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We refine and extend a recent construction of sets of black hole microstates with semiclassical interiors
that span a Hilbert space of dimension eS, where S is the black hole entropy. We elaborate on the definition
and properties of microstates in statistical and black hole mechanics. The gravitational description of
microstates employs matter shells in the interior of the black hole, and we argue that in the limit where the
shells are very heavy, the construction acquires universal validity. To this end, we show it for very wide
classes of black holes; we first extend the construction to rotating and charged black holes, including
extremal and near-extremal solutions, with or without supersymmetry, and we sketch how the construction
of microstates can be embedded in string theory. We then describe how the approach can include general
quantum corrections, near or far from extremality. For supersymmetric black holes, the microstates we
construct differ from other recent constructions in that the interior excitations are not confined within the
near-extremal throat.
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I. INTRODUCTION

All the existing derivations of the black hole entropy
formula [1,2],

S ¼ A
4Gℏ

; ð1Þ

have something unsatisfactory to them, and this dissatis-
faction has stimulated much investigation into the structure
of spacetime. In this article, following and extending the
work of [3,4], we will develop a very broad statistical
interpretation of this formula. To set the stage, we begin
with a lightning review of (1) and its discontents.

A. Not counting states

The initial phenomenological arguments of Bekenstein
and Hawking [1,2] hardly gave any hint about the statistical
origin of this entropy, but soon after, Gibbons and Hawking
offered a seemingly more fundamental derivation [5]. They

interpreted the Euclidean gravitational path integral (GPI)
as computing the (grand-)canonical partition function of
gravity, from which one readily recovers (1) for large black
holes. This success is as remarkable as it is puzzling; there
are no microstates in sight, and therefore no interpretation
as a state counting in quantum statistical mechanics.
Technically, the entropy arises from a classical saddle
point value of the integral, and not as a one-loop trace
in a Hilbert space. Moreover, the result is universal, i.e.,
valid for any theory of Einstein-Hilbert gravity, regardless
of its matter content and whether there exists, or not, a
consistent quantum theory behind it.

B. Counting states but not black holes

String theory has provided detailed microscopic
accounts of this entropy [6]. However, what is counted
here are the states of a weakly gravitating system that is not
a black hole. To make plain the nature of actual black hole
microstates, it seems necessary to remain in the strong
gravity regime, and preferably without supersymmetry.

C. Counting black hole states, with
wormhole statistics

A novel use of the GPI has made significant headway in
identifying genuinely gravitational black hole microstates,
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indeed complete sets that comprise a Hilbert space of
dimension eS. This application of the GPI is consistent
with [5], but more fundamental in that it provides a
statistical-mechanical interpretation. The microstates are
effectively realized as smooth geometries with the same
exterior as the black hole, but with different interiors. The
GPI is employed to prepare a large number of quantum
states, and to compute the overlaps between them to obtain
the dimension of the space they span. On the face of it, this
is a conventional use of the Euclidean path integral for a
quantum field theory. However, to succeed in rendering the
correct finite dimension of the Hilbert space, the GPI (a
low-energy effective tool, oblivious to ultraviolet structure)
resorts to a perplexing maneuver; Euclidean wormholes are
necessary, and they confer an intrinsically statistical char-
acter to the overlaps between gravitational microstates.
This approach to the microstates of black holes and their
counting has been given its most general form so far
in [3,4], building on previous work on geometric micro-
states in two-dimensional theories [7–12] and in higher-
dimensions [13,14]. More recently it has been used in
two-dimensional supersymmetric scenarios [15] and cos-
mological spacetimes [16].
Our main goal is to provide strong evidence for the

universal applicability of these constructions; a universality
as wide as that of the Gibbons-Hawking derivation of (1),
but stemming from a different and more intricate analysis.
We will do this along several fronts. The first and most
natural one is to include black holes with rotation and
charge. Afterwards, we are led to analyze the extension to
supersymmetric black holes, which is important in the
attempt to embed the construction within string theory and
to connect to microscopic string descriptions. Finally, we
will ascertain how this construction accommodates quan-
tum loop corrections to black hole entropy; the familiar
logA terms, but also the more important logT effects near
extremality that have recently attracted attention [17–28].
The construction of these microstates relies on the use of

matter shells in the interior of the black hole. We will see
that its large degree of universality is most transparent in
the limit where the shells are very heavy. In this limit, the
shells create large interiors and become asymptotically
independent of any properties of the black hole other than
its mass, charge and spin. They also become effectively
independent of one another. Our arguments thus require
arbitrarily heavy shells, but this is not problematic; the
shells lie entirely within the black hole interior, so they are
screened and the exterior geometry is that of a black hole of
fixed, finite macroscopic parameters.
The plan for the remainder of the article is as follows.

Section II introduces the basic strategy to count the
dimension of the Hilbert space of a set of states with
access to the moments of their mutual overlaps. Section III
discusses the general definition and properties of black hole
microstates and their construction as partially entangled

grand-canonical states (PEGS). We give explicit details for
microstates with charge and rotation and their embedding
in string theory. Section IV applies the strategy to the
computation of the dimension of the Hilbert space of black
hole microstates. We describe two different methods to
derive the microcanonical moments of the matrix of over-
laps between microstates. We show that, in the appropriate
(heavy-shell) limit, both methods lead to a simple, universal
result for these moments, which implies the universality of
the derivation of the black hole entropy. Section V presents
arguments to the effect that the same construction can
easily account for quantum corrections (near extremality
and more generally) and statistical corrections to the black
hole density of states. We conclude in Sec. VI summarizing
the implications of our study and discussing open ques-
tions. Appendix A is a more general analysis of junction
conditions in Eintein-Maxwell theories, in particular
allowing surface currents on the shell. Appendix B
describes how the heavy-shell limit can be understood in
terms of free probability. In this limit, different shell
operators are relatively free (in a technical sense) with
respect to each other. Appendix C uses this connection to
provide a different derivation of the entropy of certain
supersymmetric black holes.

II. STRATEGY: COUNTING STATES

Consider a Hilbert spaceH of dimensionD and a family
of states FΩ ¼ fjΨii∈H∶i ¼ 1;…;Ωg. We will be inter-
ested in computing the dimension of the Hilbert (sub)space
that these states span, dΩ ¼ dimðspanfFΩgÞ, as a function
of Ω. This dimension is bounded above by D and by the
number of states of the family,

dΩ ≤ minfΩ; Dg: ð2Þ

A direct way to compute dΩ is to consider the Ω × Ω Gram
matrix G of overlaps between states,

Gij ¼ hΨijΨji i; j ¼ 1;…;Ω: ð3Þ

The matrix G is Hermitian and positive semidefinite by
construction. Its rank encodes the dimension (2) through
the identity,

dΩ ¼ rankðGÞ ¼ Ω − KerðGÞ: ð4Þ

There are different ways to evaluate rankðGÞ. One is to
identify (via, e.g., the Gram-Schmidt procedure) the num-
ber of independent null states in the family, i.e.,
vi ∈KerðGÞ, for which PΩ

i¼1 vijΨii ¼ 0, and then simply
subtract them from FΩ. A related possibility is to diago-
nalize G and to count the number of nonzero eigenvalues.
These two methods require explicit input about the entries
of the Gram matrix G.
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An alternative approach is to extract the rank from
knowledge of the moments, Gn. This information is
conveniently encoded in the resolvent matrix,

RijðλÞ≡
�

1

λ1 − G

�
ij
¼ 1

λ
δij þ

X∞
n¼1

1

λnþ1
ðGnÞij: ð5Þ

To read the dimension we only need the trace of the
resolvent,

RðλÞ ¼ Ω
λ
þ
X∞
n¼1

1

λnþ1
TrðGnÞ: ð6Þ

A standard result in linear algebra is that the eigenvalue
density of G is governed by the discontinuity of the trace of
the resolvent along the imaginary axis,

DðλÞ ¼ lim
ϵ→0

1

2πi

�
Rðλ − iϵÞ − Rðλþ iϵÞ�: ð7Þ

The dimension is the number of nonzero eigenvalues in this
density of states

dΩ ¼ lim
ε→0þ

Z
∞

ε
dλDðλÞ: ð8Þ

This neatly shows that to get dΩ we only need the traces of
the powers of the Gram matrix. Therefore, this method is
well suited to a statistical approach to compute dΩ when the
information about the matrix entries of individual instances
of G is hard to obtain (and possibly uninteresting). Namely,
instead of the exact moments TrðGnÞ, we can use the
averaged moments TrðGnÞ of a statistical distribution of
matrices. For black hole microstates, the GPI will make this
statistical approach a necessity.
Let us then assume that the family of pure states FΩ is

constructed by some general protocol. For example, one
can take instances of some probability distribution on the
Hilbert space H. In practice, this probability distribution
can be attributed to an intrinsic source of error when
preparing the microscopic states. Any such smooth prob-
ability distribution on H, no matter how concentrated the
measure is, will yield the saturation of (2) with probability
one, namely

dΩ ¼ minfΩ; Dg: ð9Þ

The reason is simple; any proper linear subspace generated
by Ω < D states is a measure-zero subset of H. Therefore
the probability of having linear dependence is essentially
zero, until the number of states is given by the Hilbert space
dimension D. We remark again that this transition does not
depend on the probability distribution used to generate the
states.

These general observations suggest a concrete strategy to
obtain the Hilbert space dimension D by counting states,
valid in any quantum system with finite D. The strategy is
simple:
(1) Construct a family FΩ where the number of states Ω

can be as large as desired;
(2) Compute the dimension dΩ from the trace of the

resolvent of the Gram matrix G using Eqs. (6), (7),
and (8);

(3) Obtain D from the saturation value of dΩ for large
enough Ω.

In the gravitational applications below, the statistical nature
of the calculation will be a consequence of introducing
wormhole geometries for the moments of G in step 2.
Otherwise, the method is generally valid.

III. BLACK HOLE MICROSTATES

We consider quantum gravitational systems in AdSdþ1

space, with boundary R × Sd−1, which include black holes
with arbitrarily high energies as well as different charges.
Microscopically, all of these black holes are part of the
Hilbert spaceH of a holographic CFTd on the spatial Sd−1.
The spaceH is infinite-dimensional, so to count the entropy
of a black hole we need to specify the families of states FΩ
associated to that particular black hole. This motivates the
following definition of a black hole microstate.
A black hole in equilibrium is a physical system with

fixed energy E and other charges QI (I ¼ 1;…; NQ) in the
thermodynamic limit. As in quantum statistical mechanics,
a microstate jΨi∈H of this black hole is any microscopic
pure state which is effectively indistinguishable from the
equilibrium density matrix ρeq in the thermodynamic limit,1

both at the level of the conserved charges,

hΨjQIjΨi → TrðρeqQIÞ; ð10Þ

and in a stronger way, when probed with simple operators,

hΨjOðtÞjΨi → Tr
�
ρeqOð0Þ�;

hΨjOðtÞOð0ÞjΨi → Tr
�
ρeqOðtÞOð0Þ�: ð11Þ

These conditions are physically sensible but rarely useful
in a strongly coupled quantum many-body system. The
reason is that, in general, there is no way to obtain the right-
hand sides of (10) or (11), let alone construct the wave
functions of microstates that satisfy these relations. Notable
exceptions are large-N systems with a semiclassical
description in terms of effective master fields, and holo-
graphic conformal field theories (CFTs) are in this class;
the master field is Einstein (super)gravity in anti–de Sitter
(AdS). Knowing this, the by-now very well-developed

1In this limit we need not specify the ensemble for ρeq since
they are all equivalent.
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AdS=CFT technology allows to obtain the right-hand sides
of (10) and (11) from semiclassical black hole geometries.
The more recent surprise is that this same master field

can also be used to manufacture sets of microstates jΨi that
satisfy these relations.

