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In this work we propose improved holographic hard wall (HW) models by the inclusion of anomalous
dimensions in the dual operators that describe glueballs inspired by the AdS/CFT correspondence. The
anomalous dimensions come from well known semiclassical gauge/string duality analysis showing a
dependence with the logarithm of spin S of the boundary states. We show that these logarithm anomalous
dimensions of the high spin operators combined with the usual HW model allow us to match the pomeron
trajectory and give glueball masses that are better than that of the original HW and soft wall models in
comparison with lattice data. We also build up other anomalous HW models considering that the logarithm
anomalous dimensions can be approximated by a truncated series of odd powers of the differenceffiffiffi
S

p
− 1=

ffiffiffi
S

p
. These models also fit the pomeron trajectory and produce good glueball masses. Then, we

consider an anomalous dimension that is proportional to
ffiffiffi
S

p
, providing reasonable results. Finally, we

propose an asymptotic linear anomalous HW model that effective dimensions for high spins operators are

of the form Δ ¼ a
ffiffiffi
S

p þ b, where a and b are constants to be fixed by comparison with the soft pomeron
trajectory. In this last model, the Regge trajectory is asymptotically linear even for very high spins
(J ∼ 100) matching the soft pomeron trajectory accurately and generates glueball masses with deviations
with respect to the lattice data better than the original HW and soft wall models.

DOI: 10.1103/PhysRevD.109.086019

I. INTRODUCTION

QCD describes strong interactions. At high energies its
coupling is small so that it can be treated perturbatively.
On the other hand, at low energies, theQCDcoupling is large
and nonperturbative methods are needed to tackle phenom-
ena like confinement, phase transitions, and hadronic spec-
tra. This nonperturbative behavior usually requires involved
numerical calculations known as lattice QCD. Alternatively,
low energy QCD may be approached by other methods, as
the solution of Schwinger-Dyson equations, QCD sum rules
and effectivemodels (for a review see, e.g., [1]). In particular,
models inspired by the AdS/CFT correspondence [2–6]
proved useful to describe different aspects of hadrons with
various spins, as glueballs [7–25], as well as for mesons and
baryons, as for instance, in [26–49].
The holographic hard wall (HW) model [14,15] intro-

duces a hard cutoff in the anti–de Sitter (AdS) space, this

way, hadronic masses M are proportional to the zeros of
Bessel functions, JνðzÞ, i.e., proportional to the value of the
argument z where the corresponding Bessel function is
zero. This model was inspired by holographic descriptions
of hard scattering of glueballs [3] and deep inelastic
scattering of hadrons [4], and it is very useful to obtain
hadronic form factors, structure functions, parton distribu-
tion functions, etc. (see, e.g., [50,51]). It is important to
mention that in the HW, the order of the Bessel function ν is
related to the conformal dimension of the dual operator. For
instance, for even spin S glueballs, it reads ν ¼ Sþ 2

[20,28]. Actually, in Ref. [20], approximate linear Regge
trajectories, J ×M2, for light even glueballs were obtained
αðt ¼ M2Þ ¼ ð0.80� 0.40Þ þ ð0.26� 0.02ÞM2 and com-
pared to a reasonable approximation to that of the soft
pomeron αðt ¼ M2Þ ¼ 1.08þ 0.25M2 [52–60]. A similar
analysis within the HW was done for odd spin glueballs
comparing their Regge trajectories with the odderon [22]
and also for other hadrons with different spins [28,29].
Awell-known drawback of theHWmodel is that it leads to

nonlinear Regge trajectories. This problem is overcome by
the soft wall model which has exact linear Regge trajectories
[32]. This works very well for scalar and vector mesons
[32,41] also reproducing masses of light states, but for
glueballs, despite the linear trajectory, the mass spectra
[21] is not in agreement with lattice data or other approaches.
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SeeTables I and II for comparisons. The softwall (SW)model
can be improved in many different ways and in particular if
one considers dynamical corrections and anomalous dimen-
sions the glueball spectra becomes good (see Table II), but it
no longer has linear Regge trajectories [23,24].
In this work, we consider the inclusion of anomalous

dimensions in the conformal dimension of boundary oper-
ators in the holographic HW model. As is well known [1],
anomalous dimensions appear inQCD loop corrections, as in
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) pomeron [53],
aswell as in a semiclassical limit of gauge/string dualities [5].
As we show here, the introduction of anomalous dimensions
in the HW model lead to improvements of the model
allowing to match the Regge trajectory of the pomeron,
αðt ¼ M2Þ ¼ 1.08þ 0.25M2, also obtain good glueball
masses when compared with lattice data, and better than
the usual HWmodel. In particular, we show that considering
the dimension Δ of the spin S operators as Δ ¼ a

ffiffiffi
S

p þ b,
wherea and b are constants, implies asymptotic linear Regge
trajectories associated with even glueballs.
This work is organized as follows. In Sec. II, we briefly

review the AdS/CFT correspondence and the description of
scalar fields in AdS space. In Sec. III we review the main
properties of the original HW model which are relevant to
the discussion of the anomalous HW model introduced in
Sec. IV, with specific expressions for the anomalous
dimensions starting with the logarithm case, truncated
series, as a square root and a linear anomalous HW model.
In Sec. V, we give the basic facts of the pomeron Regge
trajectory and present detailed discussion of the models
introduced in Sec. IV. In Sec. VA, we present three different
fits for the logarithm anomalous dimensions adjusting

the pomeron trajectory and predicting glueball masses
compared with lattice data, and a fourth case fitting glueball
masses and giving the Regge trajectory as an output. In
Sec. V B, we present a series expansion of the logarithm
anomalous dimensions an truncated approximations for it
which we fit with the pomeron trajectory reproducing
glueball masses. In Sec. V C, we present an even simpler
expression for the anomalous dimension as a linear plus a
square root of the spin of the glueball operator targeting the
pomeron trajectory giving very good masses for glueball
when compared with lattice data. In Sec. VI, inspired by the
previous cases, we introduce an asymptotic linear anoma-
lous HWmodel fitting very well the pomeron trajectory and
present good glueball masses compared with lattice results.
Finally, in Sec. VII, we present a summary of our results and
our conclusions.

II. BRIEF REVIEW OF AdS/CFT AND SCALAR
FIELDS IN AdS SPACE

Essentially, the AdS/CFT correspondence [2] is an
equivalence between a superstring theory, formulated in
a ten-dimensional spacetime, the AdS5 × S5, and a super
Yang-Mills field theory with conformal symmetry, which
lives on the boundary of AdS5, the four-dimensional
Minkowski space. Here, AdS5 is the five-dimensional anti–
de Sitter spacetime, and S5 the sphere in five dimensions.
The space generated by this product of two manifolds is
understood as follows: each point of AdS5 is tangential to
the sphere S5.
A conformal theory in d spacetime dimensions is

invariant by a set of transformations characterized by the

TABLE I. Masses in GeV of the Jþþ glueball operators with even spins from lattice data [54–60]. In the last column we present
average values. The numbers in parenthesis represent the uncertainties.

