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We exploit the presence of moduli fields in the AdS; x §* x CY,, where CY, = T* or K3, solution to
type IIB superstring theory, to construct a U-fold solution with geometry AdS, x S' x S* x CY,. This is
achieved by giving a nontrivial dependence of the moduli fields in SO(4, n)/SO(4) x SO(n) (n = 4 for
CY, = T*and n = 20 for CY, = K3), on the coordinate 5 of a compact direction S' along the boundary of
AdS;, so that these scalars, as functions of 7, describe a geodesic on the corresponding moduli space. The
backreaction of these evolving scalars on spacetime amounts to a splitting of AdS; into AdS, x S' with a
nontrivial monodromy along S defined by the geodesic. Choosing the monodromy matrix in SO(4, n; Z),
this supergravity solution is conjectured to be a consistent superstring background. We generalize this
construction starting from an ungauged theory in D = 2d, d odd, describing scalar fields nonminimally
coupled to (d — 1) forms and featuring solutions with topology AdS, x S¢, and moduli scalar fields. We
show, in this general setting, that giving the moduli fields a geodesic dependence on the 7 coordinate of an
S! at the boundary of AdS, is sufficient to split this space into AdS,_; x S', with a monodromy along S’
defined by the starting and ending points of the geodesic. This mechanism seems to be at work in the
known J-fold solutions in D = 10 type IIB theory and hints toward the existence of similar solutions in the
type IIB theory compactified on CY,. We argue that the holographic dual theory on these backgrounds is a

1 4+ 0 CFT on an interface in the 1 + 1 theory at the boundary of the original AdS;.

DOI: 10.1103/PhysRevD.109.086018

I. INTRODUCTION

Solutions of superstring theory of D = 11 supergravity
with geometry AdS,; x M;,. have been the focus of intense
study because of their relevance to the AdS/CFT corre-
spondence. Type IIB superstring theory, in particular,
features a number of backgrounds of the form AdS, x
S x M _»4 Which are characterized by moduli fields, i.e.
scalar fields which can be assigned an arbitrary constant
value throughout spacetime without affecting its geometry.
These fields are dual to exactly marginal operators in the
dual CFT. The simplest example is AdSs x S on which the
holographic duality was originally conjectured, and whose
moduli fields are the type IIB axion and dilaton fields
which correspond to the complexified coupling constant in
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the dual A/ =4 SYM theory. Other examples of such
backgrounds, or variants thereof, are the following]:

(i) AdS; x §® x T* describing the near-horizon geom-
etry of a DI-D5 or of an F1-NS5 system, in which
the 5-branes are wrapped around the 4-torus T4;

(i) AdS; x S x K3 describing the near-horizon geo-
metry of a D1-D5 or of an F1-NS5 system, in which
the 5-branes are wrapped around the K3 manifold;

(iii) AdSs x $°/Z; describing the near-horizon geo-
metry of a stack of D3-branes at the apex of an
orbifold C*/Z; with k > 1 [4,5].

The backgrounds in (i) can be described within type IIB
superstring theory compactified on T* to D = 6, which is
described by a maximal six-dimensional supergravity
featuring the global symmetry group SO(5,5) at the
classical level. The classical moduli space of the AdS; x
$3 solution of the six-dimensional maximal supergravity is
SO(4,5)/S0(4) x SO(5), SO(4,5) being the stabilizer in
SO(5,5) of the brane charges.

'For a review of the backgrounds AdS; x % x CY,, with
CY, =T* or K3, and of their holographic dual descriptions,
see [1-3]. In the present work, we shall not concentrate on the
dual CFT side of these backgrounds.

Published by the American Physical Society
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The background in (ii) is a solution to type IIB
superstring theory compactified on K3, which is described,
at the classical level, by a half-maximal six-dimensional
supergravity and the classical moduli space is SO(4,21)/
SO(4) x SO(21).

Finally, in the last case (iii), the classical moduli space is
SU(1,k)/U(k) and acts on the k complexified coupling
constants of the dual necklace quiver theory [6,7].

All of these moduli occur in the d-dimensional gauged
supergravity featuring the AdS, factor (d = 3 and 5 in the
above examples) as vacuum solution, as flat directions of
the scalar potential.

Assuming a dependence of these scalar fields on the
spacetime coordinates will in general affect the geometry
of the background in some nontrivial way. In [5,8—10] the
authors investigated spacetime-dependent configurations of
the moduli fields in the Wick-rotated moduli space within the
Euclidean version of the theory. The resulting solutions were
described by geodesics in the (pseudo-Riemannian) moduli
space, which were classified according to their being lightlike,
spacelike, and timelike, and an interpretation of the corre-
sponding backgrounds, in the dual CFT, was worked out.

Here we shall work in a suitable, ungauged Lorentzian
theory in D = 2d, d odd, exhibiting an AdS, x S? back-
ground with moduli fields. We show how to construct an
AdS,_; x S' x §¢ geometry from the AdS, x S¢ one by
giving a suitable spatial dependence to the scalar moduli.

The construction proceeds along the following steps. We
first compactify one direction in the boundary of AdS,,. Let
us denote by 7 the coordinate of the corresponding S'. We
then assume a suitable subset ¢ of the moduli fields to
depend on 7 only and to describe, in their evolution, a
geodesic in the moduli space as # varies in its defining
interval of values 77 € [0, T], T being the length of S'. As a
consequence of the backreaction of the evolving scalar
fields on spacetime, the AdS, x S background is trans-
formed into an AdS,_; x S' x §¢ geometry, with a non-
trivial monodromy along S'. The two solutions cannot be
continuously deformed into one another. If we denote by
M, = Gy/H, the moduli space spanned by ¢“, and by O
and P the starting and ending points of the geodesic,
parametrized by ¢“(0) and ¢“(T), respectively, the G,
element g connecting P to O, defines the monodromy:
P = ¢gO. If we assume that Gy(Z) is a symmetry of the
underlying superstring theory reduced to AdS, x $¢, then
by choosing g€ Gy(Z), the backgrounds defined by the
initial and final points of the geodesic would be identified
from the string perspective and the corresponding super-
gravity solution could be conjectured to be a consistent
superstring background. The component of the metric in
the S' direction is proportional to the squared “velocity”
along the geodesic. Therefore the AdS,_; x S' x §¢ is not
continuously connected to AdS, x S¢ as this velocity is set
to zero and the moduli fields to constant values.

A prototype of this background is the nonsupersymmetric
Jfold [11], with geometry AdS, x S' x $°, characterized by
an axiodilaton field evolving along a geodesic in their
moduli space SL(2, R)/SO(2). In the corresponding J-fold
description, the initial and final points of the geodesic are
connected by a monodromy g = J,, € SL(2, Z), J,, being
ahyperbolic element of the type IIB global symmetry group.
However, the mechanism analyzed here, of the construction
of AdS,_; x §' x §¢ U folds by giving the moduli fields a
geodesic dependence on the coordinate of S', seems to be at
work in the J-fold solutions studied in [11-22] with
geometry AdS, x S' x 55, §5 being a deformed 5-sphere.
We shall further comment on this in the final Discussion
section.

In this paper, we shall focus on solutions of the form
AdS, x S' x §3 within type 1IB theory compactified on a
CY, manifold, which can either be 7% or K3. Such back-
grounds feature a richer class of monodromies. In the former
case, CY, = T*, the solutions have an 0(4,4;7Z) mono-
dromy, in the latter, CY, = K3, the monodromy is chosen in
0(4,20; Z). These discrete groups are contained inside the
so-called U-duality group which is conjectured to encode all
string dualities and to be an exact symmetry of the under-
lying, though yet unknown, unifying quantum theory of
gravity [23]. We shall work extensively on the CY, = T*
case and construct explicit U-fold solutions within the
effective N' = (2,2) six-dimensional supergravity.

The paper is organized as follows. In Sec. II we describe
the general construction of such AdS,_; x S' x §¢ back-
grounds. We start from a AdS, x S solution of an ungauged
model in D = 2d, d odd, which describes scalar fields,
spanning the symmetric target space of the sigma model, and
nonminimally coupled to a set of (d — 1) forms. We discuss,
in Sec. IT A, the issue of the boundary conditions along S! in
relation to the geodesic motion of the moduli fields. In
Sec. I A 1 we also introduce, on such backgrounds, the so-
called y deformations originally studied, in the context
D = 10 J-fold solutions, in [15,16,20,22]. To give concrete
examples of these solutions, we focus on the type IIB theory
compactified on a 4-torus. We start reviewing, in Sec. I1I, the
bosonic sector of the resulting ungauged maximal six-
dimensional supergravity. This is the model where we
construct explicit U-fold solutions. Then, in Sec. Il B we
review the known AdS; x S° solutions and their string
interpretation. Starting from these backgrounds, in
Sec. III C we build the U fold for a certain choice of the
monodromy matrix.

In Appendix A we review the geometric characterization
of the type IIB string origin of the scalar and tensor fields in
the maximal six-dimensional supergravity. In Appendix B
we review the general construction of a black-string
solution with SO(4) symmetry and the attractor mechanism
at work for the extremal ones. In Appendix C we review
the construction of the D1-D5 solution within the maximal
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six-dimensional theory, also in the presence of certain,
radially evolving, moduli fields. In Appendix D we give the
explicit form of the effective potential in the presence of
D1-D5 charges, as a function of the string 0-modes, and
discuss its extremization.

II. THE GENERAL CONSTRUCTION
OF THE AdS,;_; xS' x $¢ U FOLD

In this section, we show how to build a new class of
solutions with topology AdS,_; x S' x §¢ (with dimension
D = 2d) by giving the moduli a suitable nontrivial profile.
For the sake of concreteness, we take d odd since we have
in mind the type IIB backgrounds with d = 3 and 5.

We start considering a model, in D-dimensions, describ-
ing n nonchiral p forms Cfp) (I=1,..n),withp=d-1,
coupled to gravity and to a number of scalar fields ¢°,
s =1, ...n,. The latter are described by a sigma model with
homogeneous symmetric, Riemannian target space:

M G

scal — ﬁ .

We assume the isometry group G of the scalar manifold to
admit a pseudo-orthogonal representation %, in terms of
O(n, n) transformations. Our analysis will be extended to
models in which the number n of self-dual and m anti-self-
dual d-form field strengths of the p-form fields are differ-
ent. In this case, we require G to admit a representation in
terms of O(n, m) transformations.

