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Here we study the Penrose limit of the T dual of the Maldacena-Nastase solution and its field theory
dual, in order to better understand the effect of T duality in this case. We find a matching of string pp wave
oscillators and their masses to the field theory modes, that are rearranged after T duality. The effect of T
duality on the long “annulon-type” operators is found as a symmetry of the (2þ 1)-dimensional confining
theory with spontaneous supersymmetry breaking.
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I. INTRODUCTION

Most of the interest in the AdS/CFT correspondence [1]
and its gauge/gravity generalizations (see the books [2,3]
for reviews) comes from the description it gives of non-
perturbative quantum field theories via perturbative string
theory in gravitational backgrounds. However, in the cases
of most interest, which are closer to the real world, and to
QCD in particular, the holographic map is less understood,
so it is worth exploring ways to understand it better. One
way is by using the Penrose limit, leading to the pp wave
correspondence, originally defined in [4] for the AdS5 × S5

case, leading to a maximally supersymmetric type IIB pp
wave [5,6] on the string side (see the book [7] for more
details about the pp wave correspondence). In the Penrose
limit one field theory side, one restricts to a sector of long
operators, of a large global (R-)charge, corresponding to
long discretized strings in the pp wave.
Cases of more interest are confining theories like the

ones of Klebanov-Strassler [8] and Maldacena-Núñez [9]
(also Polchinski-Strassler [10]) in 3þ 1 dimensions. The
Penrose limits of these theories were first analyzed in [11]
where in the IR the Klebanov-Strassler case gave a theory
of heavy hadrons, described by long gauge invariant
operators and dubbed “annulons” due to the ring structure
of the resulting hadrons. The Maldacena-Núñez case was
argued to be qualitatively similar, though more difficult to
analyze.

In 2þ 1 dimensions, theN ¼ 1 supersymmetric confining
case similar to the above is the case of theMaldacena-Nastase
(MNa) model, for NS5-branes wrapped on S3 with a twist, a
case that also has spontaneous supersymmetry breaking. The
analysis of thePenrose limit and the resulting annulonlike long
operators for hadronswas started in [12,13], based on the ideas
in [11] but was not completed until our previous paper [14].
A very puzzling issue in holography has been the under-

standing of T duality. In the case of Abelian T duality of
AdS5 × S5, the interpretation has been in terms of a circular
quiver field theory coming from NS5-branes and D4-branes
[15–17], but the rules of the T-duality map action on the field
theory dual were not very clear. After the inclusion of
RR-charged fields in non-Abelian T duality [18], in [19,20]
and many subsequent papers, it was shown that the field
theory corresponds to an infinite linear quiver, but again, the
T-duality map in field theory was not very clear. On the other
hand, the role of T duality in the Penrose limit was pioneered
in [21,22]. In [23], the Penrose limit method was applied in
order to understand better theAbelian andnon-AbelianT duals
of AdS5 × S5, and to see what their effect is in field theory.
In this paper, we consider the application of the Penrose

limit method on the T dual of the MNa model, where the T
duality is applied in one of the directions of the S3 on which
the 5-branes are wrapped and twisted. The goal is to under-
stand better the effect of this T duality on the effective
(2þ 1)-dimensional confining N ¼ 1 supersymmetry field
theory and its hadronic states.
The paper is organized as follows. In Sec. II we review the

MNa solution, present its T dual, and analyze the resulting
supersymmetry. In Sec. III we consider the Penrose limit of
theT dual of theMNagravity solution and quantize strings in
the background. In Sec. IV we explain the orbifold field
theory dual to theMNaT dual, and construct the “spin chain”
for the annulonlike hadrons in 2þ 1 dimensions. In Sec. V
we conclude.
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II. THE MNa SOLUTION AND ITS T DUAL

A. MNa solution and generalization

TheMaldacena-Nastase [1] gravity background of 10-dimensional type IIB supergravity, dual toNS5-braneswrapped on an
S3, with a twist that preservesN ¼ 1 supersymmetry, is given by (writing only the Neveu-Schwarz (NS)-NS fields: metric, B
field, and dilaton)

ds210;string ¼ dx⃗22;1 þ α0N
�
dρ2 þ R2ðρÞdΩ2

3 þ
1

4
ðw̃a

L − AaÞ2
�

H ¼ dB ¼ N

�
−
1

4

1

6
ϵabcðw̃a

L − AaÞðw̃b
L − AbÞðw̃c

L − AcÞ þ 1

4
Faðw̃a

L − AaÞ
�
þ h

h ¼ N½w3ðρÞ − 3wðρÞ þ 2� 1
16

1

6
ϵabcwa

Lw
b
Lw

c
L

A ¼ wðρÞ þ 1

2
wa
L

Φ ¼ ΦðρÞ: ð2:1Þ
Here wa

L and wa
R are the left- and right-invariant one-forms on the S3 on which the NS5-branes are wrapped, respectively.

