpreted as more than one sampling value θs
contributing to the sampling of each pseudoexperiment,
rather than the assumption in the theoretical upper limit that
only θ̂SðxÞ would contribute. For Δχ2t > 16 ¼ Δχ2max=2,
on the other hand, the theoretical upper limit starts to
increase significantly, whereas the actual error estimated
with the bootstrap only grows slowly. This can be inter-
preted as our choice of Δχ2max ¼ 32 being overly
conservative: with the present example, the chosen sam-
pling grid fθgS appears to be effective up to significantly
higher Δχ2 values. This is partly due to the convenient
situation of having a parameter θ ¼ ðδCPÞ with a bounded
parameter space δCP ∈ ½−π; π�.

V. DISCUSSION

A. Relation to techniques in statistical mechanics

The presented method is similar in spirit to the “multiple
histogram reweighting” (multihistogram) method [7] in
statistical mechanics, where statistical ensembles are simu-
lated for various parameter values and combined by
reweighting to the desired parameter value. In the multi-
histogram method, the ensembles are combined with an
additional per-ensemble weight, which is adjusted to
minimize the overall error on the variable to be estimated.
A similar per-ensemble weighting could be applied in the
presented mixture-FC method as well, where these addi-
tional weights would be allowed to depend on the target
Δχ2t ≔ Δχ2ðθtjxÞ value as well, in order to reduce the
variance on the critical value estimator as much as possible.
One difference to the multihistogram method, however,

is that, because we do not resort to Markov chain
Monte Carlo techniques to sample the pseudoexperiments,
the sampling distribution of pseudoexperiments x at each
parameter value θ is known exactly including the normali-
zation constant. Hence, the iterative procedure that is
required at the end of the multihistogram method to self-
consistently determine these normalization constants (the
free energies) is not necessary in the mixture-FC method.

B. Relation to the marginal distribution

The sampling distribution constructed as a mixture over
several parameter values fθgS can be considered a marginal
probability distribution with prior πðθÞ ¼ 1

S

P
S
s¼1 δðθ − θsÞ,

where δð·Þ is the Dirac δ function. Additional per-
ensemble weights as discussed in the previous paragraph
would correspond to an alternative prior πðθjΔχ2t Þ ¼P

S
s¼1 rsðΔχ2t Þδðθ − θsÞ, where rsðΔχ2t Þ can be optimized

to reduce errors subject to the condition
P

s rsðΔχ2t Þ ¼ 1 for
allΔχ2t .One can evengeneralize thediscussion to continuous
priors πðθjΔχ2t Þ, where in order to preserve the arguments on
efficiency reduction, we would need to extend the single-
point condition from Eq. (6) to a condition on a finite-size
region on πðθjΔχ2t Þ.
Unlike in the conventional-FC method, where one needs

a large number of pseudoexperiments at each target
parameter value, it can be preferable in the mixture-FC
method to generate less pseudoexperiments at each sam-
pling value, but instead increase the number of considered
sampling points S. If Snexp is held fixed, this results in a
reduction of the variance of critical values by reducing the
variance in weights bounded from above by expðϵ=2Þ.
Given this relation to the marginal distribution,

let us now consider the computation of Δχ2ðxjθtÞ ¼
−2 logLðxjθtÞ=Lðxjθ̂ðxÞÞ as being approximated by
−2 logLðxjθtÞ=LmðxÞ, where in the denominator, the
profiling operation was replaced by a marginalization over
θ with some prior over θ. We have, therefore, a simple
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likelihood-ratio test between pðxjθtÞ and pmðxÞ ≔R
dθπðθÞpðxjθÞ and it now becomes evident that, in order

to efficiently generate pseudoexperiments with small p
values under the null hypothesis pðxjθtÞ, one should simply
generate the pseudoexperiments from the alternative
hypothesis pmðxÞ, which is what is being done in the
mixture-FC method.
In practice, it will be easier to use the discrete “prior”

over fθgS as was discussed in the text, because unless
the likelihood is Gaussian, the numerical integration
required for marginalization usually increases the computa-
tional cost and complexity. This relation to the profiling/
marginalization similarities can nevertheless be exploited to