In an extended D-dimensional supergravity model, this
geometric feature is built in. As is the case in ungauged
D-dimensional supergravity, the scalar fields are nonmini-
mally coupled to the tensor ones, that is they couple to their
field strengths Hf 0 = dCfm of the latter in their kinetic

terms. The general form of the bosonic action we are
. . )
considering is

1 _ 1
Lag = e [R =350 P $'Gr(d) = 5T(¢),H' - H

gyt *Hf} ,

: (2.2)

where G,,(¢) > 0 is the target space metric of the scalar
sigma model, and e, = e,; = /| det(g;;)|. The matrices
Z;;(¢) >0 and Ry;(¢p) = —R,;(¢) are functions of the

2Throughout the paper we adopt the mostly plus notation for
the metric. Moreover we define

O(p) - @) = 04y, @ P/,

O iy =2 €y i
Hi---Hp—p p' Hi---Hp-pl1---Up

@

(2.1)

where €y p_; = 1 and ¥2wy,) = (=1)PPPHg .

scalar fields and describe the nonminimal coupling between
them and the tensor field strengths H/. We define the dual
field strengths as

aﬁzd
Glﬁl-nﬁd = €5 (23)

e flgby D oH! ’
by

which, in matrix form and suppressing the spacetime
indices, reads
G=-1I*H-RH. (2.4)

In what follows we treat the field strength and the dual field
strength on equal footing and define this column vector

- (%)

From this the following twisted self-duality condition
follows

(2.5)

*H = -QMH, (2.6)
where
0TI T-RI'R —RZ™!
Q= , M(p)= , 2.7
(]1 O) (4) ( 'R 7! > (2.7)

Q is the O(n,n)-invariant matrix, Q*> =1, and M is a
scalar-dependent ~ pseudo-orthogonal, positive-definite
symmetric matrix: MQM = Q. The Maxwell equations
and the Bianchi equations read

dH = 0. (2.8)
The Einstein and scalar field equations of motion for this
model are

1
R;w - Egpr = T/(AZ) + T;(f:l)a

Dy(0"¢*) =V, (d"¢*) + 15,0, 0" "
- %gsr HT 0, M H, (2.9)

where the energy-momentum tensors are defined as

5) _1 r s 1 AP S
T;5 :Egrs <5ﬁ¢ dyp —59,;95,3(]5 >’ )
) _ 1oy
Tis =4_p!Hﬂﬁ1...ﬁpM(¢)Hi/# o, (2.10)

and T%,(¢) denotes the Levi-Civita connection on the
scalar manifold. The scalar kinetic term can also be written
in the following form
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k 1 .
g T MTIOMMTIOM) = 5G, 0,0, (2.11)

where the constant k depends of the matrix representation
of M.

It is straightforward to prove, using the above expression
for TH), that the trace of this tensor vanishes:

;1 . 1
TH) = gHE M =S HIMA *E

= —éﬂ-ﬂT AMOQMH = —%I]—I]T AQH=0. (2.12)
The global symmetry of the above equations in super-
gravity is the invariance under the two-fold action of the
group G on the scalar fields as the isometry group of the
scalar manifold, and on the field strengths H through a
pseudo-orthogonal representation %, (we suppress all
pseudo-orthogonal indices)*:

’%P
9€G— Z,[gl €0(n,n),
H—H =2,[g]H,
M(p) = M(@') = Z,g] " M($) %, [9]7"
In extended supergravities the matrix M(¢) obeys the
above transformation property since it is expressed in terms

of the coset representative L (¢*) of M., in the represen-
tation %, as follows":

(2.13)

M(p) = Z, L))" Z, L. (2.14)
The transformation property (2.13) of M(¢) then follows
from the action of an isometry element g € G on ¢*:

gL(p) = L(P)h(g.#).  hl(g.¢)€H

and the fact that #,[h(g.¢)€O(n) x O(n). We now
consider solitonic solutions described only by the scalar
and the tensor fields, with spacetime geometry M, x,, S,
where we will choose My, = AdS,_; x S!. The metric will
read

(2.15)

ds* = g, dx'dx’ + g;;dE'dE)

— 242 202 1 2702
= vidsigs,  + v3dn” + vads

2, (2.16)

where y=0,....d—1 and i=1,....d, dsids,,| is the
metric of an AdS,_; space of radius 1 and dsé,, is the metric

of a S?sphere of radius 1. The coefficients v, v,, v3
are constant and we have split the M, coordinates

3For the sake of simplicity, we use the shorthand notation
AT = (AN
*Here we describe the scalar manifold as a left-coset space.

(x*) = (x*,n), where a=0...,d—2 and x*' =5 We

shall also define
éq = /| det(gu)l, eq = y/det(g;;)-

The radius v, of the d-sphere will also be denoted by L.
The general ansatz for the tensor field strengths reads
H=-QMTIey, + e, (2.17)

where €y, €5« denote the volume densities of the manifold
M, and S%

€,
= — H1 Ha
€ = ! 2 €y XN L dx

L dEN A L .dE,

_ ¢t
€gd :d'Ldeil.“

where we recall that L is the radius v, of the d-sphere. We
have also denoted by I' = (') the pseudo-orthogonal

vector of charges:
M ! / M
'"™=— HY,
Ssd sd

where Sq. is the surface area of a d-sphere of radius 1. This
ansatz is covariant under (2.13) provided the charge vector
is transformed accordingly:

(2.18)

g€Gq, r-TI"=2%,[4T. (2.19)

Quantum effects would restrict ' to belong to an even,
unimodular charge lattice I'" and this would, in turn,
break the global symmetry group G to a discrete subgroup
G(Z) ~Z#,G] N O(n,n; Z) preserving the lattice I'"".
In the effective supergravity description of superstring/
M-theories, this group G(Z) was conjectured to encode the
known string dualities [23]. Field configurations connected
by G(Z) should be identified from the string theory point of
view. The values of the D-dimensional scalar fields defin-
ing inequivalent string backgrounds should then span the
manifold:

G(2)\G/H.

In chiral models, in which the number n of self-dual and
the number m of anti-self-dual d-form field strengths in D
dimensions are different, as is the case of type IIB super-
string theory compactified in K3 to D = 6, the duality
action of the global symmetry group G on the d-form field
strengths is implemented by transformations in O(n, m):
X ,(G] € O(n, m). Quantum corrections break O(n,m) to
O(n, m; Z) leaving the even, unimodular charge lattice I
invariant. The global symmetry group is consequently
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broken to G(Z). Our construction also applies to this more
general setting.

In the remainder of this paragraph, we shall focus on the
classical description and thus consider the global symmetry
group G to be continuous.

As for the space-time dependence of the scalar fields, we
need first to define the solution’s moduli. We define the
little group, or stabilizer, of the charge vector I' the
maximal subgroup G, of G such that

VgeGy: Z,[gIl =T. (2.20)
If H, denotes the maximal compact subgroup of G,, the
moduli fields ¢*, u = 1, ..., n,, are defined as the subset of
scalar fields ¢* spanning the submanifold,

(2.21)

of M, at the origin. We split the scalar fields accordingly:

{°} = (", "), u=1,....n,, k=1,....n,—ny,

by defining the coset representative of M., as [24]

G,
L (p") e —,
(") H,

L(¢*) = Lo(9")L(¢"). (2.22)

where the scalars ¢ = (¢*) are defined as follows. Consider
the Cartan decomposition of the Lie algebra G of G into the
Lie algebra H generating H and the coset space K
isomorphic to the tangent space to M, at the origin:

G=Ho K (2.23)
The latter space K supports a representation of H under its
adjoint action. This representation is completely reducible
under the adjoint action of H, C H and K splits accord-
ingly in H ,-invariant subspaces

K=K, ®K, (2.24)
where K, is the coset space of G,/H,, while K supports a
representation of H,. We define

[ (¢*) € eX. (2.25)
We note that the scalar fields ¢* span a symmetric
submanifold G,/H, of M, only at ¢* = 0. For fixed
¢ = (¢*) # (0), ¢" span a space which is not a symmetric
submanifold G,/H, of M, since this space does not
support a transitive action of G,. Indeed, using the short-
hand notation ¢ = (¢*) and ¢, = (¢"), the action of an
element g, € G, on these scalars also affects g?):

9/L(h) = g/Lo(0)L(P) = Lo(e))L(d ). (2.26)

where h, € H, is the compensating transformation in

9L (@) = Lo )by

and

A

L(¢) = hA(P)n;".

Since, for our analysis, we are interested in a symmetric
submanifold M, of My, at fixed, nonvanishing values
b, = (%) of p = (¢¥) (to be identified with the extremum
of the scalar potential) we will have to restrict the moduli
fields to a symmetric submanifold G,/H, of G,/H,
(Gy € Gy, Hy C Hy) characterized by the property that
(Go,L(¢,)] = 0. To this end, we first reduce ¢, to its
simplest form (normal form), by acting on it using H,
and then define G, to be a noncompact, semisimple
subgroup of G, commuting with I]_((;ﬁ*) The manifold
M, = Gy/Hy,H, being the maximal compact subgroup of
Gy is now a symmetric submanifold of M at &5 = g?)* and,
as such, it is totally geodesic.5 Let us denote a point in it by
oo = (¢*),a=1,...,n,, where n,, < n, is the dimension
of M 0-

Using the ansatz (2.17) and the property of M of being
pseudo-orthogonal symmetric, we can write

0 0

HT o MH =45 " V(¢ T)L™, (2.27)
where
V($.T) = %FTM(qﬁ)F. (2.28)
The scalar field equations, on the ansatz, read
Dy(d¢*) = V(I ¢*) + 10,050 09"
=G,V L™, (2.29)

Notice that, in the chosen parametrization defined by the
coset representative of the form (2.22), the scalar potential
is independent of the moduli fields ¢*. Indeed, by using
Egs. (2.14) and (2.20):

V(g'. TV) = V(g". ¢*.TY) = v (¢~ TV).

Let us define ¢, = (¢%) to be the value of the nonmoduli
fields ¢* which extremize the scalar potential V:

>A totally geodesic submanifold M, of a Riemannian manifold
M., is characterized by the property that a geodesic in M.y
originating in a point of M, and initially tangent to M, lies
entirely in the submanifold itself.
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ov

_ — 0 k __
0P| g s

= ¢L(I). (2.30)

The fixed values ¢, = (¢*) only depend on the quantized
charges and are defined modulo the action of a H, trans-
formation. In light of our previous discussion, we fix the
action of H, to bring q;ﬁ* to its normal form and then restrict
the moduli fields to the coordinates ¢, a = 1, ..., n,,, of the
symmetric submanifold M, = G,/H,. The value of the
scalar potential at the minimum is denoted by V, and only
depends on the quantized charges I'V:

V() =V(¢sT) > 0.

We complete our ansatz by choosing

¢ (x) = ¢k, (2.31)
where 7 is the coordinate parametrizing S' in M, =
AdS,_; x S'. All other scalar fields are set to zero. The
scalar field equation reduces to the geodesic equation for

¢“(n) on My:

oV

L2 =,
OB |yt

@ + T " = g, G*— (2.32)

where we have used the fact that V is independent of ¢“ and
have defined ¢ = d¢/dn. Having assumed the nonmoduli
fields ¢* to be constant and equal to the values that minimize
V, all the derivatives of ¢* on the solution vanish and the
corresponding field equations read

%

—Zd gkk
P | gt—pt

gt ¢ = L2 =0,

which is satisfied provided T%,, = 0 for ¢* = ¢* and ¢*
generic. This condition follows from the property of the
moduli space G,/ H,, of being a totally geodesic submanifold
of G/H.®’

The moduli fields ¢*(), therefore, describe a geodesic
in M. Let us denote by « the corresponding line element
(or “velocity”) along it:

1
© = 3 Gu" 9" (2.33)

®Notice indeed that the coset space I, C K of Gy/H, is also
contained in the tangent space K, = [AL((j)k)K[AL(qS") to Mscal at
the point ¢ = 0, ¢* = p* since K, = L(¢*)K,L (¢} C K,.
Being M, symmetric, it follows that [[IKO, K], Ko] C Ky, namely
KO is a Lie triple system and thus M, is totally geodesic [25].
By the same token, also the field equations for the moduli
fields ¢", u # a, which are set to zero, are satisfied since
I, =0, u#a.

