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Here we study the Penrose limit of the 7" dual of the Maldacena-Nastase solution and its field theory
dual, in order to better understand the effect of 7" duality in this case. We find a matching of string p p wave
oscillators and their masses to the field theory modes, that are rearranged after 7 duality. The effect of T
duality on the long “annulon-type” operators is found as a symmetry of the (2 + 1)-dimensional confining

theory with spontaneous supersymmetry breaking.
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I. INTRODUCTION

Most of the interest in the AdS/CFT correspondence [1]
and its gauge/gravity generalizations (see the books [2,3]
for reviews) comes from the description it gives of non-
perturbative quantum field theories via perturbative string
theory in gravitational backgrounds. However, in the cases
of most interest, which are closer to the real world, and to
QCD in particular, the holographic map is less understood,
so it is worth exploring ways to understand it better. One
way is by using the Penrose limit, leading to the pp wave
correspondence, originally defined in [4] for the AdSs x S°
case, leading to a maximally supersymmetric type IIB pp
wave [5,6] on the string side (see the book [7] for more
details about the pp wave correspondence). In the Penrose
limit one field theory side, one restricts to a sector of long
operators, of a large global (R-)charge, corresponding to
long discretized strings in the pp wave.

Cases of more interest are confining theories like the
ones of Klebanov-Strassler [8] and Maldacena-Nuiiez [9]
(also Polchinski-Strassler [10]) in 3 4+ 1 dimensions. The
Penrose limits of these theories were first analyzed in [11]
where in the IR the Klebanov-Strassler case gave a theory
of heavy hadrons, described by long gauge invariant
operators and dubbed “annulons” due to the ring structure
of the resulting hadrons. The Maldacena-Nuiiez case was
argued to be qualitatively similar, though more difficult to
analyze.
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In2 + 1 dimensions, the A" = 1 supersymmetric confining
case similar to the above is the case of the Maldacena-Nastase
(MNa) model, for NS5-branes wrapped on S° with a twist, a
case that also has spontaneous supersymmetry breaking. The
analysis of the Penrose limit and the resulting annulonlike long
operators for hadrons was started in [12,13], based on the ideas
in [11] but was not completed until our previous paper [14].

A very puzzling issue in holography has been the under-
standing of T duality. In the case of Abelian 7" duality of
AdSs x S°, the interpretation has been in terms of a circular
quiver field theory coming from NS5-branes and D4-branes
[15—-17], but the rules of the T-duality map action on the field
theory dual were not very clear. After the inclusion of
RR-charged fields in non-Abelian 7 duality [18], in [19,20]
and many subsequent papers, it was shown that the field
theory corresponds to an infinite linear quiver, but again, the
T-duality map in field theory was not very clear. On the other
hand, the role of 7" duality in the Penrose limit was pioneered
in [21,22]. In [23], the Penrose limit method was applied in
order to understand better the Abelian and non-Abelian 7" duals
of AdSs x S°, and to see what their effect is in field theory.

In this paper, we consider the application of the Penrose
limit method on the 7" dual of the MNa model, where the T
duality is applied in one of the directions of the S* on which
the 5-branes are wrapped and twisted. The goal is to under-
stand better the effect of this 7 duality on the effective
(2 + 1)-dimensional confining N' = 1 supersymmetry field
theory and its hadronic states.

The paper is organized as follows. In Sec. II we review the
MNa solution, present its 7" dual, and analyze the resulting
supersymmetry. In Sec. III we consider the Penrose limit of
the T dual of the MNa gravity solution and quantize strings in
the background. In Sec. IV we explain the orbifold field
theory dual to the MNa T dual, and construct the “spin chain”
for the annulonlike hadrons in 2 4+ 1 dimensions. In Sec. V
we conclude.
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II. THE MNa SOLUTION AND ITS T DUAL

A. MNa solution and generalization

The Maldacena-Nastase [ 1] gravity background of 10-dimensional type IIB supergravity, dual to NS5-branes wrapped on an

§3, with a twist that preserves A = 1 supersymmetry, is given by (writing only the Neveu-Schwarz (NS)-NS fields: metric, B
field, and dilaton)

