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We study the perturbative stability of Euclidean axion-dilaton wormholes that asymptotically approach
flat space, both with a massless and a massive dilaton, and focus on homogeneous perturbations. We find
massless wormholes to always be perturbatively stable. The phenomenologically more relevant case of a
massive dilaton presents us with a wide variety of wormhole solutions, depending on the dilaton coupling
and mass, and on the axion charge. We find that the solutions with the smallest dilaton potential are
perturbatively stable and dominant, even in cases where the wormhole solutions are not continuously
connected to the massless case by decreasing the mass. For branches of solutions emanating from a
bifurcation point, one side of the branch always contains a negative mode in its spectrum, rendering such
solutions unstable. The existence of classes of perturbatively stable wormhole solutions with massive
dilaton sharpens the puzzles associated with Euclidean wormholes.
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I. INTRODUCTION

Axion-dilaton wormholes [1–3] are finite action
Euclidean solutions to the coupled axion-dilaton-gravity
theory in four dimensions, which are expected to contribute
significantly to the Euclidean path integral if they are
stable.
These solutions can mediate topology change in four

dimensions, leading to a variety of puzzles. More specifi-
cally, Euclidean wormholes lead to the apparent loss of
unitarity [4–7], which can be resolved by the introduction
of so-called Coleman α-parameters [8]. These are space-
time independent quantities arising as coupling constants
for the various operators in the Lagrangian. Effectively, one
is trading nonunitarity for the lack of knowledge of these
coupling constants, leading to a multiverse type of picture.
However α-parameters stand in contradiction with quantum
gravity conjectures such as the “no global symmetry”
conjecture [9,10], and they are indeed absent from specific
string theory settings [11–13]. In parallel, Euclidean worm-
holes are in sharp tension with the holographic principle

since they can connect two distinct asymptotic boundaries
and break the factorization of the partition function, which
would be expected from the holographic viewpoint. All
these problems1 call for a better understanding of wormhole
solutions and, in particular, of their stability, as the
existence of negative modes would discard their contribu-
tion to the path integral and offer an easy escape.
In their original research [1] Giddings and Strominger

(GS) found two types of solutions: wormholes in axion
gravity and “stringy” wormholes in axion gravity with a
massless dilaton field added. In particular, it was found that
the latter solutions only exist if the dilatonic coupling eβϕ

contains a coupling constant β smaller than some critical

value βc, 0 ≤ β < βc ≡ 2
ffiffi
2
3

q
.

The stability analysis of axionic wormholes, i.e., the
investigation of solutions of axion-gravity theory and its
fluctuations, without extra fields, already has some history.
It was claimed in [17] that the GS wormhole has exactly
one negative mode in its lowest (homogeneous) perturba-
tion mode. This statement was disproved in [18], where it
was shown that with the proper choice of (gauge-invariant)
variables there are no dynamical degrees of freedom in the
homogeneous perturbation sector of axion-gravity theory,
and therefore, there are no homogeneous negative modes.
Later it was claimed that axion-gravity wormholes have
multiple instabilities in their higher angular harmonics [19]
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1Detailed reviews of the many paradoxes skimmed over here
are [14,15], while [16] presents an embedding in ten dimensions.
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and hence the above-mentioned puzzles are eliminated, as
these wormholes then cannot be relevant saddle points of
the Euclidean path integral. But recently this statement was
refuted in [20] where, working with proper gauge invariant
variables and imposing appropriate boundary conditions, it
was demonstrated that axion-gravity wormholes are lin-
early stable.
The aim of the present study is to investigate the linear

stability of stringy GS wormholes and their generalizations
with a massive dilaton field [2,3].2 In a previous paper [3],
in particular, we found new branches of solutions when the
dilaton field is massive, exhibiting an interesting bifurcat-
ing structure crucially depending on the value of the
dilatonic coupling constant β. These solutions signifi-
cantly enlarge the bestiary of known axionic wormholes—
examples for two representative values of the dilaton
coupling β are shown in Fig. 1. Due to a scaling symmetry
[3], solutions depend on the dilaton mass m and the axion
charge N only through the combination m2N. It was found
that for β < βc there always exists a branch, which in the
limit m2N → 0, coincides with the GS stringy wormholes.
On top of that a new bifurcating branch of solutions appears
above some threshold value of m2N. The initial values of
the dilaton field (i.e., at the neck of the wormhole
geometry) for the bifurcating branch lie above the GS
branch for small β, β < βi, where 1.579 < βi < 1.580, see
the left panel in Fig. 1. Above βi the branch structure is
inverted, and the initial field values of the dilaton for the

bifurcating branch lie below the GS branch. This is
illustrated in the right panel of Fig. 1.
Euclidean field configurations contribute to the path

integral via their Euclidean action SE, with a factor e−SE=ℏ.
The perturbative stability is analyzed as usual by consid-
ering perturbations up to quadratic order in the action

SE½x̄þ X� ≃ SE½x̄� þ
1

2

δ2SE
δx2

����
x̄
X2; ð1Þ

where x̄ is the background (wormhole) solution, and X are
small perturbations of the background. More specifically, in
its homogeneous sector we find that axion-dilaton worm-
holes admit a single physical gauge-invariant variable R,
which is a curvature perturbation that also contains fluc-
tuations of the dilaton field. Its (unconstrained) quadratic
action is of the form

Sð2Þ ¼ 1

2

Z
d4x

ffiffiffi
g

p �
ϕ̇2

Qða;ϕÞ Ṙ
2 þUða;ϕÞR2

�
; ð2Þ

where a dot denotes a Euclidean time derivative. The factor
Q in the kinetic term, as well as the potential U, depend on
background quantities. When Q > 0, this corresponds to a
regular Sturm-Liouville problem, with eigenvalue equation

−
1

a3
d
dtE

�
a3

ϕ̇2

Q
Ṙ
�
þUR ¼ λwR; ð3Þ

where x̄ ¼ fa;ϕg is the background (wormhole) solution
(scale factor and dilaton field profiles), λ is an eigenvalue,

FIG. 1. Summary of the branch structure and stability properties for axion-dilaton wormhole solutions for dilaton coupling β ¼ 1.579
(just below hierarchy inversion, left panel) and β ¼ 1.58 (just above hierarchy inversion, right panel). The solutions are indicated by
their dilaton field value ϕ0 at the neck and as a function ofm2N, wherem is the dilaton mass andN the axion charge. At sufficiently large
m2N new branches of solutions appear, starting from a bifurcation point. The bifurcation point admits an extra zero mode, which turns
into a negative mode along one branch of solutions (shown in blue). For dilaton couplings below a critical value βi the lowest ϕ0

solutions are stable and dominant, and moreover, they are continuously connected to the massless solution. Above this dilaton coupling
βi, the branch that connects to the massless case does not remain dominant at large m2N, where a new branch of solutions takes over.
More details are provided in Sec. IV.