JPC [54] [55] [56] [57] [57] [58] [59] [59] [60] Average

0þþ 1.475(30)(65) 1.73(05)(08) 1.71(05)(08) 1.58(04) 1.48(07) 1.795(60) 1.417(30) 1.498(58) 1.653(26) 1.59(07)
2þþ 2.15(03)(10) 2.400(25)(120) 2.39(03)(12) 2.620(50) 2.363(39) 2.384(67) 2.376(32) 2.38(09)
4þþ 3.64(09)(16) 3.69(08) 3.67(17)
6þþ 4.36(26)(20) 4.36(46)

TABLE II. Masses in GeVof the Jþþ glueball operators with even spins from the original HW, the original SW
(SW1 and SW2), and the DASW models, with the corresponding deviations from the average lattice data presented
in Table I. See the text for details. The masses of the 0þþ state are inserted as inputs for the different models.

JPC HW δHW SW1 δSW1 SW2 δSW2 DASW δDASW

0þþ 1.59 0.0% 1.59 0.0% 2.83 78% 1.56 1.9%
2þþ 2.35 1.3% 1.95 18% 3.46 45% 2.52 5.9%
4þþ 3.08 16% 2.24 39% 4.00 9.0% 3.43 6.5%
6þþ 3.78 13% 2.51 42% 4.47 2.5% 4.32 0.9%
8þþ 4.48 2.75 4.90 5.19
10þþ 5.17 2.97 5.29 6.05
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group SOð2; dÞ, including scale transformations as a
particular case. Essentially, such transformations do not
preserve lengths, but preserves angles.
Anti–de Sitter space is a space of constant negative

curvature, while the sphere is a space of constant positive
curvature. When inserted into a higher dimensional
(pseudo-)Euclidean space, we can easily describe how
its coordinates behave. Let Xμ be the coordinates of
AdS5, with μ∈ ð0; 1;…; 5Þ, and Ya be the coordinates of
S5, with a∈ ð1; 2;…; 6Þ. Such coordinates satisfy the
following relations:

− ðX0Þ2þðX1Þ2þðX2Þ2þðX3Þ2þðX4Þ2− ðX5Þ2 ¼−R2;

ðY1Þ2þðY2Þ2þðY3Þ2þðY4Þ2þðY5Þ2þðY6Þ2 ¼R2; ð1Þ

where R is a constant which plays the role of the radius of
both the AdS5 and the S5 spaces.
Our aim here is to motivate the correspondence based on

symmetry arguments. From the point of view of string
theory, we have a ten-dimensional spacetime, formed by
the direct product of two manifolds. The five-dimensional
anti–de Sitter space has isometry described by the group of
conformal transformations SOð4; 2Þ. The five-dimensional
sphere has SOð6Þ as its isometry group.
The boundary theory living in Minkowski space has

exactly the same isometries as the bulk theorywith symmetry
group SOð4; 2Þ ⊗ SOð6Þ. Then, theMinkowski field theory
has conformal symmetry SOð4; 2Þ and it is supersymmetric
with N ¼ 4 supercharges. As a consequence, it presents R
symmetry associated with the group SUð4Þ that is isomor-
phic to SOð6Þ.
Based on these arguments, we see that the symmetries

that arise in the two theories are the same. This is not
enough to prove correspondence, but it is a strong indica-
tion that there is, in fact, a relationship between the two
theories.
In fact, in 1973, Gerard ’t Hooft presented [61] an

approximate method to treat SUðNÞ gauge theories with
large N, with N being the number of colors in the theory. In
this regime, the topological structures of the Feynman
diagrams of field theory are identical to the topological
structures of the diagrams in string theory. The ’t Hooft
parameter is given by

λ ¼ g2YMN; ð2Þ

where gYM is the Yang-Mills field theory coupling constant.
Therefore, this parameter is directly related to the magni-
tude of the interaction. Later, the AdS/CFT correspondence
would state that

λ ¼ R4

α02
; ð3Þ

where R is the radius of curvature of S5 and α0 is the slope
parameter of string theory. Thus, we notice that for a fixed

radius R, when we have small α0, we have large gYM, and
vice versa. In this way, we have already noticed the power
of correspondence, because, in nonperturbative regimes of
field theory, where gYM is large, string theory has small α0,
being weakly coupled and, therefore, easily treatable.
Therefore, we can obtain information from a field theory
in its nonperturbative regime through this duality.
The claim that a ten-dimensional string theory is dual to

a four-dimensional field theory may initially seem strange.
The idea is similar to holography, where a three-dimensional
image is encoded entirely into a two-dimensional object. The
Minkowski spacetime, being the boundary of the anti–de
Sitter space, contains information from theories that propa-
gate in AdS5.
From the initial topics of modern physics, we know

wave-particle duality. We can ask ourselves what the
fundamental nature is, wave or particle. Today, we know
that the answer is none of them, and what is understood is
that both wave behavior and corpuscular behavior are
classical limits of the theory, the Hilbert space of either
description is the same. In the case of the AdS/CFT
correspondence, the same occurs: the Hilbert space of
string theory in AdS5 × S5 is the same as that of conformal
field theory in four-dimensional Minkowski.
Now, let us analyze a result that will be useful to us soon,

the behavior of a scalar field in AdSdþ1 [6]. Let us start by
writing the metric of this space,

ds2 ¼ R2

z2
ðdz2 þ ημνdxμdxνÞ; ð4Þ

where R is the AdS radius and ημν is the metric of the
Minkowski space with coordinates xμ ¼ ðx0; x1;…; xd−1Þ
defined on the d-dimensional boundary of the AdS space.
So, the conformal border is obtained when we have z ¼ 0,
plus an additional point at z → ∞.
A scalar field ϕ with mass m in the space defined by the

metric (4) is governed by the Klein-Gordon equation:

zdþ1
∂zðz1−d∂zϕÞ þ z2ημν∂μ∂νϕ − ðmRÞ2ϕ ¼ 0: ð5Þ

Let us then perform a Fourier transform of the field ϕ in
the coordinates xμ, that is,

ϕðz; xμÞ ¼
Z

ddk
ð2πÞd e

ik·xfkðzÞ: ð6Þ

In this way, the equation of motion becomes

zdþ1
∂zðz1−d∂zfkÞ − k2z2fk − ðmRÞ2fk ¼ 0: ð7Þ

We are interested in its behavior near the frontier z ¼ 0.
If we impose such a condition on the equation above, then
we note that a natural solution is fkðzÞ ∼ zβ, with β
satisfying
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βðβ − dÞ − ðmRÞ2 ¼ 0; ð8Þ

so that

β ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ ðmRÞ2

r
: ð9Þ

Defining

Δ≡ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ ðmRÞ2

r
; ð10Þ

we have that, close to the border z ∼ 0, the function fkðzÞ
behaves as

fkðzÞ ≈ AðkÞzd−Δ þ BðkÞzΔ: ð11Þ

We can then perform an inverse Fourier transform, in
order to obtain the field close to the boundary (z → 0) in the
configuration space:

ϕðz; xÞ ≈ AðxÞzd−Δ þ BðxÞzΔ: ð12Þ

It is important to note that Δ is real if the term inside the
root is greater than or equal to zero, that is,

m2 ≥ −
�

d
2R

�
2

; ð13Þ

which is known as the Breitenlohner-Freedman bound [62].
If the above condition is valid, we see that d − Δ ≤ Δ.