A. Semiclassical black hole
microstates with horizons

In AdS=CFT, a microstate jΨi of the CFT lives on a
spacelike slice of the conformal boundary of AdS. All these
microstates have a counterpart in the bulk, but many do not
admit a good semiclassical gravitational description.
However, it has long been known that at least some black
hole microstates do and, as we will see, there are indeed
enormous classes of them. Semiclassically, they all look
like the corresponding equilibrium black hole outside of the
(apparent) horizon, with all of their additional features
hidden in the black hole interior. This implies almost
immediately that they satisfy (10) and (11).
A well-known example of a microstate is the time-

evolved thermofield-double state [29]. It is an explicit pure
state of the boundary theory that is described in the bulk by
the eternal Schwarzschild-AdS geometry. It gives clear
proof that it is very well possible and consistent that a black
hole microstate has a horizon (and an inner singularity) in
its effective semiclassical description. The black hole
interior contains a long Einstein-Rosen bridge, with a
throat whose area computes the fine-grained entanglement
entropy of the state.
Other natural microstates are one-sided black holes

created from the collapse of matter in a pure state. In this
case, the matter that formed the black hole is hidden behind
the horizon. The apparent horizon is a coarse-grained notion
owing to the fact that themicrostate looks like an equilibrium
state when probed with simple operators in the thermody-
namic limit, as (11) and (10) require. More complex probes
are needed to access the semiclassical black hole interior, and
this information is accessible in the microstate jΨi.
These examples realize the idea that microstates with a

semiclassical geometry must look like the corresponding
black hole in the exterior region. They further motivate a
strategy to construct larger classes of microstates: we just
introduce structure in the black hole interior, while leaving
the exterior, including the horizon, untouched.

B. Partially entangled grand-canonical states

We will implement the previous ideas using PEGS,
which generalize the canonical partially entangled thermal
states (PETS) of [8]. These states are microstates of two
identical copies of a holographic CFT on a spatial sphere,
H ¼ HL ⊗ HR. They have the general form,

jΨi ¼
X
a;b

ΨabjEaiL ⊗ jEbiR ð12Þ

with wave function2

Ψab ¼ Z−1=2
1

�
e−

β̃
2
ðH−μI Q̂IÞOe−

β̃
2
ðH−μI Q̂IÞ�

ab; ð13Þ

where H ¼ HL ¼ HR is the Hamiltonian, Q̂I represent the
charges and β̃, μI represent the inverse preparation temper-
ature and the chemical potentials, respectively. The con-
stant Z1 is a normalization factor to impose TrðΨΨ†Þ ¼ 1
and is given by a grand-canonical two-point function

Z1 ¼ Tr
�
e−β̃ðH−μIQ̂IÞOe−β̃ðH−μI Q̂IÞO†�: ð14Þ

The unnormalized PEGS Z1=2
1 Ψab is prepared by cutting

halfway open the Euclidean CFT path integral (14). In these
constructions, the precise microstate is then specified by the
particular operator O and the preparation temperatures/
chemical potentials β̃, μI.
We now select the operatorO from the class of thin-shell

operators of the holographic CFT. That is, given a con-
formal primary ϕΔ, with 1 ≪ Δ ≪ N2, we consider an
arrangement of OðN2Þ local insertions of this primary on
the spatial sphere, distributed in an approximately uniform
way. The resulting operator has the form,

O ¼
Y
α

ϕϵ
ΔðΘαÞ; ð15Þ

where Θα ∈ Sd−1 and each local operator insertion has
been smeared over a domain Dϵ ⊂ Sd−1 of size ϵd−1, in
order to regularize its energy. This operator produces the
microstate (13) and admits an effective semiclassical
description: it creates a spherical thin interface of dust
particles close to the asymptotic boundary of AdS, at a
radius r∞ ∼ l2=ϵ (cf. [30]). For the shell to carry charge or
angular momentum, the CFT operators must carry the
corresponding (R-)charges or spin quantum numbers.
To prepare the semiclassical dual state in the limit

G → 0, we proceed à la Hartle-Hawking and cut open
the Euclidean gravitational path integral that computes Z1.
The asymptotic Euclidean boundary conditions are set to be
grand-canonical, namely, fixing the temperature, angular
velocity, and holonomy of the gauge fields (see Fig. 1).
In the cases that we study in this paper, the dominant

saddle point geometry contains two electrovacuum black
hole solutions, which are glued in a specific way across the
trajectory of the thin shell. The junction conditions impose
constraints on the charges of these black holes. The
preparation temperature β̃ and the chemical potentials μI
are NQ þ 1 parameters. The two black holes will have the
same physical properties and thus the Euclidean saddle
point is also determined by NQ þ 1 parameters,

2Here we restrict to Z2-symmetric PEGS where the left and
right features of the state are taken to be the same.
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corresponding to the Arnowitt-Deser-Misner (ADM) mass
M of each black hole and its charges QI .
The semiclassical state is specified by initial data on a

time reflection-symmetric slice Σ of the Euclidean prepa-
ration geometry. Geometrically, the slice Σ comprises three
components: two exterior regions ΣoutL and ΣoutR delimited
by two horizons, and an Einstein-Rosen bridge Σin of
nonzero length between them. The latter exists owing to the
backreaction of the thin shell; without it, Σin would shrink
to the bifurcation surface of the eternal black hole. Under
Lorentzian time evolution, the state evolves into a two-
sided black hole with a large interior.
These states are partially entangled since the correlations

between the left and right sides decrease due to the large
interior that the shell operator creates. But the exterior
geometry is the same for all of them, so they are good black
hole microstates according to the definition we gave above.

C. PEGS with charge and rotation

We now give explicit details of how to prepare the
semiclassical dual to the PEGS for black holes with charge
and rotation. It will become clear that the construction is
very generic. To clarify how this construction can be done
within string theory, we may envisage black hole solutions
in ten-dimensional type-IIB supergravity with metric [31]

ds2 ¼ gμνdxμdxν

þ l2
X3
i¼1

�
dμ2i þ μ2i

�
dφi þ

2ffiffiffi
3

p Aμdxμ
�

2
�
: ð16Þ

This ansatz describes a compactification on a sphere S5

(with azimuthal angles φi and direction cosines μi,P
i μ

2
i ¼ 1) down to a five-dimensional AdS spacetime

with metric gμν, μ; ν ¼ 0;…4. The reduced description is a
minimal five-dimensional supergravity with SOð6Þ sym-
metry gauged by the Kaluza-Klein gauge potential Aμ. The
bosonic sector comprises the Einstein-Maxwell-AdS
theory. In a general reduction, the rotation group SOð6Þ
of the S5 is broken to three different Uð1Þ factors, giving a

KK-reduced theory with three gauge fields Ai
μ. For our

purposes, though, it suffices to study the simplest situation
where the three gauge fields are equal to each other.
We will consider black holes that are rotating within the

AdS5 factor, but notice that an electric component At is,
from the ten-dimensional viewpoint, a rotation of the S5

along the three angles φi. The former are conventional
Kerr-AdS5 solutions with a rotating S3 ⊂ AdS5, while
the latter give RN-AdS5 black holes. In the dual CFT4,
i.e., theN ¼ 4 SYM theory, the charge of these black holes
is the expectation value of an R-symmetry current. To
produce microstates with these charges in the construction
of the shell operator (15) one can use chiral primaries of the
superconformal field theory. However, the shell is then
charged and one needs to combine shell-antishell operators.
This can be done using the more general analysis described
in Appendix A. More directly, one can also use neutral
primaries, albeit those have larger scaling dimensions and
do not belong to the low-energy supergravity sector [32]. A
similar reduction from eleven-dimensional supergravity on
S7=Zk yields an AdS4 theory with a Maxwell field, whose
dual is an ABJM three-dimensional gauge theory.
The reduction to three-dimensional rotating Baññados-

Teitelboim-Zanelli (BTZ) black holes has also been well
studied. Among many possibilities, one of the simplest
is the compactification of type-IIB string theory on
AdS3 × S3 × T4, whose dual is a superconformal field
theory with N ¼ ð4; 4Þ supersymmetry. Matter lies in a
hypermultiplet and a vector multiplet, and we can choose
matter uncharged under the R-symmetry since the scalars in
the hypermultiplet are in the trivial representation [32].
These instances serve to illustrate that the micro-

states that follow admit embeddings in string theory.
Nevertheless, as we will see, the construction does not
require explicit knowledge of these embeddings, so we will
keep it more general.

1. Example 1: Microstates with Uð1Þ charge
Let us now build PEGS in a holographic CFTd with a

Uð1Þ global symmetry that is dual to the Euclidean
Einstein-Maxwell-AdSdþ1 theory,

IEM ¼ −
1

16πG

Z
X

ffiffiffi
g

p �
Rþ dðd − 1Þ − F2

�
−

1

8πG

Z
∂X

ffiffiffi
h

p
K: ð17Þ

We use units where the AdS radius equals one. When d ¼ 4
this is the action that governs the IIB solutions (16), up to a
Chern-Simons term that is not relevant to the electric and
static solutions that we consider.
The semiclassical description of PEGS involves a spheri-

cally symmetric thin shell. To construct it, we describe it as
the trajectory,

FIG. 1. Euclidean saddle point bulk geometry preparing the
semiclassical dual to the PEGS.
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τ ¼ T ðTÞ; r ¼ RðTÞ; ð18Þ

that is obtained by gluing two Reissner-Nordström geom-
etries of equal mass and charge,

ds2� ¼ fðrÞdτ2 þ f−1ðrÞdr2 þ r2dΩ2
d−1; ð19Þ

where

fðrÞ¼ r2þ1−
16πGM

ðd−1ÞVΩrd−2
þ 32π2G2Q2

ðd−1Þðd−2ÞV2
Ωr

2d−4 ;

ð20Þ

with VΩ ¼ VolðSd−1Þ and d > 2. The gauge potential is

A� ¼ i

�
4πGQ

ðd − 2ÞVΩrd−2
−Φ

�
dτ; ð21Þ

where the constant Φ is the chemical potential determined
by regularity at the Euclidean horizon.
In Appendix Awe present the junction conditions along

the shell, as well as a detailed example for a generic case
where the black holes on each side of the shell may be
different. In these general scenarios, the shell is charged
and carries a nonvanishing surface current. These examples
are important if one is to construct the embedding in string
theory using only fields in the low-energy supergravity
sector.
Here we consider that the shell consists of neutral dust.

