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We investigate chiral phase transitions and the screening masses, pole masses, and thermal widths of
neutral pion mesons with finite temperature T and magnetic field B in a lattice-improved AdS=QCD
model, which is constructed by fitting the lattice results of the pseudocritical temperatures TpcðBÞ.
Specifically, we find that the chiral condensate σ undergoes a crossover phase transition demonstrating
distinct magnetic catalysis and inverse magnetic catalysis effects in very low- and high-temperature
regions with fixed finite B, respectively. For the screening masses, we find that the longitudinal
component decreases with B at very low and high temperatures and increases with B near Tpc. The
transverse component always increases with B at fixed T. However, both the longitudinal and transverse
screening masses increase with T at fixed B. Furthermore, we find that the pole mass decreases with the
increase of B or T. It is interesting to note that the thermal width shows similar behavior to the
longitudinal screening masses in the very-high-temperature region.

DOI: 10.1103/PhysRevD.109.086021

I. INTRODUCTION

The properties of strong interactions in the presence of
a substantial external magnetic field have been studied
extensively in recent years. The reason for this is that, in
off-center heavy-ion collisions, strong magnetic fields of
about 1018 to 1019 Gauss, or jeBj ∼m2

π to 15m2
π , are

produced when two fast-moving nuclei collide [1–3]. In
the presence of such a strong external magnetic field,
not only is the phase diagram of quantum chromody-
namics (QCD) matter altered [4–6] but also many
novel and interesting phenomena will arise due to the
interaction between the magnetic field and the nonper-
turbative properties of non-Abelian gauge theory, includ-
ing the chiral magnetic effect [7–10], disputable
superconductivity in magnetized vacuum [11,12], neutral
pion condensation [13], diamagnetism at low temperature,
and paramagnetism at high temperature [14].
It has been shown that in a simplified effective theory,

certain properties of the equilibrium plasma can be obtained
by a reduction of the dimension from D to D − 1 at finite

temperature. Furthermore, in the strong B limit the longi-
tudinal and transverse spaces are decoupled, allowing us to
reduce the transverse dimensions. Compared to magnetized
matter at zero temperature, several unexpected phenomena
have arisen, showing the interplay between the anisotropies
induced by thermal excitation and the magnetic field.
The most famous effect is that the chiral order parameter,
characterized by spontaneous chiral symmetry breaking
(SSB), is catalyzed by the magnetic field in the vacuum,
known as magnetic catalysis (MC) in various models,
including the two-flavor QCD system [15–17]. However,
the chiral pseudocritical temperature Tpc decreases with
increasingB in QCDmatter. This is beyond the prediction of
low-energy effective theories or model calculations, known
as inverse magnetic catalysis (IMC) [4,18]. In order to solve
this puzzle, extensive work has been done using numerous
approaches (see recent reviews, e.g., Ref. [19]). Among
these explanations and calculations, the proper implemen-
tation of thermal modification is particularly important.
Therefore, we pay more attention to the properties of the

light mesons at finite temperature. Since the pattern of SSB
is Uð1ÞI3 ⊗ Uð1ÞAI3 → Uð1ÞLþR, the neutral pion is the
only Goldstone boson in two-flavor QCD. It plays a unique
role in low-energy hadronic physics [20–24]. Our moti-
vation for the study of thermal effects on π0 is the
observation that reliable information on the temperature
modification of magnetized hadronic properties is still
lacking. Since the temperature breaks the Lorentz invari-
ance, this implies that one needs not only the pole mass
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mpole, which describes the positions of the poles in the
particle’s propagators, but also the screening masses mscr,
which characterize the exponential decay of static propa-
gators. The relationship between the screening mass and
the pole mass is determined by the dispersion relation:
mscr ¼ mpole=u. In addition, there are two types of screen-
ing masses because the magnetic field breaks the Oð3Þ
rotation symmetries to Oð2Þ: mscr;k and mscr;⊥ for the
masses along the direction of B and those perpendicular to
it, respectively. As required by the law of causality, pointed
out by Ref. [21], it can be deduced that u⊥;k < 1. In
addition, since motion along the transverse direction is
suppressed compared to motion along the longitudinal
direction, a naive estimate is that u⊥ < uk. We conclude
that u⊥ < uk < 1, somscr;⊥ > mscr;k > mpole [21]. Over the
decades, numerous models have been developed for
studying the vacuum and thermal properties of hadrons
with a magnetic field. These frameworks include lattice
QCD (LQCD) [23,25–29], chiral perturbation theory
(χPT) [30–32], the Nambu–Jona-Lasinio model (NJL)
[21,22,33–35], and the functional renormalization group
(FRG) [24,36,37].
Besides the traditional methods, the discovery of the

famous anti–de Sitter/conformal field theory (AdS=CFT)
correspondence [38–40] offers a powerful tool for inves-
tigating strong coupling problems of QCD. In the frame-
work of the bottom-up approach, several holographic QCD
(HQCD) models have been constructed, e.g., the hard-wall
model [41] and soft-wall AdS=QCD model [42] for chiral
dynamics and hadronic physics, the Einstein-Maxwell-
dilaton system [43–46] for thermodynamics, the light-front
holographic QCD model [47] for hadronic physics, and
so on.
Among those HQCD models, we take the soft-wall

model as the starting point of this work since it can give
a good description of hadronic physics [48–58] as well as
spontaneous chiral symmetry breaking [59,60]. Furthe-
rmore, the mass plane phase diagram from the soft-wall
model [61,62] is shown to be qualitatively consistent with
the so-called “Columbia plot” [63,64]. Since the model is
constructed based on symmetry, it is quite direct to
introduce the conserved current. Therefore, it is also
convenient to extend the study to many different conditions,
such as finite baryon/isospin densities [65–67], rotating
mediums [68], and nonequilibrium phase transitions [69]. In
addition, the thermal properties as well as the Goldstone
nature of pions have been systematically investigated
in [70–73].
By introducing the magnetic field in the holographic

models, it is possible to study the properties of QCD in the
hot magnetized medium [74–77]. In Ref. [74], the authors
obtained the IMC effect on chiral condensation and its
pseudocritical temperature Tpc. Additionally, the results
from Ref. [77] showed that chiral condensation not only
exhibits an IMC effect near Tpc but also demonstrates an

MC effect at low temperatures. However, those studies are
based on perturbative expansion solutions, and the mag-
netic field strength cannot be extended to large values.
Furthermore, those studies only analyze the order param-
eter, and the properties about the Goldstone bosons are
absent. Therefore, in this work, we will try to solve the full
magnetized background and study the thermal pions under
this background. Furthermore, the variation of the chiral
phase transition temperature Tpc with B in soft-wall
AdS=QCD models differs from the lattice simulation
results [4,18]. Hence, we posit that those soft-wall
AdS=QCD models should undergo alterations when intro-
ducing the magnetic field. Inspired by the magnetic field-
dependent four-fermion coupling constant GðBÞ intro-
duced in Ref. [22], we will modify the 5D mass of the
soft-wall AdS=QCD model by introducing a polynomial
gðBÞ, which is considered an effective coupling between
the dilaton and the scalar field, or, in some sense, the
coupling between the gluonic and chiral sectors. We will fit
such an effective coupling by comparing the data of TpcðBÞ
with the lattice simulation [4]. After fitting the model, we
will systematically study the thermal properties of the
neutral pions.
This paper is organized into the following sections. In

Sec. II, after introducing the Einstein-Maxwell system
with the backreaction of the magnetic field, we solve the
Einstein-Maxwell equation and obtain the complete
numerical background solutions with different temper-
atures T and magnetic field strength B. In Sec. III, we
modify the expression of the 5D massm5 in the AdS=QCD
model by fitting the pseudocritical temperatures TpcðBÞ
from the lattice simulation [4]. Then, we numerically
obtain the chiral condensates with different conditions
of T and B and study their magnetic catalysis and inverse
magnetic catalysis effects. In Sec. IV, we extract and
investigate the longitudinal screening masses mscr;k, trans-
verse screening masses mscr;⊥, pole masses mpole, and
thermal widths Γ=2 of the neutral pion under finite
temperature and magnetic field from the lattice-improved
AdS=QCD model. Finally, in Sec. V, we give a summary
and discussion.