The reader can verify that the tensor-field equations dHY =
0 are satisfied by the ansatz.

As far as the Einstein equations are concerned, the only
nonvanishing components of the Riemann and Ricci
tensors are

Reps = =072 (9ay9ps — Gus9py) =
d-2
Rep = Royy” = —(72)%/3’
U1
Riju = v3*(9ugj — 9ugj) =
(d-1)
R _lej :Tglj (234)
2

The Einstein equation can be conveniently recast in the
form

1
= 5 G100 + T (2.35)
The components of 7% are

T(H) _ 1V L—2d

afp _5 * gaﬁ7

1

Ty = =5 V.03,
7 Ly - 2.36

ij = 5 * Gij- ( . )

Taking into account the contribution to the energy-momentum
tensor coming from the geodesic motion of the moduli

fields @“, the Einstein equations imply the following

relations:

02_2(d—2)L2" , _L2_2(d—1)L2d vz_zszM

1= 5, L=EL= L :
(2.37)

From the second equation, it follows that

V.

J2d-1) — __Tx
2(d-1)°

and, in terms of L, the radii v; of AdS,_, and v; of S! read

v =

We notice that the radius »; of S' is proportional to
the velocity along the geodesic, that is its constant unit
measure K.

This solution is to be compared to the known one with
geometry AdS, x S in which

086018-6



U FOLDS FROM GEODESICS IN MODULI SPACE

PHYS. REV. D 109, 086018 (2024)

Pt = i) = const, @" = const.

In that case, the ansatz for the metric reads

ds® = g, dx*dx’ + g;;d&'dg) = vidsys + v3dss

2, (2.38)

and that for the tensor field strengths has the same general
form (2.17). For this solution, we find

V. \e
=L = .
o <2<d— 1>)

(2.39)

2(d—1)L*

2 2 2
V7 = U :L:
1 2

Vv,

Notice that the AdS,_; x S' x S¢ discussed above and
the known AdS, x $¢ solution are not continuously con-
nected. Indeed setting x = 0 amounts in the former to
shrinking S' to zero radius. We may say that the AdS,_; x
S' x §¢ solution may be obtained from the AdS, x S¢ by
compactifying one direction on the boundary of AdS, and
giving the moduli fields ¢“ a geodesic dependence on the
coordinate of the corresponding S'. This procedure
amounts to performing a Scherk-Schwarz reduction on
S! with a twist matrix described by a hyperbolic element of
Gy, as we will show below. It is the backreaction of the
evolving scalar fields on space-time that deforms AdS,
into AdS,_; x S'.

It is interesting to note that this construction can be
generalized. We can take k directions along the boundary of
AdS, and compactify them, allowing the moduli to depend
on the coordinates 7y, ...,7; along these k directions:

o =@*(M) = (11, - k)

where n = (n;, ..., i), while the nonmoduli fields ¢* are
still fixed at their attractor values ¢p*. We assume d — k > 1.
Let us further assume that there is a symmetric submanifold
of G,/H, consisting of the product of k factors:

@—ﬂx@x x@, (2.40)

°"H, H, H,  H

where the elements of Gy = G; x - - - x Gy are required to
commute with [(¢,). Then we take ¢%(q;,....1) to
describe k geodesics, one within each factor 1%-’ j =
1, ..., k, so that

1
Egab((p(n))ar/i(pa nj(pb = 6ij’<:|2-_.

The backreaction of the moduli on the background yields a
spacetime with geometry:

AdS,_; x S' x ... x S! x §4,
—
k

(2.41)

Writing the metric in the form

ds* = g, dx'dx’ + g;;dE'dE
k

= U%dsidsd_k + Z vy, 5dn; + U%dsid, (2.42)
j=1
where 7y, ..., n; parametrize the k circles, we find, from the
Einstein equation
2d 2d
vzzz(a’—k—l)L 02:L2:2(a’—1)L
1 V* ? 2 V* 4
272d

2, =25t — 1,k (2.43)

it+2 V. J X .

Having assumed d — k > 1, v is nonvanishing. The above
equations imply

% d—1—k
[ — Ve _ Sk
2d-1) " -1
v =5 L
J+2 d—1 .

In this section, we proved that the general ansatz describing
the new solutions satisfies the field equations. In this, no
role is played by the global properties of the solutions
themselves. In particular, we could have also considered
our backgrounds in the form

AdS,_; xR x ... x R x 84,
k

(2.44)

For d=5 and k=1 the background is a singular
instance of Janus solutions [26-29] in type 1IB superstring
theory.

However, since the geodesics on the moduli space
Gy/H are noncompact, if the affine parameter »; varies
in R, the corresponding geodesic would stretch to the
boundary of the manifold and the solution would not be
regular. Considering the product of k circles S', we need
to specify, in a consistent way, the corresponding boun-
dary conditions of the bosonic fields.® We shall expand on
this issue, within superstring theory, in the next subsection.

Let us conclude this section by noting that if we started
from the background EAdS, x S¢ in the Euclidean version
of the model, the moduli space would be a pseudo-
Riemannian, Wick-rotated version of the one in the
Lorentzian theory. As such it can also describe timelike
geodesics for which

8Alternatively, we could consider a product of k finite intervals
(I*) or of k circles.
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1
Egubgb“q'oh =—«? <0. (2.45)
These geodesics would allow for a decomposition of the
d-sphere yielding geometries of the form
EAdS,; x S! x ... x §! x §47k, (2.46)
———
k

A. Boundary conditions on S!

Consider the solution with spacetime of the form
AdS,_; x S' x §¢ within superstring theory. Let us
denote by T the length of S! so that n €[0, T). Since the
dependence of the moduli fields ¢“(5) on n describes a
geodesic on M, which connects two distinct points as we
move around the circle S', consistency of the background
as a string theory solution requires the monodromy matrix
connecting the initial and final points to be a string duality,
namely to belong to G(Z). More precisely, suppose ¢* (1)
describe a geodesic on M connecting an initial point,
which we can choose to be the origin of the moduli space
¢“(0) =0, to a final point in M, with coordinate ¢*(T).
The coset representative along the geodesic defines an
n-dependent “twist” matrix in Gy/H:

A(n) = Lo(o"(n)). (2.47)
The monodromy matrix reads
M= A(T)A0)! (2.48)

and maps the coset representative in M, at # = O to that at
n="T:

ML(¢*(0), §.) = L(9*(T). }.). (2.49)
This matrix is defined modulo a compensating transforma-
tion in the isotropy group of ¢*(0) in M:

M ~ Mhy, hy € Lo(9*(0))Holy(9*(0))~".

(2.50)
We require one representative of the equivalence class of I
to be an integer matrix:

MeGy(2). (2.51)
A conjugation of M by an element of Gy(Z) can be
reabsorbed by a redefinition of the scalar fields ¢“ in the
background so that it is unphysical. The monodromy
matrix is therefore defined by conjugacy classes of hyper-
bolic elements in Gy(Z).

The geodesic on M, is uniquely defined by the ini-
tial point ¢y(0) = (¢“(0)) and by a velocity vector
QET,, o) (M). The latter can be described by a matrix
of the form

Q = Lo(0(0)) QoL (ep0(0)) 7",

where Q, being an element of the coset space of M, in a
suitable basis of the chosen real matrix representation, is a
symmetric matrix: Qy = QZ. The moduli along the corre-
sponding geodesic ¢q(n7) = (¢“(n)) are solutions to the
matrix equation:

Mo(@o(n)) = ”—0(900('I>)”—0((P0('7))T
= My (9p(0))e?

= Lo(90(0))e™Lo(o(0))".  (2.52)

In terms of Q) the velocity x along the geodesic reads

@ = STr(ad).

g (2.53)

We can restrict ourselves to geodesics originating in the
origin of My, ¢*(0) =0, where Ly(¢y(0)) = Ly(0) = 1.
Having chosen 9t € Gy(Z), then T and Q have to be fixed
so that

Mo(@o(T)) = MM (6(0))IM" = IMM" = DT, (2.54)

In the more general solution (2.41), we have a mono-
dromy matrix It associated with each of the k 1-cycles.
Consistency as a string background requires, for each of
these matrices,

M, €G4(Z2) c G(2), j=1,... k. (2.55)
The solutions described here are instances of U folds [30].
They feature noncontractible 1-cycles along which there is
a monodromy matrix in a string duality in G(Z). In general,
this duality is a combination of S and T dualities and it is
referred to as U duality.

1. Deformations of the global geometry of the solution

Let us discuss a deformation of the global geometry of
the solution effected by introducing suitable metric moduli.
Since d is an odd number, it is convenient to choose the
following parametrization for S¢:

& ={ur¢i}. i=1.....d, (2.56)

where y; > 0, ¢; €0, 2x), in which its metric reads

1S
ds?, = 1> (duj + pidg}). (2.57)
=1

The coordinates u! are subject to the constraint > ,u% =1.
Let us now perform, on the solution discussed in the
previous sections, the following local change of variables:
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b1 — @y =1+ xm.

The resulting solution is locally, though not globally, equiv-
alent to the original one, as discussed in [15,16,20,22].
The parameters y; are metric deformation of the manifold
S' x §¢ which can be understood as follows. Consider the
local torus

1_ ¢l 1 1
TP+ =8y, X Sp X XSy,

where Srlin are the local circles parametrized by ¢b; and S}7 isthe

circle parametrized by 7. For y; = 0, T°*! can be described as
the quotient

+1 +1
" =RP / Acubic’

where A 18 a cubic lattice generated by an orthonormal
basis of vectors u;, u. The position vector x of a point in 7°+!
is defined modulo a vector in the lattice (summation over the
repeated index / is understood):

x:ﬁu,+ﬁu~x+n,u,+nu;

L,WELZ,
2 T it

(2.58)

which implies ¢; ~ ¢; + 2z and np~n+T.
After the deformation, that is for y; # 0, the local torus is
described as

TP =R /Ay,

where Aly;] is a lattice generated by the nonorthogonal
basis {@1;, @}, where

ut
2w

u; =uy, u= u; +u.
Now the position vector of a point on the local torus is
subject to the identification:

b1 . ~
X=—u;,+—-u~X u a,
o 1+T +nu; +n

ni,ne”z, (2.59)
which implies the same identifications on ¢;,n given
earlier. Defining instead new coordinates ¢, 7' with respect
to the old orthonormal basis

/ /

Py L
x—zﬂu,+Tu,

we have the following relation:

& = b1+ xm. n =

|
=

While in the coordinates {¢;,n} the parameters y; appear
in the metric, in the coordinates { ¢}, 1}, they only appear in
twisted identifications:

by ~ ¢ + 2,

nen+TANy~¢p+xT.  (2.60)

The deformations y; break the isometry group SO(d + 1)
of §¢ to its maximal torus U(1)? acting on ¢, as shift
isometries.