Then the stress-energy for the shell is

Sab ¼ −σuaub ð22Þ

with u ¼ ∂T , and in the Z2-symmetric case the junction
conditions for the metric and gauge field give Eqs. (18) for
the trajectory of the shell. We glue two solutions with the
same charges consistently with the neutrality of the shell.3

The radial trajectory, RðTÞ, is governed by

Ṙ2 þ VeffðRÞ ¼ 0 ð23Þ
with

VeffðRÞ ¼ −fðRÞ þ 16π2G2m2

ðd − 1Þ2V2
ΩR

2d−4 ; ð24Þ

and the density σðRÞ varies to keep the mass of the shell,

m ¼ VΩRd−1σðRÞ; ð25Þ

constant along the trajectory. The Euclidean time elapsed
during the shell’s trajectory is obtained by integrating

Ṫ ¼ f−1ðRÞðfðRÞ − Ṙ2Þ1=2: ð26Þ

The shell traverses the Euclidean geometry starting at the
asymptotic boundary r∞, reaching a turning point in the
bulk at the largest real root of VeffðRÞ,

r ¼ R⋆; VeffðR⋆Þ ¼ 0; ð27Þ

and then heading back towards the boundary. In Fig. 1, the
shell turns at the moment of time-reflection symmetry.
The path integral over half the geometry prepares the dual
to the PEGS on this Cauchy slice. This state may
subsequently evolve in Lorentzian time.
If we choose suitable preparation temperatures, the shell

will always lie in the interior of the two-sided black hole.
The Euclidean time it takes during its journey is

Δτ ¼ 2

Z
r∞

R⋆

dR
fðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ VeffðRÞ

−VeffðRÞ

s
: ð28Þ

If the shell were absent, the periodicity of each of the
full Euclidean circles would equal half the physical
inverse-temperature of the black holes β, giving rise to
the (grand-canonical) thermofield double. With the shell,
the preparation temperature β̃ is larger,

β̃ ¼ β − Δτ: ð29Þ

As mentioned above, we can think of each PEGS
microstate (13) as characterized by three parameters;
the preparation temperature and chemical potentials β̃,
μ, and additionally the rest mass m of the CFT operator
O. However, since we want microstates dual to a given
black hole with prescribed macroscopic parameters, it is
more appropriate to think of β as determined by the
parameters of the black hole and then, for each shell mass
m, to solve for Δτ and obtain the appropriate preparation
temperature β̃ðmÞ. The chemical potential μ is finally
identified with Φ.
Two related and remarkable aspects of this construction

are the following. First notice we can build geometries with
shell rest mass m arbitrarily larger than the ADM mass M
of the asymptotic regions.4 The shell is trapped between
two horizons and its mass is reflected in the size of the
interior that it creates [3], but not in the exterior geometry.
Reference [33] analyzes in detail how the rest mass of the
shell can get screened behind a minimal codimension-two
surface. These types of screenings cannot be done for the
electric charge in the absence of opposite charge. Second,
notice that we do not require the existence of additional
degrees of freedom providing large numbers of microstates
for a shell of a given mass m. We can create an infinite

3In Appendix A we analyze more general scenarios with
nonvanishing surface current. 4For technical details see Appendix A.
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number of microstates in a very natural way, simply by
varying the shell’s proper mass. In the microscopic
description of the PEGS, this is accomplished by varying
the number of primary operator insertions of the corre-
sponding dust-shell operator.

2. Example 2: Rotating microstates

A similar procedure allows to incorporate rotation. For
the sake of simplicity, we start in d ¼ 2, where the Uð1Þ
isometry is respected by the BTZ bulk solution. Working in
the co-rotating frame of the shell, we get a rotating black
hole on each side,

ds2 ¼ fðrÞdτ2 þ f−1ðrÞdr2
þ r2

�
dϕþ iðΩðrÞ −ΩðRðτÞÞdτ�2; ð30Þ

where

fðrÞ¼ r2−8GMþ16G2J2

r2
; ΩðrÞ¼ 4GJ

r
: ð31Þ

The junction conditions with a pressureless dust-shell
require m ¼ 2πRσ to be constant along the trajectory and

Ṙ2 þ VeffðRÞ ¼ 0; ð32Þ

with

VeffðRÞ ¼ −fðRÞ þ 4G2m2

¼ −
ðR2 − R2

⋆ÞðR2 − R̃2
⋆Þ

R2
: ð33Þ

In the last expression we employ the two roots of the
potential, R⋆ and R̃⋆, whose form is not particularly
illuminating, but they are convenient to present the solution
for the shell’s trajectory in the simple form,

R2ðTÞ ¼ R̃2
⋆ þ ðR2

⋆ − R̃2
⋆Þcosh2ðTÞ: ð34Þ

Rotation in higher dimensions is more challenging
because we lose spherical symmetry. However, rotating
black holes with all angular momenta equal in odd
dimension,

D ¼ 2N þ 3; ð35Þ

have an enhanced symmetry which makes the solutions
nontrivially dependent on the radial coordinate only (coho-
mogeneity one) and thus much more tractable [34–37].
Restricting to Z2-invariant situations, the metric on each

side of the shell has the form,

ds2 ¼ fðrÞ2dτ2 þ gðrÞ2dr2 þ r2ĝijdxidxj

þ hðrÞ2½dψ 0 þ Aidxi þ iΩðrÞdτ�2; ð36Þ

where the xi are coordinates on CPN , ĝij is the correspond-
ing Fubini-Study metric, Aidxi is the Kähler potential, and

gðrÞ2 ¼
�
1þ r2 −

2Mð1 − a2Þ
r2N

þ 2Ma2

r2Nþ2

�−1
;

hðrÞ2 ¼ r2
�
1þ 2Ma2

r2Nþ2

�
;

fðrÞ ¼ r
gðrÞhðrÞ ; ΩðrÞ ¼ 2Ma

r2NhðrÞ2 : ð37Þ

The mass and angular momentum of the black hole are
proportional to M and Ma, respectively [38]. To work in a
frame corotating with the shell we define ψ such that

dψ 0 ¼ dψ − iΩðRðτÞÞdτ: ð38Þ

Since the geometry has cohomogeneity-one we can take
shells that follow curves τ ¼ T ðTÞ and r ¼ RðTÞ, with the
angular directions remaining constant.
The first junction condition requiresMa2 to be the same

on both sides of the shell. This is automatic in the Z2-
symmetric situation. The second condition cannot be
solved if the shell is made of pressureless dust, which
cannot support the rotation of the geometry. The simplest
possibility in the symmetric situation (with Ma equal on
both sides of the shell), is to endow the shell with an
anisotropic pressure,

Sab ¼ −σuaub þ R2ΔPĝab; ð39Þ

where ĝab ¼ eiae
j
bĝij is the induced metric on the shell in

the directions transverse to the rotation.5 Then, the dynam-
ics of the shell is governed by the effective potential,

VeffðRÞ ¼ −gðRÞ−2 þ 16π2G2m2hðRÞ2
ð2N þ 1Þ2V2

ΩR
4Nþ2

; ð40Þ

and the density and pressure are

σ ¼ m
ð2N þ 1ÞVΩR4Nþ1

d
dR

ðR2NhÞ;

ΔP ¼ −
m

ð2N þ 1ÞVΩR2N

d
dR

�
h
R

�
: ð41Þ

The need for ΔP ≠ 0 implies that the boundary inser-
tions that create the shell cannot simply be a set of primaries
characterized only by their dimension 1 ≪ Δ ≪ N2. They
must carry other quantum numbers in the same range such
that they produce a fluid interface that supports anisotropic
pressure. It would be interesting to have explicit candidates
for these insertions. Fortunately, we will see that this

5More general shells were explored in [39].
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apparent complication is not consequential since the
pressure vanishes in the universal limit of interest below.

3. Example 3: Near-extremal black hole microstates:
within or without the throat

This construction of PEGS in a system with a Uð1Þ
symmetry can be used for black holes close to extremality,
where β is large. In this regime, the two Euclidean horizons
in Fig. 1 develop very long throats whose geometry is very
closely approximated by AdS2 × Sd−1. The shell created by
the microstate operatorOmay or may not probe this region,
and, as we will see, this can make an important distinction
on the properties of the microstates.
For a given charge Q of a Reissner-Nordström black

hole, and in the limit where the black hole is large
compared to the AdS scale, r0 ≫ 1, the values of the
horizon radius and mass at extremality are

r2d−20 ≈
32π2G2Q2

dðd−1ÞV2
Ω
; rd0 ≈

8πGðd−2ÞM0

ðd−1Þ2VΩ
: ð42Þ

A near-extremal black hole with the same charge will be
characterized by a horizon radius rh ¼ r0 þ δrh with an
inverse temperature,

β≈
2πL2

2

δrh
; L2

2≡ 1

dðd−1Þ ; ð43Þ

and with mass

M ¼ M0

�
1þ dðd − 2Þ

2

δr2h
r20

�
: ð44Þ

L2 is the length scale of the AdS2 throat, which appears in
the metric of the near-horizon region (NHR) ρ≡ r − r0 ≪
r0 through,

fðrÞ ≈ ρ2 − δr2h
L2
2

þOðρ=r0Þ: ð45Þ

This produces an AdS2 throat times a sphere of slowly
varying size r0 þ ρ. For large charged black holes, L2 is of
the order of the AdSdþ1 radius and thus much smaller than
the sphere radius r0. This limit is convenient for simplify-
ing calculations, but it is not necessary for our construction.
The geometry can be divided in two regions; the throat

(NHR) is the region where r − r0 ≪ r0, and the far zone is
the region where the extremal geometry is approximately
valid, characterized by r − r0 ≫ δrh. The two regions
overlap around the mouth of the throat, where r − r0 ¼
ρ∂NHR is such that δrh ≪ ρ∂NHR ≪ r0.
Whether the shell enters or not the throat depends on the

value of the largest root R⋆ of the effective potential (24); if
R⋆ is larger/smaller than r0 þ ρ∂NHR then the shell will
remain without/within the throat. In particular, the shell
avoids the throat if

mL2 ≫
rd−10

G
: ð46Þ

This is depicted in Fig. 2. Although Eq. (46) is derived
assuming r0 ≫ L2, for small black holes with r0 ∼ L2 the
shell also avoids the throat at sufficiently large masses.
Recall also that we are always considering that the masses
are heavy enough, Oð1=GÞ ∼OðN2Þ, to produce appreci-
able backreaction.
We can now relate our microstates to the PETS intro-

duced in [8] in Jackiw-Teitelboim (JT) gravity. This theory
describes the near-horizon throat, and its dynamics is
localized at the mouth in the form of the Schwarzian
theory of fluctuations of the boundary curve [17]. The
states correspond to insertions of local operators on the
boundary curve. This curve imposes an upper cutoff on
the conformal dimension for the operators, above which the
JT gravity description ceases to be valid. Operators of
higher dimension would be beyond the cutoff, and in our
construction they correspond to shell masses exceeding the
lower bound in (46), for which the shell’s trajectory escapes
the AdS2 region.
By working in a higher-dimensional setup where we

keep the region of spacetime outside the throat we can
increase the mass of the shell in the range (46). Indeed we

FIG. 2. Different classes of shell microstates for near-extremal
black holes. Above: Light shells enter the near-horizon AdS2
throat (light blue region). These microstates can be directly
related to microstates in the JT theory that describes the throat and
correspond to operator insertions in the Schwarzian theory
(wiggly blue line) at the mouth of the throat. Below: In the
heavy-shell limit, the shell does not probe the near-horizon
region. The two-sided interior contains two AdS2 throats and
a weakly gravitating region where the shell resides.
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can make it arbitrarily large.6 Although one loses the large
degree of calculability afforded by the simplicity of the
dynamics in the throat, we will see that by taking a limit of
very heavy-shell masses we achieve a crucial feature of the
construction: its universality.
Finally, we remark again that this construction also holds

in supersymmetric scenarios, e.g., those arising in type IIB
in AdS5 or the four-dimensional ungauged N ¼ 2 super-
gravity in asymptotically flat space. In particular, it
provides microstates for its extremal Bogomol’nyi-
Prasad-Sommerfield (BPS) solutions. The reason is that
the bosonic part of these theories is still Einstein-Maxwell
theory. We will return to this point in Sec. V.