2GS wormholes with a massless dilaton have independently
been claimed to be perturbatively stable [21].
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and w a measure.3 When the eigenvalues are all positive,
then any small perturbation will increase the value of the
Euclidean action and thus decrease the weighting of the
solution. In such cases, the wormholes are (at least
perturbatively) stable. Meanwhile, when a negative eigen-
value exists, it indicates that the solution can be deformed
into a lower action solution with higher weighting. This
signals an instability and that the wormhole will be
subdominant compared to the related solution without
negative mode, which we find to exist at the same
parameter values in all cases.
The diagrams in Fig. 1 summarize our main findings for

two representative branch structures. The curves shown in
green denote solutions that are stable, i.e., for which all
eigenvalues are positive. For some of these solutions both
the kinetic factor Q and the potential U are positive
throughout, so that stability is obvious. In particular, we
find that the branch with the lowest initial dilaton values is
always perturbatively stable. For β < βi this branch con-
tinuously connects to the massless solutions as m2N is
lowered. However, for β > βi there is a hierarchy inversion
and a corresponding jump in the initial dilaton value at a
critical value ofm2N where a bifurcation point appears, see
the right panel in Fig. 1. In that case it is still true that the
solutions with the lowest ϕ0 value are stable, but the
solutions do not continuously connect from large to small
m2N values. Note that in both of the cases shown in the
figure, there are parameter regions where more than
one stable solution exists. In such cases we find that
the solutions with the lowest ϕ0 values are the most
dominant.
At the bifurcation points just mentioned, an extra zero

mode appears. Along one side of the associated new
branch, this mode corresponds to a stable deformation of
the solutions. However, on the other side of the bifurcation
point the zero mode turns into a negative mode. The
corresponding wormholes are unstable—these solutions
are shown in blue in the figure. Such wormholes would
thus not contribute significantly to the Euclidean path
integral.
Finally, for the solutions marked in red in the figure, the

kinetic factor Q becomes negative somewhere along the
wormhole. This implies that we do not have a regular
Sturm-Liouville problem anymore, and we cannot analyze
the perturbative stability in the same manner. In fact, we
will not be able to say anything conclusive about these
solutions but, as we will discuss in Sec. IV, this case

presents a number of similarities with certain classes of
Coleman-De Luccia bounces.
For values of the dilaton coupling above the critical GS

value β > βc, no massless wormholes exist. In these cases
only the bifurcating branches exist, at sufficiently large
m2N [3]. Their stability properties are entirely analogous to
those of the bifurcating branches that arise for β > βi, i.e.,
they resemble the bifurcating branch shown in the right
panel of the figure (with the branch connecting tom2N ¼ 0
simply removed).
Finally, we will also show that the other type of axion-

dilaton wormholes studied in [3]—wormholes leading to
the creation of expanding baby universes (expanding
wormholes for short)—necessarily have Q < 0 somewhere
along the solution, and hence we cannot study their
perturbative stability reliably at this point.
The main conclusion of our work is that large classes of

massless and massive axion-dilaton wormholes are stable
and that the puzzles mentioned at the beginning of this
section are indeed present and await resolution. These
puzzles provide a clear opportunity for gaining new
insights into quantum gravity.
The rest of the paper is organized as follows: in Sec. II

we briefly review the generalized Giddings-Strominger
wormhole solutions found in [3]. Then in Sec. III we
compute the unconstrained quadratic action in the
Lagrangian approach and obtain the relevant fluctuation
equation. In Sec. IV, we solve the fluctuation equation for
concrete numerical background solutions both with mass-
less and massive dilaton, from which we deduce their
perturbative (in)stability. The alternative Hamiltonian
approach to the fluctuation equation is presented in the
Appendix, where we also discuss why this approach fails in
the present context. Our conclusions are drawn in Sec. V.

II. WORMHOLE SOLUTIONS

We consider the (Lorentzian) axion-dilaton-gravity
action

SL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
∇μϕ∇μϕ − VðϕÞ

−
e−βϕκ

12f2
HμνρHμνρ

�
; ð4Þ

where κ2 ≡M−2
Pl ¼ 8πG, β is the dilatonic coupling, the

dilaton potential is VðϕÞ, and Hμνρ is the 3-form field
strength of an axion field with coupling f. We will only
consider a potential that provides a mass to the dilaton,

VðϕÞ ¼ 1

2
m2ϕ2: ð5Þ

The equations of motions are

3Note that whereas in analyzing the linear stability of static
solutions the measure automatically follows from the action, for
the stability analysis of Euclidean solutions, we are free to choose
a reasonable measure. The choice of (nonsingular) measure
affects the numerical values of eigenvalues, but does not change
the number of negative modes of the corresponding Sturm-
Liouville problem.
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8>><
>>:

Rμν ¼ κ2∂μϕ∂νϕþ κ2Vgμν þ κ2

2f2 e
−βϕκHμρσH

ρσ
ν − κ2

6f2 e
−βϕκHγρσHγρσgμν;

1ffiffi
g

p ∂μð ffiffiffi
g

p
gμν∂νϕÞ ¼ ∂V

∂ϕ −
βκ
12f2 e

−βϕκHγρσHγρσ;

∂μð ffiffiffi
g

p
e−βϕκHμρσÞ ¼ 0:

ð6Þ

The axion field strength H ¼ dB is the exterior derivative
of a 2-form, hence the Bianchi identity holds:

dH ¼ 0 ⇔ ∇½μHνρσ� ¼ 0: ð7Þ
We take a homogeneous and isotropic ansatz in
(Lorentzian) conformal time η,8>><

>>:

ds2 ¼ a2ðηÞð−dη2 þ dΩ2
3Þ;

ϕ ¼ ϕðηÞ;
H0ij ¼ 0; Hijk ¼ qεNijk ¼ qffiffiffiffiffi

gð3Þ
p εTijk;

ð8Þ

where dΩ2
3 is the metric on the round 3-sphere. This ansatz

automatically satisfies the Bianchi identity (7). In what
follows, primes will denote derivatives with respect to η.
gð3Þ is the determinant of the induced three-dimensional
metric on constant η hypersurfaces. εN is the tensor density
taking numerical values f�1; 0g, while εT is the tensor so
that the volume of a spatial sphere isZ