This global deformation was originally studied in
[15,16,20,22] in more sophisticated variants of the U folds
described here, for d = 5, and the parameters y; corre-
sponded to exactly marginal deformations of the dual
Supersymmetric conformal field theory (SCFT) at the
boundary.

From the above characterization, it follows that y, are
periodic since
ﬁ—)ﬁ:l:ﬁIEAb(I],

2
= e (2.61)

so that y; ~ y; + 2%

B. Examples in type IIB superstring theory

1. Type IIB in D=10

The first setting where our construction can be applied is
type IIB theory in ten dimensions [31]. The global
symmetry group of the classical low-energy supergravity
description is G = SL(2, R);z within which only G(Z) =
SL(2,Z),p is a symmetry of the superstring theory. It is
known that this theory admits maximally supersymmetric
background of the form AdSs x S° in which the three-form
field strengths vanish and the self-dual five-form field
strength £ 5) =" F (5) has a nonvanishing flux, related to the

radii of the AdS5 and S°. The construction discussed earlier
applies with d = 5, p = 4. In this case the representation is
X, = X4 = 1, namely it is the singlet representation since
the electric and magnetic five-form field strengths coincide
G =F =H=Fs, M(¢) = 1. Moreover, G, = G and
the scalar manifold

G SL(2,R)yp

Mo =— =
seal = gy SO(2)

coincides with the moduli space M, = G,/H, and
describes the axion C(j and the dilaton ¢. In our pre-
vious notation we identify ¢ = (¢, C(p)) and the (left)
coset representative in the 2 of SL(2,R) is L = Ly(¢*) =
L)(¢.C(g)), where L is defined in Eq. (3.6) below.’

°In this representation, the action from the left of a matrix (¢ Z)
with ad —bc = 1, amounts to the following transformation
on the complex axion-dilaton field p = C(g) + ie: p—p =

(dp+c)/(bp+a).
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The background with geometry AdS, x S' x §° was con-
structed in [11]. The axion and the dilaton describe a
geodesic on M. This background is nonsupersymmetric
and unstable. The solution in [11] can be generalized by
considering a geodesic in the moduli space originating in a
generic point ¢(0), C(o)(0) with velocity «:

e = cosh(v/2kn)e?©),

Co)(n) = e tanh (V2x ) + C()(0). (2.62)

This solution, however, does not satisfy the appropriate
boundary conditions for it to be a possible solution to type
IIB superstring theory: the monodromy matrix as 7 —
n+ T must be in SL(2, Z);5. Choosing, for instance,'’

n

1
EsznE—S’Tn:< 0), neZn>0, (2.63)

and C) = ¢(0) =0, solving Eq. (2.54), we find the
following solution:

inh (v/2x7)

e‘/’(’/) o L _I_ COSh \/EK s

Vot 4 (V2w
Coon() = 2 sinh (v/2x7)

O vn? + 4 cosh (v/2kn) + nsinh (v/2kn) '

1 n?
T =—cosh™!| =+ 1>.
V2K <2

(2.64)

Defining the complex field p = C(g) + ie™? one can verify
that

(2.65)

which is the effect of the transformation J, = —S7™ on
p(0). Notice that, on this solution

M = A(T)A(0) " hg = Loy (p(T),
Ci0)(T))L2)(9(0), C(0)(0)) ™" g,

where the compensating transformation %, reads

"“In the definition of J,, S=(07') and 7 = (19). J, is an
elliptic element of SL(2, Z) forn = 0, 1, parabolic for n = 2 and
hyperbolic for n > 2. It was shown that hyperbolic elements of
SL(2,Z), modulo conjugations, can be either brought to the
standard form J,, n > 2, or to coincide with sporadic mono-

dromies, see [30].

h—#(n 1)eSO(z) (2.66)
0_\/1—1—1'12 -1 n ) '

We could start from the background of the form [4,6,7]

AdS5 X SS/Zk, (267)
which preserves 16 supercharges. The classical super-
gravity description features the following moduli space:

SU(1, k)

Mscal - U(l) % SU(k) . (268)
It describes k complex scalars dual to the complexified
coupling constants z; of the dual N' = 2 supersymmetric
Ai_1 quiver gauge theory. Also in this case #Z, = %4 = 1,
G=F=H=Fgs, M($) =1, and Gy = G = SU(1,k).
Applying our construction to this situation would require
the monodromy matrix to belong to the quantum duality
which generalizes the SL(2,Z) symmetry for the k = 1
case to k > 1. For a discussion on the definition of this
group and its relation to the classical symmetry SU(1, k) of
the supergravity moduli space see, for instance, [6,32].

2. Type IIB on T* or K3

The six-dimensional theory resulting from the compac-
tification of type IIB superstring theory on a 4-torus T* is
described, in its low-energy limit, by the maximal
N = (2,2) six-dimensional supergravity [33]. This theory
features a solution with spacetime AdS; x S°, describing
the near-horizon geometry of a system of D1-D5-branes
with two common Neumann directions (at the boundary of
AdS;) and the 5-branes wrapping the 4-torus. Alternatively,
in an S-dual picture, the same background describes the
near-horizon geometry of an F1-NS5 system.

The global symmetry group G of the classical six-
dimensional supergravity is spin(5,5), double cover of
SO(5,5). Quantum effects break this group to G(Z) =
spin(5, 5; Z), which is conjectured to encode superstring U
dualities. This group acts on the charge lattice I'>>. The
bosonic sector of the theory describes n = 5 two-forms, 25
scalar fields in the coset (in the classical theory)

v G _ spin(5, 5)
sl = 5~ [(Spin(5) x spin(5))/Z,]

and 16 vector fields in the 16 of spin(5,5). The ten self-
dual and anti-self-dual components of the three-form field
strengths H/% » M = 1...,10, transform under the action
of the classical global symmetry group SO(5,5) in the
representation %, = 10. On the bosonic backgrounds
under consideration, the vector fields vanish. Since we
shall be focusing on the bosonic sector only, the global

symmetry group G will be described as SO(5,5). The

086018-10



U FOLDS FROM GEODESICS IN MODULI SPACE

PHYS. REV. D 109, 086018 (2024)

charge vector ' of the D1-D5 system has little group
G, =S0(4,5) C G in the classical supergravity. The
coset space K of M, under the adjoint action of H, =
SO(4) x SO(5) splits into K, @ K in the representation
(4,5) @ (1,5), see Eq. (2.24). The nonmoduli scalar fields
c}ﬁk are chosen to be parameters of K in the (1, 5) of H ¢ As
discussed earlier, we fix SO(5) to rotate ¢* to their simplest
form. This corresponds to the parameter of a Cartan
generator in the coset space. Next, we consider a group
G, commuting with the corresponding element [ ().
Our choice for G needs not to be maximal. The maximal
choice of Gy is SO(4,4) and thus of the moduli space

The D5-branes of the D1-D5 system wrap the whole 7*
and the D1, D5 charges d,, ds belong to a I''"! sublattice of
I3, which thus decomposes as [34]

FS,S — Fl.l @ I‘4,4.

The subgroup G, acts on I'** leaving I'""! invariant.
Choosing one direction along AdS; to be compact and
fixing the dependence ¢“() of the moduli fields ¢ in the
space Gy/H, on the compact boundary coordinate 7, to
describe a geodesic in Gy/H, the backreaction of these
moduli deforms AdS; x $3 into AdS, x S!' x §* as dis-
cussed earlier. Consistency as a string background requires
the monodromy matrix 9, connecting the starting and
ending points of the geodesic, to be a hyperbolic element of
SO(4,4;27):
M = Ly(9"(T))Lo(¢(0))" €S0(4.4:2).  (2.69)

We could also choose the geodesic describing the moduli,
to lie in a nonmaximal symmetric subspace of M, such as

Gy (SL(2,R)\* SO(4,4)
T H, ( SO(2) ) SO(4) x SO(4)

MO Cc Mscal‘

In this particular case, I has the general form

EUZ — 57}219.7229)2327.714, (270)
where M5, j =1,...,4, is an element of the SL(2,27)
subgroup of the corresponding SL(2, R) factor in G,. We
shall expand on this class of U-fold solutions in the
maximal six-dimensional theory in the next section.
Considering type IIB superstring theory compactified on
K3, this is a six-dimensional (2,0) ungauged supergravity
[1]. The group G is O(5,21) and the charge lattice is 2!,
Considering a D1-D5-brane system in which the D5-branes
wrap the whole K3, the little group G, of corresponding
charge vector '™ is O(4,21), yielding 84 moduli fields in
Gy/H, = S0O(4,21)/SO(4) x SO(21). According to our
construction, we do not consider geodesics within this

manifold, but rather within a smaller one My = G,/H,.
The maximal choice of Gy, is O(4, 20). The D1, D5 charges
d,, ds belong to a I'""! sublattice of I'>?!, which thus
decomposes as [34]

F5’21 _ I"l,l ® r4.20'

The subgroup G acts on I'*? leaving T''"! invariant. The
only nonvanishing moduli fields ¢“ in the solution are
required to describe a geodesic in G,/ H,. The monodromy
matrix is then chosen as follows:

M € Gy(Z) C O(4,20,Z). (2.71)

III. THE BOSONIC SECTOR OF THE
N =(2,2), D=6 THEORY

In this section, we shall describe an instance of U fold of
the form AdS, x S' x S3, obtained applying the construc-
tion discussed in Sec. II to the maximal six-dimensional
model obtained from type IIB supergravity upon compac-
tification on a 4-torus and dualization of all forms are
dualized to lower-order ones. As pointed out above, this
model, in its classical limit, features a scalar manifold of the
form

SO(5,5)

M = 55057 x SO(3)

(3.1)

Let us start reviewing the general mathematical description
of the model. We recall that the scalar fields originating
from toroidal dimensional reduction to D = 6 consist in the
moduli of the internal metric G;;, the axion-dilaton field
p = C) +ie?, the scalars Bf, = (C;;,—B;;), a = 1,2,
originating from the ten-dimensional two-forms C(y), B3)
and the scalar Cjj; = ce;jy from the four-form. As
mentioned earlier, the five two-form fields and their
duals transform, under the global symmetry group
SO(5,5), in its fundamental representation %y = 10.
They are B%,=(C,,.—B,,), their duals B,,,=(C,,.—B,,)
and the six C;j,,. The identification of the D = 6 scalar
fields and two-forms with the above type IIB fields is
effected by decomposing the adjoint and the fundamental
representations of SO(5,5) with respect to the subgroup
SL(4,R) x SO(1,1) x SL(2,R);z, where SL(4,R) x
SO(1,1) is the group of acting transitively on the metric
moduli of the torus:

Adj (SO(S, 5)) — Adj (GL(4, R)) + Adj(SL(Z, R)HB)
+(6,2), +(1,1),,
+(6'.2)_; + (L, 1)_,,

10> (1.2)_,+(6,1),+(1.2),,., (32
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where the grading refers to the SO(1, 1) factor. The scalars
B{; parametrize the nilpotent generators in the (6,2),,, c
the highest-grading generator (1,1),,. As for the two-
forms, B, and B,,,,, are defined by the (1,2)_; and (1,2),
representations in the branching of the 10, while C
transform in the (6,1),.