Its metric is dΩ2
3 ¼ wa

Lw
a
L ¼ wa

Rw
a
R. w̃

a
L and w̃

a
R are the corresponding forms on the sphere transverse to the NS5-branes, i.e.,

at infinity, S3∞. The one-forms are parametrized by angles ψ ; θ;ϕ as

w1
L ¼ sinψdθ − sin θ cosψdϕ; w2

L ¼ cosψdθ þ sin θ sinψdϕ; w3
L ¼ dψ þ cos θdϕ

w1
R ¼ − sinϕdθ þ sin θ cosϕdψ ; w2

R ¼ cosϕdθ þ sin θ sinϕdψ ; w3
R ¼ dϕþ cos θdψ : ð2:2Þ

The functions wðρÞ; R2ðρÞ, and ΦðρÞ are found pertur-
batively or numerically, subject to boundary conditions in
the UV. Note that one can also S-dualize the solution to
a solution describing D5-branes, using (ΦD ¼ −Φ is the
S-dual dilaton)

ds210;D;string ¼ eΦDðρÞds210;string; HðDÞ ¼ eΦDðρÞH: ð2:3Þ
The generalization by Canoura et al. [24] has metric

ds2st ¼ eΦðdx21;2þds27Þ

ds27 ¼N

�
e2gdρ2þ e2h

4
ðwi

LÞ2þ
e2g

4

�
w̃i
L−

1

2
ð1þwÞwi

L

�
2
�
;

ð2:4Þ
and the Ramond-Ramond (RR) three-form field is

F3 ¼
N
4

�
ðw1

L ∧ w2
L ∧ w3

L − w̃1
L ∧ w̃2

L ∧ w̃3
LÞ

−
γ0

2
dρ ∧ w̃i

L ∧ wi
L

−
ð1þ γÞ

4
ϵijk½wi

L ∧ wj
L ∧ w̃k

L − w̃i
L ∧ w̃j

L ∧ wk
L�
�
:

ð2:5Þ
The functions e2g; e2h [generalizing R2ðρÞ] and

wðρÞ;ΦðρÞ, and γðρÞ are in the IR (at small ρ)

e2gðρÞ ¼ g0 þ
ðg0 − 1Þð9g0 þ 5Þ

12g0
ρ2 þ…;

e2hðρÞ ¼ g0ρ2 −
3g20 − 4g0 þ 4

18g0
ρ4 þ…;

wðρÞ ¼ 1 −
3g0 − 2

3g0
ρ2 þ…;

γðρÞ ¼ 1 −
1

3
ρ2 þ…;

ΦðρÞ ¼ Φ0 þ
7

24g20
ρ2; ð2:6Þ

and for g0 ¼ 1, i.e., for g ¼ 0, we find the MNa original
solution, S-dualized to the D5-brane solution.

B. T dual of (generalization of) MNa

The T duality of the above background was performed
in [25], by use of Buscher’s T-duality rules,

e2Φ̄ ¼ e2Φ

jG99j
; G̃99 ¼

1

G99

;

G̃MN ¼ GMN −
G9MG9N − B9MB9N

G99

; G̃9M ¼ 1

G99

B9M;

B̃MN ¼ BMN − 2
B9½MGN�9

G99

; B̃M9 ¼ −
GM9

G99

; ð2:7Þ

and the corresponding rules for the RR form fields,
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Cð2nþ1Þ
M1…M2nþ1

¼ Cð2nþ2Þ
M1…M2nþ1ϕ̃

þ ð2nþ 1ÞB½M1jϕ̃jC
ð2nÞ
M2…M2nþ1�

þ 2nð2nþ 1ÞB½M1jϕ̃jgM2jϕ̃jC
ð2nÞ
M3…M2nþ1�ϕ̃=gϕ̃ ϕ̃; ð2:8aÞ

Cð2nþ1Þ
M1…M2nϕ̃

¼ Cð2nÞ
M1…M2n

− 2ng½M1jϕ̃jC
ð2nÞ
M2…M2n�ϕ̃=gϕ̃ ϕ̃: ð2:8bÞ

We define

Δ ¼ eΦNe2g;

Σ ¼ eΦ

4
N

�
e2h þ e2g

4
ð1þ wÞ2

�
≡ eΦΣ̃≡ e2Φ̃Σ̃2;

Ω ¼ eΦ

4
Ne2g ≡ Δ

4
;

Ξ ¼ −
eΦ

8
ð1þ wÞNe2g ≡ −

Ω
2
ð1þ wÞ; ð2:9Þ

though in the following we will restrict ourselves to the strict MNa case g0 ¼ 1 [so in the IR e2g ¼ 1þOðρ4Þ,
e2h ¼ ρ2 þOðρ4Þ, w ¼ 1 − ρ2=3þOðρ4Þ, Φ ¼ Φ0 þ 7ρ2=24], corresponding to b ¼ 1=3 in the notation used in [14].
After the T duality on ϕ1, one finds the metric

ds̃2st ¼ e2Φ̃
N
4

�
e2h þ e2g

4
ð1þ wÞ2

�
dx⃗21;2 þ Δdρ2 þ 1

Σ
dϕ2

1 þ Σðdθ21 þ sin2θ1dψ2
1Þ

þ 2Ξ½cos ðψ1 − ψ2Þdθ1dθ2 − sin ðψ1 − ψ2Þ sin θ2dθ1dϕ2

− sin ðψ1 − ψ2Þ sin θ1 cos θ1dψ1dθ2

þ ðcos θ2sin2θ1 − cos θ1 sin θ1 sin θ2 cos ðψ1 − ψ2ÞÞdψ1dϕ2 þ sin2θ1dψ1dψ2�

þ
�
Ω −

Ξ2

Σ
sin2ðψ1 − ψ2Þsin2θ1

�
dθ22

þ
�
Ω −

Ξ2

Σ
½sin θ1 sin θ2 cos ðψ1 − ψ2Þ þ cos θ1 cos θ2�2

�
dϕ2

2

þ
�
Ω −

Ξ2

Σ
cos2θ1

�
dψ2

2

þ 2

�
Ω cos θ2 −

Ξ2

Σ
cos θ1½sin θ1 sin θ2 cos ðψ1 − ψ2Þ þ cos θ1 cos θ2�

�
dϕ2dψ2

− 2
Ξ2

Σ
½sin θ1 sin θ2 cos ðψ1 − ψ2Þ þ cos θ1 cos θ2� sin ðψ1 − ψ2Þ sin θ1dθ2dϕ2

− 2
Ξ2

Σ
sin ðψ1 − ψ2Þ sin θ1 cos θ1dθ2dψ2; ð2:10Þ

where e2Φ̃ ¼ e2Φ=Σ is the T-dual dilaton, the coefficient of dx21;2 equals eΦ (the original dilaton), the B field is