motivate an ideal spacing of fθgS values. Out of the well-
known objective priors, the Jeffreys prior [8] is known to
produce a prior that would be uniform in the parametriza-
tion in which the likelihood is Gaussian, if such a para-
metrization exists. Since profiling and marginalization with
a uniform prior over a Gaussian likelihood produce
equivalent results up to a constant offset, the Jeffreys prior
can be considered a good candidate for choosing the fθgS
values at which to generate pseudoexperiments. For exam-
ple, in the CP violation analysis that was discussed in the
earlier section, it would be more suitable to choose a
uniform spacing of parameter values not in δCP but in
sin δCP with equal probabilities for the sign of cos δCP,
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since the dominant constraint is due to the total number of
events N ∼ Poissonðλ ¼ Aþ B sin δCPÞ for some constants
A and B, resulting in an approximately Gaussian likelihood
over sin δCP.

C. Nuisance parameters

Because the significant error reduction in the mixture-FC
method exploits the specific relation of the Δχ2ðθtjxÞ
statistic to the distribution that generates the pseudoexperi-
ments, one cannot assume all features to directly translate
to an analysis with nuisance parameters or “systematic”
parameters as they are often called in physics. Especially
for the commonly used methods of profile-FC [9] or
posterior Highland-Cousins methods [10], where the space
of nuisance parameters from which to generate the pseu-
doexperiments is significantly reduced based on constraints
by the observed experimental data, it is possible to have
situations where the straightforward application of the
mixture-FC method does not yield the exponential reduc-
tion of errors on the estimated critical values given by
Eq. (31). One should therefore not rely on these to estimate
the number of required pseudoexperiments.
In a relatively general setting, when the target distribution

is directly a part of the mixture distribution (so C ¼ 1), one
can show that, even in the worst case, the variance on the
critical values only increases very slightly compared to the
conventional method, by a factor 1=ð1 − PðyÞÞ (see
Appendix C). This factor is negligible considering that
for high CL we have PðyÞ ≪ 1. The weights are bounded
from above by a similar limit, which is important for

well-defined importance sampling behavior. The naive
application of the mixture-FC method to Feldman-Cousins
confidence intervals is therefore still worth a try. In fact,
certain situations may yield near-exponential reduction of
errors as in the case without nuisance parameters, but due
the lack of theoretical guarantees it is suggested to carefully
study the distribution of weights and the reliability of
bootstrap error estimates in this situation.
For concreteness, we give one explicit method of dealing

with nuisance parameters that is easy to implement, even if
it may not yield the most optimal performance possible. To
allow the straightforward extension, we specifically choose
the profile-FC method to define the true values of nuisance
parameters ηs for the parameter of interest value θs at which
the pseudoexperiments are generated. In this method, one
chooses

ηs ¼ ˆ̂ηðθsjxobsÞ ≔ argmax
η

Lðθs; ηjxobsÞ; ð36Þ

where xobs is the actually observed data. The ensemble of
pseudoexperiments fxgs is then defined by sampling from
pðxjθs; ηsÞ. The actual confidence intervals would be
constructed, for example, using the profile log-likelihood,
that is,

Δχ2pðθjxÞ ≔ Δχ2ðθ; ˆ̂ηðθjxÞjxÞ; ð37Þ
as test statistic. In other words, the critical values Δχ2c;s
would simply be given by replacing Δχ2ðθsjxÞ by
Δχ2pðθsjxÞ in Eq. (1). The extension to the mixture-FC
method is simply given by reusing all generated pseudoex-
periments for each target parameter space point θt (and
associated ηt) with the weight

wðxjθt;ηtÞ

≔
pðxjθt;ηtÞ

1
S

P
S
s¼1pðxjθs;ηsÞ

¼ 1

1
S

P
S
s¼1exp

h
−1

2
fΔχ2ðθs;ηsjxÞ−Δχ2ðθt;ηtjxÞg

i: ð38Þ

The important difference to the case without nuisance
parameters is that the weights depend not on the value of
the test statistic Δχ2pðθjxÞ used to construct the confidence
intervals, but rather Δχ2ðθ; ˆ̂ηðθjxobsÞjxÞ. The two differ in
the dataset used to define the value of nuisance parameters
at which the likelihood ratio is evaluated: ˆ̂ηðθjxÞ vs
ˆ̂ηðθjxobsÞ. This subtle difference breaks the guarantee of
exponential reduction of errors, in addition to requiring
separate calculation of this quantity. Fortunately, the
calculation of the weights is trivial because it does not
require any minimization: one only needs to know the
likelihood ratio between predefined points in the param-
eter space. Also, it is essential that ηt is defined using
the θ-dependent profile best-fit value ˆ̂ηðθtjxobsÞ, rather