Besides these fields, the bosonic sector also consists of
16 vector fields which, however, will not play a role in our
analysis.

Below we describe the subsector of the maximal D = 6
theory describing the graviton, the scalar fields, and the
two-forms. We shall collectively denote by sz), I =
1,...,5 the tensor fields and by ¢° the 25 scalar fields.
The corresponding Lagrangian (2.2) reads

ijuv

e
L = ecRe — é(IUH]ﬁﬁ[)HJMD/) + RIJHI,;,;,a*HJ””")

- eog (MTIOMM1OM), (3.3)

where i =0, ...,5andI,J = 1, ..., n. The matrices Z(¢p) =
(Z(¢)1;) =Z(#)" > 0 and R(¢) = (R(¢);;) = -R(¢)"
were introduced earlier in Sec. II, together with the
symmetric, positive-definite O(5, 5)-matrix (M) =My,
where M,N =1, ..., 10, see Eq. (2.7).

A. An explicit parametrization of the scalar manifold

In this section, we review the explicit description of the
scalar manifold M, in terms of the so-called solvable or
Borel one [35,36] parametrization, in which the type 1IB
origin of the 25 scalar fields is manifest. A detailed account
of this parametrization, for this model, is also given in [37].
Here we use, for the description of the type IIB theory in
D = 10, the conventions defined in Appendix B of [11].

The basis of the Z(;) = 10 is chosen as follows'":

VM = (v, Vv

Vo), (3.4)

ijo
where the components V*, V;;, V, transform in the (1,2)_,,
(6,1),, and (1,2),,, respectively. In this basis, the
SO(5,5) invariant matrix in the fundamental reads

0o 0
QMN = 0 €ijkl 0 (35)
5% 0 0

In the solvable parametrization of the scalar manifold
the scalar fields are defined as parameters of the Borel
subalgebra of 80(5,5).

We start by discussing the axion-dilaton system and then
describe the rest of the scalar fields.

"In this representation the coefficient k in (2.11) is equal to 1.

1. Axion-dilaton system

The dilaton ¢ and the axion field C(), in the ten-
dimensional theory, span the coset SL(2, R);;5/SO(2). The
corresponding coset representative is chosen of the follow-
ing form:

s e?? 0
Ly = (L) = . 3.6
(2) ( ) (C(()) e?/2 e_¢/2) ( )

This allows us to define the matrix

_ T _ 1 Re(p)
A (NNAD BECE

2. The SO(5,5)/SO(5) x SO(5) manifold
As mentioned above, the scalars B?j and ¢ parametrize

the generators £t of the Borel subalgebra of 80(5,5) in
the representations (6,2),, and (1,1), of GL(4,R),
respectively. In the basis (3.4), these generators read

. 0 0 0
[EBZEB?]»IZ{: Byij 0 0|,
0 -B,7 0
0 0 0
C=ct= 0o 0 0], (3.8)
ceqg 00
where
. 1 ..
Buij = capBly = (B;;.Cyy). B =3By (39)

Next we write the coset representatives L)L) of
SL(2,R);5/SO(2) and GL(4,R)/SO(4) in the same
representation:

-T
Ly 0

Loy=1 0 1 ,
0 0 Ly
G-i1 0 0

Ly=| 0 2GHEFE} 0 |, (3.10)
0 0 Gi1

where G = det(G;;), the metric G;; being in the D = 10
Einstein frame and E;* being the vielbein matrix: G =
E*E* (summation over k is understood). The %
coset representative is then written as

U_MN:€C'€B-|]_(4) |]_(2) (311)
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We can now compute the components of M = LL”:

MY = GIm®P ,

Mljﬁ = G_%maﬁ Baij’

M(lﬁ = G_%C(mmﬁﬂ’
Mz = G2(2GGy; + m? BBy ).
Mij = G2 (cqpm?Byyj — B GuGyy).

1 ..
Maﬂ = G_% <cm,cﬁym"7 + EB(IUBﬁleikGﬂ + Gmaﬁ> 5
(3.12)

where

1 y
CaﬁEceaﬁ_ZB(lijBﬁl]' (313)
We refer to Appendix A for more details about the solvable
parametrization of the scalar manifold as well as the
description of the tensor fields in terms of the 80(5,5)
weights of the 10.

B. AdS; x S* solution of type IIB theory on T*

In Appendix C we present a general discussion of the
static black-string solutions in the presence of nontrivial
moduli. A known instance is the D1-D5 system in which
the D1- and D5-branes have only two common Neumann
directions, defining the worldsheet of the black string in
D = 6, and the D5-branes wrap the whole 7*. This solution
is of particular importance in string theory since it provided
the setting for the first successful black hole entropy
calculation through string microstate counting [38].

The charge vector reads

™ = (ds,0,0,0,0,0,0,0,d,,0), (3.14)
where ds, d; are taken to be both positive and denote the
D5- and the Dl-brane charges, respectively. Through a
(charge-dependent) change of basis, see Appendix D, the
above vector can be brought to the form

F/M = ( V 2|d1d5|9090901 O, 05 0, 0, 0,0)

In this new basis, the invariant pseudo-orthogonal metric
reads

(3.15)

Q = diag(+1,+1,+1,+1,+1, -1, -1, —1,=1,=1).
(3.16)

The above form of T" makes its little group G, = SO(4, 5)
manifest: it is the subgroup of G acting nontrivially only on
the entries 2, 3, ..., 10. The matrix representation of G, in

the original basis (3.14) is d;, ds dependent. As explained
in Secs. II and II B, the coset space KK of M, splits into K,
and K supporting the representations (4,5) and (1,5) of
H, = SO(4) x SO(5). The nonmoduli fields ¢* parame-
trize the five-dimensional K and can be brought to a normal
form ¢* = (g,0,0,0,0), through the action of SO(5), in
which the only nonvanishing scalar g parametrizes the
Cartan generator:

b = diag(1,0,0,0,0,0,0,0,—1,0).  (3.17)

The scalar field g is identified as follows: 9 = ¢? G2, where
G = det(G;), see Appendix A.

The effective potential V for the D1-D5 system, and its
extremization, is discussed in Appendix D. The maximal
subgroup of SO(5, 5) commuting with §j is SO(4, 4), which
represents the maximal choice of Gy C G,. The maximal
moduli space M, is

SO(4,4)

Mo=56) < so@)

parametrized by C;; and G; = e‘%Gi j» see Appendix A.
Had we chosen the system of F1 and NS5-branes dual to
the D1-D5 one, the maximal moduli space M, would be
spanned by B, Gl(;) = e%Gi J» where ng) 1s the torus metric
in the string frame. The O(4, 4; Z) global symmetry group
would, in this case, encode the T dualities along directions
of T%, and transformations in O(4,4;7)/SO(4,4;7)
would map the type IIB and type IIA descriptions of the
same F1-NS5 solution.

Coming back to the D1-D5 system, when we only switch
on the moduli fields C;;, G; ; and the field g, the matrix M
is the product of two commuting symmetric matrices:

M, 9) = Mo(9*) M(g). (3.18)
where

M(g) = diag(es,1,1,1,1,1,1,1,1,e79,1),  (3.19)

and I'7 M (g%, g)T = I M(g)T’, so that the effective poten-
tial reads

1
V=3 (die? + dier). (3.20)

By further fixing the moduli fields C;; = 0,G;; = §;;, we
have g = 2¢) and the solution takes the known form (see
Appendix C 1)

ds* = (Z,25)H(=dP + dx?) + (Z,Z5)H(dx'dx’),

Z
ed = e’? =log (Z—1> ,
5
ds

i gyl dl
dxidx' = dr* 4+ r*dQ3, z]:1+ﬁ, ZS:I+P'

(3.22)

(3.21)
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To avoid the factor 1/2 in the harmonic functions, it can
be convenient to define rescaled charges: d; =20,
ds =2Qs. The charges d; and ds are defined in
Eq. (D1). At the horizon the Z functions become

4 _Q 45 _Os

A .y £
21 2

= = . 3.23
ST 2T 2 (3.23)

This background is AdS; x S3, which is the throat of the
D1-D5 system. The nonmoduli scalars are attracted toward
configurations that extremize the potential. We give a
general discussion in Appendix D. In this particular case,
in which we set C;; =0, G,»j = 0jj, the scalar field g = 2¢
is fixed at the horizon, through the attractor mechanism, to

the value
d1> <Q1>
=2¢ =log|— ) =log| = ).
9=2¢ g<d5 s Os

At the minimum the effective potential has the value

(3.24)

The near-horizon metric is conveniently written in the
following form:

ds* = r (=df* + dx*) + L—2er
- L2 r2

+ L?[dy? + sin® w(d6* + sin® Odw?)],  (3.26)

where L2 = —Vildf’, as obtained in Egs. (2.39), (3.25).

C. AdS, x S x $3 U folds

In this section, we apply the general construction of
Sec. II to the construction of U-fold solutions with
geometry AdS, x §' x §3 in type IIB theory on T+
As discussed in Sec. II, we only switch on the field
¢9 = ¢?G? and the moduli fields @“ spanning either the
manifold SO(4,4)/[SO(4) x SO(4)], parametrized by
Gij:e‘gGij,Cij, or a symmetric submanifold M, =
Gy/H, of it. We start with a metric of the form

r? L?
dS2 = _kl thz + kl ?drz + k2d7’]2

+ L?[dy? + sin® w(d6* + sin® 0dw?)],  (3.27)

H) dyds .. kl’"z ky
T =g 4 (F"P’

~ 2 1, sin?(y), sin? (G)Sinz(l//)> ,

where ki, k, are positive constants and we compactify the 5
direction: 5 € [0, T]. Just as in the D1-D5 solution, we turn
on the charges d;, ds. The ansatz for the three-form field
strength is again

H = —yQMTdt A dy A dr + C(0,y)Tdy A dO A do,
(3.28)

which is duality covariant. On the three-form field we
need to impose the twisted self-duality condition, the
Maxwell equations, and the Bianchi equations, which read
respectively

*H = -QMH, dH = 0. (3.29)
These are all solved if we pick
kivk
y = lLf_z, £(0.w) = sinBsin?y.  (3.30)

The moduli ¢* in M, are switched on along a geodesic arc,

9" = ¢*(n). (3.31)
with velocity x and affine parameter #, so that
! b 2
=G0, 0,0° = K°. (3.32)

2

Thanks to the ansatz for the field strength H (3.28), the
equation of motion for the scalars has the same form as
Eq. (2.9), where V(¢,T") = V(g,T') is given in Eq. (3.20).
The scalar equation of motion is solved if we extremize the
potential as

g =log (¢?G?) = log <§> =const,  (3.33)
5

since we forced the moduli fields ¢* to evolve in 7 along a
geodesic.