II. GRAVITY BACKGROUND

For the gravity background, the authors in Ref. [74]
employed an asymptotic expansion method to obtain an
approximate solution of the Einstein-Maxwell (EM) sys-
tem. However, the result is only reasonable under the
condition B ≪ T2.1 To extend to the large B region, we will
introduce the “shooting method” [71,78] to solve the EM
system and obtain its full solution.
To introduce the magnetic field, we follow the strategy in

Refs. [74,79,80]. The backreaction of the magnetic field is

1In our study, the physical dimension of B is GeV2.

WEN, CAO, CHAO, and LIU PHYS. REV. D 109, 086021 (2024)

086021-2



considered in the EM system. Its action in five-dimensional
space-time is

SB ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R − FMNFMN þ 12

L2

�
; ð1Þ

with R the scalar curvature, L the AdS radius, and G5 the
5D Newton constant. The notations M, N take values of
0; 1;…; 4. The g is the metric determinant of gMN . The FMN
stands for a Uð1Þ gauge field. The matter part, described by
the soft-wall AdS=QCD model, is considered as a probe on
this background. Thus, the backreaction from the matter
part is neglected.

A. EOMs within the EM system

Within the EM system, the equations of motion (EOMs)
are

EMN −
6

L2
gMN −

�
gIJFIMFJN −

1

4
FIJFIJgMN

�
¼ 0; ð2aÞ

∇MFMN ¼ 0; ð2bÞ

with EMN the Einstein tensor, RMN the Ricci tensor, and R
the Ricci scalar: EMN ¼ RMN − R

2
gMN . To satisfy the field

equation for FMN in Eq. (2b), the configuration of a
constant magnetic field could be taken as

F ¼ B
L
dx1 ∧ dx2; ð3Þ

where L is set to unity in this work, L ¼ 1.
In this 5D coordinate system, we have ðt; x1; x2; x3; zÞ, in

which the coordinate z corresponds to the radial holographic
direction. For the magnetic field along the x3 axis, one has
Bx3 ¼ Fx1x2 ¼ ∂x1Ax2 − ∂x2Ax1 ¼ B, where the bulk gauge
potential is defined as Aμðx1; zÞ ¼ 1

2
Bðx1δx2μ − x2δ

x1
μ Þ. As a

result, the metric ansatz could be chosen as

ds2¼ e2AðzÞ
�
−fdt2þ 1

f
dz2þhðdx21þdx22Þþqdx23

�
; ð4Þ

with AðzÞ ¼ − lnðzÞ. As our study focuses on the thermal
properties in the equilibrium state, the f, h, and q are
functions only with respect to the variable z.
Under the given metric ansatz in Eq. (4), the EOM in

Eq. (2a) reduces to the following forms:

f00 þ f0
�
h0

3h
þ q0

6q
−
3

z

�
þ f

�
−
2h0q0

3hq
þ 2h0

hz
−

h02

3h2
þ q0

qz

�

−
8B2z2

3h2
¼ 0; ð5aÞ

q00 þq0
�
2f0

3f
þ h0

3h
−
2

z

�
þq

�
−
8B2z2

3fh2
−
2f0h0

3fh
þ 2h0

hz
−
h02

3h2

�

−
q02

2q
¼ 0; ð5bÞ

h00 þ h0
�
f0

3f
−

q0

6q
−
1

z

�
þ h

�
q0

qz
−
f0q0

3fq

�
−
h02

3h

þ 4B2z2

3fh
¼ 0; ð5cÞ

together with a constraint equation

f0h0

2fh
þ f0q0

4fq
−
3f0

2fz
−

6

fz2
þ h0q0

2hq
−
3h0

hz
þ h02

4h2
−
3q0

2qz

þ 6

z2
þ B2z2

fh2
¼ 0: ð5dÞ

B. Complete numerical solutions

With a careful analysis of the EOMs in Eqs. (5), one
can find that there are singularities at both z ¼ 0
and z ¼ zh, which result in the difficulties in obtaining
analytical solutions. Nevertheless, we can employ the
numerical algorithm shooting method, as introduced in
Refs. [71,78], to solve these ODEs.
For Eqs. (5), one can obtain the asymptotic expansions

around the ultraviolet (UV) boundary at z ¼ 0,

fðzÞ ¼ 1þ
�
2B2

3h20

�
z4 lnðzÞ þ f4z4 þOðz5Þ; ð6aÞ

qðzÞ ¼ q0 þ
�
2q0B2

3h20

�
z4 lnðzÞ þ q4z4 þOðz5Þ; ð6bÞ

hðzÞ ¼ h0 −
�
B2

3h0

�
z4 lnðzÞ − h0q4

2q0
z4 þOðz5Þ; ð6cÞ

with f4, q0, q4, and h0 the integration constants.
At the horizon z ¼ zh or the infrared (IR) boundary,

in order to get the black hole solution, the condition fðz ¼
zhÞ ¼ 0 must be satisfied. Thus, for the asymptotic expan-
sion of fðzÞ at z ¼ zh, there is no constant term. Near the
horizon, one can derive the asymptotic expansions of
Eqs. (5) as

fðzÞ ¼ fh1ðz − zhÞ þ
1

3z2h

�
5B2zh4

h2h0
þ 3zhfh1 − 6

�

× ðz − zhÞ2 þOðz − zhÞ3; ð7aÞ
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qðzÞ ¼ qh0 þ
2qh0

3fh1h2h0z
2
h

× ð2B2z4h þ 3fh1h2h0zh þ 12h2h0Þðz − zhÞ
þ qh0
9zh4f2h1h

4
h0

½20B4zh8 þ 12B2zh5fh1h2h0

þ 9h4h0ðzhfh1 þ 4Þ2�ðz − zhÞ2 þOðz − zhÞ3; ð7bÞ

hðzÞ ¼ hh0 þ
2

3fh1hh0z2h
× ð−4B2z4h þ 3fh1h2h0zh þ 12h2h0Þðz − zhÞ

þ 1

9zh4f2h1h
3
h0

½8B4zh8 − 24B2zh4h2h0

× ðzhfh1 þ 3Þ þ 9h4h0ðzhfh1 þ 4Þ2�
× ðz − zhÞ2 þOðz − zhÞ3; ð7cÞ

where fh1, qh0, and hh0 are the integration constants.
Physically, when the magnetic field is absent, B ¼ 0, the

metric in Eq. (4) should reduce to

dS2 ¼ L2

z2

�
−fdt2 þ 1

f
dz2 þ dx21 þ dx22 þ dx23

�
: ð8Þ

This change stems from the restoration of isotropy within
the spatial dimensions x1, x2, and x3. From Eq. (8), it
becomes evident that h ¼ q ¼ 1 at B ¼ 0. By considering
the zero magnetic field limit in the asymptotic expansions
of Eq. (6), it is obvious that integral constants q0 and h0
should satisfy q0 ¼ 1 and h0 ¼ 1. Furthermore, the temper-
ature is related to the horizon,