0 5 10 15 20 25

0.
01

0.
02

0.
05

0.
10

0.
20

Es
tim

at
ed

 re
la

tiv
e 

er
ro

r o
n 

C
D

F 
es

tim
at

e

Conventional FC
Mixture FC (bootstrap)
Upper bound on 

FIG. 7. Estimated relative errors on the CDF estimator P̂ðyjθtÞ
with target θt ¼ −π=2. For the conventional-FC method, the
standard error from the binomial distribution is shown (black
dashed line), where the more precise CDF estimate from the
mixture-FC method was used in computing these errors. For the
mixture-FC method, the bootstrap error estimate (red solid line) is
well below the theoretical upper limit of Eq. (31) calculated
assuming ϵ ¼ 0.3 and Δχ2max ¼ 32 (blue dotted line).

IMPORTANCE SAMPLING METHOD FOR FELDMAN-COUSINS … PHYS. REV. D 109, 092002 (2024)

092002-11



than using the global best-fit value η̂ðxobsÞ ¼
argmaxη maxθ Lðθ; ηjxobsÞ, since the latter would break
the typical relationship between shifts in θ and η that
exists, for example, in the Gaussian limit and helps
recovering the sampling efficiency lost through the addition
of nuisance parameters.
Because one cannot guarantee an exponential reduction of

errors in a setting with nuisance parameters, the ability to
interpolate critical values will be more interesting in this
setting. Here it is important that the pseudoexperiments
generated between neighboring θs values (and suitable values
of nuisance parameters) sufficiently overlap in the space of
pseudoexperiments. Otherwise, the mismatch between pseu-
doexperiment generation and the statistical model behind the
test statistic may quickly result in a large spread of weight
values, which would make both the estimated critical values
as well as their error estimates unreliable. This is because,
with nuisance parameters, there are significantly more
dimensions in which the pseudoexperiments can differ, even
if they have similar values for the test statistic.
In one specific situation, however, all properties dis-

cussed in earlier sections are directly applicable despite the
presence of nuisance parameters. This is when using the
prior Highland-Cousins method in conjunction with a
marginal-Δχ2 statistic, where it is essential to use the same
prior distribution πðηÞ for the nuisance parameters η in both
cases. This is because here the effect of nuisance param-
eters is entirely absorbed by the probability model to
generate the pseudoexperiments, in the sense of pðxjθÞ ¼R
dη πðηÞpðxjθ; ηÞ, such that as far as the mixture-FC

method is concerned, no nuisance parameters exist.
More detailed discussions with examples and possible

modifications to the sampling distributions for pseudoex-
periments will be discussed in a separate publication.

D. Relation to similar techniques
for statistical inference

Very similar importance sampling techniques have been
used for the calculation of p values under a null hypothesis
with a likelihood-ratio statistic. For example, Woodroofe
[11] discusses the case with a continuous prior over the
parameter of interest. In our notation,

psampleðxÞ ¼
Z

dθ πðθÞpðxjθÞ ð39Þ

with only a lower bound on the weights

wðxjθtÞ ≔
pðxjθtÞ
psampleðxÞ

≥
pðxjθtÞ
pðxjθ̂ðxÞÞ ¼ exp

�
−
1

2
Δχ2ðθtjxÞ

�

ð40Þ

given, rather than an upper bound, which would be
essential for showing small errors on the estimatedp values.

An asymptotic formula for the weights using the saddle
point method is also given.
Cranmer ([12], Sec. 5.6) describes a method developed

in the search for the Higgs boson by the ATLAS
experiment [13]. They point out the difficulty of perform-
ing the integral over the continuous prior in Woodroofe’s
method and instead use a set of discrete points fθgS
including θt, as we used for the mixture-FC method (with
C ¼ 1). The choice of weight function, however, is differ-
ent, in that a pseudoexperiment is used only if the