The last equation to check is the trace-reversed Einstein
equation. The computation of the energy-momentum part
which involves the three-form H gives

b (3.34)
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where the second element on the diagonal is the (1,7)
component of the tensor and has to be canceled, in the
Einstein equation, by the only nonvanishing component of
the scalar energy-momentum tensor, which equals the left-
hand side of Eq. (3.32), namely . The Einstein equation
then completely fixes the coefficients as follows:

1 k K'z\/dlds
2 - 9
4

(3.35)

To give an instance of a geodesic curve described by
string 0-modes, we can restrict the moduli fields ¢ to the

submanifold
SL(2,R)\?
SO(2) ’

which is obtained by restricting the moduli G
¢
e 2G

_Go_

M, = = .
0= (3.36)

ij =
ij» Cij to the following nonvanishing fields:
|

6—4512 = Gll = 622, e_¢34 = 633 = 644, C12» C34' (3'37)

The metric of the scalar manifold restricted to g,
$125 P34, C1a, C34 reads

dg
2
+ 2 dC3,.

d3* = ==+ dgpt, + ddp3, + >/ dCh,

(3.38)

The geodesic can be chosen as the product of two geodesics
spanned by ¢,,C, and by ¢34, C34, respectively,
unfolding in the two factors of M,. The monodromy
matrix IR will be the product I = IN,;IM,, of two
elements M;, M, in the two factors SL(2,Z) in
Gy(Z) = SL(2, Z)?. Choosing, for instance,

9}22 -

ml :Jnl’ J

n»

the geodesic reads

\/m cosh (rlcosh‘] (é(n%JrZ))) T sinh <r]cosh“ (7%-(1'1%+2)))

e¢12(’l) = ’
nt +4
Cunt 2 sinh (MW)
12\n) = — — — ’
\/n? + 4 cosh (M) + 1, sinh (w)
\/m cosh (MY%W) +n, sinh (w>
ePaln) = ’
n} +4
. necosh™! (3(n2+2))
2 sinh <+)
Cay(n) = —

which satisfy the equations explicitly presented in Appen-
dix C, after the appropriate coordinate transformations to
bring the target metric (3.38) in the form (C1). It is
straightforward to verify that, as # — n + T the complexi-
ﬁed flelds P2 = C12 —+ i€_¢12,p34 = C34 =+ i€_¢34 trans-
form under the action of the monodromies J,, J
respectively:

np»

1 1
) P34 = — .
P12 + 1y P3s+ 1y

P12 = —

In this case, we have

2 2
(cosh‘1 <%+ 1> +cosh™! <%+ 1> ) .

K2 =

e (3.39)

T

\/l’m cosh (7“05[{[ (é(n%-ﬂ))) + n, sinh (”4“’5}’71(%@%”))) ’

[

Along the same lines, we can construct the AdS, x ! x §3
T-fold starting from the near horizon geometry of an
F1-NS5 system with charges

™ =(0,ns,0,0,0,0,0,0,0, f).

This solution is obtained by applying an S-duality
SeSL(2,Z)yg to the DI-D5 U fold. As pointed out
earlier, the maximal choice SO(4,4)/SO(4) x SO(4) for

the moduli space M|, is spanned by B, Gg;) = e%Gi j» where
Gl(.]s») is the torus metric in the string frame, while
M = diag(1,e9,1,1,1,1,1,1,1,¢79),  (3.40)

with €9 = ¢=2% = ¢~¢G?, see Appendix A. Since now the
monodromy matrix is an element of O(4,4; Z), which is
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now the T-duality group associated with the internal
4-torus, the resulting U fold is a T fold.

We can choose a monodromy matrix I € O0(4,4;2)/
SO(4,4; Z), which is not connected continuously to the
identity. This can be achieved by describing S' through two
open patches: one consisting of S! minus the point 7 = 0,
the other obtained by subtracting to S' the point 7 = T/2.
Within each patch the evolution of the scalar fields is
geodesic. However, in the interval (0,7/2) the moduli
fields are described in both patches by'? Ly(¢%(5)) while
in (T/2,T) they are described in the first patch by
Lo(@%(n)) and in the second one by & -Ly(¢%(n)),
where 0 €0(4,4;7)/S0(4,4;Z), 0% =1. The twist
matrix has the following property: .4(0) = Ly(¢“(0)),
A(T) = O - Ly(¢*(T)), so that M, given by Eq. (2.48),
is in O(4,4;2Z)/SO(4,4;Z). This T-fold solution with
NS-NS charges is therefore described in one patch within
the type IIB theory and in the other one within the type ITA
one, the transition function being a pseudo-orthogonal
matrix with a negative determinant.

In the next subsection, we review the action of a duality
transformation on the general, duality covariant, ansatz
discussed in Sec. II.

1. Duality

Let us discuss here the action of the duality symmetry on
a generic solution. Consider a duality transformation

O =(0OM,)€S0(5,5) © 0QOT =Q.  (3.41)

Its action on the scalar fields is described by the trans-
formation property of the matrix M (¢):

$= () —> ¢ = (¢") & OTM($)O"!

= M(¢). (3.42)

while the corresponding action on H = (HM) reads

H = OH = -QO T M (¢)0_1(9F€(3) + 0F€(3)

= —QM(¢/)F/€<3) + (")F/é@). (343)
A particular instance of duality symmetry, which we shall
use in the sequel, is S duality, implemented, in the basis we
are using, by the following matrix:

0 0
=] 0 268 o0 |, (3.44)
o o0 o’

where

"Recall that L, is in the identity sector of the isometry group.

0 1 ~ 0 1
9% — , 0f = , 3.45
/ (—1 0) (—1 0) (3:43)

such that 8/ = (6‘1)/3”. Besides being pseudo-orthogonal,
© is orthogonal as well: @@ = 1. From Eq. (3.42) we
deduce the following transformation rule for the scalar

fields:
)n)=(5,) 0%

(3.47)

) 0
By =07By = <—1

ey = 6(9_1)ﬁa€ﬂyé5y = C€yp,

/

pl=—=, (3.48)

1
P
all other fields being invariant.

IV. FINAL REMARKS AND DISCUSSION
OF THE SOLUTION

In this work, we discuss the general construction of
a U-fold solution with AdS,_; x S! x S¢ geometry and a
monodromy along S' in the duality group, within theories
admitting a AdS, x S background with moduli fields.
More in general we build U-fold backgrounds of the form
AdS,_; x S' x -+ x 8! x §9, (4.1)

k

with d —k > 1.

This was achieved by introducing an appropriate spatial
dependence of the scalar moduli along a compact direction
which, in the original AdS,; x S4 solution, is in the
boundary of AdS,. The effect of the backreaction of the
evolving moduli on the geometry is to split AdS, into
AdS,_; x S'. The geodesic arc connects two distinct points
in the classical moduli space. Consequently, the consis-
tency of this background in superstring theory requires the
initial and ending points to be identified in the string
moduli space.

Since the dependence of the fields, in the U-fold
solution, on the S'-coordinate 7 is factorized in the action
of a twist matrix A(n7) € G, on the fields, it is natural to
expect this background to be a solution of the D = 2d-
dimensional model compactified along S' 4 la Cremmer-
Scherk-Schwarz [39] to (2d — 1) dimensions, with a twist
matrix A(#) in the global symmetry group G,. Indeed the
only fields in the solution transforming nontivially under
G, are the moduli fields @“. We extensively discussed,
as a concrete application of our general construction,
type IIB superstring theory compactified on T* to six
dimensions, and utilized the moduli fields present in the
AdS; x $3 x T* solution to create a U fold with geom-
etry AdS, x S' x §3 x T*. This construction involves
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introducing a nontrivial geodesic dependence of the moduli
fields in SO(4,4)/SO(4) x SO(4), or in a symmetric
submanifold M thereof, on a compact direction S' along
the boundary of AdS;.

Cremmer-Scherk-Schwarz reduction of maximal N =
(2,2) six-dimensional supergravity to five dimensions
admit Minkowski five-dimensional vacua only if the twist
matrix is compact, that is in spin(5) x spin(5). In this
case the reduction was originally studied in [40,41] and,
more recently, in [37,42] in relation to the study of
black hole solutions. Our setting, however, is substantially
different since it relies on the moduli fields describing a
geodesic in My = G,/ H,, which requires the twist matrix
A(n)€Gy/Hy to be intrinsically noncompact. This is
necessary for the evolving moduli to backreact on the
geometry through a nonvanishing component of the

energy-momentum tensor: Tf{f,) #0.

The general mechanism analyzed here in detail, under-
lying the construction of AdS,_; x S' x §¢ U folds, seems
to be at work in the more sophisticated class of J-fold
solutions with geometry AdS, X St x 5‘5, which have
recently attracted considerable interest [11-22,43]. All
these solutions correspond to AdS, vacua of maximal
four-dimensional supergravity with gauge group G =
[SO(6) x SO(1,1)] X T'2. Aside from the nonsupersym-
metric J fold with SO(6) symmetry mentioned earlier and
found in [11], which fits the general class discussed in
Sec. II, in all other solutions the axion-dilaton system
features a dependence on the coordinates & of the deformed
5-sphere S and on 7. The former is sourced by three-form
field strengths while the latter describes a geodesic arc in
the moduli space, as noticed in [17]. In the present work,
we have highlighted this common feature of all these
solutions and generalized it to the case d # 5, showing that
the geodesic dependence of the moduli fields on the 7
coordinate of an S! at the boundary of AdS,, is sufficient to
split this space into AdS,_; x S!, where the ratio of the
warp factors multiplying the metric AdS,_; and dn? is a
suitable constant.

An important issue to address is the supersymmetry and
stability of the AdS, x S! x $? solution discussed in this
work. Secondly, it would be of considerable interest to
construct variants of these solutions, with geometry
AdS, x S' x §3, where §? is a deformed 3-sphere, in which
the moduli fields ¢“, aside from the geodesic dependence
on 7, also feature a dependence on the coordinates of $3
sourced by two-form field strengths. These new solutions
would be the counterpartin D = 6 of the A" = 1,2, and 4 J
folds in D = 10. In analogy with the latter solutions, we
may argue that these AdS, x ' x §3 U folds should be
dual to the IR limitof a 1 + 1 SCFT compactified along one
spatial direction, with an interface localized along this
direction and an O(4,4;Z) monodromy acting on the
exactly marginal operators dual to ¢“, when crossing the

interface. Although we do not expect the solutions AdS, x
S' x §3 to be supersymmetric, we expect their variants
AdS, x S' x §3 to preserve some supersymmetry, in anal-
ogy with the D = 10 J-fold counterparts. It would also be
interesting to relate generalizations of our backgrounds to a
compactified version of the Janus solutions found in [44]
which were also put in correspondence with an inter-
face CFT.

Similar to the Janus solutions, the approach outlined in
this paper is relevant for the supersymmetric wormhole
solutions recently found in [45]. The existence of moduli,
or scalar fields becoming moduli near the wormhole’s neck
might be a crucial element in constructing such wormhole
solutions.