1
ds%O,string = d)?%,l + a' N |:dp2 + R2 (p)dQ% + Z (WZ - Aa)2

1
H:dB:Nﬁjzgmmﬁ—Aﬂmf—Aﬂmi—Aﬁ+ZPWW—Aﬂ +h

11
h = NI (p) = 3w(p) + 2] wey
166 ¢
A:w(p)+1 a
2
D =D(p).

b

a C
WiwLwp

(2.1)

Here w¢ and w$, are the left- and right-invariant one-forms on the S® on which the NS5-branes are wrapped, respectively.
Its metric is dQ3 = wiw¢ = wiw%. wé and W4 are the corresponding forms on the sphere transverse to the NS5-branes, i.e.,
at infinity, S3,. The one-forms are parametrized by angles v, 6, ¢ as

wl = sinyd6 — sin 0 cos ydg,

w? = cosydf + sin @ sinyddg,

w; = dy + cos Odg

wk = —sin ¢d@ + sin 0 cos ¢pdy, w% = cos ¢dO + sin @ sin pdy, wy = d¢p + cos Ody. (2.2)
The functions w(p), R?(p), and ®(p) are found pertur- 20(p) = go + (90— 1)(990 +5) , N
batively or numerically, subject to boundary conditions in e\ = 9% 129, pr e
the UV. Note that one can also S-dualize the solution to 392 _4gy+4
a solution describing D5-branes, using (®, = —® is the e (p) = gop® — % A
S-dual dilaton) 90
390 -2
=1-Z—"p2+ ..,
dS%O,D,string = eq)D(p)ds%O,string’ H®) = ¢®)H. (2.3) wip) 390 e
1
The generalization by Canoura et al. [24] has metric r(p)=1- 3 P+,
2 _ 00,2 2
ds5; = e®(dxi , +ds3) D(p) = Py + —p. (2.6)
2445

e e . 1 1\ 2
ds:=N {ezgdp2 +T(WIL)2 o (W’L —5(1 +W)W’L> } ,

(2.4)

and the Ramond-Ramond (RR) three-form field is

N I
F3:Z (wh Aws Aws =L AW AW

7// . .
—Edp AW, AW

(I+y)
4

eklwh AWl AWE — W AW A wi]}
(2.5)

The functions €29, e*" [generalizing R?*(p)] and

w(p), ®(p), and y(p) are in the IR (at small p)

and for gy =1, i.e., for g = 0, we find the MNa original
solution, S-dualized to the D5-brane solution.

B. T dual of (generalization of) MNa

The T duality of the above background was performed
in [25], by use of Buscher’s T-duality rules,

_ 20 1
=" Ge=
|Gog P Goo
- GoyGony — Boy B ~ 1
Gy = Gyy — -4 9NG N Goy = ?B9M’
99 99
- By Gy - G
Byn = Byn — 2%» By = —G—Mg’ (2.7)
99 99

and the corresponding rules for the RR form fields,
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We define

(2n+1) _ ~(2n+2) _ ~(2n)
CM1-~-M2n+1 - CMI...MZ,IH(}S + (27’1 + l)B[M1|¢\CMz---M2n+1]
5 _ ~(2n) .
+ 2020+ DB, 319m031 Cor, 13/ 90 (2.8a)
(2n+1) _ ~(2n) _ (2n) .
Cotr- oo = O, = 2090031 o,/ 93 (2:85)
A = e®Ne?,
29 ~ x o
T=—N(e+—(1+w)?) =e®L =222
4 4
e® A
Q=—N 29 =—,
47Ty
(0]
Q
E:—%(1+W)Nezgz—5(l+w), (2.9)

though in the following we will restrict ourselves to the strict MNa case gy = 1 [so in the IR %9 =1+ O(p*),
e =p? + O(p*), w=1-p*/3+ O(p*), ® = ® + 7p?/24], corresponding to b = 1/3 in the notation used in [14].
After the T duality on ¢;, one finds the metric

2

N g 1 .
ds?, = &*® n (62h +E (1+ w)2> dii, + Adp* + Edg{ﬁ + X(d0} + sin®0,dy?)