B ¼ −
�
cos θ1dψ1 ∧ dϕ1 þ

Ξ
Σ
sin ðψ1 − ψ2Þ sin θ1dθ2 ∧ dϕ1

þ Ξ
Σ
½sin θ1 sin θ2 cos ðψ1 − ψ2Þ þ cos θ1 cos θ2�dϕ2 ∧ dϕ1 þ

Ξ
Σ
cos θ1dψ2 ∧ dϕ1

�
; ð2:11Þ

and the angles with the index “1” parametrize the internal (on which the branes are wrapped) S3 and the angles with index
“2” parametrize the S3∞. There are also RR fields F2 ≠ 0, F4 ≠ 0 but, since we will not be considering fermions in the string
worldsheet action, we will not write them here.
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WhenT dualizing, we have the consistency condition [26]

Z
dϕ1 ∧ dϕ̃1 ¼ ð2πÞ2; ð2:12Þ

wherewe denote the original coordinate asϕ1 and the T dual
as ϕ̃1.
If the ϕ1 direction is orbifolded by ZN1

, giving a
periodicity 2π=N1 for ϕ1, the above condition implies that
ϕ̃1 ∈ ½0; 2πN1�. This is the case that is relevant for us, since
otherwise it is hard to make sense of the T duality in the
field theory dual [23].

C. Supersymmetry

To understand the amount of supersymmetry, we need
to either construct the Killing spinor equations, or use
symmetry arguments.
If we did not have any orbifolding, we would be back in

the MNa case, analyzed in [14]. As it is, we need to

understand whether, when taking the orbifold of S3=ZN1
,

whereZN1
acts on an S1 fiber inside S3, any supersymmetry

survives. In general, for a quotient manifold X=G, the
unbroken supersymmetry from X is the one that is invariant
under G.
To see that, we will analyze the action of Uð1ÞS1

symmetry (reduced by ZN1
) on the supercharges, reduced

down to 2þ 1 dimensions.
The (5þ 1)-dimensional theory on the NS5-branes

has N ¼ ð1; 1Þ supersymmetries. The 10-dimensional
Majorana-Weyl spinor decomposes under the decomposi-
tion SOð9; 1Þ → SOð5; 1Þ × SOð4Þ as

16 → ð4; 1; 2Þ ⊕ ð4̄; 2; 1Þ; ð2:13Þ

where we used the fact that SOð5; 1Þ ≃ SUð4Þ and
SOð4Þ ≃ SUð2ÞA × SUð2ÞB. Compactifying on the (inter-
nal) S3 means the decomposition

SOð5; 1Þ × SOð4Þ → SOð2; 1Þ × SUð2ÞT × SUð2ÞA × SUð2ÞB
⇒ ð4; 1; 2Þ ⊕ ð4̄; 2; 1Þ → ð2; 2; 1; 2Þ ⊕ ð2; 2; 2; 1Þ: ð2:14Þ

Finally, twisting means considering only the diagonal subgroup, ðSUð2ÞT × SUð2ÞAÞdiag (embedding the gauge group in
the spin connection). This gives the decomposition

SOð2; 1Þ × SUð2ÞT × SUð2ÞA × SUð2ÞB → SOð2; 1Þ × ðSUð2ÞT × SUð2ÞAÞdiag × SUð2ÞB
⇒ ð2; 2; 1; 2Þ ⊕ ð2; 2; 2; 1Þ → ð2; 2; 2Þ ⊕ ð2; 1; 1Þ ⊕ ð2; 3; 1Þ: ð2:15Þ

Since there is only one SOð2; 1Þ spinor that is invariant
(1) under the twisted connection (diagonal group), we have
N ¼ 1 supersymmetry.
In our case, Uð1ÞS1 ⊂ SUð2Þdiag, which means that the

remaining supercharge is invariant under ZN1
, and survives

the orbifolding.
This is as we want, since the orbifolding we consider

should not interfere with the symmetries of the solution.

III. STRINGS IN PENROSE LIMIT
OF T DUAL OF MNa

A. Penrose limit of T dual of MNa

We want to consider the Penrose limit in order to better
understand the effect of T duality on gravity dual pairs. But
then, the most useful Penrose limit is in the T-duality
direction, ϕ1. As in previous cases, however (for instance,
[14] and [23,27]), that is not consistent, andwemust consider
also motion in another spatial coordinate (and of course, in
time t). Based on what we expect from the field theory, we
want the motion to combine with one of the other two
obvious isometries of the metric, ϕ2 and ψþ, where

ψ� ≡ ψ1 � ψ2: ð3:1Þ

We choose to mix the motion on ϕ1 with motion on ϕ2.
In order to find a null geodesic, we also impose the usual

conditions, which on our metric reduce to

∂
μgϕ2ϕ2

¼ 0; ∂
μgϕ1ϕ1

¼ 0: ð3:2Þ

The first observation is that, for μ ¼ ρ, since at small ρ
the functions in the metric depend on ρ2, so ∂

