
Celestial OPE in self-dual gravity

Shamik Banerjee,* Harshal Kulkarni,† and Partha Paul‡

National Institute of Science Education and Research (NISER),
Bhubaneswar 752050, Odisha, India,

Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India-400085;
Department of Physical Sciences, IISER Kolkata,

Mohanpur, West Bengal 741246, India,
Department of Theoretical Physics, Tata Institute of Fundamental Research,

Homi Bhabha Road, Mumbai 400005, India,
and Centre for High Energy Physics, Indian Institute of Science,

C.V. Raman Avenue, Bangalore 560012, India

(Received 19 January 2024; accepted 25 March 2024; published 15 April 2024)

In this paper we compute the celestial operator product expansion between two outgoing positive helicity
gravitons in the self-dual gravity. It has been shown that the self-dual gravity is a w1þ∞-invariant theory
whose scattering amplitudes are one-loop exact with all positive helicity gravitons. Celestial w1þ∞
symmetry is generated by an infinite tower of (conformally soft) gravitons which are holomorphic
conserved currents. We find that at any given order only the descendants of a finite number of w1þ∞
currents contribute to the operator product expansion. This is somewhat surprising but, this is consistent
with our earlier analysis based on w1þ∞ symmetry alone. The phenomenon of truncation also suggests that
in some (unknown) formulation the spectrum of conformal dimensions in the dual two dimensional theory
can be bounded from below.
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I. INTRODUCTION

Celestial holography is a conjectured duality between
quantum gravity in 4D asymptotically flat spacetime and a
quantum field theory on the 2D celestial sphere [1–3].
Symmetries play an important role in this conjectured
duality. The Lorentz group in 4D acts on the 2D celestial
sphere as the global conformal group. So the dual theory
should be a conformal field theory. Motivated by this, a new
basis was introduced [2–4] in which the S-matrix elements
transform like 2D conformal correlators. Besides the two-
dimensional global conformal symmetry, celestial con-
formal field theory has various infinite-dimensional current
algebra symmetries [5–34].
Operator product expansion (OPE) is a central tool used to

study various aspects of any CFT. In the context of celestial
CFT also, OPE played an important role in identifying new
symmetries [19,22,23], null states [19,20,35–45] etc. It has

also found applications in the bootstrap program [46,47].
Based on the universal singular structure of the tree-level
OPE between two positive helicity gravitons, it was shown
in [22] that celestial conformal field theory has an infinite
tower of soft symmetries which close into w1þ∞ algebra
[23]. Loop corrections to the tree-level celestial OPEs have
been studied in [48,49].
In a previous paper [39], we have studied the implications

of the w1þ∞ symmetry at the level of OPEs by using
representation theory. By studying the subleading terms in
the OPE between two positive helicity outgoing gravitons,
we have shown that there should exist an infinite number of
theories which are invariant under w1þ∞ algebra.
In this paper we derive the OPE in one such theory,

known as the quantum self-dual gravity [50–54] which was
shown to be w1þ∞ invariant in [55–57]. Here we do a
collinear expansion of the known graviton scattering ampli-
tudes in the self-dual gravity theory and extract the celestial
OPE from there. For simplicity, we analyze the 5-point all
plus amplitude in self-dual gravity and factorize it in the
collinear limit through a 4-point amplitude. The results we
obtain are consistent with what we proposed in [39] based
on the representation theory of w1þ∞. The rest of the paper
is organized as follows.
In Sec. II we introduce notations and conventions used in

this paper. Section III briefly describes the w1þ∞ algebra
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and how the whole tower of the w1þ∞ currents can be
generated using the two sl2ðRÞ subalgebras. In Sec. IV we
briefly discuss about the scattering amplitudes in quantum
self-dual gravity. Section V discusses how to extract the
OPE between two positive helicity outgoing gravitons from
the 5-point one-loop self-dual amplitude. We start by
simplifying the 5-point amplitude in the momentum space
and then Mellin transform it to get the celestial amplitudes.
We then discuss how to factorize each term order-by-order
in the OPE limit of the celestial amplitudes. The null states
of the self-dual gravity appearing at various orders of the
OPE and the invariance of the OPE under w1þ∞ algebra are
discussed in Appendixes I and J.
For the sake of completeness of the paper, we give a

brief review of the celestial amplitude in Appendix A. In
Appendix B, we discuss the parametrization of the 4- and
5-point delta functions which are useful in our context of
the OPE expansion. Appendixes C and D discuss how to
simplify the 4- and 5-point amplitudes in momentum
space using momentum conserving delta functions and
various identities of the spinor-helicity brackets. These
simplifications are done keeping in mind the fact that we
want to factorize the 5-point amplitude in terms of the
4-point amplitude in the OPE expansion. Appendix E deals
with the Mellin transformation of the 5-point amplitude. In
Appendix F we discuss the conditions on the graviton
primary operators under the w1þ∞ algebra which follow
from the universal structure of the OPE. In Appendix G, we
list the transformation properties of all the maximally
helicity violating (MHV) null states under the action of
sl2ðRÞV and sl2ðRÞ algebras which are required to show the
w1þ∞-invariance of the self-dual OPE. Appendix H briefly
reviews the construction of a general w1þ∞-algebra invari-
ant OPE and how one can obtain an infinite family of w1þ∞-
algebra invariant theories.

