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We construct a holographic dual theory of one-dimensional anisotropic Heisenberg spin chain, which
includes two Chern-Simons gauge fields and a charged scalar field. Thermodynamic quantities of the spin
chain at low temperatures, which are exactly calculated from the integrability, are completely reproduced by
the dual theory on three-dimensional black hole backgrounds and the exact matching of the parameters
between the dual theory and the spin chain is obtained. The holographic dual theory provides a new
theoretical framework to analyze the quantum spin chain and one-dimensional quantum many-body systems.
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I. INTRODUCTION

The quantum spin chain has been serving a role as an
important touchstone for the study on dynamics of quantum
many-body systems, such as quantum entanglement [1]
and quantum phase transition [2]. In the analysis of the
quantumspin chain, several theoretical frameworkshavebeen
developed: the Bethe ansatz, bosonization, and (conformal)
field theory techniques [3–5]. Thanks to these techniques,
the quantum spin chain has been established as a quantum
integrable model, and allowed to have some exact results
from the analytical calculations.
Recently, for the nonperturbative analysis of quantum

many-body systems, yet another framework has been
emerged: the holographic duality [6,7]. The holographic
duality, which is also known as the anti–de Sitter/conformal
field theory (AdS/CFT) correspondence [8], is a correspon-
dence between quantum many-body systems (or quantum
field theories) in d-dimensional space and gravitational
theories in (dþ 2)-dimensional curved spacetime. So far,
the holographic duality has been applied to various con-
densed matter systems, such as superconductors [9–11] and
magnetic materials [12–17]. Although those analyses based
on the holographic duality qualitatively reproduce the critical
behavior of temperature and external field dependences, few
examples can successfully reproduce the physical quantities
at the quantitative level in the applications to condensed
matters. The quantum spin chain has the exact results based
on various integrable techniques, and thus we can compare

the physical quantities calculated from the holographic dual
theory with such exact results quantitatively including
numerical factors.1

In this paper, we construct the holographic dual theory
of one-dimensional antiferromagnetic Heisenberg spin
chain (S ¼ 1=2) with anisotropy, which is three-dimensional
Abelian Chern-Simons gauge theory coupled with a charged
scalar field, and show that the dual theory on three-
dimensional black holes can analytically and quantitatively
reproduce the physical quantities of the spin chain in the
low-energy regions. In the course of this study, the matching
between the parameters in the both theories are determined
including numerical factors. From the three-dimensional
perspectives, the dual gauge theory can lead to a new
theoretical framework to analyze the quantum spin chain
and also one-dimensional quantum many-body systems.

II. SPIN CHAIN AT LOW TEMPERATURES
AS CHERN-SIMONS THEORY

The antiferromagnetic quantum spin chain (S ¼ 1=2)
with the anisotropy along the Sz direction (XXZ spin chain)
is defined by the Hamiltonian

H ¼ J
XN
i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1 þ δSzi S

z
iþ1Þ; ð1Þ

where J > 0 is the exchange coupling constant, and δ ¼
− cosðπβ2Þ with 0 ≤ β2 ≤ 1 is the anisotropy parameter.
Using the Jordan-Wigner transformation and the bosoniza-
tion technique, the dynamics of the XXZ spin chain can be
described by the Gaussian model of a compactified boson
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1Integrability has been also discussed in the AdS/CFT corre-
spondence from the string theory perspectives. See Ref. [18] for a
review and references therein.
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Φ with the radius RðβÞ ¼ β=
ffiffiffiffiffiffi
2π

p
, which is a (1þ 1)-

dimensional conformal field theory (CFT) with the central
charge c ¼ 1, in the continuum limit at low temperatures
[4,5]. The Gaussian model possesses the chiral Uð1ÞL ×