D. Microstates of asymptotically
flat black holes

It should be apparent that the shell construction can be
readily adapted to black holes in asymptotically flat
geometries (or indeed almost any other asymptotics) [4].
We need not redo the calculations, but simply consider the
limit where the black hole is much smaller than the AdS
radius. All that follows, in particular the derivation of the
dimension of the Hilbert space of shell microstates and the
universality of the result, carry through at a technical level.
This is a significant advantage of the shell construction of
microstates.
However, there are two important conceptual caveats to

bear in mind. The first one is that, lacking sufficient
understanding about asymptotically flat holography, it is
unclear what is the dual microscopic counterpart of the
shell in the bulk. It seems very plausible that, if a holo-
graphic dual exists, then it should allow for the construction
of bulk shells, but we cannot be any explicit about it.
The second issue is that the canonical and grand-

canonical ensembles are not properly defined in asymp-
totically flat space. The black holes are thermodynamically
unstable systems and are not proper saddle points of the
GPI, since the fluctuations around them include a
Euclidean negative mode [40]. The same problem affects
small AdS black holes. However, this is also a feature of the
Gibbons-Hawking approach, which nevertheless manages
to correctly capture a surprising amount of the thermody-
namics of black holes with almost any kind of asymptotics.
Our construction shares all the advantages and shortcom-
ings of the Gibbons-Hawking use of the GPI for the study
of black holes. We adopt the position that, although
asymptotically flat black holes are not described by sta-
tionary (grand-canonical) density matrices, the question of
howmany linearly independent black hole microstates exist
is still sensible and well-defined. This question can be

regarded as posed in a microcanonical ensemble, and it is
the one that our approach provides an answer to.

IV. COUNTING MICROSTATES

The previous constructions of black hole microstates
easily yield large families of them. The physical property
that we rely on is that the ADM mass M and charges QI
of the exterior black holes do not depend on the rest mass
m of the thin shell in the interior. Therefore, we can keep
M and QI fixed, or β and μI if we impose grand-canonical
conditions, and define multiple microstates of the same
black hole, jΨmi, by simply varying the rest mass m.
These semiclassical states share the same exterior geom-
etry but differ in their interiors. Selecting a discrete and
finite set of values for the rest mass then defines the
family

FΩ ¼ fjΨm1
i;…; jΨmΩ

ig ⊂ H: ð47Þ

A. Microcanonical family

Families of grand-canonical PEGS wave functions Ψab
come with a difficulty. They have tails at all energies and
therefore explore the full infinite-dimensional Hilbert
space of the CFT. Assuming the genericity of the wave
functions (13), these states will all be linearly indepen-
dent and we will have dΩ ¼ Ω for any finite family
of PEGS.
This problem and its resolution are well-known in

quantum statistical mechanics. The entropy S of the black
hole can only be understood in a microcanonical sense, as
the number of independent microstates of the black hole in
a window of energy,

E∈ ½Eα;EαþΔEα�; ΔEα≪Eα; ð48Þ

and charge

QI∈ ½Qα
I ;Q

α
I þΔQα

I �; ΔQα
I ≪Qα

I : ð49Þ

To lighten the presentation we omit the angular momentum,
but it should be clear that all we say about charge extends to
spin. The dimension Dα of this microcanonical Hilbert
subspace Hα ⊂ H is finite, and gives the entropy of the
black hole as

S ¼ logDα: ð50Þ

In order to obtain S by counting states of the family of
PEGS we will use their projections,

jΨα
mi
i ¼

�
Z1;mi

Zα
1;mi

�
1=2

ΠαjΨmi
i; ð51Þ

6The mass of the shell is then related to the dimension of an
operator of the d-dimensional CFT, instead of the property of an
operator of the quantum mechanical system describing the throat.
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where Πα ¼ ΠL
αΠR

α is an orthogonal projector onto the
microcanonical band labeled by the parameter7

α ¼ ðEα; Qα
I Þ; ð52Þ

and ΠL
α , ΠR

α correspond to the respective projections acting
on each Hilbert space factor. The function

Zα
1;mi

¼ Z1;mi
hΨmi

jΠαjΨmi
i; ð53Þ

is the normalization of the microcanonical state. Using (13),
the state vector is

jΨα
mi
i ¼

X
a;b

ðΨα
mi
ÞabjEaiL ⊗ jEbiR; ð54Þ

where the sum is implicitly restricted to energies and charges
that belong to the window α. Explicitly, the wave function
reads8

ðΨα
mi
Þab ≈

1ffiffiffiffiffiffiffiffiffiffi
Zα
1;mi

p e−
β̃
2
ðEα−μIQα

I ÞðOi
αÞab; ð55Þ

and the normalization (53) is

Zα
1;mi

≈ e−β̃ðEα−μIQα
I ÞTrðOi

αOi
α
†Þ; ð56Þ

where Oi
α ¼ ΠL

αOiΠR
α is the projection of the operator, and

Oi is the microscopic thin-shell operator of rest mass mi.
After the projection, in these expressions we have approxi-
mated the smooth part of (13) by the corresponding constant
values on themicrocanonicalwindow. This leads to thewave
function

ðΨα
mi
Þab ≈

ðOi
αÞab

TrðOi
αOi

α
†Þ1=2 : ð57Þ

Then, from a grand-canonical family of PEGS (47), we can
define the associated microcanonical family

Fα
Ω ¼ fjΨα

m1
i;…; jΨα

mΩ
ig ⊂ Hα: ð58Þ

To find the dimension Dα of Hα we will follow the
strategy outlined in Sec. II. It can be implemented in two
manners, which differ in the way they obtain the traces of
the moments of the microcanonical Gram matrix

Gα
ij ≡ hΨα

mi
jΨα

mj
i ≈ TrðOj

αOi
α
†Þ

ðTrðOi
αOi

α
†ÞTrðOi

αOi
α
†ÞÞ1=2 : ð59Þ

In the first method, these are extracted from those of the
PEGS Gram matrix

Gij ≡ hΨmi
jΨmj

i: ð60Þ
This was the approach used in [3], and we will work it out
in detail for the cases with charge and rotation that we
introduced above. The second method directly computes
Gα

ij and its moments generalizing a prescription recently
put forward in [41]. To avoid excessive repetition, in this
last method we will only outline the calculations.

B. Method 1: Projected overlaps

Inserting the resolution of the identity, 1 ¼ P
αΠα, the

matrix G is written as the weighted sum over matrices Gα,
namely

Gij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z1;mi
Z1;mj

p X
α

Gα
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zα
1;mi

Zα
1;mj

q
: ð61Þ

Recall that, from (13), the Gram matrix of PEGS (60) is

Gij ¼
Trðe−β̃ijðH−μIQIÞOje−β̃ijðH−μIQIÞOi†Þ

ðZ1;mi
Z1;mj

Þ1=2 ; ð62Þ

where β̃ij ¼ β̃iþβ̃j
2

. After computing G and its products
using the GPI, we will approximate the sums over energy
windows α by continuous integrals. An inverse Laplace
transform then gives the microcanonical quantities:

1. Universal overlaps from heavy-shell wormholes

The trace of the resolvent matrix (6) contains the products

Gi1i2Gi2i3…Gini1 : ð63Þ
In principle, these are fully microscopic quantities, and their
computation requires details about the UV theory of
quantum gravity that the semiclassical path integral of
gravity does not contain. However, much less information
is needed if we only want to obtain the rank dα ofGα. As we
discussed, a statistical averaging of the values of (63)—the
moments of a distribution ofmatrices—suffices for that. The
idea (exploited in [3,4,9,10,15,16,42–44] in different sce-
narios) is that the GPI can provide this information if
appropriately used.97For two-sided states, the microcanonical energy and charges

need to be specified independently on both sides. This is
implicitly defined in our notation, where explicitly Eα ¼
ðEL

α ; ER
α Þ and Qα

I ¼ ðQα
I;L; Q

α
I;RÞ. The orthogonal projector fac-

torizes accordingly,Πα ¼ ΠL
αΠR

α . We have omitted this for ease of
exposition.

8Here we are using the implicit notation β̃ðEα − μIQα
I Þ≡

β̃ðEL
α þ ER

α − μIQα
I;L − μIQα

I;RÞ.

9Perhaps the GPI, complemented with additional UV ingre-
dients, might go beyond the statistical description and compute
the microscopic inner products, at least in low-dimensional toy
models [45,46]. We will nevertheless assume that the GPI is
maximally agnostic about the microscopic phases of the inner
products [44].
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We will employ an overline to denote the quantities that
the semiclassical GPI gives,

Gi1i2Gi2i3…Gini1 : ð64Þ

Naively, the individual elements Gij would have all the
available information about the overlap between micro-
states. However, as we will presently explain, for a very
generic family of microstates the value of Gij does not
contain any information about their overlaps, making it
seem that the GPI can hardly give a number D ¼ eS that is
consistent with the Gibbons-Hawking calculation of the
entropy. Indeed, if we only consider Gij and its products,
the result for the Hilbert space dimension is infinite, which
is a version of the bags-of-gold paradox [3,47].
However, the GPI is a smarter tool than that. Connected

wormhole geometries with multiple boundaries (see Fig. 3)
give contributions such that,10

Gi1i2Gi2i3…Gini1 ¼
Zi1…in
n

Zi1
1 …Zin

1

; ð65Þ

for distinct i1;…; in. These differ from the naive product
Gi1i2 Gi2i3 …Gini1 , implying that (65) must be regarded as
the statistical moments of a distribution. This statistical
nature of the GPI was first recognized in [48] for the
correlations of partition functions in JT gravity. It turns out
to be consistent with a maximally ignorant description:
semiclassics captures the smooth ‘phase-correlated’ part of

the microscopic moments, while the phases of individual
matrix elements of the microscopic Gram matrix are
washed out [43,44]. Remarkably, the smooth part of the
moments is enough to obtain dΩ.
Following [3,4], we will make the family of microstates

as generic as possible by taking them to be at an infinite
distance from each other in the semiclassical phase space.
More concretely, we require the “heavy-shell” limit,

mi → ∞; with jmi −mjj → ∞; ð66Þ

for all members of FΩ.
11 Then, the semiclassical interiors

for different states are as different as possible, since they
contain shells with infinitely many different particles
relative to one another. We emphasize that this choice is
just a technical convenience. As explained in Sec. II, any
set drawn from some smooth probability distribution will
suffice to provide the correct Hilbert space dimension. It
would be interesting to verify this for families of shell states
lighter than (66).
The heavy-shell limit brings in drastic simplifications.

First, it yields

Gij ¼ δij; ð67Þ

so the semiclassical states would seemingly become
orthogonal.12 This conclusion would be too quick, since
wormhole contributions give a nonzero value for the
moments (65). In the heavy-shell limit (66) they take a
very simple form,

Gi1i2Gi2i3…Gini1 ¼
Zðnβ; μIÞ2
Zðβ; μIÞ2n

; ð68Þ

where logZðnβ; μIÞ is minus the Euclidean action of the
corresponding black hole. The physical mechanism leading
to these universal overlaps is that, in the heavy-shell limit,
the wormhole geometry becomes a pair of Euclidean black
holes effectively glued together at a small portion of the
asymptotic region (which lies inside the black hole). The
intrinsic contribution of the shell action, which only
explores the asymptotic region, factors out and cancels
between the wormhole and the normalization of the PEGS.
This leads to the ratio of Gibbons-Hawking actions in (68).
Remarkably, the moments (68) only depend on the

parameters that specify the black hole. All the information
about specific microstates, such as the shell masses and
insertion angles, has been rendered irrelevant. Moreover,
this form of the overlaps is valid for any black hole solution

FIG. 3. The two- and three-boundary wormhole contributions
to the moments of the Gram matrix. Trajectories with arrows are
identified. For general n, the solution consists of two Euclidean
black holes glued along n trajectories. The Euclidean solution
contains n disconnected asymptotic boundaries, each of which
corresponds to an overlap. Each shell is taken to be different, so
this solution is the only possible contraction of the operators.

10To lighten the notation we have redefined Z1;mij
→ Z

ij
1 .

11The limit must hold besides the fact that the mi and their
differences are all OðN2Þ.