II. NOTATIONS AND CONVENTIONS

In this paper, we will work in the (2, 2) signature space-
time, which is also known as Klein space. The null
momentum pμ of a massless particle, satisfying the on
shell condition p2 ¼ 0, is parametrized as

pμ ¼ ϵqμ;

qμ ¼ ωf1þ zz̄; zþ z̄; z − z̄; 1 − zz̄g; ð2:1Þ

where ϵ ¼ �1 for outgoing and incoming particles respec-
tively, ðz; z̄Þ are two independent real variables and ω is any
positive number interpreted as the energy of the particle. In
Klein space the null infinity takes the form of a Lorentzian
torus (known as the celestial torus) times a null line. The
Lorentz group in (2, 2) signature is given by SOð2; 2Þ ≃
SLð2;RÞL×SLð2;RÞR

Z2
and acts as the group of conformal trans-

formations on the celestial torus,

SLð2;RÞL∶ z→
azþ b
czþ d

; z̄→ z̄; ad− bc ¼ 1;

SLð2;RÞR∶ z̄→
ā z̄þb̄

c̄ z̄þd̄
; z→ z; ā d̄−b̄ c̄ ¼ 1: ð2:2Þ

In our conventions the spinor-helicity variables are given by

hiji ¼ 2ϵiϵj
ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
zij; ½ij� ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
z̄ij; ð2:3Þ

where zij ¼ zi − zj and we also have 2pi · pj ¼ −hiji½ij�.

III. REVIEW OF w1 +∞ ALGEBRA

We start by reviewing the w1þ∞ algebra which follows
from the universal singular terms in the OPE between two
positive helicity outgoing gravitons. Let Gþ

Δðz; z̄Þ denote
the positive helicity graviton conformal primary operator of
dimension Δ at the point ðz; z̄Þ on the celestial torus. The
universal singular terms in the OPE are given by [22]

Gþ
Δ1
ðz1; z̄1ÞGþ

Δ2
ðz2; z̄2Þ ¼ −

z̄12
z12

X∞
n¼0

BðΔ1 − 1þ n;Δ2 − 1Þ

×
z̄12n

n!
∂
nGþ

Δ1þΔ2
ðz2; z̄2Þ ð3:1Þ

Let us define an infinite family of positive helicity
conformally soft [58–64] gravitons [22] as,1

Hkðz; z̄Þ ¼ lim
Δ→k

ðΔ− kÞGþ
Δðz; z̄Þ; k ¼ 1;0;−1;−2;…;

ð3:2Þ

with weights ðkþ2
2
; k−2

2
Þ. It follows from the OPE (3.1) that

we can introduce the following truncated mode expansion:

Hkðz; z̄Þ ¼
X2−k2
m¼k−2

2

Hk
mðzÞ

z̄mþk−2
2

; ð3:3Þ

and the modes Hk
mðzÞ are the conserved holomorphic

currents. The currentsHk
mðzÞ can be further mode expanded

in the z-variable to get,

Hk
mðzÞ ¼

X
α∈Z−kþ2

2

Hk
α;m

zαþ
kþ2
2

ð3:4Þ

and one can show [22] that the modes Hk
α;m satisfy the

algebra,2

1In (3.2) and the equations following this, the index k starts
from 1 instead of 2 [23]. H2ðz; z̄Þ is a central term and we take it
to be zero because Gþ

Δ has no pole at Δ ¼ 2. This has the
consequence that supertranslations commute.

2Here we are assuming that κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p ¼ 2.
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½Hk
α;m;Hl

β;n� ¼ −½nð2− kÞ−mð2− lÞ�

×
ð2−k

2
−mþ 2−l

2
− n− 1Þ!

ð2−k
2
−mÞ!ð2−l

2
− nÞ!

×
ð2−k

2
þmþ 2−l

2
þ n− 1Þ!