ρ is propor-
tional to ρ (and the multiplying functions do not have
anything special), the solution would be ρ ¼ 0. However,
we can easily check that for ρ ¼ 0 we get singularities in
the metric (metric coefficients vanish for the case of the
other angles being on their solutions). That means that we
will need to keep ρ ≠ 0, though very small (so it will be
almost a solution to the geodesic equation, up to vanish-
ingly small corrections, ρ → 0). But that is fine for the
Penrose limit, since ρ will be transverse to the geodesic, so
will scale with 1=R → 0.
For the angles (that are not isometries), we get the

conditions
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sinψ− cosψ−sin2θ1 ¼ 0; sin2ψ− sin θ1 cos θ1 ¼ 0;

½sin θ1 sin θ2 cosψ− þ cos θ1 cos θ2� sin θ1 sin θ2 sinψ− ¼ 0;

½sin θ1 sin θ2 cosψ− þ cos θ1 cos θ2�ðcos θ1 sin θ2 cosψ− − sin θ1 cos θ2Þ ¼ 0;

½sin θ1 sin θ2 cosψ− þ cos θ1 cos θ2�ðsin θ1 cos θ2 cosψ− − cos θ1 sin θ2Þ ¼ 0; ð3:3Þ

which we see are all satisfied by

θ1 ¼ π=2; ψ− ¼ π=2; θ2 ¼ arbitrary: ð3:4Þ
(There are other solutions, but they lead to even more
singular coefficients for the metric, so we will ignore them.)
We then consider the null geodesic defined by ρ ¼ 0,

θ1 ¼ π=2, ψ− ¼ π=2, with θ2 and ψþ arbitrary angles (so
not interacting with the geodesic). Then they will not be
rescaled by 1=R in the Penrose limit. We note then that the
coefficient of dθ22 in the metric is singular (vanishes) at the
strict geodesic point, but in the Penrose limit that is fine,
since θ2 is not rescaled. The same comment also applies for
the coefficient of dψ2þ in the metric. Since, of course, there
is no true singularity in the metric, the apparent singularity
must be of the type of the one near the center in polar
coordinates, and this is indeed what we will find.
We define the coefficient of dϕ2

2 in the metric as the
function

f ≡Ω −
Ξ2

Σ
½sin θ1 sin θ2 cos ðψ1 − ψ2Þ þ cos θ1 cos θ2�2:

ð3:5Þ
Then, at the geodesic point we have the values

f → f0 ¼ Δ0 ¼ Σ0 ¼ Ω0 ¼
Ξ2
0

Σ0

¼ −Ξ0 ¼
eΦ0N
4

: ð3:6Þ

For later use, we write the full metric at the geodesic
location,

ds2 ¼ eΦ0dx⃗21;2 þ
1

f0
dϕ2

1 þ f0½4dρ2 þ dθ21 þ 0 · dθ22

þ 0 · dψ2þ þ dψ2
− þ dϕ2

2 − 2 cos θ2dϕ2dψ−

þ 2 sin θ2dϕ2dθ1�: ð3:7Þ
The Lagrangian for a particle moving on this geodesic is

(considering the values of the functions at the geodesic)

L ¼ −e2Φ̃0 Σ̃0

ṫ2

2
þ ϕ̇2

1

2Σ0

þ f0
ϕ̇2
2

2

¼ −eΦ0
ṫ2

2
þ ϕ̇2

1

2f0
þ f0

ϕ̇2
2

2
; ð3:8Þ

and the null condition for the geodesic means L ¼ 0.

The cyclic coordinates are t, ϕ1, and ϕ2 and the
conserved momenta are

∂L
∂ṫ

¼ −eΦ0 ṫ¼ −E;
∂L

∂ϕ̇1

¼ ϕ̇1

f0
¼ −J1;

∂L

∂ϕ̇2

¼ f0ϕ̇2 ¼ J2:

ð3:9Þ

The L ¼ 0 (geodesic being null) constraint then gives

J22
f0

¼ E2

eΦ0
− Σ0J21: ð3:10Þ

Considering u as the affine parameter on the null
geodesic, we make the change of coordinates

dt ¼ ṫdu ¼ E
eΦ0

du;

dϕ1 ¼ ϕ̇1duþ dw ¼ J1f0duþ dw;

dϕ2 ¼ ϕ̇2duþ dv ¼ J2
f0

duþ dv; ð3:11Þ

after which the metric becomes

ds2 ¼ du2
�
−E2eΦ−2Φ0 þ J21

Σ2
0

Σ
þ f
f20

J22

�
þ dw2

Σ
þ fdv2

þ eΦdx⃗21;2 þ Δdρ2 þ glmdyldym

þ 2du

�
J1dw

Σ0

Σ
þ J2dv

f
f0

þ gϕ2ldy
l

�
; ð3:12Þ

where yl ¼ ðθ1;ψ−; θ2;ψþÞ.
Now we finally make the coordinate change

f0dV ≡ J1dwþ f
f0

J2dvþ gϕ2ldy
l ⇒ dv

¼ f0
fJ2

�
f0dV − J1

Σ0

Σ
dw − gϕ2ldy

l

�
; ð3:13Þ

which gets rid of the mixing term with du, and puts the
metric in a form appropriate for taking the rescaling and the
Penrose limit,
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ds2 ¼ du2
�
−E2eΦ−2Φ0 þ J21