12The semiclassical theory has a naive infinite Hilbert space in
the black hole interior, since the slice Σint can have an arbitrarily
large volume. Therefore, the states can be made as orthogonal as
one wants, which is achieved in the heavy-shell limit.
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for which the Euclidean action can be computed. Then, the
dimension of the Hilbert space of these microstates is
universally determined by the value of the Euclidean black
hole action. Conceptually, this is an entirely different
computation of the black hole entropy than in the
Gibbons-Hawking calculus. Indeed there is no reason
a priori to expect that both results match with each other
but they do, as we show in the next section.
To make manifest the mechanism behind this crucial

result—and indeed to show that it implies Dα ¼ eA=4Gℏ—
we will examine in detail how it is realized in the explicit
examples that we introduced above.

2. Example 1: Uð1Þ charge
We have to evaluate the action (17) for the different

geometries involved in the overlaps. The first one is the
normalization factor, represented in Fig. 1. To the space-
time action we must add the appropriate counterterms Ict
and a contribution from the shell,

Ishell ¼
Z
W
ðσ þ AμjμÞ: ð69Þ

The full action is then I ¼ IEM þ Ishell þ Ict, and we set
jμ ¼ 0 since in the Z2-symmetric situation we deal with
neutral shells.
To compute the action, it is useful to split the geometry in

Fig. 1 in three regions; two circular sectors XL and XR

centered at the horizons and with opening Euclidean time β̃,
and the remaining interior region containing the shell Xin.
The first two pieces just give contributions proportional to
the grand-canonical free energy,

I½XL;R� ¼ β̃F ðβ;ΦÞ

¼ β̃VΩ

16πG

�
−rdh þ rd−2h

�
1 −

2ðd − 2Þ
d − 1

Φ2

�
þ cd

�
;

ð70Þ

where rh is the horizon radius, and cd accounts for the
Casimir energy of the CFT in even dimensions. The
contribution from Xin is more complicated but it simplifies
in the heavy-shell limit. In that case, the turning point of the
trajectory can be obtained as the largest root of (24),

Rd−1
⋆ ≈

4πGm
ðd − 1ÞVΩ

: ð71Þ

Also, the time elapsed by the shell (28) scales as

Δτ ∼ R−1
⋆ ∼m−1=ðd−1Þ: ð72Þ

This confirms that in the largem limit the shell stays within
the asymptotic region (inside the black hole), traveling for

an arbitrarily short amount of Euclidean time. As a
consequence, in this limit we have

β̃ ≈ β: ð73Þ

Using the on shell condition,

R ¼ −dðdþ 1Þ þ d − 3

d − 1
F2 þ 16πG

d − 1
σδWðxÞ; ð74Þ

to compute the Einstein-Hilbert action, the contribution
from Xin becomes

I½Xin� ≈
2m
d − 1

logð2rd−1∞ Þ − 2m logR⋆: ð75Þ

The first piece is removed with a counterterm at the shell
insertions. Therefore, the normalization for the shell states
in this limit is finally,

Zi
1 ¼ Zðβ;ΦÞ2e−2mi logR

ðiÞ
⋆ : ð76Þ

The overlaps between states are computed by the worm-
holes sketched in Fig. 3. When m is large, the length of
each asymptotic segment between two boundary insertions
is equal to β. The action is computed through a decom-
position of the geometry like we have done for the
normalization. Isolating the contributions from the shells
becomes simple when these are heavy, each of them

contributing 2mi logR
ðiÞ
⋆ to the action. The remaining disk

sectors around each of the two horizons have an opening
Euclidean time nβ for an n-boundary wormhole. We
conclude that in the heavy-shell limit

Zi1…in
n ≈ Zðnβ;ΦÞ2 exp

�
−2

Xn
i¼1

mi logR
ðiÞ
⋆

�
: ð77Þ

Combined with (76), this gives the universal result (68).

3. Example 2: Rotation

We can repeat this procedure for the rotating BTZ black
hole. The chemical potential is now the angular velocity of
the horizon ω ¼ ri=rh, with ri and rh the inner and outer
horizon radii. The action of the disk sectors excluding the
shell term gives again the grand-canonical free energy of
the black hole

I½XL;R� ¼ β̃F ðβ;ωÞ ¼ −
π2β̃

2Gβ2ð1 − ω2Þ : ð78Þ

The geometry is simple enough that the contribution from
Xin can be computed analytically using the form of the
shell’s trajectory. But again the heavy-shell limit gives a
cleaner and more illuminating result. In this limit, the roots
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of the potential (33) and the Euclidean time elapsed by the
shell simplify to

R⋆ ≈2Gm; R̃⋆ ≈2J=m; Δτ≈ ðGmÞ−1: ð79Þ

As expected, the shell localizes near the boundary, where it
spends a vanishingly short Euclidean time. Its contribution
to the action is again of the form

I½Xin� ≈ 2m logð2r∞Þ − 2m logR⋆: ð80Þ

After counterterm subtraction, we find that (76) gives the
normalization of BTZ shell microstates, with the appro-
priate chemical potential Φ → ω.
The computation of overlaps from wormholes follows

the same lines as in the charged case, and the cancellation
of contributions from the shells yields again the universal
result (68).
Essentially the same analysis is valid for rotating black

holes with all angular momenta equal in D ¼ 2N þ 3,
whose microstates were described above in Sec. III C. The
sectors XL;R of the geometry produce a contribution
proportional to the free energy. Again the heavy-shell limit
allows to obtain simple and explicit results for the shell’s
trajectory. The turning point of the potential (40) becomes

R2Nþ1
⋆ ≈

4πGm
ð2N þ 1ÞVΩ

; ð81Þ

and the travel time of the shell is suppressed as

Δτ ∼ R−1
⋆ ∼m−1=ð2Nþ1Þ: ð82Þ

The need for the anisotropic pressure ΔP in (41)
generically complicates the evaluation of the action in
Xin. But in the heavy-shell limit its contribution

Z
W
ΔP ≈

4N þ 4

2N þ 1

ffiffiffi
π

p
Γð Nþ1

2Nþ1
Þ

Γð 1
4Nþ2

Þ
mMla2

R2Nþ2
⋆

∼
1

R⋆
ð83Þ

is suppressed. The reason is that the shell passes very close
to an asymptotic region hidden inside the wormhole, where
the effects of rotation become negligible.
As a result, we recover (75) for the action of Xin, and the

n-boundary wormhole contribution is given by (77), where
the chemical potentialΦ for rotation is the angular velocity.
Both combined, this produces again the universal result (68).

4. Inverse Laplace transform

The previous calculations have given us the universal
moments of Gij (68). It is now a simple matter to derive
from them the moments of the microcanonical Gα

ij defined
in (59), whose universal form is also remarkably simple.
In the heavy-shell limit, it is natural to assume that the

individual matrices ðOi
αÞab become effectively free relative

to each other (see Appendix B). The phase-correlated
moments of Gα are therefore of the form,

Gα
i1i2

Gα
i2i3

…Gα
ini1

¼ Zα
n

Zα
1;i1

…Zα
1;in

; ð84Þ

where

Zα
n ¼ e−nβðEα−μIQα

I Þfαn; ð85Þ

fαn ¼ TrðOi1
αO

i2
α
†Þ…TrðOin

αO
i1
α
†Þ: ð86Þ

The fαn functions encode the information about the overlaps
and we must extract them from our previous GPI calcu-
lations. As we will now see, these functions become i and n
independent in the heavy-shell limit, which can be moti-
vated from the point of view of free probability for the
ðOi

αÞab matrices (see Appendix B).
In the same way, the phases of Gα for different micro-

canonical windows α can be assumed to be uncorrelated, so
their semiclassical connected amplitudes vanish. Then, (61)
implies that the moments of G are simply sums of the
moments of Gα,

Gi1i2Gi2i3…Gini1 ¼
P

α Z
α
n

Z1;i1…Z1;in

: ð87Þ

The result (65) for the lhs of this equation implies that the
numerator of the rhs is the value of n-boundary wormhole
action. In the limit of heavy-shell microstates, this action
takes the universal form (68) and we find13

Zðnβ; μIÞ ¼
X
α

Zα
n: ð88Þ

To invert this relation and extract the Zα
n we first use that in

a semiclassical regime the sums are well-approximated by
continuous integrals. Inserting (85) we write (88) as

Zðnβ; μIÞ ¼
Z

dE dQIe−nβðE−μIQIÞfnðE;QIÞ: ð89Þ

An inverse Laplace transform readily yields the micro-
canonical fnðE;QIÞ,

fnðE;QIÞ ¼ zðE;QIÞ≡
Z
γþiR

dβdμI
2πi

eβðE−μIQIÞZðβ; μIÞ;

ð90Þ

13In the heavy-shell limit, the value of Zα
n factorizes into

ðZα
nÞLðZα

nÞR, from the assumptions of randomness and independ-
ence of the ðOi

αÞab coefficients. This makes
P

α Z
α
n the square of

some one-sided quantity. For ease of exposition, we will
implicitly restrict the sum over α as single-sided. This gets rid
of the square in the numerator of (68).
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that is, fnðE;QIÞ is the microcanonical density of states
zðE;QIÞ that one obtains as the inverse Laplace transform
of the Gibbons-Hawking partition function. This density of
states does not arise from a proper counting of states, but its
logarithm,

S≡ log zðE;QIÞ; ð91Þ

will presently acquire the interpretation of the entropy in
the true counting of the set of microstates that we have
constructed. At this stage, S is merely a quantity that
characterizes the moments of the microcanonical matrix of
overlaps,14

Gα
i1i2

Gα
i2i3

…Gα
ini1

¼ e−ðn−1ÞS: ð92Þ

With this result, it will be an easy step to deduce in Sec. IV D
that the dimension of the Hilbert space is indeed eS, but
before we do this, we will examine another, more direct
method to derive (92).

C. Method 2: Direct overlaps

As an alternative to the previous method, the micro-
canonical Gram matrix and its moments can be directly
computed using an extension of the semiclassical prescrip-
tion put forward in [41] (first proposed in JT gravity in [49]).
There it was shown that themicrocanonical wave function of
the Hartle-Hawking state can be obtained as the on shell
action of the ‘Pac-Man’ geometry, where one imposes fixed-
energy and charge boundary conditions on a bulk hyper-
surface Σ0 such that ∂Σ0 is the boundary slice where the
microstate lives (in this case, the thermofield-double). The
fixed-energy boundary conditions imposed on Σ0 are of
mixed type; certain components of the induced metric and
the extrinsic curvature of Σ0 are specified. Moreover, Σ0 is
allowed to have corners, where Hayward terms are added to
ensure the additivity of the gravitational on shell action. This
is important to ultimately recover the norm of the Hartle-
Hawking state Zðβ; μIÞ from the microcanonical wave
function.
We will generalize this prescription to the wormhole

calculus in order to compute moments of the microcanon-
ical Gram matrix (59),

Gα
ij ¼

�
Z1;iZ1;j

Zα
1;iZ

α
1;j

�
1=2X

a

hΨmi
jEaihEajΨmj

i; ð93Þ

where, again, the sum is implicitly restricted to energies and
charges that belong to the window α. We will focus on the
overlap between the (unnormalized) thin-shell microstates
and energy eigenstates,

ΨiðEÞ≡ Z1=2
1;i hEjΨmi

i: ð94Þ
It is immediate to see that for heavy-shells the semi-

classical computation of this overlap vanishes

ΨiðEÞ ¼ 0; ð95Þ
since the trajectory of the shell cannot terminate anywhere,
and corrections to this value are suppressed in the heavy-
shell limit. Microscopically, this occurs becauseΨiðEÞ does
not contain any phase correlation in the erratic entries of the
Oi operator and the signal is washed out semiclassically.
Despite (95), we expect that the norms of the wave

functions ΨiðEÞ computed by the GPI will be nonzero, and
that this will follow from nontrivial ‘microcanonical worm-
hole’ geometries that connect different asymptotic boun-
daries. Indeed, it is easy to construct the Pac-Man
wormhole, illustrated in Fig. 4. This geometry provides
a saddle point contribution to15

ΨiðEÞΨjðE0Þ� ¼ δE;E0δijfiðE;QIÞ: ð96Þ
In the heavy-shell limit, the trajectory of the shell pinches
off, and the Pac-Man wormhole yields the on shell action

fiðE;QIÞ ¼ eSðE;QIÞ−βðE−μIQIÞZð0Þ
i ; ð97Þ

FIG. 4. Euclidean Pac-Man wormhole geometry computing
ΨiðEÞΨiðE0Þ�. Note that the solution enforces E ¼ E0, as well as
QI ¼ Q0

I . By construction, integrating the on shell action of the
Pac-Man wormhole over E and the charges QI gives the
normalization of the PEGS, Z1;i. Higher moments such as
ΨiðEÞΨjðE0Þ�ΨjðEÞΨiðE0Þ� semiclassically factorize into dis-
connected copies of the Pac-Man wormhole geometry. Gluing
these copies together to form the semiclassical PEGS wormholes
produces additional factors of e−SðE;QIÞ coming from Hayward
corner terms.