Uð1ÞR symmetry whose currents are given by JðLÞz ∝ ∂zΦ
and JðRÞz̄ ∝ ∂z̄Φ respectively. The both chiral currents suffer
from the chiral anomaly, andonly thevectorlike combination
of the currents satisfies the conservation law, which corre-
sponds to the total spin conservation, Sz ¼ P

N
i¼1 S

z
i . From

the calculation based on the CFT technique and the Bethe
ansatz method, the susceptibility for the spin density
(sz ¼ Sz=N) in the low temperature limit (T → 0) has been
exactly obtained to be

χ0 ¼
∂hszi
∂H

¼ 1

2πβ2vs
; ð2Þ

whereH is the externalmagnetic field andvs is the spin-wave
velocity [19]. In the following discussion, we take the unit of
vs ¼ 1 for simplicity.
The holographic dual theory of the XXZ quantum spin

chain in the low temperature limit is given by the Uð1ÞL ×
Uð1ÞR Chern-Simons (CS) gauge theory on a three-
dimensional manifold M,2 whose action is given by

SCS½A;B� ¼ −
k
4π

Z
M
d3xϵμνρðAμ∂νAρ − Bμ∂νBρÞ: ð3Þ

Here, Aμ and Bμ are the gauge fields of Uð1ÞL and Uð1ÞR
respectively, k is a positive constant, and ϵμνρ is the
(normalized) third-rank totally antisymmetric tensor.
Note that this action does not depend on the metric of
three-dimensional base space, and thus the CS theory is
topologically invariant.
The holographic duality assumes the negatively curved

spacetime with the (conformal) boundary, so-called asymp-
totically anti–de Sitter (AdS) spacetime, as the background
geometry. Here, for concreteness, we consider the base
space as the Euclidean three-dimensional AdS spacetime
(AdS3), whose metric is given by the Poincaré metric :

ds2 ¼ l2

y2
ðdy2 þ dzdz̄Þ; ð4Þ

where z ¼ xþ it and z̄ ¼ x − it, and we take ϵyzz̄ ¼ 1.
Note that the background geometries are given by the
solutions of Einstein equation with a negative cosmological
constant, Λ ¼ −1=l2, and we consider the probe approxi-
mation ignoring further dynamics of gravity in the follow-
ing discussion.
The CS action (3) is gauge invariant, and we take Ay ¼

By ¼ 0 as the gauge fixing condition. Using this gauge

fixing and the parametrization (4), the bulk equations of
motion are given by the flatness conditions:

∂yAz ¼ ∂yBz ¼ 0; FðAÞ
zz̄ ¼ FðBÞ

zz̄ ¼ 0; ð5Þ
with FðAÞ ¼ dA and FðBÞ ¼ dB. Here, in order to cancel the
boundary terms, we include the boundary action as a
counterterm, following Ref. [23]:

Sbd ¼ −
k
4π

Z
y¼0

d2zðAzAz̄ þ Bz̄Bz − 2Az̄BzÞ: ð6Þ

with the Dirichlet boundary condition, δAz̄ ¼ δBz ¼ 0 at
y ¼ 0. In the context of the holographic duality, the
boundary action and the boundary condition imply that
Az̄ and Bz correspond to the external sources for the chiral

current operators JðLÞz (dual to Az) and JðRÞz̄ (dual to Bz̄) in
the boundary CFT.
In the holographic duality, the Gubser-Klebanov-

Polyakov-Witten (GKPW) relation [24,25] claims the
equivalence of the partition functions of the quantum
many-body system and the holographic dual theory:
Zqms ¼ Zhol ≃ e−Shol , where the last relation is the semi-
classical approximation in the dual theory. From this
relation, we can obtain the expectation values of the current
operators in the boundary CFT:

hJðLÞz iAz̄
¼ −

δðSCS þ SbdÞ
δAz̄

¼ k
2π

½Az − Bz�y¼0;

hJðRÞz̄ iBz
¼ −

δðSCS þ SbdÞ
δBz

¼ k
2π

½Bz̄ − Az̄�y¼0: ð7Þ

where the equations of motion (5) have been used for the
on-shell evaluation. From the conformal invariance, the left-

current JðLÞz should be a holomorphic function and the right-

current JðRÞz̄ should be an antiholomorphic function and thus

these should satisfy the conditions, ∂z̄J
ðLÞ
z ¼ 0 and ∂zJ

ðRÞ
z̄ ¼

0 on the boundary. However, the holographic expectation
values (7) implies

∂z̄hJðLÞz i ¼ k
2π

ð∂zAz̄ − ∂z̄BzÞ;