4
+ 2E[cos (w1 — w2)d0,d0, — sin (y| — y») sin 0,d0,dep,
—sin (y; — ) sin @, cos 0, dy, db,
+ (cos 8,5in*0; — cos @, sin @, sin O, cos (| — y»))dy 1 dep, + sin*0, dyr, dy,]

+(o-
+(o-

+ <Q - Ecos%h) dy3

sin?(y; — 1//2)sin291> do3

[sin @, sin &, cos (| — y,) + cos B cos 92]2> do3

(a1 14| 1

=2
+2 (Q cos 0, — % cos 0, [sin 8, sin 6, cos (| — y,) + cos O, cos 62]> dody,

=2

- 2% [sin O sin 6, cos (| — ) + cos O cos B, sin (y; — y») sin0,dO,deph,

=2
=)

- ZESil'l (l//l - l//z) sin 61 COS Hldezdlllz, (210)

where ¢?® = ¢?®/X is the T-dual dilaton, the coefficient of dx{, equals e® (the original dilaton), the B field is

B=—

cosO,dy, A depy + gsin (w1 — ya) sin6,d6, A dep,

—

0| [1

+ = [sin 0, sin O, cos (y; — y,) + cos O, cos O,|dp, N depy + gcos 0,dy, A d(/’)l}, (2.11)

and the angles with the index “1” parametrize the internal (on which the branes are wrapped) S° and the angles with index
“2” parametrize the S3,. There are also RR fields F, # 0, F, # 0 but, since we will not be considering fermions in the string
worldsheet action, we will not write them here.
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When T dualizing, we have the consistency condition [26]

/ dpy A dipy = (27)?, (2.12)

where we denote the original coordinate as ¢b; and the T dual
as &1.

If the ¢, direction is orbifolded by Zy , giving a
periodicity 2z/N, for ¢, the above condition implies that
¢, €0,2zN,]. This is the case that is relevant for us, since

otherwise it is hard to make sense of the 7 duality in the
field theory dual [23].

C. Supersymmetry

To understand the amount of supersymmetry, we need
to either construct the Killing spinor equations, or use
symmetry arguments.

If we did not have any orbifolding, we would be back in
the MNa case, analyzed in [14]. As it is, we need to
|

understand whether, when taking the orbifold of S$3/ Zy,,
where Zy, acts onan S' fiber inside $3, any supersymmetry
survives. In general, for a quotient manifold X/G, the
unbroken supersymmetry from X is the one that is invariant
under G.

To see that, we will analyze the action of U(1)g
symmetry (reduced by Zy,) on the supercharges, reduced
down to 2 4 1 dimensions.

The (5 + 1)-dimensional theory on the NS5-branes
has N = (1,1) supersymmetries. The 10-dimensional
Majorana-Weyl spinor decomposes under the decomposi-
tion SO(9,1) —» SO(5,1) x SO(4) as

16 - (4,1,2) & (4,2,1), (2.13)

where we used the fact that SO(5,1)~SU(4) and
SO(4) =~ SU(2), x SU(2)g. Compactifying on the (inter-
nal) S* means the decomposition

SO(5.1) x SO(4) = SO(2,1) x SU(2); x SU(2), x SU(2)

= (4,1,2)® (4.2.1) > (2,2,1,2) & (2,2,2.1).

(2.14)

Finally, twisting means considering only the diagonal subgroup, (SU(2)7 x SU(2),)g;,, (embedding the gauge group in

the spin connection). This gives the decomposition

SO(2.1) x SU(2); x SU(2), x SU(2) 5 = SO(2,1) x (SU(2); x SU(2),,)

diag X SU(Z)B
=(2,2,1,2) & (2,2,2,1) - (2,2,2) & (2,1,1) & (2,3,1). (2.15)
I
vi=yys. (3.1)

Since there is only one SO(2, 1) spinor that is invariant
(1) under the twisted connection (diagonal group), we have
N =1 supersymmetry.

In our case, U(1)g1 C SU(2)g,,> Which means that the
remaining supercharge is invariant under Zy , and survives
the orbifolding.

This is as we want, since the orbifolding we consider
should not interfere with the symmetries of the solution.

III. STRINGS IN PENROSE LIMIT
OF T DUAL OF MNa

A. Penrose limit of 7 dual of MNa

We want to consider the Penrose limit in order to better
understand the effect of 7' duality on gravity dual pairs. But
then, the most useful Penrose limit is in the T7-duality
direction, ¢,. As in previous cases, however (for instance,
[14]and [23,27]), that is not consistent, and we must consider
also motion in another spatial coordinate (and of course, in
time ). Based on what we expect from the field theory, we
want the motion to combine with one of the other two
obvious isometries of the metric, ¢, and v, where

We choose to mix the motion on ¢; with motion on ¢,.