14We omit the dependence on the width of the microcanonical
window, which can be made small enough with an appropriate
choice of ΔEα and ΔQI , e.g., βΔEα ∼OðS0Þ.

15For ease of exposition, and following previous notation, we
are omitting left/right labels for the energies and charges, which
are independently defined for a given microcanonical window
in H. We are also omitting explicitly that the δE;E0 factors in (96)
and (99) include a δQI;Q0

I
for the charges.
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where SðE;QIÞ is the Bekenstein-Hawking entropy of the
black hole. The only dependence of the action on the

properties of the shell is through the term Zð0Þ
i , which is

independent of E and QI, since the shell is localized in the
asymptotic region of the Euclidean solution. This will be a
feature of all the moments of ΨiðEÞ. It implies that, upon

normalization, the shell’s contribution Zð0Þ
i cancels out in

the moments of Gα. As a consequence, these moments will
be solely determined by the black hole parameters.
In more detail, to obtain the semiclassical matrixGα

ij (93)
we first need the norm of the PEGS, Z1;i. Equations (96)
and (97) give it as

Z1;i ¼
Z

dE dQIΨiðEÞΨiðEÞ�: ð98Þ

From (53) this implies that Zα
1;i ¼ ΨiðEαÞΨiðEαÞ�.

Next, we need the higher moments ofΨiðEÞ. All of these
moments will be computed by saddle point geometries of
the GPI consisting of multiple disconnected copies of the
Pac-Man wormhole sketched in Fig. 4. These copies will
contain additional δE;E0 factors identifying the different
energies of each Pac-Man wormhole.
We have already seen that the on shell action of the Pac-

Man wormhole is easy to obtain in the heavy-shell limit.
For example, for the second moment, the saddle point
contains two copies of the Pac-Man wormhole in Fig. 4,
and the semiclassical contribution is simply,

ΨiðEÞΨjðEÞ�ΨjðE0ÞΨiðE0Þ� ¼ δE;E0fiðE;QIÞfjðE;QIÞ;
ð99Þ

for i ≠ j, with fiðE;QIÞ given again by (97). By con-
struction, integrating the on shell action (99) over E and E0
gives the PEGS wormhole16

Zð2β; μIÞ ¼
Z

dEdQIe−SðE;QIÞΨiðEÞΨjðEÞ�ΨjðEÞΨiðEÞ�:

ð100Þ

The factor of e−SðE;QIÞ arises from removing additional
corner terms when gluing the different Pac-Man wormhole
wedges along parts of the bulk fixed-energy boundaries
(see Ref. [41] for details on how the gluing of micro-
canonical wave functions is performed).17

At the same time, Eq. (99) explains, from the perspec-
tive of the GPI, why different microcanonical Gram

matrices appear semiclassically uncorrelated,Gα
ijG

α0
ji ∝ δαα0 .

Given (93) and (100), this implies that

Zα
2 ≡

X
a;a0

ΨiðEaÞΨjðEaÞ�ΨjðEa0 ÞΨiðEa0 Þ�

≈ e−SðEα;Qα
I ÞfiðEα; Qα

I ÞfjðEα; Qα
I Þ: ð101Þ

Using then (99), the microcanonical second moment is

Gα
ijG

α0
ji ¼ δαα0

Zα
2

Zα
1;iZ

α
1;j

≈ δαα0e−SðEα;Qα
I Þ: ð102Þ

The argument immediately extends to the nth moment of
the microcanonical Gram matrix, given that n disconnected
copies of the Pac-Man wormhole of Fig. 4 generate the
n-boundary wormhole for the PEGS, with gluing condition

Zðnβ;μIÞ¼
Z
dEdQIe−ðn−1ÞSðE;QIÞ

×Ψi1ðEÞΨi2ðEÞ�…ΨinðEÞΨi1ðEÞ�: ð103Þ

This yields the same universal result as in (92).

D. Dimension of the black hole Hilbert space

Having derived in two manners the universal result (92)
for the moments of the overlap matrix between microstates
Gα

ij, we can proceed to steps 2 and 3 of the strategy
described in Sec. II. The calculations for the trace of the
resolvent have been described earlier [9] (see also
[3,4,10,15]), so we shall be brief.
We take a large family FΩ of heavy-shell microstates,

Ω ≫ 1, with Gram matrix moments given by (92). The
expansion (6) for the semiclassical RαðλÞ can be written as a
Schwinger-Dyson equation, which, given the simple form
of the moments, can be resummed as

λRαðλÞ¼ΩþeS
X∞
n¼1

�
RαðλÞ
eS

�n

¼Ωþ eSRαðλÞ
eS−RαðλÞ : ð104Þ

This is a quadratic equation for RαðλÞ and it is easily solved.
The discontinuity along the real axis (7) gives the density of
eigenvalues,

DαðλÞ¼δðλÞðΩ−eSÞθðΩ−eSÞ

þ eS

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½λ−ð1−Ω1=2e−S=2Þ2�½ð1þΩ1=2e−S=2Þ2−λ�

q
:

ð105Þ

16Here we are omitting the intrinsic constants Zð0Þ
i and Zð0Þ

i
since they cancel out in the calculation.

17In our case there is an additional factor of 2 in the exponent
of the gluing factor in (99) with respect to Eq. (1.9) of [41] from
the fact that the overlap contains two gluings, corresponding to
the pair of bra-ket factors. Moreover, there is another factor of 2
which we leave implicit due to the two-sided nature of our states.

UNIVERSAL CONSTRUCTION OF BLACK HOLE MICROSTATES PHYS. REV. D 109, 086024 (2024)

086024-15



The continuous part counts the number of positive eigen-
values, while the singular part counts the number of zero
eigenvalues. Applying (8) we get

dαΩ ¼ minfΩ; eSg; ð106Þ

which has the same form as (9). Then, the arguments in
Sec. II lead us to conclude that the black microstates that we
have constructed correctly reproduce the Bekenstein-
Hawking entropy,

logDα ¼ S ¼ A
4Gℏ

: ð107Þ

With the caveats discussed in Sec. III D, this result also
applies to the asymptotically flat Reissner-Nordström and
Kerr black holes.

V. CORRECTIONS

We will now see how this framework can incorporate
quantum and statistical corrections to the dimension of the
black hole Hilbert space.
Quantum corrections from the perspective of the

Gibbons-Hawking partition function have been studied
in several situations [17–28,50–52]. Our aim here is not
to obtain any new corrections, but rather to explain how
they generally and readily fit in the universal framework of
heavy-shell microstates.
To this end, we first recall that the universality relies on

the value of the overlaps (68) which we derived by taking a
heavy-shell limit of the saddle point value of the partition
functions. We will argue that this equation is still valid
when we include quantum corrections, e.g., a one-loop
determinant, in the path integral computation of the overlap
Zi1…in
n . In that case, the partition function Zðβ; μIÞ in (68)

also includes these corrections. This is not immediately
obvious, because for Zðβ; μIÞ the quantum corrections are
added on top of the standard cigar geometry, while for
Zi1…in
n they enter on top of the n-boundary wormhole

geometry with n shells. Nevertheless, we will see that (68)
remains valid essentially for the same reason as at tree level:
in the heavy-shell limit, the geometries of the kind in Fig. 1
effectively factorize into two copies of a conventional cigar
geometry.
With (68) in hand, the arguments in the previous section

extend to give logDα ¼ S, where now S is the entropy
obtained from the quantum-corrected Gibbons-Hawking
partition function.
In Sec. V C we will discuss other corrections to the

computation of the number of states, namely those from the
statistical nature of the overlaps between gravitational
microstates.

A. Quantum corrections near extremality and BPS

The argument outlined above is made more simply for
the quantum corrections near extremality, since we can
carry over the discussion of near-extremal PEGS in
Sec. III C, illustrated in Fig. 2. There, we argued that the
throat near the horizon of near-extremal black holes is
avoided by heavy shells, and it is in the throat where the
leading quantum effects are localized. More concretely, the
length of the throat is inversely proportional to the black
hole temperature, and the Schwarzian mode that describes
the fluctuations in the position of the mouth dominates the
low-temperature dynamics [with T ≲ G=ðrd−20 L2

2Þ]. This
Schwarzian mode can be exactly quantized [17,18]. In the
absence of supersymmetry, this leads to a significant
suppression of the density of states at low energies above
extremality, while near-BPS throats exhibit a large
degeneracy of states at exactly zero-temperature, separated
by a gap from the (approximately) continuous finite-
temperature spectrum [19–22].
In addition to these quantum logT effects, there are also

more conventional logA quantum corrections [50,51,53,54].
These come from light fields present in the theory and
are thus heavily dependent on the matter content. In a
near-extremal black hole, the logA and logT terms can be
jointly computed without a reduction to the effective two-
dimensional theory in the throat [23,26].
Now it becomes clear that in the heavy-shell limit, all this

quantum corrected near-horizon dynamics does not affect
the properties of the shell far away from the throat. Just like
in previous derivations, the shell dependence disappears
from the moments of the Gram matrix, and the dominant
low-temperature quantum effects are entirely accounted for
through the quantum-corrected partition functions that
enter in (68). Each of these receives corrections from a
Schwarzian mode around each Euclidean horizon.
If the black hole is supersymmetric, the shell microstates

are initially prepared as nonsupersymmetric configurations
with finite preparation temperature β̃−1. Then they are
projected to the supersymmetric ground state by taking the
limit β̃ → ∞. When working within the supersymmetric JT
theory of the throat, BPS microstates of this kind have been
constructed in [15] following on [11,12]. Our construction
gives a different family of supersymmetric black hole
microstates containing matter behind the horizon, as
mentioned above. Again the main difference is illustrated
in Fig. 2.
The in-throat (super-)JT microstates used in [15], and our

out-of-throat universal microstates also differ in the inter-
pretation (or justification) given for the big number of
available shell operators. In [15], following up on [9], one
assumes the existence of a large number of different
operators (flavors) at a certain scaling dimension. In our
approach, no large number of flavors needs to be invoked.
Instead, the higher-dimensional picture allows to build
sufficiently different microstates by simply using a single
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operator inserted a large number of times, in such a way
that an arbitrarily large set of shell masses satisfying (66) is
obtained.
The main advantage of the in-throat microstate con-

structions is that the simplified dynamics allows to retain a
larger degree of control, e.g., over quantum effects,
especially with supersymmetry. Out-of-throat heavy-shell
microstate constructions, instead, gain in universality. In
Appendix C we extend our arguments for the in-throat
(super-)JT microstates, although the justification of the
Gaussianity of shell operators is weaker in that case since
we cannot properly take a strict heavy-shell limit.