We leave these projects to a future investigation.
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APPENDIX A: TYPE IIB SUPRGRAVITY ON T*:
GEOMETRIC CHARACTERIZATION OF THE
SCALAR AND TENSOR FIELDS

In the solvable parametrization of the scalar manifold,
the ten-dimensional dilaton ¢ and the radial moduli o;,
i=1,....4, of T*, parametrize the Cartan subalgebra of
80(5,5) while the remaining scalar fields are parameters of
the shift generators E, corresponding to the positive roots
a. The latter are conveniently expressed in terms of the
simple roots which, in a suitable orthonormal basis €;, €5,
are chosen to have the following form:

A =€ —€,0 =€ —€3,03 = € —€,0q; = €; 1 €,

1 4
—a= —5 (ZQ‘) +€5.

i=1

(A1)

The generators t,”, t of the solvable Lie algebra generat-
ing the coset, which enter the definition (3.11) of the
coset representative, correspond to the following shift-
generators Ej:

1= Ea+€1 +et+e3+€,
(A2)

ij — ij —
Ly /= Ea+€,-+€j’ ) /= E€i+ej’

The six positive roots €; — €;, i < j, are the positive roots
of the GL(4,R) group of the 4-torus and enter the
definition of the vielbein matrix E = (E;*). The latter
can be written as
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E=E- R,

where

S Vi Ee—e.
E_He! €; ej’

i<j

R = (8ie%), (A3)

and the generators E¢ ¢, are meant, in the above formula,

as 4 x 4 nilpotent matrices in the 4 of GL(4,R). The
dependence of the coset representative on the dilatonic
scalars ¢, o; is through the matrix

4
1 ¢
l]—dil = CXp (ZO’,' (Hei +§H€i> —EH3>

i=1

(A4)

The dependence of the kinetic term of the nondilatonic scalar
i/ ,B%;j,c4) on the dilatonic ones, in the Lagrangian, is
through the characteristic exponential e2h*

4
= (Soforte)44)

i=1

, where

and « is the positive root associated with the scalar.

Similarly to the nondilatonic scalars we can associate
each of the ten three-form field-strength HM with weights
wM of the 10 of 80(5,5) which, the chosen conventions,
read

wM = (W5, W, W), (AS)
where
w? = (Wo,—€5), Wij Wy + €; + €,
1
Wy = _Wa’ Wo = _EZ €;. (A6)

The dependence of the kinetic term of HY on the dilatonic
scalars in the Lagrangian is through the characteristic
exponential e~ 21V,

The ds, d; charges are associated with the weights £w,.
The Cartan generator § in (3.17) is defined by the
component of h along W, and is spanned by the scalar g:

“h 1
ed = eV = g .G

The roots of SO(5, 5) which are orthogonal to w, define an
SO(4,4) algebra representing the maximal choice of G,
subgroup of G which commutes with §. The positive roots
of SO(4,4) and the corresponding nondilatonic scalars are

a+€i+€j <> Cij’
€—¢€,(i<j) < ri.

As for the dilatonic scalar fields, these are the components
of h along the orthonormal basis v; =% + ¢;, orthogonal
to wy:

(A7)

EIRSS

The NS-NS charges ns, f;, associated with the NS
5-brane and the fundamental string, respectively, corre-
spond to the weights F €5. The scalar g parametrizing ¥y and
entering Eq. (3.40) is now given by

1
el = e = g71Gr = e 2o,

where the six-dimensional dilaton is defined as e% =

e? det(Gl(-j-))_‘l* and GEJS.) = ¢%G;; is the torus metric in the
string frame. The dilatonic scalar fields in the SO(4,4)/
SO(4) x SO(4) coset are given by the components of h
along the orthonormal basis

They are

and are the radial moduli in the string frame. On the other
hand, the positive roots which are orthogonal to €5 are

€; -+ €j <> Bij’

€ —¢€;, (i <)) <.

This proves that the manifold SO(4,4)/SO(4) x SO(4) is

spanned by the moduli GS), B;;.

APPENDIX B: THE TYPE IIB STATIC BLACK
STRING SOLUTIONS

Let us study the most general ansatz for a static black-
string solution with SO(4) symmetry. The corresponding
metric has the following general form:

ds* = A(r)*(=dt* + dx*) + A(r)2dr?

+ B(r)?[dy? + sin® y(dO* + sin? Odw?)], (B1)
where r, y, 6, w are the polar coordinates of the four-
dimensional space transverse to the string world volume
and the last three angles parametrize a 3-sphere S°. The
coordinates x*, i =0,...,6 naturally split into
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X ={t,x,r}, = {y,0,w},

where 4 =0,1,2 and ji = 3,4,5.
The Ricci tensor is

AA'B
R, =-R,, = A? (AA” +3 + 2A/2> )
R, = Yo [-3A(A'B' + AB") — 2B(AA" + A”)],
— Ré‘é‘ _ Ra)w
YW sin?y  sin?ysin® 0
= —3ABA'B' — A?[(BB" + 2B"?)].

We emphasize that this ansatz described the most general
static black-string solution coupled to any number of scalar
fields. The constant charge vector I' = (') is defined as

'™ = ! [H]M

212

and characterizes the solution. Let us consider the already
introduced (2.17) ansatz for the tensor field

H = —&(r)QMIdt A dx A dr+ y(0,w)Tdy A dO A do,
(B2)

and this solves the twisted self-duality condition, the
Maxwell equations, and the Bianchi equations if

A

Ak (0, y) = sin ysin 6.

&(r) = (B3)

With this choice, the energy-momentum tensor reads

2

T,=-T, =—-A*T,, = ﬁV, (B4)
Vv
T'I/W — ﬁ . (BS)
On the inverse trace of Einstein’s equation
1
H
R (B6)

we impose the consistency requirement ¢ = ¢(r) and the
equations explicitly read

Vv

RI =R} = — 35 (B7)
r V tAr A4S
R =- 236+ Q,\0¢0¢ (B8)
1%
Ry =R)=Ry=—_. B9
5= 355 (B9)

These equations force some consistency relations such that

R! = RY, Ry =R =R2, (B10)
which are already verified, but there is another condition

that we still have to impose, i.e.

1
RI+R)=0— 3 (A’B*)" + (AB)* -2 =0. (BI1)
Posing AB = ++/u this condition becomes
d’u 1 [du)\?
—+—(—| —4=0. B12
a2 <dr> (B12)
To solve this we define
du . d
Qu) =—, Q=—Q, B13
() dr du (BI13)
and we get the Bernoulli equation
. Q2
QQ+——-4=0, B14
with solutions
4 2
Q= 4/t (B15)
u

We choose the “+” sign and, from Eq. (B13), we have

/ 4“ +1 L (137 —4
—C= - />
\/a+4u 3\/u—|—4u 2127447 a

u=A(r)’B(r)>.

(B16)

The extremal solutions are recovered with a — 0. In fact,
this gives
(r—c)?

= A(r)*B(r)%, (B17)

from which we can recognize the structure of the double
coincident horizon at r = c.

At radial infinity, r and u go to +oo0, while, near the
horizon r ~ ¢ and u ~ 0. In these parametrizations, how-
ever, the inner and outer horizons do not appear. Now with

a little abuse of notation we regard A and B as functions of
u and we trade B with u in the metric:

ds* = A(u)*(—dt* + dx?)

du?
* MA(M)_Z <a + 4u?

+d£2§3>. (B18)
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The affine parameter = can be defined by the differential
equation

dr 1
— = B19
du  uva+4u? (B19)
which can be solved as follows:
Va
= B20
u(®) 2 sinh(y/ar) (B20)

Notice that we have chosen the sign of u(z) so that, since
u > 0, ¢ will be nonpositive. At radial infinity (4 — o)
7 — 0~ and near the horizon (u — 0) 7 - —o0.

In terms of the affine parameter and defining A(u) =
¢V the nonextremal metric is

ds? = 2V (—dt* + dx?)

| Ja

1 a
- WO (- di? 4 dQ2, ).
3 sinh(y/ar) ¢ <4 sinh?( /ar) o 53>

(B21)

Regularity requires a > 0. Einstein’s equations and the
scalar fields equations are

U= e4U§, (B22)

éﬁs + f?ud)tgbu = e4UgStasV’ (B23)
3a . wV 1 "

i — R S B24

8 U e 4 + 8 gts¢ ¢ ’ ( )

where the dots are the derivatives with respect to the affine
parameter z. The first two equations can be deduced from
the effective action

. 1 Lo Vv
Sett = / d’L’(UZ + g Gud'd" + s 4>, (B25)
while the third one can be interpreted as a Hamiltonian
constraint, with energy 3%

The near horizon limit can be obtained by taking
7 — —oo and the metric reads

ds? = 2V (—dt* + dx?)
+ aeVare=2u) (ae—2ﬁ7d12 n d§2§3). (B26)

To have a finite horizon area, we must require the following
behavior:

Ag\¥3 1
e-2U o <_’é> I (B27)
2 \/ae\/ET

as 7 — 0.

The two horizons can be described by changing the radial
variable into a new one p defined through the relation

a . a
(p=po)—a 4’

sinh?(v/az) = (B28)

which can be solved in the two variables as follows:
p = po — Vacoth(Var),
1 P~ P+>
T = —log( ,
2\/a p—p_

where we have denoted by p.. the radial location of the two
horizons defined as

(B29)

pr =po+Va. (B30)
Therefore, the metric near the horizon reads
A -2/3
ds? = (—Z) \/Ee\/‘.”(—dt2 + dx?)
27
A 2/3
+ (2—Hz> (ae*Vedr® + dQg;). (B31)
T

The existence of a timelike killing vector £ = d, guarantees
the existence of the Komar mass for this class of solutions,
which is given by

71'C2

c2
= — HEV —
M 871G Ago \/§|9,¢,w€9¢wﬂvv 5 4G (B32)

lim U .
=0~

This allows us to fix the following conditions at infinity:

. 4G
nnc

(B33)

1. Attractor mechanism for extremal solutions
If a = 0 we have
1 1

—, —py = —— =272, B34
o P =Po —=2r (B34)

and the two horizons coincide, p,. = py. The metric reads

1 dr?
ds? = er(—dtz—i—dxz) +me—2U (4—;—1— dQ§g> . (B35)

The horizon is again at ¥ — 0 and 7 — —oo and the near
horizon behavior of the function e~V is now given by

A\ 2/3
e = (2—”2> (=27), as7— 0. (B36)
JT
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Since the area of S5 is Ay = 27%L3, we can also replace Ay
with the radius of the 3-sphere L. The coordinate which
defines the proper spatial distance from the horizon is

e—U

RV =T

L
dr = — 5 dlog(-7). (B37)

Thanks to the regularity condition in Eq. (B36) and fixing a
not-useful constant we find

L
(= —Elog(—r) + const, (B38)

while the position of the horizon is now at { — —o0. Again,
we require the scalar fields to be regular at the horizon

Jim §7(0) = ¢t < oo, (B39)

If the functions ¢° are uniformly continuous this request
necessarily implies that the derivatives

dk
lim —¢° = 0. B40
Jim dck¢ (B40)
This implies
d2
lim 7—¢* = lim 72 s¢*=...=0 (B41)
T——00 T T——00 T

The scalar field equation (B23) can be rewritten as

0 + I, (10,4") (10.¢") = G"O,VL™.  (B42)
Taking the limit at the near horizon and applying the rule
for regularity (B41) we get the attractor mechanism"
equation,

lim 0,V = 0. (B43)
=gt

The scalar fields which V depends on are attracted toward
fixed value extremizing the potential, while the others are
called flat directions. Therefore, the attractor mechanism
forces the effective potential V to have an extremum at the
horizon, namely for ¢° = ¢5:
1—‘Tas'/\/ll—whorizon =0. (B44)
We can also find the explicit critical value of the black hole

potential at the horizon. To do this, we note that the
function U near the horizon is explicitly given by

PThe attractor mechanism was first found for D = 4 asymp-
totically flat extremal black holes in [46,47].