S3
εT ¼ 2π2a3: ð9Þ

Therefore, the flux of the 3-form field through the same
spatial sphere is Z

S3
H ¼ 2π2q: ð10Þ

For convenience we redefine the charge parameter of the

wormhole solutions as N2 ≡ q2

2f2. Plugging (8) into the

action (4) and equations of motion (6), we obtain

SL ¼ 2π2
Z

dη

�
1

κ2
ð3a2 þ 3aa00Þ þ 1

2
a2ϕ02

− a4V − e−βϕκ
N2

a2

�
; ð11Þ

and

0 ¼ 2
a00

κ2a
−

a02

κ2a2
þ 1

κ2
þ 1

2
ϕ02 − a2V þ N2

a4
e−βϕκ; ð12Þ

0 ¼ 3
a02

κ2a2
þ 3

κ2
−
1

2
ϕ02 − a2V −

N2

a4
e−βϕκ; ð13Þ

0 ¼ ϕ00 þ 2
a0

a
ϕ0 þ a2V;ϕ −

βκN2

a4
e−βϕκ: ð14Þ

The on-shell action simplifies to

Son-shellL ¼ 2π2
Z

dη

�
a4VðϕÞ − 2e−βϕκ

N2

a2

�
: ð15Þ

The above equations have been worked out in Lorentzian
conformal time to ease the calculations of perturbations in
the next section, but it is also useful to transform them to
Euclidean nonconformal time (dtE ¼ −iaðηÞdη), in which
variable the numerical solutions in [3] were found. The
equations of motion then read

Euclidean

8>><
>>:

0 ¼ Ḣ
κ2
þ 1

2
ϕ̇2 þ 1

κ2a2 −
N2

a6
e−βϕκ;

0 ¼ 3H2

κ2
− 3

κ2a2 −
1
2
ϕ̇2 þ V þ N2

a6
e−βϕκ;

0 ¼ ϕ̈þ 3Hϕ̇ − V;ϕ þ βκN2

a6
e−βϕκ;

ð16Þ

where dots denote derivatives with respect to tE and
H ¼ ȧ=a.
Euclidean wormhole solutions are found by numerically

solving the above system of equations with initial boundary
conditions ȧðtE ¼ 0Þ ¼ 0, ϕ̇ðtE ¼ 0Þ ¼ 0 (our action did
not include a surface term, and thus these Neumann type
boundary conditions are appropriate). The Friedmann
constraint (13) provides a relation between the initial field
values a0 and ϕ0:

3

κ2a20
¼ Vðϕ0Þ þ

N2e−βκϕ0

a60
: ð17Þ

Actual solutions are then found by tuning ϕ0, say, such that
they approach flat space asymptotically. The unexpected
result from [3] is that for some ranges of the parameters
β; m2N of the theory, solutions with different initial dilaton
field values ϕ0 coexist, see Fig. 2. All of these solutions
start at a minimum scale factor value (the “neck” of the
wormhole) and asymptote to flat space. However, some
solutions develop additional features, such as oscillations in
the dilaton field and also additional extrema in the scale
factor. As a general rule, the higher the initial value ϕ0, the
higher the complexity of the field evolution—see Fig. 3 for
an example of a wormhole solution with additional oscil-
lations (more illustrations are provided in [3]). In what
follows, we would like to determine the perturbative
stability of these solutions.
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III. LINEAR PERTURBATIONS

We are now ready to study perturbations around the
wormhole solutions that we just described. We introduce
metric perturbations A, Ψ in the conformal Newtonian
gauge and matter perturbations Φ, W, S on top of the
background (8),

8>>>>><
>>>>>:

ds2 ¼ a2ðηÞ½−ð1þ 2Aðη; xiÞÞdη2 þ ð1− 2Ψðη; xiÞÞdΩ2
3�;

ϕ ¼ ϕðηÞ þΦðη; xiÞ;
H0ij ¼ 0þ εNijkδ

kl
∂lWðη; xiÞ ¼ q

a ε
T
ijkg

kl
∂lWðη; xiÞ;

Hijk ¼ qεNijkð1þ Sðη; xiÞÞ ¼ qffiffiffiffiffi
gð3Þ

p εTijkð1þ Sðη; xiÞÞ:

ð18Þ

Plugging this ansatz into the Lorentzian action, and
extracting the part quadratic in the perturbations, we obtain
(using the background equations of motion and integrations
by parts):

Sð2ÞL ¼
Z

d4x
ffiffiffi
γ

p
a2
�
A2

�
3

κ2
− a2V −

N2

a4
e−βϕκ

�
− 3Ψ2

�
1

κ2
þ 3N2

a4
e−βϕκ

�
þ 6AΨ

�
1

κ2
−
N2

a4
e−βϕκ

�
þ 1

κ2
ð2A − ΨÞ∇2Ψ

−
3

κ2
Ψ02 − 6

a0

aκ2
AΨ0 −Φ2

�
1

2
a2V;ϕϕ þ

β2κ2

2

N2

a4
e−βϕκ

�
− AΦ

�
a2V;ϕ − βκ

N2

a4
e−βϕκ

�
þ 1

2
Φ02 þ 1

2
Φ∇2Φ − ϕ0AΦ0

þ 6βκ
N2

a4
e−βϕκΨΦþ 3ϕ0Ψ0Φ −

N2

a4
e−βϕκðS2 þW∇2WÞ − 2N2

a4
e−βϕκSðAþ 3Ψ − βκΦÞ

�
: ð19Þ

In the above,
ffiffiffi
γ

p ¼ sin2 θ sinϕ is the determinant of the
metric on the unit 3-sphere and ∇ the associated covariant
derivative. Our calculational strategy here is to consider
perturbations on the full wormhole spacetime, with two
asymptotically flat regions and the wormhole neck in the
middle. This allows us to disregard surface terms until a
later stage—we will comment further on this point below.

The expression (19) reduces to the actions found previously
in [22–24] when the axion is turned off and in [20] when
the dilaton is turned off.
The canonically conjugate momenta are given by

ΠΨ ¼ a2
ffiffiffi
γ

p �
−

6

κ2
Ψ0 −

6

κ2
a0

a
Aþ 3ϕ0Φ

�
; ð20Þ

FIG. 2. Existence of axion-dilaton wormhole solutions, as
found in [3] for four typical values of β. The solutions are
displayed via their initial dilaton value ϕ0, as a function of their
mass and charge combination m2N. Below the critical value

βc ¼ 2
ffiffi
2
3

q
≈ 1.63 solutions exist which are continuously con-

nected to the massless case. In addition, for all dilaton couplings
new bifurcating branches appear at sufficiently large values of
m2N. Full details can be found in [3].