B. Quantum corrections away from extremality

Black holes far from extremality also receive quantum
corrections ∝ logA. Since the computation cannot be
localized near the horizon, it is less obvious that the
introduction of the shell does not affect the result. In
particular, the shell junction imposes nontrivial gluing
conditions for the fields that enter the computation of
the one-loop determinant.
Nevertheless, we can argue that this does not modify the

validity of (68). Logarithmic corrections are computed via
heat kernel methods [55], which yield the coefficient of the
logA correction as a local integral of the saddle-point
fields, up to contributions from zero modes. In the worm-
hole geometries, the shell modifies this calculation only
through the junction conditions. But these effects have been
shown to be entirely localized at the position of the
shell [55,56].
To illustrate how these modifications vanish in the heavy-

shell limit, we can estimate them for a Schwarzschild black
hole in four dimensions. Then, R⋆ ∼GNm=2 at largem and
a typical contribution comes from the discontinuity of K
across the shell [56],Z

W

ffiffiffi
h

p
½K�3 ≈ −16π2: ð108Þ

These contributions to the overlaps are therefore universal
factors that appear both in the normalization (one-boundary)
computation and in themoments of theGrammatrix (several
boundaries). They thus cancel in (65), leaving the universal
result (68).
There are also logA corrections coming from zero

modes of linearized fluctuations. To obtain them, [52]
used scaling arguments of the path integral measure, and
these would seem unaffected when very heavy shells are
included. Our arguments thus seem robust, but since
recent one-loop calculations of zero modes have revealed
subtleties [23,24,26], a more explicit analysis of shells
may be useful.
Finally, besides these corrections from infrared quanta,

there is another class of quantum (or stringy) corrections
due to ultraviolet degrees of freedom, which give rise to

higher-dimension operators in the gravitational action.
These modify the entropy (1) by terms that are localized
on the horizon [57] and therefore they do not affect the shell
contribution to the partition function. In asymptotically
AdS spacetimes, the higher-dimension operators also
contribute to the effective cosmological constant and to
the definition of mass and asymptotic charges. However,
once these are accounted for, there are no further effects on
the shells and the universal equation for the moments (68)
continues to be valid with the corrected partition functions.

C. Statistical corrections

The semiclassical path integral of gravity has only access
to phase-correlated properties of the microscopic Gram
matrix. This effective description is given in terms of an
ensemble of microscopic Gram matrices. In a microscopic
theory, the Gram matrix will be a member of such an
ensemble. For this reason, there is another class of
corrections to the dimensionDα, coming from the statistical
variances over the ensemble of microscopic Gram matrices.
We will estimate them now.
We can compute the variance of Dα from the semi-

classical product of resolvent traces,

RðλÞRðλ0Þjconn¼
X∞
p;q¼0

1

λpþ1λqþ1
TrðGpÞTrðGqÞjconn: ð109Þ

The diagrams contributing to these contractions will be
those for which the thin shells propagate between the two
sets of boundaries. Microscopically, the shell operators
have gaussian random statistics and the contribution of
these diagrams to the variance of the rank will vanish
identically. Notice this holds in all examples considered in
this article. A similar phenomenon was pointed out in [15]
for matter operators with flavors (but same conformal
dimension) coupled to the N ¼ 2 super-Schwarzian
description of BPS throats. In our case, the large mass
limit motivates this effect, given that the microscopic
operators become free relative to each other in this limit
(see Appendix B).
In general, off shell configurations will exist that spoil

the exact vanishing of the semiclassical variance of Dα for
non-BPS black holes. As argued above, these are not
related to the operators that create the microstates but only
to spectral variances in the density of states of the
Hamiltonian. For near-extremal black holes, these spectral
variances can be computed and, when averaged over the
microcanonical window, they scale as

hðρ − ρ0Þ2i ∼ e−2S0ðΔEαÞ−2; ð110Þ

from random matrix universality. This gives corrections to
the black hole entropy that are suppressed by small factors
∼1=S0. These errors do not appear for BPS black holes
because in those scenarios every microstate has the same
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energy and, therefore, there is no quantum chaos in the
spectrum to start with.

VI. DISCUSSION

We have shown that the gravitational path integral
provides a universal construction of microstates that
account for the entropy of a very wide class of black
holes—indeed, as wide as the class for which the Gibbons-
Hawking calculus yields a gravitational entropy, possibly
including quantum corrections. Although the GPI is the
central object both in the Gibbons-Hawking approach and
in these microstate constructions, the way that the entropy
arises is, as we have emphasized, conceptually different in
each of them but the two approaches are consistent with
each other, and this was not a priori obvious; one might
have entertained the possibility that, while Gibbons and
Hawking found an entropy equal to one-quarter of the area,
the microstate construction could have conceivably
yielded, say, only one-eighth of it or any other number,
indicating that either something was missing or that the GPI
was inconsistent. And indeed an inconsistency (essentially
Hawking’s paradox) would follow had we missed the
wormholes; the dimension of the space of microstates
would then be infinite. Our main result has been to explain
and illustrate how the heavy-shell construction gives a
transparent understanding of the universal agreement
between these two uses of the GPI.
Can we go beyond the effective statistical description of

microstates of the GPI? Having access to the microscopic
GrammatrixGij is likely as hard as solving the holographic
CFT at strong coupling. The constructions of the kind we
have presented suggest that a smooth enough geometry
necessarily involves a degree of randomness in the gravi-
tational microstates. Given the chaotic nature of nonex-
tremal black holes, it may not even be sensible to seek a
more detailed identification of their microstates of a
specific kind. The basis of shell microstates we have
employed may not seem the most natural one from the
viewpoint of the underlying CFT, but in the gravity picture
it does appear natural and simple.18 As we have argued, it
remarkably fulfills the job of furnishing a complete set of
Hilbert space states with random statistics, which is
universal because it does not rely on any microscopic
theory. It is possible that, at least for the states of non-
supersymmetric black holes in four or higher dimensions,
this is as far as one can go using a bulk geometric picture.
Lower spacetime dimensions may afford a greater degree

of control. For instance, in AdS3=CFT2 the conformal and
modular symmetries of the CFT, and the isometries of
AdS3, determine that the Cardy density of states gives a
value of Dα that agrees at leading order with the
Bekenstein-Hawking entropy of the BTZ black hole.

Our methods recover this result for gravitational theories
of AdS3 with massive particles in the spectrum. Could
purely gravitational degrees of freedom suffice to account
for the entropy?.
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APPENDIX A: JUNCTION CONDITIONS

Junction conditions on a generic codimension-1 surface
W have been obtained long ago in the literature [59,60] (we
follow the conventions in [61]). Consider two solutions of
the Einstein equations (possibly in the presence of gauge
fields) which we denote Mþ and M− glued along W. We
take nμ to be a unit normal toW pointing fromM− toMþ,
with nμnμ ¼ ε. For our practical applications, the hyper-
surface W will have ε ¼ 1 (both in the Euclidean prepa-
ration of states and in their Lorentzian evolution), but we
will give the results in general. Let eμa be a basis for the
tangent space toW, h�ab ¼ g�μνe

μ
aeνb the induced metric from

each side, and K�
ab ¼ eμaeνb∇�

ν nμ the extrinsic curvature.
The gravitational junction conditions state that

½hab� ¼ 0; ½Kab� − hab½K� ¼ −8πGϵSab; ðA1Þ

where brackets denote the jump of a given quantity, e.g.,
½Kab� ¼ Kþ

ab − K−
ab; and Sab is the stress energy tensor in

W. More precisely, the full-stress energy tensor of the
spacetime contains a δ-singular piece localized inW of the
form TμνðxÞ ⊃ δWðxÞSμνðxÞ with Sμν ¼ Sabeμaeνb.
Similar junction conditions can be obtained for the

electromagnetic field starting from Maxwell’s equations.
18The fuzzball program aims at combining these two view-

points [58].

ANA CLIMENT et al. PHYS. REV. D 109, 086024 (2024)

086024-18



Decomposing Fμν in W as Fab ≡ Fμνe
μ
aeνb and

fa ≡ Fμνe
μ
anν, we get

½Fab� ¼ 0; ½fa� ¼ 4πGja; ðA2Þ

where ja is the electromagnetic current in W. This means
the full current has a component localized inW of the form
JμðxÞ ⊃ δWðxÞjμðxÞ with jμ ¼ jaeμa.
As an example, we can be more explicit than in the

main text about the construction of the Euclidean geometry
computing the grand-canonical two-point function Z1 (14).
We glue two Reissner-Nordström solutions with different
parameters ðM�; Q�Þ,

ds2� ¼ f�ðr�Þdτ2� þ f−1� ðr�Þdr2� þ r2�dΩ2
d−1; ðA3Þ

where

f�ðrÞ¼ r2þ1−
16πGM�

ðd−1ÞVΩrd−2
þ 32π2G2Q2

�
ðd−1Þðd−2ÞV2

Ωr
2d−4 ;

ðA4Þ

and the gauge potential is

A� ¼ i

�
4πGQ�

ðd − 2ÞVΩrd−2�
−Φ

�
dτ�: ðA5Þ

We glue along a spherically symmetric shell following a
curve in the τ − r plane; τ� ¼ T �ðTÞ and r� ¼ R�ðTÞ.
The shell W also covers homogeneously the Sd−1, with
spherical symmetry reducing the problem to an effective
two-dimensional one. The solutions can be glued with the
stress energy tensor of a pressureless fluid, Sab ¼ −σuaub,
and a charge current ja ¼ iσeua (the sign in Sab and the i in
ja come from Wick rotation to the Euclidean). The vector
ua ¼ ∂

a
T is tangent to curves parametrized by proper length

in the τ − r plane, from which it follows that

Ṫ � ¼ ∓ f−1� ðR�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðR�Þ − Ṙ2

�
q

: ðA6Þ

The sign is chosen by convention (it just reflects a choice
positive τ orientation, which defines positive and negative
charges). At this point, it is already possible to implement
the first junction condition in (A1), which imposes Rþ ¼
R− ≡ R from continuity of the Sd−1 metric. The radial
coordinate is continuous and we will thus suppress �
indices in it from now on. The normal to W is

nμ∂μ ¼ κ�ð�f−1� ðRÞ∂τ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðRÞ − Ṙ2

q
∂rÞ: ðA7Þ

We have included a sign factor κ which will be chosen
depending on the position of the shell gluing the two black
holes. If the shell travels through the exterior of the black

hole (so that only the horizon in M− is visible in the
Euclidean section), we pick κ− ¼ κþ ¼ þ1. To build a
trapped shell between two horizons as described in the
main text and depicted in Fig. 1 we pick κ− ¼ þ1
and κþ ¼ −1.
We now implement the other gluing conditions. ½Fab� ¼ 0

is trivially satisfied, and the remaining electromagnetic
condition imposes Qþ −Q− ¼ Rd−1VΩσeðRÞ≡ q. This is
a conservation equation, which can actually be seen to arise
from Daja ¼ 0 (this must be true whenever there is no
electromagnetic current in the bulk solutions to both sides of
W). The final gravitational constraint in (A1) has two
different pieces, one coming from the T direction and the
other from the Sd−1 angles. Together they require m≡
Rd−1VΩσðRÞ to be a constant that we identify with the mass
of the shell, and the following evolution equation for RðTÞ,

κ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f− − Ṙ2

q
− κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ − Ṙ2

q
¼ 8πGm

ðd − 1ÞVΩRd−2 : ðA8Þ

From this equation it follows an effective one-dimensional
conservation equation Ṙ2 þ VeffðRÞ ¼ 0 with