Thus, the term zd−Δ is dominant as we approach z ¼ 0. In
order to have a finite field operator φðxÞ on the border we
write

φðxÞ ¼ lim
z→0

zΔ−dϕðz; xÞ: ð14Þ

The corresponding action coupling ϕðz; xÞ to a boundary
operator O evaluated at z → ϵ is the following

Sboundary ∼
Z

ddx
ffiffiffiffi
γϵ

p
ϕðϵ; xÞOðϵ; xÞ; ð15Þ

where γϵ ¼ ðR=ϵÞ2d is the determinant of the induced
metric at z ¼ ϵ. Then,

Sboundary ∼ Rd

Z
ddxφðxÞϵ−ΔOðϵ; xÞ: ð16Þ

To have a finite and ϵ-independent boundary action we
define

Oðϵ; xÞ≡ ϵΔOðxÞ: ð17Þ
The above relationship shows us, therefore, that scalar
excitations of the string, of mass m, couple to field

operators on the boundary that have dimensions Δ. This
result is extremely important in the analysis we will carry
out to calculate hadron masses in the following.

III. THE ORIGINAL HW MODEL

The AdS/CFT correspondence alone will not allow us to
calculate the masses of glueballs, once in a conformal field
theory (CFT) physical quantities are massless. In the HW
model [14,15] one considers the AdS metric given by
Eq. (4) and introduces a cut in the holographic z coordinate
imposing that z∈ ½0; zmax�, such that

zmax ¼
1

ΛQCD
; ð18Þ

where ΛQCD is a typical QCD mass scale with a value
around 150–300 MeV.
As discussed in the previous section, from the AdS/CFT

correspondence one is able to show that scalar excitations
with mass m in AdS couple to scalar field operators at the
boundary whose dimensionality is Δ, given by Eq. (10).
Still, according to the correspondence a spin J > 0 field in
AdS is equivalent to a massless spin J field operator on its
border [2].
Phenomenologically, it was proposed that in the HW

model the glueball operator with dimension Δ and nonzero
spin couples to a massive scalar excitation in AdS according
to [28]

Δ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðmRÞ2

q
; ð19Þ

or

ðmRÞ2 ¼ ΔðΔþ 4Þ: ð20Þ

The scalar glueball operator on the boundary is given by
O4 ¼ trFμν

aFμνa ≡ trF2 which has mass dimension Δ ¼ 4

and Fa
μν is the usual Yang-Mills tensor with non-Abelian

index a∈ ð1;…; NÞ of the SUðNÞ gauge group. Following
the idea [5] that high spin operators can be constructed by
inserting covariant derivatives Dμ into lower spin operators
one can write high spin S glueball operators as

O4þS ¼ trFDfμ1…DμSgF; ð21Þ

such that in four dimensions they have conformal dimension
Δ ¼ 4þ S [28]. Then, one has

4þ S ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðmRÞ2

q
;

ðSþ 2Þ2 ¼ 4þ ðmRÞ2;
ðmRÞ2 ¼ SðSþ 4Þ: ð22Þ
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This is a twist τ ¼ 4 tower of operators, since in general the
twist is defined as τ ¼ Δ − S. It is important to mention that
these mass dimensions are all canonical:

Δcan ¼ 4þ S: ð23Þ
Therefore, the equation of motion associated with glueballs
in AdS5 space, Eq. (5), becomes�

z3∂z
1

z3
∂z þ ημν∂μ∂ν −

ðmRÞ2
z2

�
ϕ ¼ 0: ð24Þ

Substituting the relation (22) in the above equation, one has�
z3∂z

1

z3
∂z þ ημν∂μ∂ν −

SðSþ 4Þ
z2

�
ϕ ¼ 0: ð25Þ

Taking a plane wave ansatz in x⃗ and in time t, that is,

ϕðx; zÞ ¼ Ae−iP·xfðzÞ; ð26Þ
and, substituting it into the equation of motion, one finds

ϕðx; zÞ ¼ Cν;ke−iP·xz2Jνðuν;kzÞ; ð27Þ
where Cν;k are normalization constants that will not be
important in our analysis, Jνðuν;kzÞ is the Bessel function of
order ν ¼ 2þ S, uν;k ðk ¼ 1; 2;…Þ are discrete modes
determined by boundary conditions. In this work we will
impose Dirichlet boundary conditions, that is,

ϕðx; zÞjz¼zmax
¼ 0; ð28Þ

which implies that

uν;k ¼
χν;k
zmax

¼ χν;kΛQCD; Jνðχν;kÞ ¼ 0: ð29Þ

The scale ΛQCD is usually fixed using some experimental or
lattice data. The k indices label the radial excitations of
3the particle states with masses proportional to the zeros of
the Bessel function JνðwÞ, i.e., proportional to the value of
the argument w where the corresponding Bessel function
is zero.
So, using the above discussion of the HW model, one

can calculate higher spin glueball masses from relations
(29) and (23) such that with ν ¼ Δ − 2 ¼ Sþ 2

uSþ2;k ¼ χSþ2;kΛQCD: ð30Þ

Using this relation, one finds the glueball masses Mi from
the original HW [20],

M0

χ2;1
¼ M2

χ4;1
¼ M4

χ6;1
¼ � � � ¼ Mi

χiþ2;1
¼ � � � ; ð31Þ

which are presented here for latter convenience in
Table II, and the corresponding relative deviations

δi ¼ jMi −Mlattj=Mlatt with respect to the average of lattice
data presented in Table I.We use themass of the 0þþ glueball
state from lattice as an input. For comparison,we also include
the corresponding masses calculated from the SW model
given by m2

J ¼ k½4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ JðJ þ 4Þp � ¼ 2kðJ þ 4Þ with

k1 ¼ 0.316 GeV2 (SW1) and k2 ¼ 1.00 GeV2 (SW2) [23],
and the dynamical anomalous SW (DASW) model [24].
Despite theSWmodel providing a linear trajectory, aswe can
see, the masses obtained are not in good agreement with the
masses obtainedby latticeQCD. In the casewhere themasses
presents small deviations (DASW), the Regge trajectory
becomes nonlinear. This is a good reason to search for a
possibility of linearity in HW model, since it could provide
good masses combined with a linear Regge trajectory.