FIG. 3. An example of a Euclidean wormhole solution displaying oscillations in the fields. The evolution of the scale factor is shown
on the left (linear growth at late times indicates flat space in polar coordinates), and that of the scalar field on the right. We are only
plotting the evolution from the neck of the wormhole to infinity, as would be appropriate for describing the nucleation of a baby
universe. The full wormhole connecting two asymptotically flat regions would then be obtained by adding a reflection across tE ¼ 0.
Here β ¼ 1.2, m2N ¼ 3, ϕ0 ¼ 8.1964321797.
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ΠΦ ¼ a2
ffiffiffi
γ

p ðΦ0 − ϕ0AÞ; ð21Þ

ΠA ¼ 0;ΠS ¼ 0;ΠW ¼ 0: ð22Þ

Under a gauge transformation η → ηþ λ, the perturbations
transform as

A→Aþ λ0 þa0

a
λ; Ψ→Ψ−

a0

a
λ; Φ→Φþϕ0λ; ð23Þ

ΠΨ → ΠΨ þ 6a2
ffiffiffi
γ

p �
1

κ2
−
N2

a4
e−βϕκ

�
λ;

ΠΦ → ΠΦ þ a2
ffiffiffi
γ

p �
ϕ00 −

a0

a
ϕ0
�
λ: ð24Þ

Moreover under a “spatial” diffeomorphism, S and W
transform, but S0 −∇2W is gauge invariant [20]. In fact,
the linearized Bianchi identity sets this combination to
zero, S0 −∇2W ¼ 0. Then, in the homogeneous sector, S is
constant and thus zero if we fix the charge asymptotically.
Hence, in the homogeneous sector, the S and W perturba-
tions will play no role.
In the following we restrict to the homogeneous mode

(∇Ψ ¼ 0 ¼ ∇Φ) because inhomogeneous modes add to
the gradient energy, hence, if the homogeneous mode is
stable, then the inhomogeneous ones will typically not
spoil this stability. As argued above, in the homogeneous
sector the axionic perturbations are not dynamical:
S ¼ 0 ¼ W, and the action (19) becomes

Sð2ÞL ¼
Z

d4x
ffiffiffi
γ

p
a2
�
−

3

κ2
QA2 − 3Ψ2

�
1

κ2
þ 3N2

a4
e−βϕκ

�
−

3

κ2
Ψ02 þ 6AΨ

�
1

κ2
−
N2

a4
e−βϕκ

�

−Φ2

�
1

2
a2V;ϕϕ þ

β2κ2

2

N2

a4
e−βϕκ

�
− AΦ

�
a2V;ϕ − βκ

N2

a4
e−βϕκ

�
þ 1

2
Φ02

− 6
a0

aκ2
AΨ0 − ϕ0AΦ0 þ 6ΨΦβκ

N2

a4
e−βϕκ þ 3ϕ0Ψ0Φ

�
; ð25Þ

where the conformal Hubble rate isH ¼ a0=a, and we have
defined

Q≡H2 −
κ2

6
ϕ02: ð26Þ

We now rewrite this action in terms of gauge-invariant
variables by using the gauge-invariant lapse A and curva-
ture perturbation R [see Eq. (23)],

A ¼ Aþ 1

H
Ψ0 þ

�
H0

Hϕ0 −
H
ϕ0

�
Φ; ð27Þ

R ¼ ΨþH
ϕ0 Φ: ð28Þ

We obtain the manifestly gauge-invariant expression,

Sð2ÞL ¼
Z

d4x
ffiffiffi
γ

p
a2
�
−

3

κ2
QA2 þ ϕ02

2H2
R02

−
ϕ02

H
AR0 þ 6

�
1

κ2
−
N2

a4
e−βκϕ

�
AR

þ
�
3βκ

ϕ0

H
N2

a4
e−βκϕ −

3

H2
ða2κ2V − 3H2 − 2Þ

×

�
1

κ2
−
N2

a4
e−βκϕ

��
R2

�
: ð29Þ

We can further eliminate the gauge-invariant lapse A, as it
is not a propagating degree of freedom but rather an
auxiliary field, using its (constraint) equation,

1

κ2
QA ¼ −

ϕ02

6H
R0 þ

�
1

κ2
−
N2

a4
e−βκϕ

�
R; ð30Þ

to end up with

Sð2ÞL ¼ 1

2

Z
d4x

ffiffiffi
γ

p
a2
�
ϕ02

Q
R02þ2κ2

Q2

�
−
a2κ2Vϕ02

3

×

�
1

κ2
−3

N2

a4
e−βκϕ

�
−a2V;ϕϕ

0H
�
1

κ2
−
N2

a4
e−βκϕ

�

−
�
4

3
ϕ02−

β

κ
Hϕ0ða2κ2V−2Þ

�
N2

a4
e−βκϕ

�
R2

	
: ð31Þ

This is the gauge-invariant quadratic part of the action in
the Lorentzian conformal time.
We can now return to Euclidean physical time dtE ¼

−iaðηÞdη and obtain

Sð2ÞE ¼ 1

2

Z
∞

0

dtE

Z
d3x

ffiffiffi
γ

p
a3
�
ϕ̇2

Q
Ṙ2 þ UR2

�

−
Z

d3x
ffiffiffi
γ

p
a3

ϕ̇2

Q
RṘ

���tE¼þ∞

tE¼0
; ð32Þ
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where we explicitly split up the spacetime at the location of
the wormhole neck tE ¼ 0. The surface term is added in
order to obtain a consistent variational problem allowing us
to impose a Neumann boundary condition on R, in
agreement with the treatment of the background. (An equal
and opposite boundary term would be added on the other
half of the spacetime.) Above, we have defined

H ≡ ȧ=a ¼ H=a; Q≡H2 − κ2ϕ̇2=6 ¼ Q=a2;

R ¼ ΨþH

ϕ̇
Φ ¼ ΨþH

ϕ0 Φ and ð33Þ

U ¼ −2κ2

a2Q2

�
κ2Vϕ̇2

3

�
1

κ2
− 3

N2

a4
e−βϕ

�

þ V;ϕϕ̇H
�
1

κ2
−
N2

a4
e−βϕ

�

þ
�

4

3a2
ϕ̇2 −

β

κ
Hϕ̇

�
κ2V −

2

a2

��
N2

a4
e−βϕ

�
ð34Þ

¼ 2

a2Q2

�
κ2ϕ̇4

3
− 2H2ϕ̇2 −

κ2a2ϕ̇4

2
ðḢ þ 3H2Þ

þ a2ϕ̇2ð9H4 − Ḣ2Þ − 3a2Hϕ̇V;ϕQ

þ a2Hϕ̇ ϕ̈ðḢ þ 3H2Þ
�
; ð35Þ

where the last expression was obtained using the back-
ground equations of motion. In physical Euclidean time,
and for a weight function wðtEÞ, the eigenvalue equation is
therefore

−
1

a3
d
dtE

�
a3

ϕ̇2

Q
Ṙ
�
þ UR ¼ λwðtEÞR; ð36Þ

⇔ R̈þ
�
3Hþ2

ϕ̈

ϕ̇
−
Q̇
Q

�
Ṙ−

�
UQ

ϕ̇2
−λ

wQ

ϕ̇2

�
R¼ 0: ð37Þ

Before solving this eigenvalue equation on the numerical
background solutions of [3], we study its asymptotic
structure both near the neck and at infinity.
In the large distance limit tE → ∞, the background

solutions behave as [3]:

a ≈ tE; ϕðtEÞ ≈
βN2

m2t6E
; ð38Þ

from which we can deduce the leading behavior of the
functions appearing in the eigenvalue equation (36):