ωsðxjθtÞ ≔
pðxjθtÞ
pðxjθsÞ

¼ exp

�
−
1

2
ðΔχ2ðθtjxÞ − Δχ2ðθsjxÞÞ

�
ð41Þ

value at the parameter value θs from which the pseudoex-
periment was sampled from is the smallest among all
other values in fθgS [i.e., ωsðxjθtÞ ¼ mins0ωs0 ðxjθtÞ] and
discarded otherwise. If the pseudoexperiment is used, it is
weighted by ωsðxjθtÞ. Then, by combining the pseudoex-
periments sampled from all fθgS values with their
weights, the desired distribution pðxjθtÞ is attained with
higher probability to sample pseudoexperiments of large
Δχ2ðθtjxÞ. Since θt ∈ fθgS, this procedure ensures that
wðxjθtÞ ≤ 1 for well-behaved weights.
One downside of this vetoing technique, as explained by

Cranmer, is that the spacing of fθgS must not be too dense
in order not to reduce the efficiency of the method with a
high vetoing probability. The mixture-FC method does not
have this problem because the weights are computed using
the actual sampling probability, which is the sum of
probabilities over fθgS, and no vetoing is necessary.
While the claimed benefit of the vetoing technique is its
independence from the exact normalization of the sampling
probability distribution—due to only using the probability
ratios ωs—the same is true for the choice of weights in the
mixture-FC method, whose weights from Eq. (2) can be
written as

wðxjθsÞ ¼
1

1
S

P
S
s¼1½ωsðxjθtÞ�−1

: ð42Þ

For the problem of finding p values under a null
hypothesis with a likelihood-ratio statistic, the relevant
part of the mixture-FC can therefore be regarded a slight
improvement to the method by Ref. [12]. Furthermore, we
have explicitly shown that, under suitable conditions,
which for a typical setup requires the absence of nuisance
parameters, the variance on the estimated p values is
reduced exponentially for large values of the test statistic.
A very different method for importance sampling pseu-

doexperiments with small p values uses nested sampling
[14]. Here, rather than sampling many pseudoexperiments
and finding the fraction with more extreme values of a test
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statistic, this fraction is computed by employing a separate
algorithm that explores the sampling space of pseudoex-
periments with a sequentially increasing threshold of the
test statistic. This method is very generic and can be applied
for any choice of test statistic that includes, for example,
goodness-of-fit tests to which the mixture-FC method
cannot be applied because of requiring a likelihood-ratio
test statistic between predefined hypotheses. Of course, for
the particular problem of goodness-of-fit tests, one is
typically not interested in very small p values. On the
other hand, for hypothesis testing or inference involving
likelihood-ratio test statistics, where small p values are of
interest, the mixture-FC method presented in this work is
easier to implement, especially for analyses that already
employ the Feldman-Cousins method, but also for any
analysis that just compute p values, because the compu-
tation can be performed almost entirely on exiting infra-
structure. Furthermore, because the mixture-FC method
provides an explicit construction of the sampling distribu-
tion, significant improvements can be seen already from
relatively “large” p values, such as 2σ and 3σ. However,
because of the absence of theoretically guaranteed
improvements when dealing with nuisance parameters,
there may be problems, especially at very small p values
of 5σ and beyond, where the presented method cannot
provide numerically stable estimates of the p value, in
which case the method using nested sampling should be
considered due to its more general applicability.
Finally, we note some of the differences of computing p

values to the FC confidence interval construction in the
context of importance sampling. When computing p
values, we are typically interested in the distribution of
the test statistic under a single null hypothesis. In contrast,
in the FC method, we need the test-statistic distribution for
all plausible parameter values, which in practice is achieved
by computing them for a finite set fθgS and interpolating in
between. The FC construction therefore benefits from the
ability to interpolate critical values with importance sam-
pling, which is not always of interest in the computation of
p values. In addition, the pseudoexperiments sampled from
different parameter values as required for the construction
of the mixture distribution are already available even in the
conventional-FC method, making the transition to the
mixture-FC method straightforward.

VI. SUMMARY

We presented a newmethod to compute critical values for
Feldman-Cousins confidence intervals. The method is a
simple extension of the conventionalmethod in that the same
sets of pseudoexperiments generated at different parameter
values are simply combined with suitable weights. We
showed that this results in a significant reduction of the
errors on the critical values, with exponential reduction for
high confidence level critical values, at almost no additional
computational cost. The method was further shown to

enable accurate interpolation of critical values between
the parameter values at which the pseudoexperiments were
generated. The theoretically calculated performance was
confirmed using a simple example for the analysis of
neutrino oscillations. While the exponential reduction of
errors is currently only guaranteed for analyses without
nuisance parameters, the general technique is applicable to
any analysis making use of the Feldman-Cousins method.