IV. ANOMALOUS HW MODELS

Before we introduce the anomalous HW model, let us
briefly discuss the role of anomalous dimensions in
quantum field theory. In a scale invariant field theory, such
as a CFT, under a dilation x → λx the operators O by
definition behave as

O → λ−ΔO; ð32Þ

where Δ is the conformal dimension of O. In free field
theoriesΔ is simply the mass dimension of the operator that
can be read off directly from the Lagrangian by dimen-
sional analysis. Nonetheless, for interacting field theories
the renormalization process modifies this dimension
according to

Δ ¼ Δcan þ γðgÞ; ð33Þ
where Δcan is the canonical conformal dimension of the
operator in a free field theory, γðgÞ is the so-called
anomalous dimension, and g is the running coupling of
the theory. So, the anomalous dimension gives us a measure
of the deviation of the conformal dimension from the value
that it would assume in a free field theory.
It is clear that anomalous dimension becomes relevant

when there is interaction in the theory. Therefore, it may not
be obvious how it can emerge in the HW model, since for
z < zmax the coupling constant seems to be null. Despite the
fact that we are working with free theories in the AdS bulk,
it is an approximation. As we can see in Eqs. (2) and (3), the
string theory coupling constant α0 and the coupling constant
of the field theory in the boundary, gYM, have a relation:
when the first one becomes small, the second becomes big
and vice versa. We are interested of treating the non-
perturbative regime of QCD at the boundary (large gYM),
that implies a small (that we treat as zero in first approxi-
mation) α0 at the bulk.
Even if the constant α0 is treated as null, the operators

that we are interested in have anomalous dimensions. The
glueball operators, as evidenced by Eq. (21), are formed
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by Fa
μν and these last by elementary operators Aa

μ, that
describes the SUðNÞ gauge field. These are the operators that
have their conformal dimension changed by interaction. At
the boundary, the coupling constant of the theory gYM
assumes a finite value that implies an anomalous dimension
for Fa

μν and consequently, for the glueball operators.
Our proposal here, is to include anomalous dimensions

in the conformal dimension of the boundary glueball
operators, modifying the relation between Δ and S. It is
well known that anomalous dimensions play a important
role in the renormalization of QCD (see, e.g., [1]) and the
BFKL pomeron [53]; however it is difficult to relate it to
high spin states in field theory.
On the other hand, from a semiclassical limit of gauge/

string dualities [5], one finds that the conformal dimension
of dual operators with spins S, as the ones given by
Eq. (21), behaves differently as one increases the spin S
in comparison with the square root of the ’t Hooft coupling
λ. Basically, one finds three regimes:
(1) If the spins are small which means S ≪

ffiffiffi
λ

p
, then the

operators O have canonical conformal dimension

Δ ¼ 4þ S; ð34Þ

as in Eq. (23).
(2) If the spins are large as S ≫

ffiffiffi
λ

p
, then

Δ ¼ Sþ
ffiffiffi
λ

p

π
ln

�
Sffiffiffi
λ

p
�
þOðS0Þ; ð35Þ

so that the anomalous dimensions are given by

Δanom ¼
ffiffiffi
λ

p

π
ln

�
Sffiffiffi
λ

p
�
þOðS0Þ: ð36Þ

(3) If the spins are of the same order of the square root of
the ’t Hooft coupling S ∼

ffiffiffi
λ

p
, then some other

unknown complicated nonperturbative relation be-
tween Δ and S should hold.

The phenomenological anomalous holographic HW
model that we are proposing starts with the hard cutoff,

Eq. (18), the equation of motion, Eq. (24), and the higher
spin glueball masses are given by

M0

χ2;1
¼ Mi

χνi;1
; ð37Þ

with the index of the Bessel function is given by νi ¼
ΔAHWi

− 2, where ΔAHWi
takes into account the anomalous

dimensions discussed above. The uncertainties in the
masses are then:

δMi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χνi;1
χ2;1

�
2

ðδM0Þ2 þ
�
M0

χ2;1

�
2

ðδχνi;1Þ2
s

; ð38Þ

where the uncertainties δM0 come from lattice data and
δχνi;1 from the determination of the zero of the Bessel
functions for high spins due to uncertainties in the
anomalous dimensions to be discussed below. For low
spins, we suppose the canonical dimension, Eq. (34), holds,
in which case δχνi;1 ¼ 0, while for high spins the anoma-
lous dimensions, Eq. (36), are assumed without an inter-
mediate regime as follows:

ΔAHWlog¼
�
4þS 0≤ S≤ S0
Sþa lnðSÞþb S>S0

; ð39Þ

where the value of the spin S0 of the transition between low
(0 ≤ S ≤ S0) and high (S > S0) spins and the constants a
and b will be determined by the best fit to experimental and
lattice data. As we are going to see below in Sec. VA, this
model produces interesting results, improving the ones
from the usual HW and soft wall models regarding the
predicted masses and from the HW with respect to the
corresponding Regge trajectories.
Inspired by these results, we also consider other phe-

nomenological anomalous HWmodels where we introduce
some approximations for the anomalous dimensions for
high spins. The first approximation we consider is moti-
vated by truncated series expansions of the relation ln x ¼
2arcsinh½ð1=2Þð ffiffiffi

x
p

− 1=
ffiffiffi
x

p Þ� leading to the models:

ΔATSHW ¼
8<
:

4þ S; 0 ≤ S ≤ S0

Sþ a
P

N
k¼0

ð−1Þk
22kð2kþ1Þk! ð12Þk

� ffiffiffi
S

p
− 1ffiffi

S
p
�

2kþ1

þ b; S > S0
; ð40Þ

with N ¼ 0; 1; 2; 3, discussed in Sec. V B from which we obtain good glueball masses and Regge trajectories.
Further, we consider another approximation leading to an AHWmodel with a square root anomalous dimension for high

spins:

ΔAHWSQRT ¼
�
4þ S; 0 ≤ S ≤ S0

Sþ a
ffiffiffi
S

p þ b; S > S0
; ð41Þ

presented in Sec. V C, which give very good results for glueball masses although not so good Regge trajectories.
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Finally, we consider an even simpler expression for
the anomalous dimension for high spins without the linear
term S:

ΔALHW ¼
�
4þ S; 0 ≤ S ≤ S0

a
ffiffiffi
S

p þ b; S > S0
; ð42Þ

discussed in Sec. VI, which leads to good glueball masses
and linear Regge trajectories in this AHW model.

V. GLUEBALLS AND THE SOFT POMERON
IN THE AHW MODELS

The rise of the proton-proton cross section with energy is
related to the soft pomeron, a particle with no charges and
quantum numbers of the vacuum, whose experimental
Regge trajectory is the following [52,54]:

αðt ¼ M2Þ ¼ 1.08þ 0.25M2; ð43Þ

with massesM expressed in GeV. The BFKL pomeron [53]
is a perturbative treatment of the problem, although non-
perturbative aspects are also present (see, e.g., [63]).
In this work we analyze many possibilities of anomalous

conformal dimensions for glueball operators and compare
their masses with the masses of average lattice, presented in
Table I. Despite we could use the best match with such
masses of lattice as the criterion to determine the best
model we are interested in a connection with the pomeron.
For that reason, our criterion of best fit is defined as

follows: in a model, a given anomalous dimension pro-
duces some values for glueball masses. With these masses
we use linear regression to obtain the corresponding Regge
trajectory. The best fit is obtained when such Regge
trajectory is as close as possible to the soft pomeron, given
by Eq. (43), with smaller χ2=ndf.
In all models considered in this work, we assume that the

state 0þþ has canonical conformal dimension Δ ¼ 4, and
use it as an input with massM0þþ ¼ 1.59 GeV from lattice.

Following Landshoff [52], we take that this state does not
belong to the soft pomeron trajectory.