Σ2
0

Σ
þ f
f20

J22

�
þ dw2

Σ
þ eΦdx⃗21;2

þ Δdρ2 þ glmdyldym þ 2dudV þ f20
fJ22

�
J21

Σ2
0

Σ2
dw2

þ 2J1
Σ0

Σ
gϕ2ldwdyl þ gϕ2ldy

lgϕ2mdy
m

þ termswith dV

�
: ð3:14Þ

We have not written the terms with dV in the brackets
(f20dV

2 − 2f0dVJ1
Σ0

Σ dw − 2f0dVgϕ2ldy
l), since they will

be scaled away in the Penrose limit, as we can easily check.
Note that in glmdyldym, in the neighbourhood of the
geodesic we have the metric (3.7), where there are no
ψþ; θ2 components, so there we have a de facto reduction to
yl ¼ ðψ−; θ1Þ only. This is good, since otherwise the term
with dVgϕ2ψþdψþ and dVgϕ2θ2dθ2 would contribute. Then
there we also have

gϕ2l∶ gϕ2ψ−
¼ − cos θ2f0; gϕ2θ1 ¼ sin θ2f0: ð3:15Þ

Now we see that indeed the Penrose limit rescaling needs
to be, as we advertised,

u ¼ U; V ¼ V 0

R2
; θ2 ¼ θ02; ψþ ¼ ψ 0þ;

w ¼ w0

R
; ρ ¼ ρ0

R
; xi ¼

x0i
R
;

θ1 −
π

2
¼ θ01

R
; ψ− −

π

2
¼ ψ 0

−

R
; ð3:16Þ

and for simplicity of notation we remove the primes
after the procedure. Moreover, we can, as usual, identify
the overall scale of the metric, f0 ¼ eΦ0N=4 ¼ gsN=4,
with R2.
We need to consider the coefficients of dθ22 and dψ2þ at

subleading order in ρ; θ1;ψ−, and the same for the
coefficient of du2 in the metric above, since these will
all contribute to the Penrose limit. We first obtain

Σ ≃
eΦN
4

�
1þ 2ρ2

3

�
≃ f0

�
1þ 23ρ2

24

�
; eΦ ≃ eΦ0

�
1þ 7ρ2

24

�
;

Ξ ≃ −
eΦN
4

�
1 −

ρ2

6

�
≃ −f0

�
1þ ρ2

8

�
;

Ω ≃
eΦN
4

≃ f0

�
1þ 7ρ2

4

�
;

Ω −
Ξ2

Σ
sin2ψ−sin2θ1 ≃

eΦN
4

ðρ2 þ δψ2
− þ δθ21Þ ≃ f0ðρ2 þ δψ2

− þ δθ21Þ

f ≃
eΦN
4

½1 − ðsin θ2δψ− þ cos θ2δθ1Þ2�

≃ f0

�
1þ 7ρ2

24
− ðsin θ2δψ− þ cos θ2δθ1Þ2

�
: ð3:17Þ

With the proposed Penrose scaling in (3.16), we obtain that the metric in the ψ1, ψ2, and θ2 directions is, at leading order,

f0ðρ2 þ δψ2
− þ δθ21Þ þ f0δψ2

− þ f0
ρ2

4
δψ2þ; ð3:18Þ

where δψ− ¼ ψ− − π=2, δθ1 ¼ θ1 − π=2.
Finally taking the Penrose rescaling and limit, and dropping the primes on the rescaled variables, we obtain the metric

[after using (3.10)]

R2ds2 ¼ 2f0dUdV − f0

�
5

4
J21ρ

2 þ
�

E2

eΦ0f0
− J21

�
ðsin θ2ψ− þ cos θ2θ1

�
2
�
dU2 þ eΦ0dx⃗22

þ f0

�
4dρ2 þ ρ2

4
dψ2þ þ ðρ2 þ ψ2

− þ θ21Þdθ22 þ dψ2
− þ dθ21

þ J21
J22

dw2 þ 2
J1
J2

dw
ðsin θ2dθ1 − cos θ2dψ−Þ

J2
þ ðsin θ2dθ1 − cos θ2dψ−Þ2

J22

�
; ð3:19Þ
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where note that E2=ðeΦ0f0Þ − J21 ¼ J22=f
2
0 ≥ 0, so the coefficient of dU2 is negative definite, as it should be, and in the last

line we have kept J2 as it is, to make the formulas clearer. Since J2 is a derived quantity, we define J2=f0 ≡ J̃2 for
convenience. Moreover, we finally identify R2 ¼ f0 and they will drop from the metric.
Making the rotation sin θ2dψ− þ cos θ2dθ1 ≡ dψ̃−, − cos θ2dψ− þ sin θ2dθ1 ≡ dθ̃1, rescaling xi by N=4, ρ ¼ ρ̃=4 and