H≈
1

tE
; ϕ̇≈−6

βN2

m2t7E
; Q≈

1

t2E
;

ϕ̇2

Q
≈
36β2N4

m4t12E
; ð39Þ

U ≈
2Hϕ̇

a2Q2

�
−V;ϕ − 2β

N2

a6

�
≈
36β2N4

m2t12E
: ð40Þ

Interestingly, the kinetic and potential terms tend to the
same limit (up to a factor of m2), and both are asymptoti-
cally positive. Therefore, in order to obtain well-behaved
eigenfunctions, a natural choice for the weight function is
the kinetic function w ¼ ϕ̇2=Q, in which case the eigen-
value equation becomes

−R̈þ 9

tE
Ṙþ ðm2 − λÞR ≈ 0: ð41Þ

The leading solutions at large tE then asymptote to

R → e�
ffiffiffiffiffiffiffiffi
m2−λ

p
tE ; ð42Þ

where we must choose the decaying branch. At infinity we
then satisfy the boundary condition ṘðtE → ∞Þ ¼ 0, and
moreover, the boundary term in (32) vanishes.
At the neck of the wormhole solution at tE ¼ 0, the

following expansion of the fields satisfies the background
equations of motion at second order in tE:

aðtEÞ ¼ a0 þ
�
1

a0
−
κ2

4
a0m2ϕ2

0

�
t2E þOðt4EÞ; ð43Þ

ϕðtEÞ ¼ ϕ0 þ
1

2

�
m2ϕ0 − βκ

N2

a60
e−βκϕ0

�
t2E þOðt4EÞ; ð44Þ

QðtEÞ ¼
��

κ2N2

a60
e−βκϕ0 −

1

a20

�
2

−
κ2

6

�
βκ

N2

a60
e−βκϕ0 −m2ϕ0

�
2
�
t2EþOðt4EÞÞ: ð45Þ

In these expressions the initial field values a0 and ϕ0

are related by the Friedmann constraint (17). From the
expansions we see that the kinetic term ϕ̇2=Q is regular at
the origin (i.e., it can be expanded as c0 þ c2t2E þ � � �).
The effective potential U is also regular at the origin: from
its expression (35), the only terms for which this is
nontrivial are

2

Q2
ðHḢ ϕ̇ ϕ̈−Ḣ2ϕ̇2Þ ¼ 2H2Ḣ ϕ̇

Q2

d
dtE

�
ϕ̇

H

�
: ð46Þ

Since both ϕ̇ and H are odd functions, their ratio is even
so its derivative is OðtEÞ. Combined with the factor
H2ϕ̇ ¼ Oðt3EÞ, this implies that the factor Q2 ¼ Oðt4EÞ is
compensated, and the combination (46) is regular.
Therefore, the eigenvalue equation (36) is regular at the
origin. It takes the form

−R̈þ c1tEṘþ ðc2 − λÞR ≈ 0; ð47Þ
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for certain constants c1;2, and its solution is given by the
series

RðtEÞ ¼ R0 þR1tE þ
ðc2 − λÞR0

2
t2E

þ ðc1 þ c2 − λÞR1

6
t3E þOðt4EÞ: ð48Þ

Both the initial field valueR0 and the initial first derivative
R1 are arbitrary. Since the equation is linear, we may
eliminate one parameter by rescaling. The second free
parameter is fixed by considering the boundary condition at
tE ¼ 0. For the background, we fixed Neumann boundary
conditions ȧð0Þ ¼ ϕ̇ð0Þ ¼ 0. This means that we should
also impose Ṙð0Þ ¼ 0, so that these boundary conditions
are preserved. A Neumann boundary condition of this type
is consistent with the variational problem obtained from
Eq. (32), and moreover, we can see by inspection that the
surface term will be zero at tE ¼ 0 (and, incidentally, also
as tE → ∞).
To summarize, we will thus focus our attention on modes

that are even in Euclidean time (or, if one prefers,
symmetric on the full wormhole spacetime), with boundary
conditions

Ṙð0Þ¼0; Rð0Þ¼1; Ṙð∞Þ→0; Rð∞Þ→0: ð49Þ

We may anticipate that eigenmodes satisfying these
boundary conditions will only exist for discrete eigenval-
ues λ, which will need to be determined by numerical
optimization.

IV. STABILITY ANALYSIS

Using the results from the previous section we can now
analyze the stability of specific wormhole solutions. We
first consider the analytically known massless dilaton
solutions, before focusing on the massive dilaton case.
Then we comment on the so-called “expanding” worm-
holes that we studied in [3]. Note that in all cases we study
wormhole solutions from the neck out to infinity. This is the
appropriate setting for describing the nucleation of baby
universes. If one is interested instead in wormhole solutions
linking two asymptotically flat regions, then one should
add a part obtained by reflection across tE ¼ 0, which
can be done trivially given the boundary conditions
ȧð0Þ ¼ 0 ¼ ϕ̇ð0Þ.

A. Massless dilaton

Massless dilatonic wormholes have VðϕÞ ¼ 0 and

0 ≤ β < βc ≡ 2
ffiffi
2
3

q
. They are given by (e.g., [2])

8>>><
>>>:

ds2 ¼ a20 coshð2RÞðdR2 þ dΩ2
3Þ;

ϕ ¼ 1
β ln

h
N2

3a4
0

cos2



β
βc
arccos 1

coshð2RÞ
�i

;

a20 ¼ Nffiffi
3

p cos


π
2
β
βc

�
:

ð50Þ

By plugging this solution into the expressions forQ, ϕ02=Q,
and U, we obtain the shapes shown in Fig. 4. As expected
from the expansion near the origin, the function Q touches
zero at the neck of the wormhole, while the kinetic factor
ϕ02=Q and potential U are regular there. Both the kinetic
factor and the potential are regular and positive throughout,
so that any fluctuationR will increase the Euclidean action

(Sð2ÞE > 0), see Eq. (32). Therefore, these wormholes are
stable.