A. Logarithm anomalous dimensions

Here, we start with the AHWlog model

ΔAHWlog ¼
�
4þ S 0 ≤ S ≤ S0
Δlog S > S0

; ð44Þ

where

Δlog ¼ Sþ a lnðSÞ þ b; ð45Þ

and the constants S0, a, and b will determined fitting
experimental and lattice data below. First, we consider
that 0 ≤ S ≤ 10 and S0 ¼ 0. The best fit obtained in this
way implies the coefficients a ¼ 1.92� 0.36, and b ¼
2.13� 0.07, such that the effective dimension in this
anomalous HW model is given by

Δlog 1 ¼ Sþ ð1.92� 0.36Þ lnðSÞ þ 2.13� 0.07;

ð2 ≤ S ≤ 10Þ: ð46Þ

From this anomalous dimension, we obtain the glueball
massesMi shown in the second column of Table III with the
corresponding errors given by Eq. (38), together with the
deviations δi ¼ jMlatt −Mij=Mlatt from average lattice data
(Table I) and the effective anomalous dimensions of the
glueball operators Jþþ. In Fig. 1, we present the Regge
trajectory,which is built up as a linearization of these glueball
masses, reproducing the soft pomeron trajectory, J ¼ 1.08�
0.21þ ð0.25� 0.01ÞM2 with χ2=ndf ¼ 3.76=3 ¼ 1.25.
For clarity, we also show in Table III the order of the
Bessel function for each glueball state in each AHWlog
model.
The second case of the AHWlog model that we analyze

is the one corresponding to 0 ≤ S ≤ 10 and S0 ¼ 2. In this
way, the states 0þþ and 2þþ have canonical conformal

TABLE III. Masses in GeVof the Jþþ glueball operators from J ¼ 0 to J ¼ 10 for the logarithm anomalous HW
models (HWlog 1) and (HWlog 2) defined by Eq. (29) with the logarithm contributions to the anomalous dimensions
Eqs. (46) and (47), respectively, with errors calculated according to Eq. (38). The orders ν of the corresponding
Bessel functions are shown for each glueball state for the two models. The mass of the 0þþ with uncertainties are
inserted as inputs from lattice. We also show the relative deviations δlog 1;2 compared with lattice data, and the

corresponding anomalous dimensions Δlog 1;2
anom ≡ Δlog 1;2 − ð4þ SÞ of the states Jþþ in this model.

JPC ν HWlog 1 δlog 1 Δlog 1
anom ν HWlog 2 δlog 2 Δlog 2

anom

0þþ 2 1.59� 0.07 0% 0.0 2 1.59� 0.07 0% 0.0
2þþ 3.46 2.15� 0.12 9.71% −0.54 4 2.35� 0.10 1.26% 0.0
4þþ 6.79 3.36� 0.21 8.49% 0.79 6.50 3.25� 0.24 11.35% 0.50
6þþ 9.57 4.33� 0.28 0.63% 1.57 9.44 4.29� 0.29 1.69% 1.44
8þþ 12.12 5.21� 0.33 2.12 12.10 5.21� 0.34 2.10
10þþ 14.55 6.04� 0.37 2.55 14.62 6.06� 0.37 2.62
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dimensions Δ ¼ 4 and Δ ¼ 6, respectively, while higher
spin states have anomalous dimensions given by Eq. (45).
Applying this model to fit the pomeron trajectory and to
obtain glueball masses for the states Jþþ from J ¼ 2 to
J ¼ 10, we find that the best fit corresponds to

Δlog 2 ¼ Sþ ð2.32� 0.25Þ lnðSÞ þ 1.28� 0.21;

ð4 ≤ S ≤ 10Þ: ð47Þ

Within this AHWlog2 model we reobtain the soft pomeron
trajectory J ¼ 1.08� 0.36þ ð0.25� 0.02ÞM2, which is
shown in Fig. 2, with χ2=ndf ¼ 15.2=3 ¼ 5.1. The glueball
masses are presented in the fifth column of Table III with
the corresponding errors given by Eq. (38), together with
the deviations with respect to average lattice data and the
corresponding anomalous dimensions of the states Jþþ in
this model.
Third, we consider the AHWlog model with 0 ≤ S ≤ 10

and S0 ¼ 4, so that the states 0þþ, 2þþ, and 4þþ have
canonical conformal dimensions, whilst higher spins follow
Eq. (45). In this case it is not possible the match the soft
pomeron trajectory exactly. The closest trajectory found
with least χ2 is J ¼ 1.10� 0.47þ ð0.27� 0.02ÞM2, with
χ2=ndf ¼ 24.6=3 ¼ 8.2 and effective dimension

Δlog 3 ¼ Sþ ð2.34� 0.04Þ lnðSÞ þ 0.51� 0.02;

ð6 ≤ S ≤ 10Þ; ð48Þ

starting with the state 6þþ, implying masses f2.35�
0.10;3.08�0.14;4.06�0.18;4.96�0.22;5.82�0.26gGeV
for the states from J ¼ 2 to J ¼ 10, with relative deviations

f1.3; 16; 7.5g% compared with average lattice for the states
2þþ, 4þþ, and 6þþ, respectively.
A comparison between the above three fits within the

AHWlog model favors the first with respect to second and
the third since it gives least χ2 and χ2=ndf. In the same
token, the second AHWlog is better than the third, thanks to
smaller χ2 and χ2=ndf.
Another possible way to apply the AHWlog model with

logarithm anomalous dimensions is to minimize directly
the deviations of the glueball masses with respect to
average lattice data and then look up for the resulting
Regge trajectory. We consider this case for 0 ≤ S ≤ 10 and
S0 ¼ 0, such that the state 0þþ has canonical dimension
Δ ¼ 4 and the higher spins from J ¼ S ¼ 2 to 10 have
anomalous dimension given by Eq. (45). Applying this
procedure one finds the coefficients a ¼ 2.3� 0.8 and
b ¼ 2.5� 1.1, which means an effective dimension

Δlog 4 ¼ Sþ ð2.3� 0.8Þ lnðSÞ þ 2.5� 1.1;

ð2 ≤ S ≤ 10Þ; ð49Þ
obtaining exactly the average lattice masses for the 2þþ and
4þþ states besides the input 0þþ. For the state 6þþ, we find
M6þþ ¼ 4.69 GeV which is 7.6% higher than the average
lattice result. So, this model produces masses with lowest
total relative deviation with respect to average lattice
outputs when compared with the AHWlog models dis-
cussed above. Within this model the predicted soft pomeron
trajectory is not so good and is given by J ¼ 0.93� 0.18þ
ð0.22� 0.01ÞM2 with χ2=ndf ¼ 0.705=3 ¼ 0.235. If we
want to compare this model with others, then we should
compute χ2 based on soft pomeron trajectory instead, by
doing this we find χ2=ndf ¼ 5.62=3 ¼ 1.87.