∂zhJðRÞz̄ i ¼ k
2π

ð∂z̄Bz − ∂zAz̄Þ; ð8Þ

where the flatness conditions of the gauge fields have been
used. This relation corresponds to the chiral anomaly in the
boundary CFT (the Gaussian model), which spoils the
Uð1ÞL ×Uð1ÞR invariance under the nontrivial background
gauge fields, Az̄ and Bz [20–22]. However, it is important
that we have the conserved vectorlike Noether current,

J ¼ JðLÞz dzþ JðRÞz̄ dz̄, on the boundary3:

2This type of the CS gauge theory has been also discussed in
the AdS3=CFT2 correspondence with the string theory construc-
tions [20–22].

3Our convention for the two-dimensional current is
Jz ¼ 1

2
ðJx − iJtÞ, Jz̄ ¼ 1

2
ðJx þ iJtÞ.
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dh�Ji ¼ ∂z̄hJðLÞz i þ ∂zhJðRÞz̄ i ¼ 0: ð9Þ

This is consistent with the total spin conservation in the XXZ
spin chain. Note that the conservation is attributed to the last
term in the boundary action (6), which vanishes under the
variation with the boundary condition [23].
The conserved charge density, which corresponds to the

spin density sz, is given by ðJðLÞz − JðRÞz̄ Þ=2 ∝ Jt=2 and,
accordingly, the conjugate external source for the spin
density corresponds to the combination of gauge fields,
H ¼ Az̄ − Bz. For the regularity of general bulk geometries,
we assume the vanishing temporal components of gauge
fields (At ¼ Bt ¼ 0) and only consider the nonvanishing
spatial components of gauge fields [20,21].4 Then, the
external source for the spin density, i.e., the external
magnetic field, can be identified as H ¼ 1

2
ðAx − BxÞ.

With this identification, the spin density can be expressed

as hszi ¼ 1
2
ðhJðLÞz i − hJðRÞz̄ iÞ ¼ k

2πH, and the spin suscep-
tibility in the low temperature limit is given by

χ0 ¼
∂hszi
∂H

¼ k
2π

; ð10Þ

and the susceptibility implies that the free energy density of
the XXZ spin chain is

Fð0Þ
XXZ

l
¼ k

4π
H2: ð11Þ

Comparing the holographic result with the exact one (2),
we have the parameter matching between the dual CS
gauge theory and the quantum spin chain:

k ¼ 1

β2
: ð12Þ

A. Specific heat from Chern-Simons theory
on BTZ black holes

Next, we calculate another thermodynamic quantity, the
specific heat in the low temperature limitwithout the external
field. In the holographic duality, finite-temperature effects of
quantummany-bodysystemscanbe includedby introducing
the black hole background in the holographic dual theory.
In the three-dimensional gravity with a negative cosmo-
logical constant, there exist the black hole solutions, so-
called Banados-Teitelboim-Zanelli (BTZ) black holes [26],
which have the asymptotically AdS geometry at r ∼∞. In
what follows, for simplicity, we consider the nonrotating
(Euclidean) BTZ black holes, whose metric is given by

ds2 ¼
�
r2 − r2þ

l2

�
dt2 þ

�
l2

r2 − r2þ

�
dr2 þ r2dθ2: ð13Þ

Here, rþ is the radius of the horizon given by rþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GNM

p
l,whereGN is three-dimensionalNewtonconstant,

and M is mass of the black holes. Note that the BTZ black
holes have locally same geometry as AdS3 and the metric
(13) can be transformed to the AdS3 metric (4) by the
coordinate transformations,

y ¼
�
rþ
r

�
e
rþ
l θ; z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
e
rþ
l ðθþi tlÞ: ð14Þ