ðJ1=J2Þdw≡ dw̃, we get

ds2 ¼ 2dUdV −
�
5

16
J21ρ̃

2 þ
�

E2

eΦ0f0
− J21

�
ψ̃2
−

�
dU2 þ dx⃗22 þ dρ̃2 þ ρ̃2d

�
ψþ
4

�
2

þ
�
ρ̃2

4
þ ψ̃2

− þ θ̃21

�
dθ22 þ dψ̃2

− þ dθ̃21 þ d

�
w̃þ dθ̃1

f0J̃2

�
2

: ð3:20Þ

We note that, since we are in the limit R2 ¼ f0 → ∞, the term with dψ̃−=ðf0J̃2Þ → 0 drops out. Then, defining
dρ̃2 þ ρ̃2dðψþ=4Þ2 ≡ dy⃗22, ψ̃− ≡ z1; θ̃1 ¼ z2, we finally get the metric

ds2 ¼ 2dUdV −
�
5

16
J21y⃗

2 þ
�

E2

eΦ0f0
− J21

�
z21

�
dU2 þ dx⃗22 þ dz⃗22 þ dy⃗22 þ

�
1

4
y⃗2 þ z⃗2

�
dθ22 þ dw̃2: ð3:21Þ

We can define dθ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y⃗2=4þ z⃗2

p ≡ dη, with η a Cartesian coordinate transverse to y⃗ and z⃗, such that it has dη2 in the
metric.
The B field becomes then

B ¼ f0

�
J1dU þ dw

f0

�
∧
�
δθ1dδψ− −

�
1 −

δψ2
−

2
−
δθ21
2

−
5

6
ρ2
�
dθ22

− ðsin θ2δψ− þ cos θ2δθ1Þ
�
J̃2dU þ dV

J̃2
−
J1dw

f0J̃2
−
− cos θ2dψ− þ sin θ2dθ1

J̃2

��
: ð3:22Þ

There is a term of order f0 that under the Penrose limit becomes of order R2 → ∞, but it can be removed by making a
gauge transformation δB ¼ dλ, with

Λ ¼ −f0
�
J1U þ w

f0

�
dθ2: ð3:23Þ

Then under the Penrose limit there is a term of order f0=R ¼ R, but that is ∝ dU ∧ dU, so vanishes. Finally, after the
Penrose limit, dropping the primes on the rescaled coordinates, as before, we get

B ¼ J1dU ∧
�
θ1dψ− þ

�
ψ2
− þ θ21 þ

5

24
ρ̃2
�
dθ22 þ ψ̃−

�
dw̃

�
1þ J̃22

J21

�
þ dθ̃1

J̃2

��

¼ J1dU ∧
�
θ1dψ− þ

�
z⃗2 þ 5

24
y⃗2
�
dθ2 þ ψ̃−

�
dw̃

�
1þ J̃22

J21

�
þ dz2

J̃2

��
: ð3:24Þ

Note that, if we define ðψ2
− þ θ21 þ 5

24
ρ̃2Þ≡ T2

1 and T1dθ2 ≡ dT2 (since T1 is a radius and θ2 an angle), we have

H ¼ dB ¼ J1dU ∧
�
dθ1 ∧ dψ− þ dT1 ∧ dT2 þ dψ̃− ∧

�
dw̃

�
1þ J̃22

J21

�
þ dθ̃1

J̃2

��
; ð3:25Þ

so has constant components in some Cartesian coordinates: H ¼ dU ∧ h gives h ¼ hijdXi ∧ dXj, with hij constant.

B. String quantization in the pp wave background

To quantize the string in the pp wave background, we write, as usual, the Polyakov action in the pp wave background,
choose the conformal gauge

ffiffiffi
h

p
hαβ ¼ ηαβ (h is the worldsheet metric) and light-cone gauge xþ ¼ p−τ, where τ is the

worldsheet time, obtaining
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S ¼ −
1

4πα0

Z
dτ

Z
2πα0pþ

0

dσ

�X2
i¼1

ð∂axiÞ2 þ
X2
i¼1

ð∂ayiÞ2

þ
X2
i¼1

ð∂aziÞ2 þ ð∂aw̃Þ2 þ
�
y⃗2

4
þ z⃗2

�X2
a¼1

ð∂aθ2Þ2

−
�
5

16
J21y⃗

2 þ J̃22z
2
1

��
−
J1
4π

Z
dτ

Z
2πα0pþ

0

dσ

×
�
θ1∂σψ− þ

�
z⃗2 þ 5

24
y⃗2
�
∂σθ2

þ z1

�
∂σw̃

�
1þ J̃22

J21

�
þ ∂σz2

J̃2

��
: ð3:26Þ

For the solutions of the equations of motion we choose,
as usual, free wave (Fourier mode) solutions of the type

ΦA ¼ ΦA;0 exp ½−iωτ þ ikAσ�; ð3:27Þ

where ΦA stands for all the oscillators. Moreover, also as
usual, with the rescaling by pþ of the above, the quantiza-
tion of momenta around the closed string circle in σ gives

kA;n ¼
nA
α0pþ : ð3:28Þ

Using this ansatz, the equations of motion for the
oscillators become algebraic, although a bit complicated
and unyielding to solve, so we will not attempt it.
The B field, being of the type hijXidXj, with hij

constant, as noted already, will then contribute to the
equations of motion terms with ∼ikA ¼ inA=ðα0pþÞ.
These will appear in skew-diagonal contributions (propor-
tional to ϵij) coupling the various oscillators. Like in the
non-T-dualized MNa case in [14], then if we take all nA ¼
n equal, we will find that the term with n in ωn will be
simply added to the mass term.
But in any case we are only interested in the mass terms,

which are independent on the B field (since the B field is
proportional to k, so to n). The masses are then

xi; i¼ 1;2∶ m¼ 0; w̃∶ m¼ 0; η∶ m¼ 0;

yi; i¼ 1;2∶ m¼
ffiffiffi
5

p
J1
4

; zi; i¼ 1;2∶ m¼ J̃2: ð3:29Þ

As in [23], we will see that from the dual field theory we
have only the relevant case when the two masses are equal,
when

ffiffiffi
5

p
J1=4 ¼ J̃2, and it will not be clear how to obtain

the nontrivial parameter J1 to vary from the field theory
point of view.