FIG. 1. Plot of J ×M2 with masses expressed in GeV and J ¼ 2 to 10 in the AHWlog model with anomalous dimensions given by
Eq. (46). The dots represent the glueball masses shown in the second column of Table III with the corresponding error bars. The straight
line corresponds to a linear fit of the soft pomeron trajectory J ¼ 1.08� 0.21þ ð0.25� 0.01ÞM2 with χ2=ndf ¼ 3.76=3 ¼ 1.25.
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B. Truncated series for anomalous dimensions

The conformal dimension for high spins from gauge/
string duality discussed in the previous section was
developed to describe an ideal situation where the four-
dimensional field theory is conformal. Since this is not the
case of strong interactions that lead to the Regge trajectory
of the soft pomeron and to the lattice glueball masses, it is
also interesting to investigate some approximate expres-
sions for this quantity since we are studying a phenom-
enological model, and analyze whether these expressions
might give better results compared with experimental and
lattice data.
Here, we start with the identity

ln x ¼ 2arcsinh

�
1

2

� ffiffiffi
x

p
−

1ffiffiffi
x

p
��

; ð50Þ

which can be expanded for small x as

ln x ¼ ffiffiffi
x

p
−

1ffiffiffi
x

p −
1

24

� ffiffiffi
x

p
−

1ffiffiffi
x

p
�

3

þ 3

640

� ffiffiffi
x

p
−

1ffiffiffi
x

p
�

5

þ � � � ;

¼
X∞
k¼0

ð−1Þk
22kð2kþ 1Þk!

�
1

2

�
k

� ffiffiffi
x

p
−

1ffiffiffi
x

p
�

2kþ1

; ð51Þ

where ð1
2
Þk are the Pochhammer symbols of order k with

argument 1=2, the first values are ð1
2
Þ
0
¼ 1, ð1

2
Þ
1
¼ 1

2
,

ð1
2
Þ
2
¼ 3

4
, ð1

2
Þ
3
¼ 15

8
, …. Using this expression one can

rewrite the effective dimension (45) as

Δ ¼ Sþ a
X∞
k¼0

ð−1Þk
22kð2kþ 1Þk!

�
1

2

�
k

� ffiffiffi
S

p
−

1ffiffiffi
S

p
�

2kþ1

þ b:

ð52Þ
Now, truncating the series at some finite value of
k ¼ 0; 1; 2; 3;…, which means truncating at odd powers
2kþ 1 of the difference

ffiffiffi
S

p
− 1=

ffiffiffi
S

p
, we obtain approxi-

mate expressions for Δ from which we can fit the soft
pomeron trajectory and compare the obtained glueball
masses with those from lattice calculations. Explicitly,
we define this truncated effective dimension of high spin
operators as

ΔN ¼ Sþa
XN
k¼0

ð−1Þk
22kð2kþ1Þk!

�
1

2

�
k

� ffiffiffi
S

p
−

1ffiffiffi
S

p
�

2kþ1

þb:

ð53Þ
Then, this anomalous truncated series HW model is
characterized by the conformal dimension

ΔATSHW ¼
�
4þ S; 0 ≤ S ≤ S0
ΔN; S > S0

; ð54Þ

with ΔN given by Eq. (53). Here, we choose S0 ¼ 0 and
0 ≤ S ≤ 10, such that the conformal dimension for the 0þþ
state is Δ ¼ 4 and Eq. (53) give the effective dimension for
the states 2þþ up to 10þþ truncated atN withN ¼ 0; 1; 2; 3.
Within this model, we successfully match the soft pomeron
trajectory, J ¼ 1.08þ 0.25M2, in the four cases N ¼
0; 1; 2; 3. Details of the fits are presented in Table IV, together
with the corresponding glueball masses and errors, the

FIG. 2. Plot of J ×M2 with masses expressed in GeV and J ¼ 2 to 10 in the anomalous model HWlog 2, Eq. (47). The dots represent
the glueball masses shown in the fifth column of Table III with the corresponding error bars. The straight line corresponds to a linear fit
matching the soft pomeron trajectory J ¼ 1.08� 0.36þ ð0.25� 0.02ÞM2 with χ2=ndf ¼ 15.2=3 ¼ 5.1.
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associated deviations with respect to average lattice data and
the values of the anomalous dimensions for each state.
Analyzing these results, we see that the cases N ¼ 0 and
N ¼ 2 present the smaller relative deviations with respect to
average lattice output. We understand this behavior since the
truncations at N ¼ 0 and N ¼ 2 contribute positively to the
anomalous dimension (53) in contrast to the casesN ¼ 1 and
N ¼ 3, once they come from an alternate series. In particular,
the plots corresponding to the masses found from the
approximate anomalous effective dimension (53), truncated
at N ¼ 0 and N ¼ 1 are presented in Figs. 3 and 4,
respectively, with the corresponding pomeron trajectories.

C. Square root anomalous dimension

Here, we consider another phenomenological anomalous
HWmodel inspired byEq. (53) for the anomalous dimension
of the glueball operator with high spins. Considering the
truncation of this equation at N ¼ 0, and a further approxi-
mation we write the effective dimension as

ΔAHWSQRT ¼
�
4þ S; 0 ≤ S ≤ S0
ΔSQRT; S > S0

; ð55Þ

where

TABLE IV. Masses of the Jþþ glueball operators in GeV from J ¼ 0 to J ¼ 10, with errors calculated according to Eq. (38), from the
anomalous HW model Eq. (54) considering the approximate conformal dimension Eq. (53), truncating the series at N ¼ 0; 1; 2; 3, with
the corresponding deviations with respect to lattice data, and the anomalous dimensions ΔN

anom ≡ ΔN − ð4þ SÞ of the states in this
model for each value of N. The mass of the 0þþ is inserted as an input from lattice.

N ¼ 0 N ¼ 1 N ¼ 2 N ¼ 3

α0 1.08� 0.28 1.08� 0.04 1.08� 0.34 1.08� 0.29
α0 0.25� 0.01 0.250� 0.002 0.25� 0.02 0.25� 0.01
χ2=3 1.74 0.104 2.19 1.07
a 1.38� 0.26 2.86� 0.52 1.40� 0.26 3.49� 0.61
b 2.67� 0.04 1.00� 0.26 2.82� 0.06 0.10� 0.38

JPC M δN ΔN
anom M δN ΔN

anom M δN ΔN
anom M δN ΔN

anom

0þþ 1.59� 0.07 0% 0.0 1.59� 0.07 0% 0.0 1.59� 0.07 0% 0.0 1.59� 0.07 0% 0.0
2þþ 2.22� 0.13 6.7% −0.36 1.97� 0.09 17% −1.03 2.27� 0.13 4.6% −0.21 1.80� 0.08 24% −1.47
4þþ 3.34� 0.21 9.0% 0.74 3.39� 0.22 7.6% 0.87 3.35� 0.21 8.7% 0.77 3.41� 0.23 7.1% 0.94
6þþ 4.30� 0.27 1.4% 1.49 4.42� 0.29 1.4% 0.81 4.28� 0.27 1.8% 1.41 4.56� 0.31 4.6% 2.22
8þþ 5.20� 0.33 2.08 5.26� 0.33 2.25 5.17� 0.32 2.00 5.40� 0.36 2.69
10þþ 6.05� 0.38 2.60 5.98� 0.36 2.37 6.08� 0.38 2.68 5.87� 0.34 2.07