In order to find a null geodesic, we also impose the usual
conditions, which on our metric reduce to

0”g¢2¢2 = O, 0”g¢1¢1 == 0 (32)

The first observation is that, for 4 = p, since at small p
the functions in the metric depend on p?, so ¢’ is propor-
tional to p (and the multiplying functions do not have
anything special), the solution would be p = 0. However,
we can easily check that for p = 0 we get singularities in
the metric (metric coefficients vanish for the case of the
other angles being on their solutions). That means that we
will need to keep p # 0, though very small (so it will be
almost a solution to the geodesic equation, up to vanish-
ingly small corrections, p — 0). But that is fine for the
Penrose limit, since p will be transverse to the geodesic, so
will scale with 1/R — 0.

For the angles (that are not isometries), we get the
conditions
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siny_ cos y_sin’0; = 0,

siny_sin 6, cos @, = 0,

[sin 6, sin 6, cosy_ + cos 6 cos B,] sin O sin B, siny_ = 0,

[sin 6, sin 6, cosy_ + cos 6 cos O,](cos B, sin B, cosy_ — sin @, cos b,) = 0,

[sin @, sin @, cosy_ + cos ) cos B,](sin O cos O, cosy_ — cos O, sin6,) = 0,

which we see are all satisfied by

0, =n/2, w_=n/2, 0, = arbitrary.  (3.4)
(There are other solutions, but they lead to even more
singular coefficients for the metric, so we will ignore them.)

We then consider the null geodesic defined by p = 0,
0, =n/2, w_ = n/2, with 0, and y . arbitrary angles (so
not interacting with the geodesic). Then they will not be
rescaled by 1/R in the Penrose limit. We note then that the
coefficient of d@% in the metric is singular (vanishes) at the
strict geodesic point, but in the Penrose limit that is fine,
since 6, is not rescaled. The same comment also applies for
the coefficient of dl//i in the metric. Since, of course, there
is no true singularity in the metric, the apparent singularity
must be of the type of the one near the center in polar
coordinates, and this is indeed what we will find.

We define the coefficient of d¢3 in the metric as the

function

=2
=X

f=Q—— [sin 0, sin 6, cos (y; — y,) + cos @, cos ).

(3.5)
Then, at the geodesic point we have the values
=2 e®N
f"foZAOZZOZQOZZ—UZ—EO_ 4 (3.6)
0

For later use, we write the full metric at the geodesic
location,

1
ds? = e®0di2, + quﬁ + fol4dp* + d6* +0 - d63
: 0

+0-dy3 + dy? + dg3
+ 2 Sin 92d¢2d91]

—2cosOrdprdy _
(3.7)

The Lagrangian for a particle moving on this geodesic is
(considering the values of the functions at the geodesic)

L= —®5, +—2 +fos i
02 " 23,
__ ¢1 ¢2
= —¢® 2 Zf Jrf() (38)

and the null condition for the geodesic means L = 0.

(3.3)

The cyclic coordinates are f, ¢;, and ¢, and the
conserved momenta are

oL . oL { oL
_—ecpot:—E —.:ﬂ:—.]l, —_—
)

7 b o =for=J>

(3.9)
The L = 0 (geodesic being null) constraint then gives

5B

£ — 2. (3.10)

Considering u as the affine parameter on the null
geodesic, we make the change of coordinates

dpy = pydu+ dw = J, fodu + dw,

. J
de, :¢2du+dv:f—2du+dv, (3.11)
0

after which the metric becomes

2
ds? = di? [ e 4 30 fﬂ} dw?