T ¼
���� f

0ðzÞ
4π

����
z¼zh

: ð9Þ

Thus, from Eqs. (7b) and (9), one can find that zh is a
function of B and T (or the temperature-related quan-
tity fh1).
Within this system, considering Eq. (5d), the number of

constraints is reduced to 5. However, considering the
asymptotic expansions of Eqs. (5) at z ¼ 0 and z ¼ zh,
the total amount of involved, unknown, integral constants is
5, including f4 and q4 at the z ¼ 0 boundary, and fh1, qh0,
and hh0 at the horizon.
In mathematics, within this EM system, the integral

constants of the EM system and zh should be clearly
determined by the given values of B and fh1. Thus, in
our solving process, we treat f4, q4, qh0, hh0, and zh as
unknown quantities for any given B and temperature-related
quantity fh1.
To present how the temperature and magnetic field affect

the background metric, we show variation curves of fðzÞ,
qðzÞ, and hðzÞ in Fig. 1. In Figs. 1(a)–1(c), without loss of
generality, we choose that B is fixed at 1 GeV2 as an

example to check the temperature effects with T ≈ 0.008,
0.159, and 0.398 GeV2 in (a)–(c), respectively. We find
that, as the temperature increases, the difference between
qðzÞ and hðzÞ is vanishing, and both of them tend to unity.
Considering the zero magnetic field limit metric in Eq. (4),
this implies that an increase in temperature is beneficial for
restoring the spatial rotation invariance broken by the
magnetic field.2 In Figs. 1(d)–1(f), we show the numerical
results at fixed temperature T ≈ 0.398 GeV to present the
effect of the variation of the magnetic field. We observe that
even at very high temperatures, T ≈ 0.398 GeV, the curves
of qðzÞ and hðzÞ, which almost collapse at small B, become
split as B increases. This indicates that an increase of the
magnetic field enhances the spatial anisotropy. Therefore,
there exists competition between the temperature and
magnetic field for the spatial anisotropy of the background.
On the one hand, increasing the magnetic field enhances the
spatial anisotropy. On the other hand, increased temperature
favors the restoration of spatial asymmetry.
Moreover, as shown in Figs. 1(g)–1(i), at very low fixed

temperature T ≈ 8 MeV, as B increases, qðzÞ and hðzÞ split
while fðzÞ and qðzÞ converge. This suggests that at very
low temperatures and large magnetic field, only slight
differences exist between the temporal direction and the x3
direction. According to the trend, it might be identical in
the x3 direction and the temporal one at T ¼ 0. The physic
in the x3 direction and temporal one satisfy Lorentz
rotation invariance. Moreover, in Ref. [21], it was argued
that when T ¼ 0, B > 0, there exist mpole ¼ mscr;k. This is
consistent with our deduction.
In Fig. 2(a), we show the T and B dependence of zh,

where the magnetic field B is from 0.01 GeV2 to 4 GeV2

and the temperature T is from 0.008 GeV to 0.4 GeV.
Notably, at lower T and B, the value of zh is significantly
large. With increasing T and B, zh undergoes a sharp
decrease. Furthermore, we have a comparison to the
perturbative asymptotic approximation results given in
Ref. [74]. In Fig. 2(b), we present the relative error (RE)
of zh between full solutions and the perturbative asymptotic
one. The comparison shows that the perturbative asymptotic
approximation agrees well with the full solution outcomes
in the region where B ≪ T2. Nevertheless, the deviations
especially emerge in the region with low values of T and
high values of B. Hence, when we study the low-temper-
ature and high magnetic field regime, the full solution is
necessary, and the asymptotic approximation is not suitable.

2In fact, in our calculations, no matter what value the B is fixed
at, the temperature will always promote spatial isotropy. Physi-
cally, in higher temperature regions, the whole system will appear
more chaotic. High temperatures lead to a large number of
inelastic collisions, causing energy and momentum transfer
between various degrees of freedom. Therefore, high temper-
atures are beneficial to “smoothen” the anisotropy brought by the
magnetic field.
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FIG. 2. (a) Horizon boundary zh as a function of temperature T and magnetic field B. (b) Distribution of relative error of zh,
δ ¼ Δ=zh ¼ ðzh − z̃hÞ=zh, with z̃h the perturbation result, between the results from the perturbative asymptotic approximation and the
full solution across the plane of the temperature T and magnetic field B.

FIG. 1. The f, q, and h as functions of z represented by red, blue, and cyan lines, respectively. (a)–(c) Magnetic field B fixed at
1 GeV2, with temperature T fixed at 8, 159, and 398 MeV, respectively. (d)–(f) Temperature T fixed at a high value, T ≈ 398 MeV;
magnetic field B fixed at 0.1, 1, and 4 GeV2, respectively. (h),(i) Temperature T fixed at a low value, T ≈ 8 MeV; magnetic field B fixed
at 0, 0.1, and 2 GeV2, respectively.
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III. IMC AND MC EFFECTS ON CHIRAL
PHASE TRANSITION

After obtaining the full solution for the EM system, we
can explore the chiral phase transition through the order
parameter (the chiral condensation). Among the various
models investigating chiral phase transitions, the soft-wall
model stands out as one of the most effective models.
We investigate the chiral properties based on the soft-
wall model.
In Ref. [74], chiral condensation exhibits noticeable IMC

behavior, and its Tpc decreases with increasing eB. Under
this model, we numerically calculate the full background
solution and chiral condensation. The results indicate
that no MC effect of chiral condensation exists at low
temperatures. However, the LQCD simulations [4,18,23]
suggest that chiral condensation should exhibit distinct
MC and IMC behaviors at low temperatures and near
Tpc, respectively. The TpcðBÞ monotonously decreases
with the increase of B. Additionally, in the IR-improved
soft-wall AdS=QCD model, the results indicate that the
MC effects of chiral condensation at low temperatures are
very weak [77]. Therefore, to more consistently describe
the MC and IMC effects, it might be necessary to
incorporate the magnetic field effects within the soft-wall
model. Inspired by Ref. [22], we modify the 5D mass of
the soft-wall AdS=QCD model by introducing a poly-
nomial gðBÞ. The gðBÞ is constrained by the variation of
Tpc with B from lattice simulations [4]. In Ref. [73], they
attempt to consider coupling between the dilaton Φ and
scalar field X. Furthermore, in this work, we further
optimize the AdS=QCD model by introducing a magnetic
field-dependent polynomial gðBÞ into an effective 5D mass
expression.
The soft-wall AdS=QCD model is constructed within

the bottom-up framework [41,42] by considering
the SUðNfÞL × SUðNfÞR gauge symmetry. The action is
expressed as