The Hawking temperature of the BTZ black hole is given by
TBH ¼ ð 1

2πlÞðrþl Þ,which is identified as the temperature of the
quantummany-body system. For convenience,we introduce
another coordinate, u ¼ l2

r (and uþ ¼ l2
rþ
), which leads to

ds2 ¼ l2

�
fðuÞdt2 þ fðuÞ−1dy2 þ l2dθ2

u2

�
ð15Þ

with fðuÞ ¼ 1 − u2

u2þ
.

In the CS gauge theory (3) with the boundary term (6),
the classical on-shell action vanishes without the external
field (Ax ¼ Bx ¼ 0) and the classical partition function is
trivial. In the literature [27–29], the quantum one-loop (and
exact) partition function on the BTZ black hole (13) is
obtained by the explicit path-integral calculation of the CS
gauge theory:

ZCSðτÞ ¼
1

jηðτÞj2 ¼ jqj−1=12
Y∞
n¼1

1

jð1 − qnÞj2 ; ð16Þ

where q ¼ e2πiτ and ηðτÞ is the Dedekind’s η-function. τ is
themoduli parameter of the boundary torus at r → ∞, which
is given by τ ¼ ilTBH for the BTZ black holes [30–32]. At
low (but finite) temperatures, the partition function can be
well approximated by ZCS ≃ exp ðπlTBH=6Þ for TBH ≳
1=l, and thus the free energy density is given by5

FCS

l
¼ −

TBH

l
logZCS ≃ −

π

6
T2
BH: ð17Þ

Using the GKPW relation, the free energy FCS can be
identified with that of the spin chain and we obtain the
specific heat cv ≃ π

3
TBH, which is consistent with the exact

result based on the finite-size scalingmethod in CFTand the
Bethe ansatz method [33,34]. In the following discussion,
we set the curvature radius of AdS3 to be unity, l ¼ 1,
for simplicity.4As discussed below, the backgrounds of AdS3 and BTZ black

holes correspond to the boundary CFT at zero and finite temper-
ature, respectively. The bulk gauge fields need to be consistent in
the both backgrounds so that the thermal effects can be con-
tinuously incorporated in the boundary CFT.

5TBH ≳ 1=l indicates rþ ≳ 2πl, which guarantees that the
BTZ black holes are large black holes in AdS3 and stable with
respect to the Hawking-Page phase transition.
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III. FINITE TEMPERATURE CORRECTION
FROM BULK SCALAR FIELD

We have seen, so far, the conformally invariant effective
description of the XXZ spin chain in the low temperature
limit. Here, we consider an irrelevant scalar perturbation
of the CFT of the XXZ spin chain within the holographic
dual theory. In this paper, we consider the scalar perturba-
tion of the sine-Gordon (SG) type,

SSG ¼ 1

2

Z
d2xðλðxÞOðxÞþH:c:Þ ¼ λ

Z
d2xcosðΦðxÞ=βÞ;

ð18Þ
where a real constant external source (i.e., coupling
constant) λ is assumed, and ΦðxÞ is the compactified boson
in the CFT description of the spin chain [35]. The operator
OðxÞ ¼ eiΦðxÞ=β has the scaling dimension d ¼ 2=β2 and
the charge ðqL; qRÞ ¼ ð1=β;−1=βÞ under the Uð1ÞL ×
Uð1ÞR chiral symmetry. The correlation function is nor-
malized to be hOðxÞO†ðyÞi ¼ hO†ðxÞOðyÞi ¼ 1=jx − yj2d.
The SG perturbation actually originates from the term
proportional to anisotropy (∼Szi S

z
iþ1) in the spin-chain

Hamiltonian (1).
In the context of the holographic duality, the irrelevant

scalar perturbations can be described by introducing
massive bulk scalar fields in the dual theory. Thus, we
introduce a complex scalar field with the massm in the dual
theory, whose action is given by