The code used in this paper is publicly available on
GitHub [15].
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APPENDIX A: RELATIONSHIP BETWEEN THE
UNION OF ENSEMBLES AND THE

MIXTURE DISTRIBUTION

The union of N samples from S different distributions
fxgs distributed according to pðxjθsÞ, which we will refer
to as the “union distribution” fxgmix ¼∪S

s¼1 fxgs, differs
from samples from the actual mixture distribution pðxÞ ¼
1
S

P
S
s¼1 pðxjθsÞ in lacking the categorical variance of

choosing from which distribution to sample from. Here
we show that the estimators for the mean using samples
from the union distribution are consistent with those from
the mixture distribution and have smaller variance.
Given any function fðxÞ that only depends on x and not

the index of the distribution s from which the samples
were obtained, we can define an estimator for its mean
using independent samples xsi ∼ pðxjθsÞ from the union
distribution,

f̂ ¼ 1

S

XS
s¼1

1

N

XN
i¼1

fðxsiÞ: ðA1Þ

Its mean is given by

E½f̂� ¼ 1

S

XS
s¼1

1

N

XN
i¼1

E½fðxsiÞ� ðA2Þ

¼ 1

S

XS
s¼1

Es½f� ðA3Þ

¼ 1

S

XS
s¼1

Z
dxpðxjθsÞfðxÞ ðA4Þ

¼
Z

dxpðxÞfðxÞ; ðA5Þ
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where in going to the second line we used that xsi is
identically distributed for the same s, Es½·� is the expect-
ation under x ∼ pðxjθsÞ, and in going to the last line we
exchanged the order of the finite sum and the integral.
Thus, f̂ is an unbiased estimator for the mean of f under the
mixture distribution. Its variance is given by

Var½f̂� ¼ 1

S2
XS
s;s0¼1

1

N2

XN
i;i0¼1

Var½fðxsiÞ; fðxs0i0 Þ� ðA6Þ

¼ 1

S2
XS
s¼1

1

N
Vars½f� ðA7Þ

¼ 1

S2
XS
s¼1

1

N
ðEs½f2� − Es½f�2Þ ðA8Þ

¼ 1

SN

�
1

S

XS
s¼1

Es½f2�−
�
1

S

XS
s¼1

Es½f�
��

1

S

XS
s0¼1

Es0 ½f�
�

−
1

S

XS
s¼1

Es½f�2þ
�
1

S

XS
s¼1

Es½f�
��

1

S

XS
s0¼1

Es0 ½f�
��

ðA9Þ

¼ 1

SN
ðVar½f� − Var½μs�Þ; ðA10Þ

where in going to the second line we used independence
and that xsi is identically distributed for the same s, in going
to the fourth line we inserted the terms with curly braces
with opposite signs, and in the last line Var½f� is the
variance under the mixture distribution, whereas for the last
term μs ≔

R
dxpðxjθsÞfðxÞ with its variance taken with

respect to s as the random variable with discrete uniform
probability distribution ps ¼ 1=S. We see that compared to
the sample mean of SN samples from the mixture distri-
bution, which would have variance Var½f�=SN, the esti-
mator of the mean from the union distribution has smaller
variance, with difference equal to the variance of μs under
the discrete uniform distribution over s.
While the probability distribution of samples from the

union distribution is not equal to that of the mixture
distribution, thanks to f̂ being an unbiased estimator of
the mean of f under the mixture distribution, we can
insert weight functions designed for the mixture distribution
to reweight to other distributions: given wðxjθtÞ ¼
pðxjθtÞ=pðxÞ and any function gðxÞ, we can take fðxÞ ¼
wðxjθtÞgðxÞ such that itsmean is equal to themean of g under
pðxjθtÞ following

E½f̂� ¼ E½f� ¼ E½wg� ¼ Et½g�; ðA11Þ

despite the denominator of w being the mixture distribution
and not the exact probability distribution of the union
distribution.
In summary, if we have N independent samples from

each subdistribution, we are not only allowed to skip the
additional sampling step of choosing from which subdis-
tribution to sample from by just using the union of the
ensembles, but in doing so obtain an estimator that has
lower variance. Thus, the importance sampling weights can
be defined using the explicit functional form of the mixture
distribution, whose properties are easier to study analyti-
cally, while allowing numerically superior results thanks to
the lower variance of estimators based on the union
distribution.