7 +—+ fdv?
+ e®dx7, + Adp* + glmdyldym

+ 2du {J dw—+ Jodv=— S

- (3.12)

+ 9p,idy ]

where yl = (915 v_, 92’ l//Jr)
Now we finally make the coordinate change

fodV = Jidw + %szv + g{/)zldy’ = dv

_Jfo

dv —-1J
= |[fodV =01

2o S dw = Gpidy! (3.13)

which gets rid of the mixing term with du, and puts the
metric in a form appropriate for taking the rescaling and the
Penrose limit,
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2 f d
ds?® = du? [ —E%e ‘1’2‘1’0+J Jﬂ +-F e®dx?,

f2
+ Adp? + gy dy'dy” + 2dudV + ]f 0 [ 7 2(2) i
2
+ 2.]1 g¢21dwdy, + 9¢21dy g¢2mdy

+ terms with dV} . (3.14)

We have not written the terms with dV in the brackets
(f3dV? = 2fodVJ, 2 dw - 2fodVg,,dy"), since they will
be scaled away in the Penrose limit, as we can easily check.
Note that in g, dy'dy™, in the neighbourhood of the
geodesic we have the metric (3.7), where there are no
v ., 6, components, so there we have a de facto reduction to
y! = (w_., ;) only. This is good, since otherwise the term
with dVgy,, dw, and dV gy g,d6, would contribute. Then
there we also have

e®N
T )

__N<

4
e®N
4

IZ

[11
12

~

1R

(145

'—'2

e®N
Q- Esm w_sin?6, NT (P> + Sy? +660%) ~

o}

—cos 0, f, (3.15)

9pol* Iy = 9,0, = sin 0, fo.

Now we see that indeed the Penrose limit rescaling needs
to be, as we advertised,

Vl
u= U7 Vv Fa 02 627 Vi = v/{k’
/ / /
W_Ky p:p_7 xi:ﬁ’
R R R
x 0 Tyl
g, _T_% _E_Vv 3.16
"2 R 2 R (3.16)

and for simplicity of notation we remove the primes
after the procedure. Moreover, we can, as usual, identify
the overall scale of the metric, f, = e®N/4 = g,N/4,
with R2.

We need to consider the coefficients of d63 and dy? at
subleading order in p,0;,y_, and the same for the
coefficient of du? in the metric above, since these will
all contribute to the Penrose limit. We first obtain

23p o Tp
( + 24> e” =~ <1+24>

el )

folp* + 8y + 607)

N
f~ eT [1 = (sin 0,8y _ + cos 6,60,)?]

2

Tp
~ 1 +—-
fo[ T2

(sin 028y _ + cos 6,56, )?

(3.17)

With the proposed Penrose scaling in (3.16), we obtain that the metric in the v, y», and 8, directions is, at leading order,

2
p
folp? + 8y + 66%) + foby2 +f015l//iv

where dy_ =w_ —n/2, 66, =6, — /2.

(3.18)

Finally taking the Penrose rescaling and limit, and dropping the primes on the rescaled variables, we obtain the metric

[after using (3.10)]

E2
e® fy

R%ds?® = 2f,dUdV — fo[ J%p2+<

+fo [4de i+ (7

4

(sin 6,dO; — cos O,dy _ )

2
- J%) (sin @y _ + cos 9291> ] dU? + e®odx3

+y2 + 03)d05 + dy* + do?

J
d 2L aw
+J2 A

(sinB,dO; — cos O,dy_)? } (3.19)

J2
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where note that E2/(e® f)) — J3 = J3/f3 > 0, so the coefficient of dU? is negative definite, as it should be, and in the last
line we have kept J, as it is, to make the formulas clearer. Since J, is a derived quantity, we define J,/f, = J, for
convenience. Moreover, we finally identify R?> = f, and they will drop from the metric.

Making the rotation sin @,dy_ + cos 6,d0; = diy_, —cos O,dy_ + sin 0,dO, = do,, rescaling x; by N/4, p = p/4 and
(J1/Jy)dw = dw, we get

5 E?
2 _ 2~2 7 2 ~2
ds? = 2dUdV — {161;) +<e%f J> }dU +d2+dpr +p d<4>

P do,
+ (ZJ“ +82>d92+dw_+d92+d< J) . (3.20)

0/2
We note that, since we are in the limit R*> = f, — oo, the term with diy_/(foJ,) — O drops out. Then, defining
dp? + p*d(y . /4)? = dy3, - = z7,,0, = z,, we finally get the metric
E2
® fo

5 . 1.
ds*> =2dUdV — [16J22+<e —J%) ]dU2+d +dZ3 + dy3 + (Zy2+22>d9§+dw2. (3.21)