B. Massive dilaton

We now turn to the physically more relevant case of the
dilaton acquiring a mass. As discussed earlier, in this case
many solutions exist that generalize the original
Giddings-Strominger-type wormholes [2,3]. In fact, there
are two dilaton coupling values that are most relevant for

classifying solutions: the critical value βc ¼ 2
ffiffi
2
3

q
≈ 1.63

above which no massless solutions exist, and the “inver-
sion” value βi, with 1.579 < βi < 1.580, above which the
lowest ϕ0 solutions at large mass are no longer connected
to those at low mass. In the next few paragraphs, we
therefore present our results (summarized in Fig. 5) for the
four representative dilaton couplings that were already
illustrated in Fig. 2: β ¼ ffiffiffi

2
p

(corresponding to small
dilaton coupling), β ¼ 1.579 (just below the inversion
point), β ¼ 1.58 (just above the inversion point), and
β ¼ 1.64 > βc (large dilaton coupling, above the criti-
cal value). In all cases we used the weight function
w ¼ ϕ̇2=Q.
In the four cases, the solution with the smallest potential

(i.e., lowest ϕ0 value) is always stable and represents the
dominant solution, with the smallest Euclidean action. For
β < βi, the dominant solutions are smoothly connected to
the massless limit (as for β ¼ ffiffiffi

2
p

; 1.579), while for β > βi
the dominant solutions manifest a jump to the new
bifurcating branch wherever the new branch exists (as
for β ¼ 1.58, 1.64). Most of the solutions with lowest ϕ0

have positive definite kinetic and potential terms through-
out, so that their stability is manifest. Those solutions are
indicated by green dots in Fig. 5. Typical forms of their
kinetic and potential functions are shown in Fig. 6 for
illustration. However, some of the lowest ϕ0 solutions have
regions where the fluctuation potential U turns negative. In
those cases, we employ the nodal theorem: we look at the
number of nodes of the zero eigenvalue λ ¼ 0 solution. If it
has no node, then the wormhole is stable. By contrast, if it
has a node, then a (nodeless) eigenmode with lower, i.e.,
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FIG. 4. Massless dilatonic wormhole with β ¼ 1. In the upper row we show the evolution of the fields, and in the lower row one can
see that the kinetic function ϕ̇2=Q as well as the fluctuation potential U are positive definite. These solutions are thus perturbatively
stable.

FIG. 5. Summary plots for various values of the dilaton coupling β: a) small dilaton coupling; b) just below the inversion point; c) just
above the inversion point; d) above the critical value. Dots indicate the existence of a wormhole solution, with the initial dilaton value
ϕ0ðtE ¼ 0Þ given as a function of the dilaton mass m and axion charge N. The color coding is as follows: Green dots indicate stable
solutions with Q > 0, U > 0 everywhere. Cyan dots indicate stable solutions with Q > 0 everywhere, but U < 0 in some regions.
Blue dots indicate unstable solutions with one negative mode (Q > 0 everywhere, U < 0 in some regions). Red dots indicate
solutions for which the kinetic function Q contains negative regions, so that we cannot meaningfully study their stability in the
present setup.
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negative, λmust exist.4 For the lowest ϕ0 solutions in which
the potential U contains a negative region, we find that no
negative mode exists and that these solutions are perturba-
tively stable. Similar wormhole solutions without a neg-
ative mode also exist on parts of the new bifurcating
branches of solutions, see the plots for β ¼ 1.579, 1.58,
1.64. These perturbatively stable solutions are all indicated
by cyan dots in the figures.
On the bifurcating branches for β ¼ 1.579, 1.58, 1.64,

leaving the bifurcation point in the other direction than that
of the stable solutions just described, we find that a negative
mode develops. These solutions are thus unstable, and their
action is higher than that of the solutions on the opposite
side of the bifurcating point (at the same values of m2N).
We indicate such unstable solutions by blue dots in the
figures. For illustration, we show an example at β ¼ 1.579
and m2N ¼ 2.2 in Fig. 7. The figure shows the kinetic
function ϕ̇2=Q, as well as the fluctuation potential U which
starts out negative but then turns (slightly) positive. This
solution admits a negative mode in its perturbation spec-
trum, shown in the left panel of Fig. 8. The negative mode
is concentrated in the region where the effective potential is
negative. If we plot the eigenvalues for different values of
m2N, as in the right panel of Fig. 8, then we notice that the
eigenvalues become more and more negative and diverge

to −∞ near m2N ≈ 2.22. Although the precise numerical
values of the eigenvalues depend on the measure chosen,
we have verified that for different choices of measure (we
tried w ¼ ϕ̇2; ϕ̇2H2; ϕ̇2=H2) the divergence always occurs.
This divergence can be understood to be a consequence of
the fact that the kinetic function Q suddenly starts out
negative for m2N⪆2.22, see Fig. 9. We indicate solutions
that contain regions with negative Q with red dots in the
figure. We will comment further on these cases below.
For β > βc (in our example β ¼ 1.64), we obtain the

same results as for the bifurcating branches of the β ¼ 1.58
case. In other words, from the bifurcation points there are
solutions that are stable at low ϕ0, while the solution
emanating at larger ϕ0 contains a negative mode. At
sufficiently large m2N the kinetic function Q starts to
contain regions where it goes negative, and where we
cannot assess the stability of the solutions reliably.
For β ¼ ffiffiffi

2
p

, solutions with low ϕ0 are stable, and they
connect smoothly to the massless case as m2N → 0.
However, we find that the entire new branch contains
regions whereQ < 0. These are again marked with red dots
in Fig. 5(a).
The cases where the kinetic functionQ contains negative

regions warrants further comments. At least naively, a
negative kinetic term indicates the presence of a ghost and
thus an infinite number of negative modes. What is more,
when Q crosses zero, the effective potential develops a
singularity—see Fig. 9 for an illustration. That said, let us
note, however, that the quadratic action (2) resembles that
derived for the analysis of metastable vacuum decay in
gravity coupled to a scalar field [25]. There it was also

FIG. 6. Massive dilatonic wormhole with β ¼ 1.579 and m2N ¼ 2.2. This wormhole starts out at ϕ0 ≈ 2.1705146359. In the upper
row we show the evolution of the fields and in the lower row the kinetic function ϕ̇2=Q, as well as the fluctuation potential U. Both are
positive definite, and thus this is an example of a perturbatively stable massive axion-dilaton wormhole.

4It may help the intuition to think about the lowest level wave
functions of a particle in a box (an infinite potential well) of
length L. These are given by ψðxÞ ∝ sin ðnπL xÞ with n∈N� and
have energy levels En ¼ n2π2ℏ2

2mL2 . More nodes in ψ correlate with
higher En.
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FIG. 7. Massive dilatonic wormhole with β ¼ 1.579 and m2N ¼ 2.2. This wormhole starts out at ϕ0 ≈ 3.4770669337. In the upper
row we show the evolution of the fields and in the lower row the kinetic function ϕ̇2=Q, as well as the fluctuation potential U, which
starts out negative. This solution turns out to admit a negative mode, shown in the left panel of Fig. 8, and is thus unstable.

FIG. 8. Left panel: the negative mode associated with the wormhole solution at β ¼ 1.579, m2N ¼ 2.2 shown in Fig. 7. The
eigenvalue is λ ≈ −10.3602531840. One can see that the eigenmode is concentrated near the neck of the wormhole, in the region where
the fluctuation potential is negative. Right panel: negative eigenvalues as a function of m2N, for β ¼ 1.579 [for the blue dot solutions
near the bifurcation point shown in Fig. 5(b)]. The eigenvalues diverge near m2N ≈ 2.22.