Ssc ¼
Z

d3x
ffiffiffi
g

p ½gμνðDμϕ
�ÞðDνϕÞ þm2ϕ�ϕ�; ð19Þ

where the complex scalar has the charge þq for Aμ and −q
for Bμ respectively, and the gauge covariant derivative is
defined as Dμϕ ¼ ∂μϕ − iqðAμ − BμÞϕ. The resulting
equation of motion of ϕ from the action (19) becomes

1ffiffiffi
g

p Dμð
ffiffiffi
g

p
gμνDνϕÞ −m2ϕ ¼ 0: ð20Þ

In the holographic dictionary, the bulk scalar field with
the mass m corresponds to the scalar operator in the
boundary CFT with the scaling dimension, d ¼ dimO ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
. The solutions to the equation of motion have

the asymptotic expansion near the boundary (u ∼ 0):

ϕsol ≃ ϕ0ðxÞu1−d þ ψ0ðxÞud þ � � � ; ð21Þ

where x ¼ ðt; θÞ is boundary coordinates and the dots
represent the higher order terms. By means of the GKPW
relation, the coefficient ϕ0 gives the external source with
the renormalization factor, λ=ðd − 1Þ, and ψ0 gives the
expectation value, hOðxÞi, under the perturbation (18)
[36,37]. Along with the bulk scalar field, we consider finite-
temperature corrections to the free energy of the XXZ spin

chain from the scalar perturbation (18) in the holographic
dual theory.
In the perturbed case, the GKPW relation leads to the

correspondence between the on-shell classical action Shol of
the CS theory with the scalar field and the free energy FXXZ
of the XXZ spin chain:

Zhol½A; B;ϕ� ¼ ZqmsðT;HÞ
⇒ Shol½Asol; Bsol;ϕsol� ≃ FqmsðT;HÞ=T: ð22Þ

Here, the on-shell action is evaluated based upon the
solutions of (classical) equations of motion of the bulk
fields. In order to obtain the free energy of the XXZ spin
chain including finite temperature corrections, we should
have the solution to the equation of motion of the complex
scalar field on the BTZ black hole (15).
We assume the product form of the solution, ϕðu; xÞ ¼

ϕðuÞϕ0ðxÞ, and further restrict ϕ0 to a real constant which
corresponds to the coupling constant λ of the SG pertur-
bation.6 Using the correspondence between the external
magnetic field and the CS gauge fields, H ¼ 1

2
ðAθ − BθÞ,

the radial equation of motion of the scalar field ϕðuÞ is
explicitly given by

u2fðuÞ∂2uϕ−u

�
1þ u2

u2þ

�
∂uϕ− ð4h2u2þm2Þϕ¼ 0; ð23Þ

where h ¼ qH with the charge q of the scalar field and the
uniform magnetic field (H ¼ const) has been assumed for
simplicity.
The change of variable, ζ ¼ 1 − u2

u2þ
, and the ansatz for the

solution, ϕðζÞ ¼ ð1 − ζÞαφðζÞ, lead to the Gauss’ hyper-
geometric differential equation [38]:

ζð1− ζÞd
2φðζÞ
dζ2

þ ½c− ð1þ aþ bÞζ�dφðζÞ
dζ

− abφðζÞ ¼ 0;

ð24Þ
where a ¼ αþ ih̃, b ¼ α − ih̃, and c ¼ 1 with h̃ ¼ huþ.
The parameter α is determined by the mass parameter

of the scalar field: α ¼ Δ� ¼ 1�
ffiffiffiffiffiffiffiffiffi
1þm2

p
2

. We thus obtain
the solution using the Gauss’ hypergeometric function
Fða; b; c; ζÞ [39]:

ϕsolðζÞ ¼ Cð1 − ζÞΔFðΔþ ih̃;Δ − ih̃; 1; ζÞ ð25Þ

where C is a normalization constant and we choose α ¼
Δ− ≡ Δ without loss of generality.7 Actually, we have

6We also assume a sufficiently small value of ϕ0 which
guarantees the probe approximation ignoring the gravitational
backreaction.