SM ¼
Z

dz
Z

d4x
ffiffiffi
g

p
e−ΦðzÞTr

�
jDXj2 −m2

5ðzÞjXj2

− λjXj4 − 1

4g25
ðF2

L þ F2
RÞ
�
; ð10Þ

with g the determinant of the metric gMN . Note that
g5 ¼ 2π, which is determined by comparing the large
momentum expansion of the correlator of the vector
current Jaμ ¼ q̄γμtaq in both AdS=QCD and perturbative
QCD [41]. The dilaton profile ΦðzÞ ¼ μ2gz2, with μg the
constant necessary for the Regge behavior of the meson
spectrum [42]. The covariant derivative DM and the field
strength FMN

L;R are defined as DMX ¼ ∂
MX − iAM

L X þ
iXAM

R and FMN
L;R ¼ ∂

MAN
L;R − ∂

NAM
L;R − i½AM

L;R; A
N
L;R�, with

AM
L;R ¼ Aa;M

L;R t
a
L;R. The taL;R (a ¼ 1, 2, 3) is defined as the

generator of SUð2ÞL and SUð2ÞR, respectively, with
M;N ¼ 0, 1, 2, 3, 4. In this work, we only consider the
case of Nf ¼ 2 with equal u and d quark mass,
mq ¼ mu ¼ md.
For the sake of convenience, the gauge field AL=R can

generally be rearranged into the vector field VM ¼ 1
2
ðAM

L þ
AM
R Þ and the axial-vector field AM ¼ 1

2
ðAM

L − AM
R Þ. The

vector field VM corresponds, as dual entities, to the vector
current JVμ . The axial-vector field AM corresponds, as dual
entities, to the axial-vector current JAμ . The accompanying
transformed chiral gauge field strengths are denoted as

FMN
A ¼ 1

2
ðFMN

L − FMN
R Þ

¼ ∂
MAN − ∂

NAM − i½VM; AN � − i½AM; VN �; ð11aÞ

FMN
V ¼ 1

2
ðFMN

L þ FMN
R Þ

¼ ∂
MVN − ∂

NVM − i½VM; AN � − i½AM; VN �: ð11bÞ

Furthermore, the covariant derivative is

DMX ¼ ∂MX − i½VM; X� − ifAM; Xg: ð11cÞ

Considering the coupling between the scalar field X and
the dilaton Φ m2

5ðzÞ effectively leads to the modification
of m5,

m2
5ðzÞ ¼ −3½1þ γ tanhðκΦÞ�; ð12Þ

with γ, κ the free parameters. The leading constant term for
the 5D mass, denoted as m2

5 ¼ −3, can be established
by the AdS=CFT dictionary: m2

5 ¼ ðΔ − pÞðΔþ p − 4Þ,
with the choice of p ¼ 0 and Δ ¼ 3, where Δ represents
the dimension of the dual operator q̄Rq̄L [41].
In Ref. [73], the chiral condensation has slight unphysical

increases in the low temperature region with increasing
temperature, so the model parameters should be adjusted.
Our goal is to achieve the pion mass Mπ ,

3 Mπ ≈
139.6 ðMeVÞ [81], and the saturation chiral condensate
σ, σ ≈ 0.0278 ðGeV3Þ [51]. Details of the new parameters
are provided in Table. I. The selection and adjustment of
parameters involve the following steps. Initially, we

TABLE I. Parameters of the model.

Parameters mq ðGeVÞ μg ðGeVÞ κ γ λ

Value 3.90 × 10−3 0.35 0.85 6 25

3The uppercaseMπ in this article specifically denotes the mass
of the π meson under conditions of zero temperature, zero
density, and zero magnetic field strength.
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adjusted the value of μg, a parameter associated with the
Regge behavior of the meson spectrum, and fixed it at
0.35 GeV. Subsequently, we adjusted the magnitude of λ,
which directly influenced the value of the chiral con-
densation σ, setting it to 25. Finally, we determined the
values of κ and γ. In our parameter tuning, we found that
the values of κ and γ not only affect the Tpc but also impact
the magnitude of σ. In the absence of an external magnetic
field, given that the pseudocritical temperature Tpc should
lie between 150 and 170 MeV, we fit κ ¼ 0.85 and γ ¼ 6.
Additionally, as the quark mass mq is positively correlated
with Mπ , we fit mq to 3.9 MeV. The computed result
with these parameters yields the pseudocritical temper-
ature TpcðB ¼ 0Þ ≈ 161 MeV.
Furthermore, during the parameter adjustment process,

we observed that changing the coefficient of the dilation
functionΦðzÞ in Eq. (12) alone could affect both the values
of σ and Tpc. Therefore, when introducing the magnetic
field-dependent function gðBÞ into the effective 5D mass in
Eq. (12), we have κ þ gðBÞ as the coefficient of the dilation
ΦðzÞ. Finally, to make the coefficient dimensionless, we
have reduced B as B=μ2g. After incorporating the magnetic
field-dependent polynomial gðBÞ, the expression for the
effective 5D mass becomes

m2
5ðzÞ ¼ −3f1þ γ tanh½ðκ þ gðBÞÞΦ�g; ð13Þ

where

gðBÞ ¼
X
i

ηi

�
B
μ2g

�
αi
; ð14Þ

with αi ¼ 2, 4, 6, 8, 10. Since the magnitude of chiral
condensation should not be impacted by the direction of the
magnetic field, we set all αi to be even. In order to ensure
that the variation of TpcðBÞ falls entirely within the error
band of the LQCD result, we adjust gðBÞ based on the Tpc

data points extracted from LQCD simulations [4].
Furthermore, we observe that it is different in Mπ and
TpcðB ¼ 0Þ for different effective models. Thus, we opt to
use a dimensionless quantity B=M2

π to measure the strength
of the magnetic field. We also use the normalized pseu-
docritical temperature TpcðBÞ=TpcðB ¼ 0Þ to assess the
variation in the pseudocritical temperature with B. Finally,
we obtain the fitted coefficients as shown in Table II.
In the Nf ¼ 2 case, with equal u and d quark mass,

mq ¼ mu ¼ md, the bulk scalar field X can be expressed as

X ¼
�
χ

2
þ S

�
I2e2iπ

ata ; ð15Þ

where χðzÞ is linked to the vacuum expectation value
(VEV) of X and I2 represents the 2 × 2 identity matrix.
Therefore, one can derive the EOM for χ as

χ00 þ
�
3A0 −Φ0 þ f0

f
þ h0

h
þ q0

2q

�
χ0

−
e2Aχðλχ2 þ 2m2

5Þ
2f

¼ 0: ð16Þ

The EOM for χ in Eq. (16) is a nonlinear second-order
differential equation with singularities at both z ¼ 0 and
z ¼ zh, which makes analytical solutions difficult to attain.
Nevertheless, we can numerically solve it with an algorithm
(shooting method) as utilized in Ref. [71]. Within this
algorithm, by considering Eqs. (II A), we can derive the
asymptotic expansions of χ at both the UV and IR
boundaries as