APPENDIX B: PERFORMANCE
OF WEIGHTED HISTOGRAMS

With pseudoexperiments x sampled from some distri-
bution and reweighted to a target distribution pðxjθtÞ using
the ratio w of the target and sampling densities, the density
pðYðxÞjθtÞ of some test statistic YðxÞ can be estimated by

P̂b ≔
1

nexp

Xnexp
i¼1

wðxiÞIðyb ≤ YðxiÞ < ybþ1Þ; ðB1Þ

corresponding to the weighted sum of all pseudoexperi-
ments with YðxÞ falling into the bin ½yb; ybþ1Þ. Given the
probability

πb ≔ E½Iðyb ≤ YðxÞ < ybþ1Þ� ðB2Þ

of a pseudoexperiment to fall into bin b under the sampling
distribution, and the expectation and variance of weight-
powers among pseudoexperiments falling into the bin
under the sampling distribution

Eb½wk� ≔ E½wðxÞkjyb ≤ YðxÞ < ybþ1� ðB3Þ

¼ 1

πb
E½wðxÞkIðyb ≤ YðxÞ < ybþ1Þ�; ðB4Þ

Varb½w� ≔ Eb½w2� − Eb½w�2; ðB5Þ

the expectation and variance of the distribution estimator is
found to be [using Ið·Þ2 ¼ Ið·Þ]

E½P̂b� ¼ πbEb½w�; ðB6Þ

Var½P̂b� ¼
1

nexp
ðπbð1 − πbÞEb½w�2 þ πbVarb½w�Þ; ðB7Þ

where in Eq. (B7) the first term is the usual binomial error
due to the number of pseudoexperiments falling into the
bin, and the second is the additional term due to the
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variance of weights among pseudoexperiments falling into
the bin.

APPENDIX C: ANALYSIS OF CRITICAL VALUE
VARIANCES FOR GENERIC MIXTURES

Let us denote the target distribution of pseudoexperi-
ments at θt by ptðxÞ. In a setting with nuisance parameters η
with probability distribution pðxjθ; ηÞ, this could, for
example, be pðxjθt; ˆ̂ηðθtjxobsÞÞ for the profile-FC method
or

R
dη πðηjxobs; θtÞpðxjθt; ηÞ in the posterior Highland-

Cousins method, with ˆ̂ηðθjxobsÞ ¼ argminηχ2ðθ; ηjxobsÞ
the profile best-fit values and πðηjxobs; θÞ the posterior
distribution for nuisance parameters conditioned by the
target θ value for a fit to the observed data xobs. The other
pseudoexperiments are sampled from paðxÞ, whose dis-
tribution we do not explicitly specify here, but could, for
example, be a mixture over different θ and η values. The
mixture of Nt pseudoexperiments sampled from ptðxÞ
and Na pseudoexperiments sampled from paðxÞ weighted
by wðxÞ ¼ ðNt þ NaÞptðxÞ=½NtptðxÞ þ NapaðxÞ� can be
evaluated analogously to the main text and using the
estimators

P̂ðyÞ ≔ 1

Nt þ Na

XNtþNa

i¼1

wðxiÞIðYðxiÞ ≥ yÞ; ðC1Þ

P̂convðyÞ ≔
1

Nt

XNt

i¼1

IðYðxðtÞi Þ ≥ yÞ; ðC2Þ

E½P̂ðyÞ� ¼ E½P̂convðyÞ� ¼ PðyÞ ðC3Þ

yield a variance reduction of

γ ¼ Var½P̂ðyÞ�
Var½P̂convðyÞ�

ðC4Þ

≤
1
Nt
PðyÞ − 1

NtþNa
PðyÞ2

1
Nt
PðyÞ − 1

Nt
PðyÞ2 ðC5Þ

≤
1

1 − PðyÞ ; ðC6Þ

where

xi ∼
NtptðxÞ þ NapaðxÞ

Nt þ Na
; ðC7Þ

xðtÞi ∼ ptðxÞ: ðC8Þ
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