IV. FIELD THEORY AND SPIN CHAIN

A. Orbifold field theory

On the N 5-branes we start with a UðNÞ theory. The
action of the Uð1ÞS1 on the S3 ⊂ R4 ¼ C2 defined as

jz0j2 þ jz1j2 ¼ 1 ð4:1Þ

is

z0 → z0;

z1 → eiαz1: ð4:2Þ

As mentioned, ZN1
acts by restricting the range of Uð1Þ,

so by α → α=N1.
Then, the gauge group of the orbifolded gauge theory on

the wrapped 5-branes is Uðn1Þ × � � � ×UðnN1
Þ (see, for

instance, [28,29]), where

XM
i¼1

ni dimðriÞ ¼
XM
i¼1

ni ¼ N: ð4:3Þ

In the covering space, the group isUðN1NÞ. The bosonic
spectrum is as follows: one gauge field, ðAi

μÞIJ, five real
scalars, ðΦi

βÞIJ, transforming in the adjoint representation
of the gauge group, one complex scalar (or two real ones),
ðBIi

Jiþ1
Þiiþ1

, transforming in the bifundamental represen-
tation of two consecutive UðnÞ’s in the gauge group, where
μ, ν are Lorentz indices, I, J are fundamental group indices
(Ii for the ith group), such that ðIJÞ is in the adjoint, i, j
label the UðnÞ’s, and β refers to other internal indices.
The quiver diagram is circular, with nodes connected by

the bifundamental fields.
Then the action for the gauge fields and the bifunda-

mental scalars is [30]

S ¼
X
i

ki
8π

SN¼1
CSi

ðΓα
i Þ −

Z
d3x

Z
d2θ1

�X
Wij

TrððDα þ iΓα
j ÞW†

ijðDα − iΓi
αÞWijÞ þWN¼1ðWij;W�

ijÞ
�
; ð4:4Þ

where
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WN¼1ðYij; Y�
ijÞ ¼ WðWijÞ þWðW�

ijÞ þ
X
i;ki≠0

ki
4π

R2
i

ki
2π

Ri ¼
X
j

WijW
†
ij −

X
k

W†
kiWki: ð4:5Þ

The Chern-Simons (CS) levels are as follows:
First, in the original theory, theHRR

3 field has a k6 flux on
S3, leading to the same CS level, which is reduced to k ¼
k6 − N=2 by integrating out the fermions to have just a pure
CS theory.
Second, in the orbifold theory, theHRR

3 flux is distributed
between the nodes of the quiver, leading at each node to a
CS level of k6ni=N, reduced to ki ¼ k6ni=N − ni=2 by
integrating out the fermions of the node. Note that then we
have

P
i ki ¼ k.

B. Spin chain

In Sec. II C we have seen that under the twisted reduction
on S3, the symmetry group decomposes into SOð2; 1Þ ×
ðSUð2ÞT × SUð2ÞAÞdiag × SUð2ÞB and, as we have shown
in [14], thegauge fields result in thedecomposition ð3; 1; 1Þ ⊕
ð1; 3; 1Þ and the scalar in ð1; 2; 2Þ. Moreover, the ϕM scalar
modes in ð1; 2; 2Þ are written, under the SOð4Þ ≃ SUð2ÞL ×
SUð2ÞR bifundamental decomposition, as

Φαβ ¼ 1ffiffiffi
2

p ðσMÞαβϕM ¼ 1ffiffiffi
2

p
�
iΦ0 þΦ3 Φ1 − iΦ2

Φi þ iΦ2 iΦ0 −Φ3

�

¼ 1ffiffiffi
2

p
�
W Z�

Z −W�

�
: ð4:6Þ

Under the orbifold action, the two real bifundamental
scalars ðBI

JÞiiþ1 descend from the complex Z scalars, and
the five real scalars ðΦi

βÞIJ at a single node i descend from
the three Aa scalars [in the ð1; 3; 1Þ, from the gauge field
decomposition], and the two scalars in the complex W.
As explained in [14], the spin chain before orbifolding

was described in terms of a vacuum j0; pþi ∼ Tr½ZJ�,
in which we inserted the eight bosonic oscillators
ΦQ ¼ ðDμ; Aa;W; W̄Þ, μ ¼ 0, 1, 2; a ¼ 1, 2, 3.
But as described in [23] in the case of T duals of

AdS5 × S5, one must consider the quiver orbifold theory,
based on the works [21,22], and then consider a kind of T
dual in the quiver (ZN1

) direction.
As explained in [22,23] then, the vacuum of the original

orbifold theory, with momentum p ¼ 1 and windingm ¼ 0
in the ZN1

direction, is associated with a gauge-invariant
state that has “winding” around the quiver. But under the T
duality, p and m are interchanged, so we have a state of
momentum p ¼ 0 and winding m ¼ 1, created by multi-
plying the bifundamental scalars (only the holomorphic
ones in the complex notation, B and not B̄),

jp ¼ 1; m ¼ 0ibefore Td ¼ jp ¼ 0; m ¼ 1iafter Td ¼ ON1
¼ 1ffiffiffiffiffi

N
p Tr½B1

2B2
3…Bi

iþ1…BN1
1�: ð4:7Þ

The eight bosonic oscillators on these states with winding are provided by the following eight objects: (i) as usual, the
three covariant derivatives Dμ, μ ¼ 0, 1, 2, (ii) the five real scalars in the adjoint, Φi