χðz→ 0Þ ¼mqζzþ
σ

ζ
zþ 1

4
mqζ½−6γμ2ggðBÞ

þ ð4− 6γκÞμ2g þ λζ2m2
q�z3 lnðzÞþOðz4Þ; ð17aÞ

χðz → zhÞ ¼ χzh0 þ
1

2fh1z2h
χzh0fλχ2zh0 − 6 − 6γ

× tanh½ðκ þ gðBÞÞμ2gz2h�gðz − zhÞ
þOðz − zhÞ2; ð17bÞ

with integration constantsmq, σ, and χzh0. According to the
holographic dictionary, the two integral constants, mq and
σ, correspond to the quark mass and the chiral condensate
σ ≡ hq̄qi, respectively. Furthermore, the normalization
constant ζ takes the value

ffiffiffiffiffiffi
Nc

p
=2π with Nc ¼ 3, which

is determined by matching to 4D QCD [82].
In Fig. 3, we show the variation of chiral condensation

with T (or B) when B (or T) is fixed. In Fig. 3(a), under
different fixed B and varying T, the chiral phase transition
exhibits crossover behavior. The results suggest that chiral
condensation displays evident MC effects at low temper-
atures and significant IMC effects near TpcðBÞ. From
Fig. 3(b), we observe that chiral condensation exhibits
MC effects at low temperature. As the temperature
increases to 140 MeV, chiral condensation initially shows
MC behavior. Then, when the magnetic field strength B is
at B≳ 34 M2

π , the behavior of the chiral condensation
transition shifts from the MC to the IMC effect. Finally,
when the temperature reaches 162MeV, chiral condensation
completely manifests IMC effects. These findings are
qualitatively consistent with lattice simulation results [4,18].
On the other hand, when the temperature is atT ≳ 201 MeV,

TABLE II. Coefficients of ηi.

η1 η2 η3 η4 η5

0.021 −8.65 × 10−4 2.02 × 10−5 −2.37 × 10−7 1.10 × 10−9
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the variation of Δσ is almost decoupled from the mag-
netic field.
As shown in Fig. 4, we have also derived the results

for the normalized pseudocritical temperature TpcðBÞ=
Tpcð0Þ. The pseudocritical temperature is defined as
ð∂2σ=∂T2ÞjT¼Tpc

¼ 0. We can observe that the normalized
TpcðBÞ results fall entirely within the error band of lattice
simulations [4]. Additionally, we extracted results of Tpc

from the lattice-improved NJL model [22] for comparison.

IV. CORRELATION FUNCTIONS AND MASSES
OF NEUTRAL PION AT FINITE TEMPERATURE

AND MAGNETIC FIELD

In the previous section, we constructed the lattice-
improved soft-wall AdS=QCD model. We used this model
to study the chiral condensate and the chiral phase
transition. In this section, we focus on the calculation of

the screening masses mscr, the pole masses mpole, and the
thermal widths Γ of the neutral pion π0 under different
magnetic field strengths B and temperatures T.
The screening massmscr describes the exponential decay

of the spatial correlator Gðx⃗Þ ∼ e−mscr jx⃗j=jx⃗j. In other words,
it is the pole in the momentum space, while the correlation
function has the following form near the pole:

Gð0; kÞ ∼ 1

k2 þm2
scr

: ð18Þ

Besides the spatial components, the information about the
temporal component is also important to obtain a full
understanding of the mesonic correlation. It is described by
the pole mass and the thermal width. These both appear in
the pole in the complex frequency plane, near which the
temporal correlation function takes the form

Gðk0; 0Þ ∼
1

k0 − ðmpole − iΓ=2Þ : ð19Þ

Here, we take the four-vector k as k ¼ ðk0; kÞ, and k0; k
represent the frequency and the spatial momentum,
respectively.
Thus, to obtain those quantities, one has to calculate the

correlators. Through the holographic approach, a linkage is
forged between the 4D operator ÔðxÞ and the 5D field
ϕ0ðx; zÞ by equating their partition functions. This meth-
odology stands as a robust means to tackle strong coupling
correlation functions,

hei
R

d4xϕ0ðxÞÔðxÞi ¼ eiS5D½ϕ� jϕðx;z¼0Þ¼ϕ0ðxÞ; ð20Þ

with the field ϕ, which corresponds to the classical solution
of the 5D action S5D. The boundary value ϕðx; z ¼ 0Þ
corresponds to the 4D external source ϕ0ðxÞ [38–40] within
5D space. By taking the second derivative of the action S5D

FIG. 3. (a) Chiral condensation σ as a function of T under different fixed B. The range of B is approximately from 0 to 51.32 M2
π ,

which corresponds to 0 to 1 GeV2 in our model. (b) Δσ ¼ σðB; TÞ − σð0; TÞ as a function of B=M2
π under different fixed T, where the

temperatures T are chosen as 70, 88, 130, 140, 162, and 201 MeV, respectively.

(
(

)
)

FIG. 4. Pseudocritical temperature scaled by its B ¼ 0 value as a
function of B=M2

π . These results compare with those from lattice
simulations [4] and lattice-improved NJL [22]. Given that the
values of Mπ in lattice simulations and the lattice-improved NJL
model are 135 and 138 MeV, respectively, the results have been
scaled accordingly for their respective Mπ in the extracted data.
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with respect to the source ϕ0, the correlator hÔðxÞÔð0Þi
can be calculated [83]. In this way, it is possible to obtain
the poles of the correlation functions and the masses.
However, as mentioned in Ref. [71], the poles can be easily
obtained by solving the 5D equations of motion under
certain boundary conditions. In this way, one can obtain the
screening mass by solving the equations of motion with a
spatial momentum while replacing the spatial momentum
with frequency for pole mass and thermal width. For
details, refer to Ref. [71].
Note that those screening and pole masses are not

independent; they are connected by the dispersion relation.
Generally, within a thermal medium in an external mag-
netic field, the dispersion relation is represented by

k20 ¼ u2⊥k2⊥ þ u2kk
2
k þm2

pole; ð21Þ

where we denote u⊥ ¼ u1 ¼ u2 and uk ¼ u3 the velocities
of transverse and longitudinal directions, respectively.
The transverse directions are in the x1, x2 directions, and
the longitudinal direction is in the x3 direction, along the
magnetic field. Note that k⊥ and kk are the transverse and
longitudinal momenta, respectively. Furthermore, ui repre-
sents the pion sound velocity in the xi direction. Therefore,
mscr;⊥ and mscr;k can be defined in terms of mpole and the
velocity of sound in that direction, as mscr;⊥ ¼ mpole

u⊥ and

mscr;k ¼ mpole

uk
. As discussed in Refs. [21,33], effective ther-

mal masses will lead to u⊥ < 1 and uk < 1. Note also that
transversal thermal motion is not as strong as longitudinal
motion due to the dimensional reduction of the magnetic
field, giving u⊥ < uk. Finally, we have mscr;⊥ >
mscr;k > mpole.
After the above preparation, in the following subsections

we will derive the EOMs and their asymptotic expansions
in the pseudoscalar channel. Then, we will extract the
masses and present the numerical results of mscr;⊥, mscr;k,
and mpole. In addition, u⊥=uk will be examined as it serves
to measure the anisotropy induced by the magnetic field.