VeffðRÞ ¼ −fþðRÞ þ
�
Mþ −M−

m
−

4πGm
ðd − 1ÞVΩRd−2

−
2πGðQ2þ −Q2

−Þ
mðd − 2ÞVΩRd−2

�
2

: ðA9Þ

A solution to the effective one-dimensional problem will
not always solve (A8). In order to guarantee this, the sign of
the terms within the square roots f�ðRÞ þ VeffðRÞ must be
the correct one along the trajectory to obtain the right-hand
side. This translates into two inequalities which depend on
κ�. For the shell passing between the horizons
κþ ¼ −1 ¼ −κ−, we get

4πGm2

ðd−1ÞVΩ
þðMþ−M−ÞRd−2−

2πGðQ2þ−Q2
−Þ

ðd−2ÞVΩ
≥ 0;

4πGm2

ðd−1ÞVΩ
− ðMþ−M−ÞRd−2þ2πGðQ2þ−Q2

−Þ
ðd−2ÞVΩ

≥ 0:

ðA10Þ

These are generically complicated conditions which must
be analyzed on a case by case basis.19 We can get a flavor of
their meaning by looking at a simple situation, e.g., Qþ ¼
Q− ¼ 0 and Mþ > M−. In that case, the first condition is
trivially satisfied, while the second one imposes a minimum
shell’s mass m2 ≥ ð4πGÞ−1ðd − 1ÞVΩðMþ −M−ÞRd−2

⋆ ,
where R⋆ is the turning point of the trajectory with
VeffðR⋆Þ ¼ 0. As R increases and we approach the

19See Ref. [62] for an analysis of some cases in dþ 1 ¼ 4
Lorentzian signature.
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boundary, the second condition will be violated, but then
we can continue the trajectory bending it over itself by
choosing κþ ¼ −1. In the case of gluing the shell in the
exterior, κþ ¼ κ− ¼ þ1, we revert the second inequality
above, getting a maximummass. None of the inequalities is
relevant in the Z2-symmetric configurations studied in the
main text, since Qþ ¼ Q− and Mþ ¼ M− but the previous
discussion shows that we can glue such solutions along a
shell with an arbitrarily large massm, provided it is trapped
between two horizons.

APPENDIX B: HEAVY-SHELL LIMIT
AND FREE PROBABILITY

The previous shell operators (15) and states (12) were
naturally labeled by the number of operator insertions. This
number is dual to the proper mass in the bulk. Since there is
no upper bound in the possible number of insertions, it is
natural to inquire about the nature of the heavy-shell limit.
This is also important given the technical leverage that this
limit has given for simplifying calculations and in particular
for deriving the key result (68) that universally character-
izes the moments of the Gram matrix of overlaps.
It turns out that these results are consistent (indeed

equivalent) with a simple interpretation. Consider two shell
operators Om1 and Om2 with masses m1 and m2. Their
effective microscopic description follows from a general-
ized version [63] of the eigenstate thermalization hypoth-
esis [64,65], where each operator has its own distribution
for its entries in the energy basis. Equivalently, when
written in the energy basis, the operators are random
matrices with particular distributions. When both masses
m1 andm2 are large, and when the difference between them
jm1 −m2j is also large, the gravitational description of the
shell dynamics implies these shells cannot interact with
each other, since the amplitude of interaction decays with
the mass difference.20 Therefore, the gravitational descrip-
tion of the shell in the heavy-shell limit readily implies that
the erratic matrices become independent Gaussian random
matrices. It is a simple exercise to verify that from this
Gaussian nature (whose variance follows from the norm of
the states) one can derive the universal result for the Gram
matrix (68).21

In turn, this Gaussian nature implies that the shell
operators with large masses and large mass differences

are “free” relative to each other, in the sense of free
probability. The field of free probability extends the notion
of statistical independence for classical variables to the case
of noncommutative random variables [66]. Intuitively, two
noncommutative random variables X and Y are statistically
independent fromeach other ifwe can compute themoments
of X þ Y and those of XY from the moments of X and Y
separately. More precisely, one says that a set of non-
commutative random variables X1; X2;…; Xs are asymp-
totically free relative to each otherwhen the following holds.
Define the “centered alternating” random variables,

C≡ ðXm1

i1
− hXm1

i1
iÞðXm2

i2
− hXm2

i2
iÞ…ðXmr

ir
− hXmr

ir
iÞ; ðB1Þ

where ½i1;…; ir�∈ ½1;…; s�, ij ≠ ijþ1, and m1;…; mr are
positive integers. Then the variables are free if the expect-
ation values of all possible C’s are zero in the large matrix
size limit. In Ref. [66] it is shown how two independent
Gaussian random matrices satisfy the previous condition,
and are thus mutually free. The crucial input is that for a
single Gaussian random matrix of size N, the expectation
values can be written as

hTrðX2k
N Þi ¼

X
π ∈P2ð2kÞ

N−2gπ ; ðB2Þ

where P2ð2kÞ is the set of pairings of 2k elements and gπ is
the genus of the surface where the pairing π can be
embedded without crossings. It is remarkable that this
follows readily for shells of large masses from the gravita-
tional description, directly classifying possible wormhole
geometries in such limit.
Naturally, the leading contribution in (B2) comes from

the set of noncrossing pairings NC2ð2kÞ, whose elements π
have gπ ¼ 0. Therefore, the previous expectation value is
the number of noncrossing pairings of 2k elements, which
is equal to the kth Catalan number, namely

hTrðX2k
N Þi → jNC2ð2kÞj ¼ CðkÞ ¼ 1

kþ 1

�
2k

k

�
: ðB3Þ

This way one arrives at the Wigner semicircle law,
appropriate for a Gaussian random matrix, since the
Catalan numbers are the moments of this distribution.
With this input, a further combinatorial computation allows
to prove that two independent Gaussian random matrices
are asymptotically free [66].
It is thus an important problem to show that the dust-shell

operators become actually free, relative to each other, in the
large mass limit and from a purely microscopic perspective.
This would be a microscopic verification of the effective
gravitational description. This is a powerful tool because it
allows to provide, from a simple combinatorial perspective,
a classification of leading contributions to n-boundary
saddles, and also of their corrections. More precisely,

20Showing this in detail is a purely QFT problem, which will
be considered elsewhere. Heuristically, the density of states of a
QFT in infinite volume is infinite, and the inner product between
states with ever increasing mass difference (therefore with ever
increasing distance in phase space) will decay to zero. Equiv-
alently, even if the QFT has interactions allowing for such
transition, as we increase the mass difference more and more
particles need to be created or destroyed, decreasing the prob-
ability.

21As an example application we consider the N ¼ 2 Schwar-
zian theory in the next Appendix C.
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whenever we have a set of boundary conditions associated
with different operator insertions, the average value will be
expanded in a topological expansion similar to (B3), where
the leading contribution will come from the set of non-
crossing pairings and the subleading corrections will
organize themselves in a topological expansion controlled
by the nature of the remaining pairings.

APPENDIX C: OVERLAPS FROM N = 2
SCHWARZIAN THEORY

In this appendix we analyze the case of the N ¼ 2
Schwarzian theory. The partition function and disc correla-
tion functions of theN ¼ 2 super JT gravity were computed
in [11]. These describe statistical aspects of 1=16 BPS black
holes in AdS5 × S5. More precisely, considering a sector of
R-charge j, the partition function was found to be

Zj ≡ hΨj
0jΨj

0i ¼ eS0 cos πj; ðC1Þ

where jΨj
0i is the unnormalized vacuum state in the fixed

charge sector that is produced via the usual path integral
methods. The two point function of an operator of dimension
Δ was found to be

Trjðe−βHOΔe−βHOΔÞ⟶
β→∞

Zj cosðπjÞfðΔÞ; ðC2Þ

where we have defined the function

fðΔÞ ¼ ΔΓðΔÞ2ΓðΔþ 1
2
� jÞ

2πΓð2ΔÞ : ðC3Þ

The two point function can be understood as the norm of
unnormalized microstates jΨj

Δi, created from the vacuum by
the application of an operator OΔ of dimension Δ in the
Euclidean section of the theory.
This construction is analogous to the PEGS discussed in

Sec. III B, Eqs. (13) and (14). Indeed, it can be seen as a
particular case of our universal construction by thinking of
the operatorsOΔ as a dust-shell operator, when constructed
in the higher-dimensional theory. We just need to translate
the scaling dimension to the proper mass of the shell in the
usual way [32].
We now follow our strategy to count states. We take

a discrete set of states with different Δi ¼ iΔ, with
i ¼ 1;…;Ω. In the limit of large Δ, the dust-shell operators
become relative free, and therefore behave as Gaussian
randommatrices. From the two point function of the operator
we obtain thevariance of theGaussian randommatrix,which
is cosðπjÞZj

fðΔÞ. Therefore, in the limit of large dimensions and

large dimension differences with respect to each other, we
can compute the n-th moment of the inner product to be

hΨj
Δ1
jΨj

Δ2
i…hΨj

Δn
jΨj

Δ1
i¼eð2−nÞS0cos2ðπjÞ

Y
i

fðΔiÞ: ðC4Þ

Formally setting all scaling dimensions to be equal, this
formula recovers the results of [15] concerning then-boundary
wormhole.
This perspective adds two aspects. The first one is that we

do not need to assume the existence of a large number of
operators at a certain scaling dimension Δ. Assuming this is
equivalent to thewest coastmodel [9], where one assumes an
infinite set of flavors that effectively describe a large global
symmetry in the semiclassical theory, leading in particular to
hΨΔi

jΨΔj
i ¼ δij. The difficulty then arises in translating

these flavors at a fixed scaling dimension Δ into actual
degrees of freedom in top-downmodels. This would require,
for instance, assuming that themicrocanonical degeneracy of
the holographic CFT close to a givenΔ is as large as wanted,
to accommodate so many flavors. This is presumably not the
case, given that the CFT has finite entropy, which is actually
the original problem. This conundrum is evaded when one
chooses states created by operators with different scaling
dimensions, leading to (C4). The operators in question can be
further chosen to be dust-shell operators, so changing the
scaling dimension is just accomplished by changing the
number of operator insertions of a certain seed light con-
formal primary. Therefore, in our construction, we only need
to assume the presence of a low-energy field, which can be
typically identified in several ways in top-down models.
The second aspect is that, from the present perspective, it

seems clear that the gravitational computation described in
[15] implicitly assumes the gaussianity of the inserted oper-
ators. This assumption is generically unjustified. In typical
top-down scenarios, operator insertions will have nontrivial
interactions between them.Again, this is physically accounted
for by choosing dust-shell operators and taking the number of
operator insertions to be large, so that the non-Gaussianities
become subleading. Although there might be other ways to
achieve Gaussianity (or relative asymptotic freedom), the
heavy-shell limit discussed is particularly convenient.
With the statistics (C4) of the inner products, we can

compute the Hilbert space dimension in the usual manner.
Normalizing the states we obtain,

hΨj
Δ1
jΨj

Δ2
i…hΨj

Δn
jΨj

Δ1
iQ

i hΨj
Δi
jΨj

Δi
i

¼ �
eS0 cosðπjÞ�2ð1−nÞ: ðC5Þ

Inserting this in the resolvent equation (6)22 we conclude
that the Hilbert space dimension spanned by this precise set
of Ω microstates is

22The dependence on the different scaling dimensions dis-
appears in the resolvent equation because of the cancellations
between numerator and denominator in the previous equation.
This follows from the factorization of the nth point functions as
two point functions. It goes in line with the general perspective in
the present article, supporting the universality of the construction.
Notice that the resolvent equation analyzed in [15] depended on
Δ just because the states considered were unnormalized. Normal-
izing the states before computing the Hilbert space dimension
gives rise to the usual resolvent equation.
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dimðspanfFΩgÞ ¼ minfΩ; Zjg; ðC6Þ

which provides a derivation of the entropy of these black holes.
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