U= —%log(Lz(—Zr)). (B45)

If we insert this result inside Eqs. (B22)-(B24) we get that
the value of the black hole potential V' at the horizon is fixed
to be

Vhorizon =V, = 4L% (B46)

Restoring the coordinate r, and setting ¢ = 0, the metric at
the horizon takes the form

2 L2
ds? = :—2 (=d? 4 dx?) + — dr* + L2dQg.  (B4T)
H

which describes an AdS; x S° geometry.

APPENDIX C: STRING SOLUTIONS IN THE

DOUBLE COMMUTING 5337 TRUNCATION

We can now write the solutions of Egs. (B22)-(B24) by
minimizing the potential V, as discussed in Appendix D.
After this minimization, to solve the equations we just need
the moduli to move along geodesics on the target space.
Here we discuss the case of two commuting SL(2, R) of the
scalar manifold, for which the potential and the metric
reads

ds = dp* + dy* + dg* + e?=V2 4 (dC),)>

+ eV (AT, )?, (C1)

@
V= % (d2et + d2e?29), (C2)

where B}, = C}, and B§4 = (C34. From the perspective of
the 10D, the metric in Einstein’s frame is

ds}y = e*ds? + e?P? (e dO? + 21V dbj

+ eV AG3 + e d63), (C3)

C, = Cy + C1pdb; A dO, + C3udbs A dO,,  (C4)

where a = 1/4 = —f and y*> = 1/8. In this case the ein-
stein equations are directly from Eqs. (B22)—(B24):
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U(r)

’

1
— IO (@) 1 et 200)) =0

on %e¢<f>+4u<r> (—d2eD-2000) 4 P otlo))
_%ew)—ﬁw(r)mu) (Cr(2)? + €2V oy (2)2) = 0,

1
@(t)+ §e4U<f> (d2eP@~00) — 2o oD=(0))

1 : :
_ Ee‘/’“)—ﬁ‘/’(’)*‘ﬁ@ (C1a(1)2 4 e2V2 O E34(1)2) =0

9’

1 . .
i (z) +Ee(p(r)—\/§w(r)+¢(r> (Cra(r)? =2V C3y (7)) =0,

Cia(2) + Cra(0)(@(2) = V2 (z) + (1)) =0,

Ca(2) + Caa(0) (@(2) + V2 (2) + (2)) = 0. (C5)

In order to separate the moduli from the other scalars we
introduce the functions

p=HO=500)

PRLGETICH

(Co)
therefore, the system totally splits into two different sets of
equations. This is due to the diagonal form of the metric,
see Eq. (Cl), in this particular truncation. The first
equations are for the scalars which are not modules,

.. 1
Ulr) - Ze‘”f@—ﬂ(ﬂ (d? +d2e*))y =0, (C7)
(8) + OO (@ — Bel0) =0, (C8)
and the second system is for the moduli
h(z) = OV (Cy (1) + VO Eyy(0)2) =0, (C9)
1 , .
§i(7) + —= " OVHO(C (2)2 = VWO Ey (1)) = 0,
V2
(C10)
Cia(2) + Cpa(2)(h(z) = V24 (2)) =0, (CL1)
C34(2) + Caa(7) (h(z) + V2ir(z)) = 0. (C12)

1. D1-D5 solution

When the moduli are equal to zero, to solve the first
system we can define the superpotential to be

W = e~ F(d, + dsed?). (C13)

Thanks to this definition we can prove that the system can
be cast into a first-order system

§(r) =229, , W =0, (C14)
. 20(z)
U(z) - We4 = 0. (C15)

Now it is easy to see that the solution is given by

U(x) = - logl(1 - diz)(1 - ds7)].  (C16)
g L L=

o(0) =90 =groe[ ;=] (c)

w(7) = cia(7) = ca(7) =0, (C18)

for which the metric reads

- (=di* + dx*)
~/(Fdit+ ) (=dst + 1)

. V(=dz J(r_lz)f()—dsr—k 1) <Z’_§+ dg§3>, (C19)

We can now define the usual radial coordinate 7 =
(=2r?)7! and we end up with the usual form of the
D1-D5 system,

ds? = (Z,Z5)2(—di® + dx®) + (Z,Z5)3(dx'dx'),  (C20)

dx'dx' = dr* + r*dQ3, ZI:1+Q_21, 25:1+Q_25,
I r

(C21)

where Q; = d,/2 and Qs = ds5/2. At the horizon the Z
functions become

Zl :Q—zl, ZSZQ—;, (C22)
r r
and the physical distance from the horizon is
—log(~ (C23)
p=1log\2)

This background is AdS; x S3, which is the throat of the
DI-DS system. Now, the scalars are attracted toward
configurations that extremize this potential, called critical
points,

Since we are in the near-horizon region where this critical

point is reached by the scalar fields, we have V =V, and
the energy-momentum tensor for the scalars is zero
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T.')
in the following form:

= 0. The near-horizon metric is conveniently written

2

2 _ r 2 no Lo
ds :F(_dt +dx )—i—?dr
+ L2[dy? + sin? w(d6* + sin? de?)],  (C25)
where L% = —“;'ds. Einstein’s equations boil down to
v 1 v (H)y % U (H)p
G” - —EV()&” - Tﬂ 5 Gﬁ = _V05ﬁ - Tﬁ . (C26)

2. D1-D5 solution with nontrivial moduli

The equations for the moduli (C9)—(C12) are consistent
with all of them to be zero; this was the matter of the last
Sec. C1 which describes the DI1-D5 system. In this
subsection, we consider a solution in which some of the
moduli fields are allowed to evolve in the radial variable z.
The resulting solution, however, is not related to the general
construction considered in this work, in which the evolu-
tion of the moduli is on one of the boundary coordinates
instead.

We can still keep part of the solution we wrote before,

U(x) = - logl(1 ~ dyr)(1 - ds7)],  (C27)
g(z) = log E - Z;j : (C28)

while the moduli remain to be fixed now. If we now
introduce

s(@)=h(D) +V2(z). 1(x)=h(r)=V2y(r),  (C29)

the equations decouple into two independent systems:

H(z)=2e"ep (1) =0,  éplr) +én(r)i(z)=0,  (C30)
§(7)=2e*@ 3 (7)2 =0,  ¢34(1) +34(7)5(2) =0, (C31)
We can directly integrate ¢, and c34 as
ci(r) = ¢ /e‘t<7)dr,
cu(t) =3 / e dr, (C32)
while the remaining equations are
i(7) = 2c2e™"00), 5(7) = 2c3e™®,  (C33)

where ¢; and c; are constants. The whole system can now
be integrated and the solution reads

h (Voa
t = log [-2¢%(cosh(r) — 1)], Clp = W7
|
V6a
s = log [—20%(cosh(1) - 1)], Cyy = W_
3

In terms of the field appearing in the truncation given by
(C1), the solution is

1 1—d17
= |-21
o3| oee(i=a)

+log(4c,?c3*(cosh(V6ar) — 1)2)] ,

1 l—le
=—|21
’ 4{ Og<1—d57>

+log(4c,?c3*(cosh(V6ar) — 1)2)] ,

log (— E—?) coth (@ T) coth (@ 1)
=, Cp=—7T"", - aa——
\/Z 12 2¢ .
This solution is nonextremal. We can directly build other

solutions using the S-duality transformation given by
Eqgs. (3.46)—(3.48).

APPENDIX D: EXTREMIZATION OF THE
EFFECTIVE SCALAR POTENTIAL

In this section, we wish to discuss the extremization of
V(¢,T). To this end, we first need to explicitly construct
M in terms of the scalar fields by using the solvable
parametrization of the coset manifold. Using the explicit
dependence of M,y on the dimensionally reduced type
IIB fields we can derive the moduli space of the AdS; x S°
background. We can derive the expression for the potential
V by first writing the charge vector I’ in components:

™= (n* Dy n,), (D1)

where n* = (ds, ns), n, = (d,, f1), being d,, ds the DI,
D5 charges and f, 5 the charges of the fundamental string
and of the NS 5-brane, respectively, while D;; are the
D3-brane charges. We then restrict ourselves to the D1-D5
charges and obtain

G2

1 .. 2
2V = FMMMNFN = (dl — geleIBijBkld.i)

S

1
0.6 () =B, s i

1 ijkl .
- C—gej BijCkl d5

1 .
+ gSGE <2—gBi‘jBlelkG'll + 1>d§
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The mass formula for the D1-D5 system given in [48] is
obtained by adding an invariant, constant-shift term to the
potential V, that is TQ,,,I"V /2. The minimizing con-
ditions over the moduli space are the following:

1 ..
c— gel]leijCkl = QSG%C(O), (D3)
1 .. d
9,G* + —€M B, By, = d (D4)
8 ds
L 1 ..
l l 1
G2Bl‘jG ijl :EB,-jejkl. (DS)

With these conditions the potential at the minimum is

V* = dldSv (D6)
which, after the mentioned shift, becomes exactly double.
The initial space for the scalar manifold is SO(5,5)/
(SO(5) x SO(5)); due to the attractor mechanism, five of
these scalars are fixed at the minimum of the potential. These
conditions are explicitly given in (D3), (D4), and (D5). Then,
the scalar manifold reduces to SO(4,5)/(SO(4) x SO(5))
as required by CFT duality (see Ref. [49]). To see this, let us
show that SO(4, 5) is the little group of the charge vector '
when only the D1-D5 charges are switched on:

™ = (ds,0,0,0,0,0,0,0,d,,0). (D7)
Supersymmetry requires d;ds > 0. Let us perform the
following duality transformation:

M - ™M = OM, TN, (D8)

where
OM, = diag <\/Z:; 1,1,1,1,1,1,1, j—? 1) €50(5,5).
(D9)
The new charge vector reads
"™ = \/d\ds(1,0,0,0,0,0,0,0,1,0). (D10)

Changing the basis of the representation space by a Cayley

transformation
1 1 1
CMN __< )’
V2\1 -1

the invariant matrix becomes

Q- (C'QC=diag(1,1,1,1,1,-1,-1,—-1,-1,—1)  (D11)
and the charge vector acquires the following form:
I' » CI' = /2d,dsdiag(1,0,0,0,0,0,0,0,0,0). (D12)

From the above form of the charge vector, it is straightfor-
ward to identify the SO(4,5) subgroup of SO(5,5) which
leaves it invariant. It consists of those matrices which have a
trivial action of the first entry of the vector.

In the non-BPS case in which d,ds < 0 (e.g. D1-anti-D5
system), the same transformation yields the vector:

CT" = +/2|d,ds|diag(0,0,0,0,0,0,0,0,1,0). (DI13)

The stabilizer being still SO(4, 5). This orbit, as opposed to
the BPS one, is characterized by the invariant property
I'er < 0.
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