A. EOMs and their asymptotic expansion
of the pseudoscalar channel

As the scalar meson fields Sðχ; zÞ and πðχ; zÞ are
decoupled, Sðχ; zÞ can be set to zero. The expression of
X in Eq. (15) is reduced to

X ¼ 1

2
χI2e2iπ

ata : ð22Þ

Moreover, the interaction between the pion field and the
longitudinal component φi of the axial-vector field ai

occurs exclusively in the pseudoscalar channel. To simplify
our analysis, we will adopt the following decomposition of
the gauge field, for convenience:

aiμ ¼ aT;iμ þ ∂μφ
i; ð23aÞ

∂
μaT;iμ ¼ 0: ð23bÞ

When obtaining the EOMs within our model, we treat
the π0 meson as a perturbation and therefore neglect terms
beyond quadratic order. Additionally, we adopt Az ¼ 0. By
combining Eqs. (10), (22), and (23) and taking the Fourier
transformation,

πaðx; zÞ ¼ 1

ð2πÞ4
Z

dk4e−ikxπaðk; zÞ; ð24aÞ

φaðx; zÞ ¼ 1

ð2πÞ4
Z

dk4e−ikxφaðk; zÞ; ð24bÞ

we derive the EOMs governing the behavior of the neutral
π0 meson and φ,

∂zð
ffiffiffi
g

p
e−Φgzzχ2∂zπÞ − k2μ

ffiffiffi
g

p
e−Φgμμχ2ðπ − φÞ ¼ 0; ð25aÞ

∂zð
ffiffiffi
g

p
e−Φgzzgμμ∂zφÞ − g25

ffiffiffi
g

p
e−Φgμμχ2ðπ − φÞ ¼ 0; ð25bÞ

where kμ represents the momenta of the neutral pion meson
in the temporal and different spatial directions with
μ ¼ t; x1; x2; x3.
From Eqs. (25), since the x1 and x2 directions are

perpendicular to the magnetic field, the x1 and x2 (trans-
verse) directions possess isotropic properties. Clearly, for
the spatial x1 and x2 directions, the system of differential
equations is

φ00 þ
�
A0 þ f0

f
þ q0

2q
−Φ0

�
φ0

þ e2Ag25χ
2

f
ðπ − φÞ ¼ 0; ð26aÞ

π00 þ
�
3A0 þ f0

f
þ q0

2q
þ h0

h
−Φ0 þ 2χ0

χ

�
π0

−
k21
fh

ðπ − φÞ ¼ 0: ð26bÞ

Similarly, in the x3 spatial (longitudinal) direction, the
system of differential equations for π and φ is

φ00 þ
�
A0 þ f0

f
−

q0

2q
þ h0

h
−Φ0

�
φ0

þ e2Ag25χ
2

f
ðπ − φÞ ¼ 0; ð27aÞ

NEUTRAL PION MASSES WITHIN A HOT AND MAGNETIZED … PHYS. REV. D 109, 086021 (2024)

086021-9



π00 þ
�
3A0 þ f0

f
þ q0

2q
þ h0

h
−Φ0 þ 2χ0

χ

�
π0

−
k23
fq

ðπ − φÞ ¼ 0: ð27bÞ

In the temporal direction, the system of differential
equations for π and φ is

φ00 þ
�
A0 þ h0

h
þ q0

2q
−Φ0

�
φ0

þ e2Ag25χ
2

f
ðπ − φÞ ¼ 0; ð28aÞ

π00 þ
�
3A0 þ f0

f
þ q0

2q
þ h0

h
−Φ0 þ 2χ0

χ

�
π0

þ k20
f2

ðπ − φÞ ¼ 0: ð28bÞ

To solve Eqs. (26)–(28), we can also adopt the shooting
method. This numerical approach enables us to tackle these
differential equations effectively. In our numerical solution
process, we start by establishing the asymptotic expansions
of the equations at their respective boundaries z ¼ 0 and
z ¼ zh.

4 At the horizon, one should consider the incoming
wave condition [84]. For the spatial direction along x1 and
x2, the asymptotic expansion of Eqs. (26) at both bounda-
ries can be described as

πðz → 0Þ ¼ πb0 þ φ0 þ π2z2 þ
πb0k21
2h0

z2 lnðzÞ þOðz3Þ;

ð29aÞ

φðz → 0Þ ¼ φ0 þ φ2z2 −
1

2
g25m

2
qζ

2πb0z2 lnðzÞ þOðz3Þ;
ð29bÞ

πðz→ zhÞ¼ πh0þ
πh0−φh0

fh1hh0
k21ðz−zhÞþOðz−zhÞ2; ð29cÞ

φðz→ zhÞ ¼ φh0 þ
φh0 − πh0
fh1z2h

g25χ
2
zh0ðz− zhÞ þOðz− zhÞ2;

ð29dÞ

where πb0, φ0, π2, and φ2 are the integration constants for
the UV boundary, and πh0 and φh0 are the integration
constants for the horizon.

For the EOMs in the longitudinal direction (x3 direction),
we can obtain the asymptotic expansions of Eqs. (27) at
both boundaries as

πðz → 0Þ ¼ πb0 þ φ0 þ π2z2 þ
πb0k23
2q0

z2 lnðzÞ þOðz3Þ;

ð30aÞ

φðz → 0Þ ¼ φ0 þ φ2z2 −
1

2
g25m

2
qζ

2πb0z2 lnðzÞ þOðz3Þ;
ð30bÞ

πðz → zhÞ ¼ πh0 þ
πh0 − φh0

fh1qh0
k23ðz − zhÞ þOðz − zhÞ2;

ð30cÞ

φðz→ zhÞ ¼ φh0 þ
φh0 − πh0
fh1z2h

g25χ
2
zh0ðz− zhÞ þOðz− zhÞ2;

ð30dÞ

where πb0, φ0, π2, and φ2 are the integration constants for
the UV boundary, and πh0 and φh0 are the integration
constants for the horizon.
Similarly, in the temporal direction, we can obtain the

asymptotic expansion of Eqs. (28) at both boundaries,
given by

πðz → 0Þ ¼ πb0 þ φ0 þ π2z2 −
πb0k20
2

z2 lnðzÞ þOðz3Þ;
ð31aÞ

φðz → 0Þ ¼ φ0 þ φ2z2 −
1

2
g25m

2
qζ

2πb0z2 lnðzÞ þOðz5Þ;
ð31bÞ

πðz → zhÞ ¼ φh0 þ ðz − zhÞ
ik0
fh1 ½πh0 þOðz − zhÞ1�; ð31cÞ

φðz → zhÞ ¼ φh0 þ ðz − zhÞ
ik0
fh1

×

�
ig25πh0fh1χ

2
zh0

zh2ktðfh1 þ iktÞ
ðz − zhÞ

þOðz − zhÞ2
	
: ð31dÞ

The πb0, φ0, π2, and φ2 are the integration constants for the
UV boundary, and φh0 and πh0 are the integration constants
for the horizon.
As explained in Ref. [72], due to the presence of the term

ðπ − φÞ in Eqs. (25), if one makes a transformation
assuming πc ¼ π þ c and φc ¼ φþ c with c a nonzero
constant, one finds that the solution is still available.
Consequently, we can take the integration constant φ0 as

4Because the metric functions and χ exist in Eqs. (26)–(28),
when seeking their asymptotic expansions at the UV and IR
boundaries, we must also take into account the asymptotic
expansions of Eqs. (5) and (16) at the UV and IR regimes,
respectively.
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an extraneous free parameter. For convenience, we let
φ0 ¼ 0. Additionally, due to the linear nature of Eqs. (25),
for the integral constants πh0 at the IR boundary, we can set
it to unity.
With the asymptotic expansion solutions, we can use the

shooting method to numerically solve the differential
system of equations (25) for π and φ. Because of the
second-order differential equations, one should match the
function’s values and its first-order derivatives. Therefore,
there are four constraints. However, as per the analysis
presented above, the integration constants that we need to
solve are πb0 π2, φ2, φh0, and ki for each direction.
However, physically analyzing the solutions of the differ-
ential equations and the two-point retarded correlator
allows us to determine another integration constant, πb0,
for each direction, which will be explored and discussed in
the subsequent subsections.