FIG. 3. Plot of J ×M2 withmassesM expressed inGeVand J ¼ 2 to 10, using the anomalousHWmodel (54)with conformal dimension
Eq. (53), truncated at N ¼ 0 with coefficients a ¼ 1.38 and b ¼ 2.67. The dots with error bars represent the glueball masses shown in
Table IV for N ¼ 0, and the straight line corresponds to a linear fit given by J ¼ 1.08� 0.28þ ð0.25� 0.01ÞM2 with χ2=ndf ¼
5.21=3 ¼ 1.74.
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ΔSQRT ¼ Sþ a
ffiffiffi
S

p
þ b; ð56Þ

which represent square root anomalous dimensions. Herewe
choose S0 ¼ 0 and 0 ≤ S ≤ 10. The above approximation
forΔSQRT can be justified once we are applying this formula
for spins S from 2 to 10 and the correction from the inverse
square root is small in this range. Using this expression for
the effective dimension of the glueball operators startingwith
S ¼ 2, and minimizing the resulting linear trajectory for the
corresponding glueball masses, we find the coefficients
a ¼ 1.50� 0.27, b ¼ 2.0� 0.12. The obtained glueball
masses with errors are listed in Table V, together with the
relative deviations with respect to average lattice data and the

associated anomalous dimensions for each Jþþ state.
The linear coefficient of the resulting Regge trajectory,
J ¼ 0.90� 0.30þ ð0.25� 0.01ÞM2 with χ2=ndf ¼
4.24=3 ¼ 1.42, is poorer than the corresponding ones from
Eq. (53) shown in Table IV which match the soft pomeron
trajectory, J ¼ 1.08þ 0.25M2. However it is remarkable
that this simple model defined by Eq. (55) produces masses
that have smaller relative deviations with respect to average
lattice data in comparisonwith the results ofTables III and IV.

VI. ANOMALOUS LINEAR HW MODEL

In this section we consider another anomalous HW
model inspired by the results of the previous sections.
Our goal here is to obtain an asymptotic linear Regge
trajectory from such a model. In this regard, we note that
the linear dependence on the spin S in the effective

dimension Δ ¼ Sþ
ffiffi
λ

p
π lnð Sffiffi

λ
p Þ þOðS0Þ, Eq. (35), leads to

parabolic Regge trajectories characteristic of the usual HW
model. Then, the natural guess is to remove this linear
dependence from a phenomenological effective dimension
and try something of the form Δ ¼ a lnðSÞ þ b, but this
does not lead to linear Regge trajectories too. The solution
is to consider an effective dimension as

Δ ffiffi
S

p ¼ a
ffiffiffi
S

p
þ b: ð57Þ

So, the anomalous linear HW model is defined by

ΔALHW ¼
�
4þ S; 0 ≤ S ≤ S0
Δ ffiffi

S
p ; S > S0

; ð58Þ

FIG. 4. Plot of J ×M2 withM expressed in GeVand J ¼ 2 to 10, using the approximate anomalous dimension Eq. (53), truncated at
N ¼ 1with a ¼ 2.86, b ¼ 1.00. The dots with error bars represent the glueball masses shown in Table IV forN ¼ 1, and the straight line
corresponds to a linear fit given by J ¼ 1.08� 0.04þ ð0.250� 0.002ÞM2 with χ2=ndf ¼ 0.312=3 ¼ 0.104.

TABLE V. Masses of the Jþþ glueball operators in GeV from
J ¼ 0 to J ¼ 10, with errors calculated according to Eq. (38),
from the anomalous HW model, Eq. (55), with square root
anomalous dimensions ΔSQRT from Eq. (56), together with the
corresponding errors and relative deviations δSQRT with respect to

average lattice data, and the anomalous dimensions ΔSQRT
anom ≡

ΔSQRT − ð4þ SÞ of the states Jþþ in this case. The orders ν of the
corresponding Bessel functions are shown for each glueball and
the mass of the 0þþ with uncertainties are inserted as inputs from
lattice.

JPC ν MSQRT δSQRT ΔSQRT
anom

0þþ 2 1.59� 0.07 0% 0.0
2þþ 4.12 2.40� 0.14 0.8% 0.12
4þþ 7.00 3.44� 0.21 6.3% 1.00
6þþ 9.67 4.38� 0.27 0.5% 1.67
8þþ 12.24 5.27� 0.32 2.24
10þþ 14.74 6.12� 0.37 2.74

ANOMALOUS AND LINEAR HOLOGRAPHIC HARD WALL … PHYS. REV. D 109, 086019 (2024)

086019-11



whereΔ ffiffi
S

p is given by Eq. (57), and the constants S0, a, and
b will be fixed by best fit to experimental and lattice data.
In order to check the possible linearity of this proposal we
need to go to very high spin values. We choose S0 ¼ 0 and
0 ≤ S ≤ 100. The best fit for the soft pomeron trajectory
from S ¼ 2 to 100 with this expression is obtained for
a ¼ 6.20� 0.26, and b ¼ −3.35� 0.11, such that the
effective dimension reads

Δ ffiffi
S

p ¼ ð6.20� 0.26Þ
ffiffiffi
S

p
− 3.35� 0.11: ð59Þ

The resulting trajectory is plotted in Fig. 5, and is in perfect
agreement with the experimental soft pomeron trajectory,
J ¼ 1.08� 0.01þ ð0.25144� 0.00006ÞM2 with χ2=ndf ¼

2.58=48 ¼ 0.054. The masses for glueballs obtained from
this effective dimension are shown in Table VI, together
with the relative deviations with respect to average lattice
data, and the corresponding anomalous dimensions of the
states Jþþ.
Comparing the above results with the ones from

Eq. (53), one may wonder whether a contribution of
the inverse of the square root of S would spoil the
linearity just found. Actually, considering a model with
effective dimension given by ΔÑ¼0 ¼ að ffiffiffi

S
p

− 1=
ffiffiffi
S

p Þ þ b
without the linear term, it is possible to obtain an
asymptotic linear Regge trajectory in this case. Fitting
the states from J ¼ 2 to J ¼ 10 with coefficients a ¼
5.40� 0.26 and b ¼ 0.86� 0.04, we also match exactly
the soft pomeron Regge trajectory in very good approxi-
mation, J ¼ 1.08� 0.05þ ð0.252� 0.002ÞM2 with
χ2=ndf ¼ 0.260=3 ¼ 0.087. The masses obtained for
these states are f1.85�0.12;3.42�0.21;4.44�0.28;5.25�
0.33;5.93�0.37gGeV, with relative deviations f22.3;
6.81; 1.83g% with respect to average lattice data. This
suggests that the results obtained from Eq. (59) are better.
The other powers N ¼ 1; 2; 3 of the difference

ffiffiffi
S

p
−

1=
ffiffiffi
S

p
discussed in the previous section do not lead to

asymptotic linear trajectories when high spins are con-
sidered, since they grow with Sð2Nþ1Þ=2.

VII. SUMMARY AND CONCLUSIONS

A. AHW models

In this work we propose anomalous HW models in four
different formulations where we modify the conformal
dimension for high spins S operators by introducing

FIG. 5. Regge trajectory J ×M2 for the anomalous linear HWmodel defined by Eq. (58), with S0 ¼ 0 and 0 ≤ S ≤ 100. The dots with
error bars represent the glueball masses obtained from this equation and their values corresponding to states from J ¼ 2 to J ¼ 10 are
shown in Table VI. The straight line is the corresponding linear fit in the range from J ¼ 2 to J ¼ 100, matching the soft pomeron
trajectory with a very precise angular coefficient, J ¼ 1.08� 0.01þ ð0.25144� 0.00006ÞM2 with χ2=ndf ¼ 2.58=48 ¼ 0.054.