We can define df,+/y*/4 + 7> = dn, with  a Cartesian coordinate transverse to y and Z, such that it has dn? in the
metric.
The B field becomes then

51//% 69% 5
B = (1=l _Z 52 2
fo <J dU + f()) A {591d(5y/_ < 5 ) 6p d92

— (sin 6,8y _ + cos 0,56, ) (szU LAV _Jidw _ Zcosbdy tsin 92d91> }

= (3.22)
J2 fOJZ J2

There is a term of order f,, that under the Penrose limit becomes of order R?> — oo, but it can be removed by making a
gauge transformation 0B = dA, with

A=—f, <11 U+ K) do,. (3.23)
So

Then under the Penrose limit there is a term of order f,/R = R, but that is &« dU A dU, so vanishes. Finally, after the
Penrose limit, dropping the primes on the rescaled coordinates, as before, we get

5 73 do
B=1Jd 0,dy _ 0> + d6> d et
70 A o+ (124654 50°) +w—[w( +3)+ 7}

- 5 - - J2 de
=J1dUAN O dy_+ | 7+ |dO, +_|dw — = ) (3.24)
24 TR)TT

Note that, if we define (y2 + 6 + ;%) = T7 and T,d6, = dT, (since T is a radius and 6, an angle), we have

(1 Z) 8L

so has constant components in some Cartesian coordinates: H = dU A h gives h = h; jdXi A dX/, with h; ;j constant.

H_dB_JldU/\{dgl/\dl// +dT1/\dT2+dl// A

B. String quantization in the pp wave background

To quantize the string in the pp wave background, we write, as usual, the Polyakov action in the p p wave background,

choose the conformal gauge vhh® =y (h is the worldsheet metric) and light-cone gauge x* = p_z, where 7 is the
worldsheet time, obtaining
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aXi ) z:(aayi)2

i=1

2md p* |: 2

472'(1 —
2 yz 2
+ ) (0az:)? + (3,7)* + (z + 22) > (0.6,)?
i=1 a=1
5 - J 2rd p*
<I6J%y + J%Z%>:| Elr dr / do
X {91651//_ + <Z +_ >
J 0,
+z {a w(l n 2) + "Zz}}
J>

For the solutions of the equations of motion we choose,
as usual, free wave (Fourier mode) solutions of the type

(3.26)

(I)A = CDA.O exXp [—la)T + ikAU], (327)

where @, stands for all the oscillators. Moreover, also as
usual, with the rescaling by p* of the above, the quantiza-
tion of momenta around the closed string circle in ¢ gives
na
apt

kpn= (3.28)

Using this ansatz, the equations of motion for the
oscillators become algebraic, although a bit complicated
and unyielding to solve, so we will not attempt it.

The B field, being of the type h;;X [dX7, with h; j
constant, as noted already, will then contribute to the
equations of motion terms with ~iky = ing/(a'p™).
These will appear in skew-diagonal contributions (propor-
tional to €”) coupling the various oscillators. Like in the
non-7-dualized MNa case in [14], then if we take all ny, =
n equal, we will find that the term with n in w, will be
simply added to the mass term.

But in any case we are only interested in the mass terms,
which are independent on the B field (since the B field is
proportional to k, so to n). The masses are then

x;, i=12:m=0, w:m=0, n:m=0,

V5T,

y, i=1,2:m= T i=1,2:m=1,.

(3.29)

ki = Q a T B all = *
Szzgsfgsil(l“i)—/d%/dzal {WZTr((D +iTOW(D, — T W) + WY=L (W, W) |
i ij

where

As in [23], we will see that from the dual field theory we
have only the relevant case when the two masses are equal,

when \/5J, /4 = J,, and it will not be clear how to obtain
the nontrivial parameter J; to vary from the field theory
point of view.

IV. FIELD THEORY AND SPIN CHAIN

A. Orbifold field theory

On the N 5-branes we start with a U(N) theory. The
action of the U(1)q on the S Cc R* = C? defined as

lzol? + 21> =1 (4.1)
is
20 = 20
7y = €z, (4.2)

As mentioned, Zy, acts by restricting the range of U(1),
so by a — a/N;.