B. Numerical results of screening masses
of the neutral pion

In this subsection, we will proceed to numerically solve
the EOMs for π and φ, Eqs. (26) and (27). Then, we will
show the transverse and longitudinal screening masses of
the neutral pion.
Following the holographic dictionary, πb0, as shown in the

asymptotic expansions in Eqs. (29) and (30), is interpreted as
the external source Jπ . In fact, considering the spatial
correlator in Eq. (18), the desired value of mscr;⊥ or mscr;k
for the neutral pion meson is situated at the pole of the
Green’s function, representing its singularities. Conseq-
uently, at the UV boundary, the integral constants πb0 in
the asymptotic expansion can be set to zero [72,73]. Thus,
mscr;⊥ and mscr;k are the imaginary parts of k1 and k3.
After numerically solving the EOMs of π and φ in

different directions by combining Eqs. (II A) and (16), we

show the solution of the screening mass of the neutral pion
in Figs. 5 and 6.
The behavior of the screening masses with respect to T at

different fixed B is shown in Fig. 5. At low temperature,
mscr;k and mscr;⊥ are both slightly affected by T. As shown
in the inset, mscr;k and mscr;⊥ show decreasing and increas-
ing behaviors with B in the low temperature region. In the
critical region, close to TpcðBÞ, both screening masses
suddenly increase. As the temperature increases, the two
screening masses are characterized by the linear thermal
mass and tend to be the same for different B at extremely
high temperatures.
In Fig. 6, we plot the normalized screening mass of

neutral pion mesons with B at different fixed T. As shown,
the normalized screening masses (mscr;k and mscr;⊥), either
at low ðT ¼ 70Þ MeV or at higher temperatures (T ¼ 212
and 398 MeV), depend slightly on B, which corresponds
to the main properties of a neutral particle. More precisely,
at T ¼ 70 MeV, mscr;k decrease with increasing B, but
mscr;⊥ increase with increasing B. At T ¼ 212 MeV, mscr;k
first decreases and then starts to increase as B grows.
They both always increase with B when the temper-
ature is T < 398 MeV. At a higher given temperature,
T ¼ 398 MeV, mscr;k again decreases with B, and the
decrease is very small. This is in agreement with the lattice
result [23]. However, at a certain temperature where T ¼
158 MeV near TpcðBÞ, the normalized screening masses
increase significantly with B, which can be understood as
the magnetic dependence being enhanced by the critical
fluctuation.
From the energy dispersion relation in Eq. (21), it is

known that u⊥=uk ¼ mscr;k=mscr;⊥. In Fig. 7(a), we present
the T dependence of the ratio u⊥=uk at different eB. For
finite eB, u⊥=uk is almost independent of temperature at
low T. As the temperature increases to near TpcðBÞ, u⊥=uk

FIG. 5. Themscr;k andmscr;⊥ as a function of T under different fixed B, respectively. The fixed magnetic field B is about 0, 5.56, 21.04,
36.44, and 51.32M2

π , which corresponds to 0, 0.11, 0.41, 0.71, and 1 GeV2, respectively, in our model. The inset in (a) and (b) is a zoom
for the range T ∈ ½0.05; 0.14� GeV. For B ¼ 0, 5.56, 21.04, 36.44, and 51.32 M2

π , their corresponding Tpc of the chiral phase transition
are 161.0, 160.2, 156.0, 146.5, and 138.8 MeV, respectively.
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shows a nonmonotonic bump, and the bump is more
obvious as eB increases. When the temperature is
T > TpcðBÞ, all curves increase with increasing T. When
T ≫ TpcðBÞ, all curves approach 1. Mathematically,
increasing T will cause both qðzÞ and hðzÞ to approach
1, as shown in Sec. II B; then, we find that Eq. (26) is
almost the same as Eq. (27). This indicates that in all three
spatial dimensions, the thermal fluctuations dominate over
the anisotropy induced by the magnetic field. Furthermore,
in Fig. 7(b), we study the B dependence of the ratio u⊥=uk.
The ratio u⊥=uk decreases with increasing B, which is the
consequence of the decoupling of the transverse dimension
in the strong limit of the magnetic field. Again, in the
region of critical temperature, the curve decays faster with
B, as expected, as shown by the orange line.

C. Numerical results of pole mass and thermal
widths of the neutral pion

In this subsection, we present the behavior of the pole
mass mpole and thermal width Γ=2 of the neutral pion
meson at given T and B.
For asymptotic expansion in Eq. (31), according to the

holographic dictionary, the integration constant πb0 is
understood to correspond to the external sources denoted
as Jπ . From the temporal correlator, Eq. (19), we know that
the complex frequencies k0 precisely lie in the location of
the poles in the Green’s function. Evidently, this corre-
sponds exactly to the position of singularities. Thus, for the
integration constant πb0, its value must be zero [72,73].
Hence, taking into account the analysis from Sec. IVA, we
have already determined that φ0 ¼ 0, πb0 ¼ 0, and

FIG. 7. (a) Ratio of sound velocity u⊥=uk as a function of T under different fixed B. The range of B is approximately from 0 to 51.32
M2

π , which corresponds to 0 to 1 GeV2 in our model. (b) Ratio of sound velocity u⊥=uk as a function of B=M2
π under different fixed T,

where the temperatures T are chosen as 50, 150, 201, 251, and 398MeV, respectively. For B ¼ 0, 10.78, 21.04, 31.31, and 51.32M2
π , the

corresponding Tpc of the chiral phase transition are 161.0, 158.7, 156.1, 150.2, and 138.8 MeV, respectively. Furthermore, we have
extracted results from the lattice-improved NJL model [22], represented by dots in the graph. The displayed results from the lattice-
improved NJL model have been scaled according to Mπ of the model, Mπ ¼ 138 MeV.

FIG. 6. Normalized screening mass, mscrðB; TÞ=mscrð0; TÞ, as a function of B=M2
π under different fixed T, where the temperatures T

are chosen as 70, 158, 212, and 398 MeV, respectively. Panels (a) and (b) show normalized screening masses in the longitudinal and
transverse screening masses, respectively.
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πh0 ¼ 1. Similarly, we employ the shooting method to
numerically solve the differential equations (28). Thus, the
mpole and thermal width are the real and imaginary parts of
k0, respectively.
In Fig. 8, we study the temperature dependence of mpole

and thermal widths Γ=2 of the neutral pion meson under
different fixed B. From Fig. 8(a), mpole decreases with
temperature and goes to zero near Tpc. On the contrary, in
Fig. 8(b), for given eB, the thermal widths (Γ=2) are small
at low temperatures. Then, in the region above the critical
temperature, they increase rapidly with the increase of T.
Since the thermal width is related to the dissociation level,
such curves naively indicate that π0 is a well-behaved
bound state at low T and becomes loose at high T. Indeed,
without B, the corresponding behavior of the real and
imaginary parts of the neutral pion propagator is consistent
with results from LQCD simulations [85] and χPT [86], as
well as holography results [71,72].