7Using the identityof theGauss’hypergeometric function,wecan
show ð1 − ζÞΔþFðΔþ þ ih̃;Δþ − ih̃; 1; ζÞ ¼ ð1 − ζÞΔ−FðΔ− þ
ih̃;Δ− − ih̃; 1; ζÞ using the relation Δþ ¼ 1 − Δ−.
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another linearly independent solution which is logarithmi-
cally divergent at the horizon (ζ ¼ 0), and thus we discard
this solution for the regularity inside the bulk. We should
notice that, for Δ < 0 (or m2 > 0), this solution diverges at
u ¼ 0 and the position of the boundary should be slightly
shifted to u ¼ ε for well-defined calculations, where ε is a
cutoff parameter (0 < ε ≪ 1). Following the holographic
scheme [36,37], we take the radial solution normalized at
the shifted boundary at u ¼ ε,

ϕsolðuÞ ¼
�
u2

ε2

�Δ FðΔþ ih̃;Δ − ih̃; 1; 1 − u2=u2þÞ
FðΔþ ih̃;Δ − ih̃; 1; 1 − ε2=u2þÞ

; ð26Þ

and fix the normalization constant,

C ≃
�
u2þ
ε2

�Δ�Γð1 − Δ − ih̃ÞΓð1 − Δþ ih̃Þ
Γð1 − 2ΔÞ

�
; ð27Þ

where we used the asymptotic form of the hypergeometric
function near ζ ¼ 1.
In order to obtain the on-shell action, Shol ½ϕsol�, the

partial integration is performed in the kinetic term in the
scalar action (19):

Ssc ¼ −
Z

d3x
ffiffiffi
g

p
ϕ�

�
1ffiffiffi
g

p Dμð
ffiffiffi
g

p
gμνDνϕÞ −m2ϕ

�

þ
Z
u¼ε

d2x½ ffiffiffi
g

p
guuϕ�

∂uϕ�: ð28Þ

The bulk term vanishes upon the solution of the scalar
equation of motion (20), and thus we only need to evaluate
the boundary term at u ¼ ε.8 Using the analytic continu-
ation formula for the hypergeometric function [39], we
have the asymptotic expansion of ϕsolðuÞ near u ¼ 0:

ϕsolðuÞ ≃ γ

��
u2Δ

u2Δþ

�
þ
�
Δ2 þ h̃2

2Δ

��
u2Δþ2

u2Δþ2
þ

��

þ ξ

��
u2−2Δ

u2−2Δþ

�
þ
�ð1 − ΔÞ2 þ h̃2

2ð1 − ΔÞ
��

u4−2Δ

u4−2Δþ

��
:

ð29Þ
with the coefficients γ ¼ C Γð1−2ΔÞ

Γð1−Δ−ih̃ÞΓð1−Δþih̃Þ and ξ ¼
C Γð2Δ−1Þ

ΓðΔþih̃ÞΓðΔ−ih̃Þ. From this asymptotic expansion, the lead-

ing terms in the boundary term of the on-shell action near
the boundary is given by