FIG. 9. A closer look at the intermediate-ϕ0 solutions for β ¼ 1.579 shows that the kinetic function Q evolves from starting out
positive to starting out negative as the dilaton mass and axion charge are increased past m2N ≈ 2.22. This is the reason that the
eigenvalues of the negative modes of these solutions [blue dots in Fig. 5(b)] diverge here, as shown in the right panel of Fig. 8. When Q
starts out negative and then crosses zero, this also brings about a singularity in the fluctuation potential U, as shown in the right
panel above.
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noticed that the corresponding factor Q can become
negative for some Euclidean bounce solutions. As just
mentioned, naively this leads to a catastrophic instability
(infinitely many negative modes) and is known as the
negative mode problem [26]. In spite of much work in this
direction by different research groups [22,24–36] no fully
satisfactory solution of this problem has been found. See
[28,36] for comparative analyses of different approaches.
When the factor Q is positive it was found [22,24] that
Coleman-De Luccia bounces [37] have exactly one neg-
ative mode in their linear perturbation spectrum, which
makes the decay picture coherent. It was later shown in [34]
that when Q becomes negative along the bounce, the
tunneling negative mode continues to exist, while on top
an infinite tower of negative modes appears with support in
the region where Q < 0. Typically, these negative modes
are well separated [33,34], namely the frequency of the
tunneling negative mode is much lower than the frequency
of negative modes due to negativeness of Q. In the present
analysis we are facing the same problem, but in a somewhat
more severe form: for some solutions Q is already negative
at the neck of the wormhole, rendering the eigenvalue
equation untractable. Also, as shown in the Appendix, if we
use a Hamiltonian treatment instead, then the kinetic factor
itself can become singular along the wormhole solution.
Nevertheless, it remains unclear if this represents a physi-
cal, rather than merely a mathematical, problem. This is
because the exact location where a problem appears
depends on the variables used: for instance, a canonical
transformation can shift the location where the kinetic
function goes negative or becomes singular. Thus there
remains the hope that if one were to find suitable variables,
such cases could also be analysed consistently. We leave
the search for such variables for future work.

C. Expanding wormholes

Expanding wormhole solutions are solutions whose
scale factor is initially contracting (i.e., äj0 < 0) so that,
when analytically continued to Lorentzian time, they are, in
fact, expanding. These solutions can mediate the nucleation
of expanding baby universes [38], hence the name. In [3]
we found numerous such solutions numerically both for
axion-gravity coupled to a massive dilaton and coupled to a
scalar field with a double well potential. We immediately
see that we cannot analyze the stability of these solutions
using the above formulation because those expanding
wormholes necessarily contain a minimum for the scale
factor, away from tE ¼ 0, where ȧ ¼ 0. At that point, the
function Q ¼ H2 − κ2ϕ̇2=6 will be negative, and this will
occur for all expanding wormhole solutions. Hence we do
not obtain a regular Sturm-Liouville problem for these
solutions and cannot draw conclusions about their stability.
As described above, we must leave their analysis to future
work and a search for better fluctuation variables.

V. CONCLUSIONS

In the present research we have studied the perturbative
stability of a wide class of axion-dilaton wormholes, both
for massless and massive dilatons. The wormholes under
consideration are Euclidean, with nonzero axionic charge,
and contain asymptotically flat regions. Our main finding is
that there exist stable wormhole solutions of this type at all
values of the dilatonic massm (including the massless case)
and axionic charge N that we analyzed. The dominant
solutions are those that have small values of the dilaton
potential.
However, wormhole solutions at larger values of the

dilaton potential also exist at sufficiently large m2N. These
solutions are characterized by more involved field con-
figurations, containing oscillations in both the scalar field
and the scale factor. Some of these are also stable (though
subdominant), while others admit a negative mode in their
fluctuation spectrum. In particular, when new branches of
solutions come into existence at bifurcation points (as the
parameter combination m2N is increased), an additional
zero mode appears at the bifurcation point. On one side of
the new branch this zero mode turns into a stable fluc-
tuation, while on the other side it becomes a negative mode
signaling a perturbative instability.
At all values of the dilatonic coupling β we noticed that

some solutions develop regions in which the kinetic termQ
for the fluctuations becomes negative. This is a manifes-
tation of the long known negative mode problem [25] in the
present context. In spite of many efforts by different groups
in the last almost 40 years [22,24–36], a fully satisfactory
solution of this problem has not been found yet. We just
note that the precise parameter region where this problem
occurs depends on the choice of perturbation variables used
(and it also differs markedly depending on whether one
uses a Lagrangian or Hamiltonian formalism), suggesting
that the negativity of Q is a mathematical obstacle rather
than a physical instability. What is more, in the context of
Coleman-De Luccia instantons it was noted in [34] that
when a parameter is varied such thatQ passes through zero,
the existing negative mode continues to exist (and its
eigenvalue evolves continuously), while an additional
infinite tower of separate negative modes appears. This
suggests that the additional tower of modes may be
unphysical, though the continuously existing negative
mode certainly seems to be associated with a physical
instability. In the present context, the singularities asso-
ciated with Q passing through zero were stronger and
prevented us from carrying out a similar analysis while
varying background parameters. However, a way of over-
coming these singularities might conceivably exist and, if
so, would offer valuable clues as to the number of physical
negative modes. That said, one can think of several ways
that might allow one to overcome the problem with
negative Q altogether: using canonical transformations in
order to find proper variables in which Q is positive
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throughout the wormhole, or combining different variables
with the aim of covering the whole wormhole with positive
Q patches. One might also be able to extend the model with
extra matter fields and see if it is possible to find better
defined variables in such an extended theory. Certainly,
more work will be required to understand the stability in
these cases.
We should point out that we focused our analysis on the

homogeneous sector of the perturbations. This is the sector
that we expect to be the most relevant for the stability of the
solutions, as higher harmonics come with additional
gradient energy, which always increases the energy. In
fact, for the case of purely axionic wormholes (without
dilaton), this is precisely what was found in [20]. By
contrast, the instabilities that we found (i.e., the negative
modes associated with some of the wormholes) stem from
homogeneous perturbations of the dilaton-gravity system,
with the axion remaining frozen. Thus we can identify the
dilaton as the actual source of the instabilities we found.
This is significant, as in string theory one always expects an
axion to be paired with a dilaton field.
In fact, if one tries to connect string theoretic solutions to

phenomenology, it is important that the dilaton obtain a
mass. This is because the dilaton contributes to determining
the couplings between gravity and matter fields, and
observationally, the coupling “constants” are indeed found
to be constant, both over cosmological time and length
scales [39]. This means that our results apply to a
potentially realistic context, in which the puzzles associated
with Euclidean wormholes are sharpened.