In Fig. 9, we have extracted the normalized mpole and
Γ=2 as functions of B=M2

π at different fixed T. Clearly, in
Fig. 9(a), the normalizedmpole decreases with increasing B
at finite temperatures. In vacuum, a similar behavior has
already been found in lattice simulations [87] and studied
by model calculations [88–90]. Meanwhile, in Fig. 9(b),
we observe that when T ≲ TpcðBÞ, Γ=2 exhibits strong
dependence on the magnetic field and increases with B.
When T ≳ TpcðBÞ, Γ=2 is slightly affected by the magnetic
field, and the thermal width is almost controlled by the
magnitude of the temperatures. We conclude that the
magnetic field is more involved in the thermal effects
below than above the critical temperature; i.e., the temper-
ature and magnetic field are mostly entangled at moderate
T. Moreover, at high temperature, T ≫ TpcðBÞ, Γ=2
decreases with increasing B. It is interesting to note that,
at high temperature, the behavior of Γ=2 is similar
to mscr;k.

FIG. 9. Normalized mpole and normalized Γ=2 as a function of B=M2
π under different fixed T, where the temperatures T are chosen as

50, 80, 105, and 125 MeV, and 120, 140, 169, 185, 205, and 299 MeV respectively.

FIG. 8. Illustration of mpole and Γ=2 as a function of T under different fixed B. The selection of B is about 0, 15.91,
31.31, 41.57, and 51.32 M2

π , which corresponds to 0, 0.51, 0.81, and 1 GeV2, respectively, in our model. The inset in (b) is a
zoom for the range T ∈ ½0.05; 0.14� GeV.
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V. CONCLUSION AND DISCUSSION

In this work, we mainly investigate the thermal
properties of neutral pions within a hot and magnetized
medium, including their screening masses, pole masses,
and thermal widths, by using a lattice-improved soft-wall
AdS=QCD model.
We introduce the magnetic field within the Einstein-

Maxwell holographic model following Refs. [74,79,80].
By numerically solving the equations of motion, we obtain
the full solutions with constant magnetic field. Compared
with the expanding solutions in Refs. [74,79,80], the full
solutions turn out to be valid in a wider range of temper-
ature and magnetic field. Based on those numerical
solutions, we consider the chiral dynamics in the soft-wall
AdS=QCD model. By considering an effective coupling
between the dilaton field and the flavor sector and intro-
ducing a magnetic field-dependent coupling function gðBÞ,
which is fitted by the results for TpcðBÞ from lattice
simulations [4], we successfully capture the MC effect
of chiral condensation at low temperatures and the IMC
effect near the chiral transition temperature TpcðBÞ. It is
worth mentioning that a better fitting of the chiral transition
temperature TpcðBÞ has been obtained, and all the other
qualitative behaviors are in good agreement with the lattice
simulation results [18], which shows a good description of
the chiral phase transition from such an effective holo-
graphic QCD model.
Then, we study the thermal properties of the neutral pion,

which is still the Goldstone boson of the chiral symmetry
breaking even within a magnetic field. The temperature and
magnetic field dependence of the screening masses mscr;k
and mscr;⊥, characterizing the mesonic correlations in the
perpendicular and vertical directions, respectively, are
extracted. If one fixes the magnetic field, both mscr;k and
mscr;⊥ are slightly affected by T at low temperature. In the
temperature region close to transition temperatures TpcðBÞ,
the screening masses significantly increase. Such enhanced
behavior shows the connection between the screening
masses and the chiral phase transition. After the phase
transition, the mesons are not tightly bound, and the hot and
magnetized medium starts imposing a strong impact on
their properties. Then, when the temperature increases
further, the two screening masses are shown to increase
linearly with T and tend to be the same for different given B
at extremely high temperatures. Those results are consistent
with the results from effective models like NJL, confirming
the effectiveness of the soft-wall holographic description on
chiral dynamics.
Furthermore, we fix the temperature and study the B

dependence of screening masses. Roughly speaking, the
screening masses do not change much below Tpc. This is
reasonable since the neutral pions from our holographic
model are still tightly bound states and, as neutral particles,
their properties would not be changed significantly by the

magnetic field. However, if we look at the results carefully,
we find that at low temperature, mscr;k decreases as B
grows, while mscr;⊥ increases, showing an anisotropic
effect of the magnetic field at low temperature. Such a
qualitative behavior can also be found from the NJL model
calculation [22]. Then, when the temperature is taken to be
near Tpc, both mscr;k andmscr;⊥ increase with B. In the high
temperature region, mscr;⊥ still increases as B grows, but
mscr;k again decreases as B increases. It is worth mention-
ing that a similar behavior can be seen in the lattice
study [23]. Moreover, we also study the ratio u⊥=uk. When
T ≫ TpcðBÞ, all the curves approach 1. This indicates that
the difference between u⊥ and uk is vanishing. The ratio
u⊥=uk decreases with the increase of B. This indicates the
destruction of spatial symmetry by the magnetic field. We
would like to emphasize that by simply fitting the data of
TpcðBÞ from lattice simulations, all the qualitative behav-
iors for the pion properties can be consistent with lattice
simulations simultaneously. In some sense, this confirms
the effectiveness of the holographic QCD method.
The screening mass depicts the spatial effect, and we have

seen that it can be well described by the holographic
method. As for the temporal effect on the pionic sector,
there are still not many data from lattice simulations.
However, the extension to the holographic method is quite
direct. We can obtain the poles in the complex frequency
plane and get the pole mass mpole and the thermal widths
Γ=2 from their real and imaginary parts. If we fix B, we find
that mpole decreases with temperature and goes to zero near
Tpc, while the thermal widths Γ=2 increase monotonically
with increasing T. It is interesting to see that the pole mass
decreases below Tpc, which is consistent with the analysis
from the scaling law in the finite temperature chiral
perturbation theory in [91]. In addition, it is consistent with
the lattice study in [85], in which the masses of the pions are
taken slightly higher than their physical values. Finally, at
different fixed temperatures, mpole monotonically decreases
with B up to 1 GeV2. This behavior is qualitatively
consistent with the lattice-improved NJL study in [22]
while it differs from the NJL calculation in Ref. [35], in
which mpole decreases when B < 0.8 GeV2 and increases
when B > 0.8 GeV2. Being similar to the behavior of
mscr;k, we can also see that the thermal widths of the π0

slightly decrease as B grows above the critical temperature.
In this work, we find that the thermal properties of
magnetized pions are mainly determined by the temperature
itself at high T. These are preliminary results of the
dependence on the magnetic field since such a weak
dependence would be easily washed out by other effects,
for example, the backaction from the metric, and a full
calculation will be required in future work.
In the present study, we see that by fitting our holo-

graphic model using the condensation data from the lattice,
the model can capture most of the qualitative behaviors,
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especially for the thermal properties of pions. Because of
the limitation from our current numerical techniques, we
cannot compare the zero temperature behavior of the pole
masses under the magnetic field or check the main differ-
ence between our results and the NJL studies in Ref. [35].
We will leave this to future work. Furthermore, the recent
LQCD simulation results indicate that within the B range of
approximately 4 to 9 GeV2, chiral condensation switches
from a crossover to first order at a critical endpoint located
in this range [92]. It is also interesting to extend our study to
the stronger magnetic field case.
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