Ssc ≃ ϕ2
0

Z
d2x

�
2γ2Δ

�
ε−2þ4Δ

u4Δþ

�
þ γ2

�
2ðΔ2 þ h̃2Þ þ h̃2 − Δ2

Δ

��
ε4Δ

u2þ4Δ
þ

�
þ
�
2γξ

u2þ

��
: ð30Þ

Note that the boundary action has the divergent terms in the limit of ε → 0, and thus we should subtract such terms using
the holographic renormalization method [40,41]. Following the recipe of holographic renormalization, we add the local
counter term at the boundary (u ¼ ε) which cancels the divergent terms,

Sct ¼ −
�
2Δþ

�
h̃2

Δ

��
ε2

u2þ

��Z
u¼ε

d2x
ffiffiffi
h

p
jϕðε; xÞj2; ð31Þ

and obtain the renormalized on-shell action of the bulk scalar field:

Sren ¼ Ssc þ Sct ¼
�
2ϕ2

0γξð1 − 2ΔÞ
u2þ

�
þOðε2þ4ΔÞ: ð32Þ

where we have assumed −1=2 < Δ < 0. Using the scaling dimension d ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
¼ 2ð1 − ΔÞ, we obtain the free

energy of the XXZ spin chain from Sren ¼ Fxxz=T:

Fxxz ¼ 4ϕ2
0ðd − 1Þ2ε2d−4ð2πTBHÞ2d−2 sin πd

�
Γðd

2
− ih̃ÞΓðd

2
þ ih̃Þ

Γð1 − d
2
þ ih̃ÞΓð1 − d

2
− ih̃Þ

�
Γð1 − dÞ2; ð33Þ

where the explicit forms of constants, γ, ξ, and C, have been recovered and the expression of the Hawking temperature,
uþ ¼ 1

2πTBH
, has been used. Under the parameter matching between the holographic dual theory and the XXZ spin chain

(with the lattice spacing a) summarized in Table I, the resulting free energy (33), together with the CS results (11) and (17),
completely reproduces the free energy of the XXZ spin chain (with 2

3
< β2 < 1), which is calculated by the field theory and

integrability techniques [35], including the numerical factors.9 Here, the leading term in the cutoff expansion is compared to

8Other two coordinates (t, θ) are periodic and have no boundary.
9Note that the definition of external magnetic field is different between ours and the Ref. [35] by the factor of 2.
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the spin chain, but using this parameter matching, it is also
possible to calculate and compare the subleading terms
perturbatively in the holographic renormalization [40,41].
It should be noticed that, in the massless limit of the bulk

scalar field, which corresponds to the isotropic limit (δ ¼ 1)
of the spin chain, the scalar solution (25) has the logarith-
mically divergent terms in the asymptotic expansion at
u ∼ 0, whose coefficients involve the digamma function,
and the logarithmic corrections to thermodynamic quan-
tities of the isotropic spin chain [19,35] can be reproduced.

IV. DISCUSSION

We have constructed the holographic dual theory of the
XXZ quantum spin chain based on the CS gauge theory
with a charged scalar field,10 and calculated the thermo-
dynamic quantities using the holographic techniques,
which are completely consistent with the exact results of
the spin chain. The surprising exact matching for the

holographic dual of the free boson field theory11 with c¼1
can be partly attributed to the CS/CFT duality in the
three-dimensional CS gauge theory [22,46–48]. This is,
to our best knowledge, the first example which has the
precise matching of the physical quantities (including the
numerical factors) between the holographic dual theory and
the quantum many-body system in condensed matters, and
this precise duality can lead to not only new insights from
higher dimensional perspectives but also new analytical
methods in quantum many-body systems. The nontrivial
matching between the bulk scalar action and the free energy
of the spin chain can give a physical background to the
ODE/IM correspondence [49], which is the correspondence
between ordinary differential equations and quantum inte-
grable models, based on the black holes through the
holographic duality. Furthermore the holographic dual
theory can have the applications to the dynamics of one-
dimensional quantum many-body systems in real materials,
such as various transports in Tomonaga-Luttinger liquids
[5], quantum spin chain [50], and spacetime-emergent
materials [51].
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