To conclude, we have found that Euclidean wormhole
solutions exist and are perturbatively stable, in the context
of axion-dilaton gravity, which is a framework that pro-
vides a realistic extension of known physics. This means
that they will indeed contribute to gravitational path
integrals and that the paradoxes associated with factoriza-
tion in holography, the tension with certain quantum
gravity principles, the apparent loss of unitarity, or the
random values of coupling constants cannot be discarded
that easily. On the contrary, our work suggests that these
issues will have to be faced head on in future studies.
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APPENDIX: HAMILTONIAN APPROACH

In this appendix, we will consider the Hamiltonian
formalism for obtaining an unconstrained quadratic action.
We will only sketch the calculation, starting again from
Eq. (19). Once more we will work in the homogeneous
sector, where we can set S ¼ 0 ¼ W. Then the canonical
Hamiltonian is given by

H ¼ ΠΨΨ0 þ ΠΦΦ0 − L

¼ −
κ2

12a2
ffiffiffi
γ

p Π2
Ψ þ κ2

2a2
ffiffiffi
γ

p Π2
Φ þ κ2

2
ϕ0ΠΨΦ

þ a2
ffiffiffi
γ

p ��
3

κ2
þ 9N2

a4
e−βϕκ

�
Ψ2 þ

�
1

2
a2V;ϕϕ −

3κ2

4
ϕ02 þ β2κ2

2

N2

a4
e−βϕκ

�
Φ2 − 6βκ

N2

a4
e−βϕκΨΦ

�

þ A

�
−
a0

a
ΠΨ þ ϕ0ΠΦ þ a2

ffiffiffi
γ

p ��
−

6

κ2
þ 6

N2

a4
e−βϕκ

�
Ψþ

�
3
a0

a
ϕ0 þ a2V;ϕ − βκ

N2

a4
e−βϕκ

�
Φ
��

: ðA1Þ

It follows that the linearized constraint is given by

0 ¼ −
a0

a
ΠΨ þ ϕ0ΠΦ þ a2

ffiffiffi
γ

p ��
−

6

κ2
þ 6

N2

a4
e−βϕκ

�
Ψþ

�
3
a0

a
ϕ0 þ a2V;ϕ − βκ

N2

a4
e−βϕκ

�
Φ
�
: ðA2Þ

The time evolution of variables involves the commutator
with the Hamiltonian,

f0 ¼ ∂f
∂η

þ ½f;H� ¼ ∂f
∂η

þ
X

q¼A;Ψ;Φ

�
∂f
∂q

∂H
∂Πq

−
∂f
∂Πq

∂H
∂q

�
;

ðA3Þ

where in ∂f
∂η the time derivative acts on explicit time-

dependent coefficients, not on the variables themselves.
There is a primary constraint, due to the vanishing of the

momentum associated with the lapse, ΠA ¼ 0, which we
denote by

C1 ¼ ΠA ¼ 0: ðA4Þ
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For consistency its time derivative must also vanish,

C2 ≡ C01 ¼ −
∂H
∂A

¼ a0

a
ΠΨ − ϕ0ΠΦ þ a2

ffiffiffi
γ

p ��
6

κ2
− 6

N2

a4
e−βϕκ

�
Ψþ

�
−3

a0

a
ϕ0 − a2V;ϕ þ βκ

N2

a4
e−βϕκ

�
Φ
�
: ðA5Þ

Thus consistency of the imposition of the primary con-
straint gives a secondary constraint that requires the
linearized Friedman equation to be satisfied. Its own time
derivative must also vanish, and we find

C02 ¼
a0

a
C2: ðA6Þ

This means that setting C2 to zero is, in fact, consistent and
does not give rise to a tertiary constraint.
The constraints indicate that gauge degrees of freedom

are present, and thus we should reduce the system to a
physical degree of freedom. Here there are various choices.
Obtaining a sensible limit when gravity is turned off
suggests that we should not eliminate Φ but rather should
try to eliminate variables having to do with Ψ.
A useful choice is provided by the gauge-invariant

variables (with κ2 ¼ 1 from here on),

Φg ≡Φ −
ϕ0

6a2
ffiffiffi
γ

p ð1 − N2

a4 e
−βϕÞΠΨ;

Ψg ¼ Ψþ H

6a2
ffiffiffi
γ

p ð1 − N2

a4 e
−βϕÞΠΨ: ðA7Þ

The path integral over A then imposes the constraint
C2 ¼ 0, which one can use to eliminate ΠΦ. All terms
involving Πψ are now automatically incorporated in the
field redefinition and do not appear explicitly in the action.
What is more, Ψg appears without derivatives and can
hence be integrated out, as it simply gives rise to a Gaussian
integral which will yield a prefactor. This integration can,
straightforwardly, be done by completing the square. In the
end we are left with Φg only, with action

Sð2Þ ¼ 1

2

Z
d4x

ffiffiffi
γ

p
a3
�

1

QH
Φ̇2

g þ UΦΦ2
g

�
; ðA8Þ

where the kinetic term in the Hamiltonian approach is
governed by a generalized Q function,

Euclidean QH ¼ 1 −
a2ϕ̇2

6

ð1þ 3 N2

a4 e
−βϕÞ

ð1 − N2

a4 e
−βϕÞ2 ; ðA9Þ

while the fluctuation potential is given by

UΦ ¼ 1

QH

�
V 00 þ 2ϕ̇2

ð1 − N2

a4 e
−βϕÞ þ β2

N2

a6
e−βϕ

þ β
Hϕ̇N2

a6
e−βϕ

ð1þ 3 N2

a4 e
−βϕÞ

ð1 − N2

a4 e
−βϕÞ2

�

þ Q̇H

Q2
H

�
3H −

V̇

ϕ̇2
þ βN2

a6ϕ̇
e−βϕ

�
: ðA10Þ

A prime denotes a scalar field derivative here, while a dot
denotes a time derivative. The associated fluctuation
equation (with weight function

ffiffiffi
γ

p
a3) reads

−
1

a3
d
dtE

�
a3

QH

dΦg

dtE

�
þ UΦΦg ¼ λΦg: ðA11Þ

The equation of motion implies that at tE ¼ 0 we have
aäþ 1 − N2

a4 e
−βϕjtE¼0 ¼ 0, and this relation implies that

1 − N2

a4 e
−βϕ will start out negative (for GS-type wormholes)

and reach unity asymptotically. Hence it will pass through
zero at least once, leading to one or more singularities in
QH in all cases. Unfortunately, these singularities prevent
one from using the Hamiltonian formalism in the study of
these wormholes. We have also explored the possibility of
performing various canonical transformations of the vari-
ables, but in each case one simply ends up shifting the
singularities from one place to another. This unfortunately
seems to limit the usefulness of the Hamiltonian method in
the present setting and motivates the use of the Lagrangian
formalism in the main part of the paper.
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