β, β ¼ 1;…; 5, comprised of the three
scalars from Aa [(1; 3; 1)] and the scalars in W; W̄.
However, we will see shortly that the energies of these objects are not the same, as they will have different values of J.
Then the insertions of Dμ and Φi

β at zero transverse momentum give the operators:

Oa
D;0 ¼ aa;†D;0jp ¼ 0; m ¼ 1iafter Td ¼

1ffiffiffiffiffiffiffiffiffiffi
NN1

p 1ffiffiffiffiffi
N

p
XN1

i¼1

Tr½B1
2B2

3…Bi−1
iðDaBi

iþ1Þ…BN1
1�;

Oβ
Φ;0 ¼ aβ;†Φ;0jp ¼ 0; m ¼ 1iafter Td ¼

1ffiffiffiffiffiffiffiffiffiffi
NN1

p 1ffiffiffiffiffi
N

p
XN1

i¼1

Tr½B1
2B2

3…Bi−1
iΦi

βB
i
iþ1…BN1

1�: ð4:8Þ

The state of momentum p, distributed as a sum of mode numbers nq, is (for instance for Φl
β insertions)

Oβ
Φ;p ¼ aβ;†Φ;nq

jp;m ¼ 1iafter Td ¼
1ffiffiffiffiffiffiffiffiffiffi
NN1

p 1ffiffiffiffiffi
N

p
XN1

l¼1

Tr½B1
2B2

3…Bl−1
lΦl

βB
l
lþ1…BN1

1�e
2πilnq
N1 ; ð4:9Þ

where we have only shown one mode number (momentum) nq insertion for simplicity, and the total momentum p (what
used to be the winding before the T duality, i.e., in the original orbifolded theory) is the sum,

p ¼
X
q

nq: ð4:10Þ
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To find the correspondence with the string oscillator
states, we will consider the comparison with the case before
T duality. The first observation that we have is thatDμ splits
into Dxi and Dt, as before T duality, but now also Φβ split:
Aa into ðA1; A2Þ and A3, and also W and W̄.
The oscillators in this case are then reshuffled, as is their

charge J. Indeed, now we are interested in the gravitational
symmetry charge

J ¼ J1 þ J̃2 ¼ Jϕ1
þ Jϕ2

: ð4:11Þ
But Jϕ1

corresponds now not to the Jϕ from [14], which
was a Uð1Þ ⊂ ðSUð2Þ0L × SUð2Þ0RÞdiag of the S3 (internal),
but rather it is a Uð1Þ on which we T dualize, thus breaking
SOð4Þ0 ¼ SUð2Þ0L × SUð2Þ0R of the S3 to Uð1Þϕ1

× SUð2Þ.
This has also the effect of breaking the three gauge fields Aa
into ðA1; A2Þ rotated by Uð1Þϕ1

and A3, invariant. Further,
Jϕ2

is the same Jϕ̃ in [14], which is aUð1Þ ⊂ SUð2ÞL of the
S3∞. But, because we do not have anymore the Jψ̃ of [14], it
will now be convenient to choose the normalization of the
charges a factor of 2 larger, so Jϕ1

of A1, A2 and Dt is now
þ1, and Jϕ2

of Z, W is −1=2. The Hamiltonian is
H ¼ μðΔ − J − E0Þ, with E0 ¼ 1 as before T duality,
and with μ ¼ −1.
Then we get the table (with respect to the fields before T

duality)

We have listed the oscillators that correspond to the
various insertions, as follows. Dxi obviously correspond to
xi, and A1;2 to z1;2 (as they come from θ̃1; ψ̃−); A3

corresponds to w̃ (since this comes from a combination
of ϕ1;ϕ2), and W corresponds to η, which is generated by
the angle θ2 in a transverse direction different than the one

of Z (which is ϕ2). Finally W̄ to y1 (which is the transverse
direction ρ̃), and Dt to y2, which is ψþ, that includes ψ1,
that also charges the Dt direction, due to the twist.
We see that the masses of the ppwave oscillators indeed

match the Hamiltonian, for the case of all masses equal
(

ffiffiffi
5

p
J1=4 ¼ J̃2). As we already commented, it is unclear,

just as in the T dual of AdS5 × S5 case studied in [23], why
the free parameter J1 is not represented in the field theory.

V. DISCUSSION AND CONCLUSIONS

Here we have constructed the T dual of the MNa
solution, and taken the Penrose limit, in order to have a
simpler way to study the resulting field theory dual, now of
orbifold type. We have found the spectrum of string theory
oscillators, and matched it to the spectrum of insertions into
the field theory “annulonlike” long gauge invariant oper-
ators. The effect of T duality on these operators (and thus
on the hadrons associated with them) was described.
It is still not clear in general how to quantify the effect

of the T duality [in a transverse direction to the (2þ 1)-
dimensional field theory, namely on the S3 that the 5-branes
wrap] on general states in the orbifold field theory. We have
described the action in the ppwave limit, which in the case
of the spin chain for the annulons corresponds to the “dilute
gas approximation” (or few “impurities”), but it generalizes
to an action on a generic state of the (long) spin chain. It is
also still not clear why the T-duality action on general short
states is a symmetry, as is the case for the string theory on
the gravity dual. The hadrons (annulons) are states of the
confining theory in the IR, and it is not in general clear that
such a theory should have a symmetry. Moreover, the effect
(if any) on the spontaneous supersymmetry breaking needs
to be understood.
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