Then, the gauge group of the orbifolded gauge theory on
the wrapped 5-branes is U(n;) x --- x U(ny,) (see, for
instance, [28,29]), where

Zn dim(r

In the covering space, the group is U(N;N). The bosonic
spectrum is as follows: one gauge field, (A})!,, five real
scalars, (dJi )’ transforming in the adjoint representation
of the gauge group, one complex scalar (or two real ones),
(B ‘H) ;11> transforming in the bifundamental represen-
tation of two consecutive U(n)’s in the gauge group, where
u, v are Lorentz indices, /, J are fundamental group indices
(I; for the ith group), such that (1J) is in the adjoint, i, j
label the U(n)’s, and f refers to other internal indices.

The quiver diagram is circular, with nodes connected by
the bifundamental fields.

Then the action for the gauge fields and the bifunda-
mental scalars is [30]

M
S

i=1

(4.3)

(4.4)

086025-8
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_ . . ki
WN_I(YU’ Yi) = W(Wy) + W(W;)) + Z ER?
i k20

k; T f
o Ri= S WuW=> WiW (4.5)
F k

The Chern-Simons (CS) levels are as follows:

First, in the original theory, the HX® field has a k4 flux on
S8, leading to the same CS level, which is reduced to k =
ke — N /2 by integrating out the fermions to have just a pure
CS theory.

Second, in the orbifold theory, the HX flux is distributed
between the nodes of the quiver, leading at each node to a
CS level of kgn;/N, reduced to k; = k¢n;/N — n;/2 by
integrating out the fermions of the node. Note that then we
have Y. k; = k.

B. Spin chain

In Sec. II C we have seen that under the twisted reduction
on $3, the symmetry group decomposes into SO(2, 1) x
(SU2)7 x SU(2) 4) giag X SU(2) and, as we have shown
in [14], the gauge fields result in the decomposition (3,1,1) &
(1,3,1) and the scalar in (1,2, 2). Moreover, the ¢™ scalar
modes in (1,2,2) are written, under the SO(4) ~ SU(2); X
SU(2)g bifundamental decomposition, as

lp=1,m=0)sorera = [P =0.m = 1)yer1a = Oy,

i + @
O + i

N |

1 /W Z
Az )

Under the orbifold action, the two real bifundamental
scalars (B';)’;,, descend from the complex Z scalars, and
the five real scalars (qJZ)I , atasingle node i descend from
the three A, scalars [in the (1,3, 1), from the gauge field
decomposition], and the two scalars in the complex W.

As explained in [14], the spin chain before orbifolding
was described in terms of a vacuum |0, pT) ~ Tr[Z/],
in which we inserted the eight bosonic oscillators
@2 = (D, A, W, W),u=0,1,2;a=1,2,3.

But as described in [23] in the case of T duals of
AdSs x 3, one must consider the quiver orbifold theory,
based on the works [21,22], and then consider a kind of T
dual in the quiver (Zy,) direction.

As explained in [22,23] then, the vacuum of the original
orbifold theory, with momentum p = 1 and winding m = 0
in the Zy, direction, is associated with a gauge-invariant
state that has “winding” around the quiver. But under the T
duality, p and m are interchanged, so we have a state of
momentum p = 0 and winding m = 1, created by multi-
plying the bifundamental scalars (only the holomorphic
ones in the complex notation, B and not B),

' — iCI)2>
i — @3

(4.6)

1 )
= —Tr[BlzB23...Bli+1...BNl1].

Wi (4.7)

The eight bosonic oscillators on these states with winding are provided by the following eight objects: (i) as usual, the
three covariant derivatives Dw u =0, 1, 2, (ii) the five real scalars in the adjoint, <I>;}, p=1,....,5, comprised of the three

scalars from A, [(1,3,1)] and the scalars in W, W.