TABLE VI. Masses of the Jþþ glueball operators in GeV from
J ¼ 0 to J ¼ 10 within the anomalous linear HW (ALHW)
model, Eq. (58), with errors calculated according to Eq. (38). The
orders ν of the corresponding Bessel functions are shown for each
glueball state and the mass of the 0þþ with uncertainties are
inserted as inputs from lattice. We also show the relative
deviations δALHW compared with average lattice data, and the
anomalous dimensions ΔALHW

anom ≡ Δanom − ð4þ SÞ of the glueball
operators Jþþ in this model.

JPC ν MALHW δALHW ΔALHW
anom

0þþ 2 1.59� 0.07 0% 0.0
2þþ 3.42 2.14� 0.13 10.1% −0.58
4þþ 7.05 3.46� 0.21 5.72% 1.05
6þþ 9.84 4.44� 0.27 1.83% 1.84
8þþ 12.19 5.96� 0.31 2.19
10þþ 14.26 6.59� 0.35 2.26
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anomalous dimensions inspired by a semiclassical limit of
gauge/string dualities. For low spins the dimension of the
spin operators are conformal ðΔ ¼ Sþ 4Þ as in the original
HW model. For high spins, these operators acquire anoma-
lous dimensions in the form of a logarithm of S.
Disregarding a complicated intermediate nonperturbative
spin dependence, we take these results as a prescription to
build up anomalous HW models. In general, to compare
these models with experimental and lattice data, we adopt
the strategy of first fitting the pomeron trajectory predicting
glueball masses to be compared with lattice data. The
effective dimensions of these four formulations of the
anomalous HW models are as follows:
(1) Logarithm AHW

ΔAHWlog¼
�
4þS; 0≤ S≤ S0
Sþa lnðSÞþb; S>S0

: ð60Þ

(2) Truncated series AHW

ΔATSHW ¼
�
4þ S; 0 ≤ S ≤ S0
ΔN; S > S0

; ð61Þ

where

ΔN ¼ Sþ a
XN
k¼0

ð−1Þk
22kð2kþ 1Þk!

�
1

2

�
k

×
� ffiffiffi

S
p

−
1ffiffiffi
S

p
�

2kþ1

þ b: ð62Þ

(3) Square root AHW

ΔAHWSQRT ¼
�
4þ S; 0 ≤ S ≤ S0

Sþ a
ffiffiffi
S

p þ b; S > S0
: ð63Þ

(4) Linear AHW

ΔALHW ¼
�
4þ S; 0 ≤ S ≤ S0

a
ffiffiffi
S

p þ b; S > S0
: ð64Þ

B. Log models

In Sec. VA, we consider the specific case of logarithm
anomalous dimensions, Eq. (60), where we study some
numerical fits to reobtain the soft pomeron trajectory and
even glueball masses for the states J ¼ 2 to J ¼ 10. In
particular, in this section we analyze four different fits with
the following phenomenological anomalous dimensions
with the corresponding spins interval for which these
expressions apply:

Δlog 1 ¼ Sþ ð1.92� 0.36Þ lnðSÞ þ 2.13� 0.07;

ð2 ≤ S ≤ 10Þ; ð65Þ

Δlog 2 ¼ Sþ ð2.32� 0.25Þ lnðSÞ þ 1.28� 0.21;

ð4 ≤ S ≤ 10Þ; ð66Þ

Δlog 3 ¼ Sþ ð2.34� 0.04Þ lnðSÞ þ 0.51� 0.02;

ð6 ≤ S ≤ 10Þ; ð67Þ

Δlog 4 ¼ Sþ ð2.3� 0.8Þ lnðSÞ þ 2.5� 1.1;

ð2 ≤ S ≤ 10Þ: ð68Þ

In the first three log anomalous dimensions, we follow the
procedure of fitting the pomeron trajectory and then compare
the glueball mass outputs with lattice data. In the fourth case
we reverse this approach and fit the lattice masses and then
compare the resulting Regge trajectory with that of the
pomeron.With the first two fits we could reproduce precisely
the pomeron trajectory J ¼ 1.08þ 0.25M2, while the third
we found J ¼ 1.10þ 0.27M2. Actually, in the first fit we
found better results regarding the deviations from the
pomeron trajectory and smaller χ2=ndf. In the fourth log
fit we found good masses as expected but a poorer Regge
trajectory J ¼ 0.93þ 0.22M2 when compared with the
pomeron. The first two log fits also present better results
for the pomeron trajectory and glueball masses than the
original HW and SW models.

C. Truncated series models

In Sec. V B we discuss approximations to the logarithm
anomalous dimensions in the form of an infinite series of
odd powers of ð ffiffiffi

S
p

− 1=
ffiffiffi
S

p Þ2Nþ1, which are truncated at
N ¼ 0; 1; 2; 3, as shown in Eq. (61). In these four cases they
all fit the pomeron trajectory J ¼ 1.08þ 0.25M2 with
different precisions. Regarding the glueball masses predi-
tions when compared with lattice data, the cases with N ¼
0 and N ¼ 2 present smaller relative deviations than the
cases N ¼ 1 and N ¼ 3. In particular, for N ¼ 0; 1; 2 the
total relative deviations are smaller than that of the original
HW model, while for N ¼ 3 they are of the same order of
magnitude. These results are also better than that of the
original SW model.

D. Square root anomalous dimensions

Inspired by the results of the truncated series AHW
models, in Sec. V C we discuss an AHWmodel with square
root anomalous dimensions, Eq. (63). This model gives as
output the Regge trajectory J ¼ 0.90þ 0.25M2, which
does not fit exactly the soft pomeron. On the other hand,
the predicted glueball masses by this model presents
smaller deviations with respect to lattice data than the
models with truncated series and the logarithm models
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AHWlog 1, AHWlog 2, and AHWlog 3. Naturally, the glueball
masses predicted by this model are much better than the
ones from the original HWand SWmodels when compared
with lattice data.

E. Anomalous linear HW model

In Sec. VI, we propose an anomalous linear HW model,
Eq. (64), leading to asymptotic linear Regge trajectories
even for very high spins (J ¼ 100). In contrast, the original
HW model is well known for producing nonlinear Regge
trajectories. The main modification introduced in the linear
model is that we take the dimension of the glueball
operators Δ ¼ a

ffiffiffi
S

p þ b without the linear term S present
in all anomalous models discussed above and also in the
original HW model. The obtained Regge trajectory in the
linear AHW model fits the soft pomeron with very high
precision J ¼ 1.08� 0.01þ ð0.25144� 0.00006ÞM2 with
χ2=ndf ¼ 2.58=48 ¼ 0.054, and the glueball masses com-
pare well to lattice data with total deviation of the order of
some above anomalous HWmodels, better than the original
HW and SW models.

F. Conclusions

In conclusion, the anomalous HWmodels presented here
show a significant improvement with respect to the original
HW model in general and with respect to the original SW
model regarding glueball spectra and the pomeron trajec-
tory. This procedure of modifying the HW model with the
inclusion of anomalous dimensions might be useful for
other hadrons as mesons and baryons. This is presently
under investigation.
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