However, we will see shortly that the energies of these objects are not the same, as they will have different values of J.
Then the insertions of D, and ®j, at zero transverse momentum give the operators:

. 1
Opo = “aD’,To|P =0,m=1)

.—i— 1
Og,o = ag’,o|P =0,m=1)

after Td — W\/—N

after Td — \/T—]Vl \/—N

N;
> Tr[B',B%... B (DB ). BN,
i=1

Ny
> Tr[B',B%... B @B BV, (4.8)
i=1

The state of momentum p, distributed as a sum of mode numbers n,, is (for instance for <I>;, insertions)

Hi .
Ogb.p = aé{),nq|p, m =

1 1
1) atterTd = NNV

2zilng

N,
> Tr(B',B%...B= @B . BN e T
=1

(4.9)

where we have only shown one mode number (momentum) n, insertion for simplicity, and the total momentum p (what
used to be the winding before the 7" duality, i.e., in the original orbifolded theory) is the sum,

p= an.
q

(4.10)

086025-9



MARCELO R. BARBOSA and HORATIU NASTASE

PHYS. REV. D 109, 086025 (2024)

To find the correspondence with the string oscillator
states, we will consider the comparison with the case before
T duality. The first observation that we have is that D,, splits
into D, and Dy, as before T duality, but now also @ split:
A, into (A, A,) and As, and also W and W.

The oscillators in this case are then reshuffled, as is their
charge J. Indeed, now we are interested in the gravitational
symmetry charge

J=Ji+Jy=1J4 +Jy, (4.11)

But J,, corresponds now not to the J, from [14], which
was a U(1) C (SU(2);, X SU(2)}g) giag Of the S (internal),
but rather itis a U(1) on which we 7T dualize, thus breaking
S0(4) = SU(2);, x SU(2)} of the §* to U(1),, x SU(2).
This has also the effect of breaking the three gauge fields A,
into (A}, A,) rotated by U(1), and Aj, invariant. Further,
Jy, is the same J; in [14], whichis a U(1) C SU(2),, of the
S3,. But, because we do not have anymore the J. 5 of [14], it
will now be convenient to choose the normalization of the
charges a factor of 2 larger, so J4 of A}, A, and D, is now
+1, and J4, of Z, W is —1/2. The Hamiltonian is
H=u(A—-J—-E;), with E; =1 as before T duality,
and with y = —1.

Then we get the table (with respect to the fields before T
duality)

Field zZ W Z W A, AD, D,
A 12 1/2 1/2 1/2 1 11 1
7, 0 0 0 0 1 01 0
Iy, —1/2-1/2+1/241/2 0 00 0
J —1/2-1/24+1/2+1/2 1 01 0
A—-J 1 1 0 0 1 01 O
H/(-1)=A-J-E, 0 0 1 1 1 01 0
Oscillator ceem e YL 21, 22 W Yo XY, X

We have listed the oscillators that correspond to the
various insertions, as follows. D, obviously correspond to
x;, and Ay, to z;, (as they come from 01, 7_); As
corresponds to W (since this comes from a combination
of ¢, ¢,), and W corresponds to #, which is generated by
the angle 6, in a transverse direction different than the one

of Z (which is ¢,). Finally W to y, (which is the transverse
direction p), and D; to y,, which is y ., that includes v,
that also charges the D, direction, due to the twist.

We see that the masses of the p p wave oscillators indeed
match the Hamiltonian, for the case of all masses equal
(v/5J,/4 = J,). As we already commented, it is unclear,
just as in the T dual of AdSs x S° case studied in [23], why
the free parameter J; is not represented in the field theory.

V. DISCUSSION AND CONCLUSIONS

Here we have constructed the 7 dual of the MNa
solution, and taken the Penrose limit, in order to have a
simpler way to study the resulting field theory dual, now of
orbifold type. We have found the spectrum of string theory
oscillators, and matched it to the spectrum of insertions into
the field theory “annulonlike” long gauge invariant oper-
ators. The effect of T duality on these operators (and thus
on the hadrons associated with them) was described.

It is still not clear in general how to quantify the effect
of the T duality [in a transverse direction to the (2 + 1)-
dimensional field theory, namely on the S° that the 5-branes
wrap] on general states in the orbifold field theory. We have
described the action in the p p wave limit, which in the case
of the spin chain for the annulons corresponds to the “dilute
gas approximation” (or few “impurities”), but it generalizes
to an action on a generic state of the (long) spin chain. It is
also still not clear why the 7T-duality action on general short
states is a symmetry, as is the case for the string theory on
the gravity dual. The hadrons (annulons) are states of the
confining theory in the IR, and it is not in general clear that
such a theory should have a symmetry. Moreover, the effect
(if any) on the spontaneous supersymmetry breaking needs
to be understood.
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