ð2−k
2
þmÞ!ð2−l

2
þ nÞ! Hkþl

αþβ;mþn: ð3:5Þ

This is called the holographic symmetry algebra (HSA).
Now if we make the following redefinition (or discrete light
transformation) [23]:

wp
α;m ¼ 1

2
ðp −m − 1Þ!ðpþm − 1Þ!H−2pþ4

α;m ð3:6Þ

then (3.5) turns into the w1þ∞ algebra3

½wp
α;m; w

q
β;n� ¼ ½mðq − 1Þ − nðp − 1Þ�wpþq−2

αþβ;mþn; ð3:7Þ

where p ¼ 3
2
; 2; 5

2
; � � � and 1 − p ≤ m ≤ p − 1.4

For our purpose it is more convenient to work with the
HSA (3.5) rather than the w1þ∞ algebra. However, we
continue to refer to the HSA as the w algebra.
Now, in [39], it was shown that the whole tower of the w

currents can be generated using the two sl2ðRÞ subalgebras.
One of them is sl2ðRÞV5 generated by the operators
fH1

−1
2
;−1

2

; H0
0;0; H

−1
1
2
;1
2

g,

h
H0

0;0; H
1
−1
2
;−1

2

i
¼ H1

−1
2
;−1

2

;h
H0

0;0; H
−1
1
2
;1
2

i
¼ −H−1

1
2
;1
2

;h
H1

−1
2
;−1

2

; H−1
1
2
;1
2

i
¼ −H0

0;0: ð3:8Þ

The other sl2ðRÞ subalgebra is generated by the global
(Lorentz) conformal transformations fH0

0;1; H
0
0;0; H

0
0;−1g.

We call this sl2ðRÞ because this acts only on the z̄
coordinate. Now the w symmetry is generated by the
infinite number of soft currents fHk

pðzÞg where k ¼
1; 0;−1;−2;… is the dimension (Δ) of the soft operator
and k−2

2
≤ p ≤ − k−2

2
. For a fixed k, the soft currents

fHk
−k−2

2

ðzÞ;…; Hk
k−2
2

ðzÞg transform in a spin-ð2−k
2
Þ represen-

tation of the sl2ðRÞ.
Now let us consider the currents fH1

1
2

; H0
1;…; Hk

2−k
2

;…g
with the lowest sl2ðRÞ weights. These currents transform in
an irreducible highest weight representation of the sl2ðRÞV .

This can be seen from the following commutation relations
following from (3.5),

h
H−1

1
2
;1
2

; Hk
α;2−k

2

i
¼ −

1

2
ðk − 2Þðk − 3ÞHk−1

αþ1
2
;2−ðk−1Þ

2

;h
H0

0;0; H
k
α;2−k

2

i
¼ ðk − 2ÞHk

α;2−k
2

;h
H1

−1
2
;−1

2

; Hk
α;2−k

2

i
¼ −Hkþ1

α−1
2
;2−ðkþ1Þ

2

: ð3:9Þ

Therefore, starting from the current H1
1
2

ðzÞ we can generate

any other w current by the combined action of the sl2ðRÞ
and sl2ðRÞV (Fig. 1).

IV. SCATTERING AMPLITUDES IN QUANTUM
SELF-DUAL GRAVITY

In this section, following [51] we briefly review the all-
plus helicity scattering amplitudes in quantum self-dual
gravity. In (2, 2) signature, self-duality translates into the
following condition on the Riemann tensor:

Rμνρσ ¼
1

2
εμν

αβRαβρσ; ð4:1Þ

FIG. 1. The figure shows the soft currents. The rows and the
columns are indexed by the sl2ðRÞ weights and the dimension
ðΔ ¼ k ¼ 1; 0;−1;−2;…Þ of the conformally soft graviton
Hkðz; z̄Þ, which generates the currents sitting in a row, respec-
tively. sl2ðRÞ acts horizontally along a row and sl2ðRÞV acts
vertically along a column. In this way they generate the whole
symmetry algebra starting from the current H1

1
2

ðzÞ on the top-left

corner.

3This is the wedge subalgebra of w1þ∞.
4Again we let p run from 3

2
instead of 1 because w1 ¼ 0.

5Here V stands for vertical. Please see Fig. 1 for an
explanation.
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where εμναβ is the completely antisymmetric tensor with
ε0123 ¼ þ1. In order to maintain the reality condition on the
fields, the self-dual gravity is described in either (2, 2) or
(0, 4) signature. In Lorentzian (1, 3) signature, the con-
dition (4.1) acquires an extra factor of i and contain no real
solutions. At the classical level, the linearized self-dual
solutions consist of positive helicity plane waves.
In this paper, we are interested in the collinear behaviour

of gravitons in the self-dual gravity. At the tree level, we
have only one nontrivial amplitude; the three point MHV
amplitude where, only one external graviton has negative
helicity and other two have positive helicity. The appear-
ance of the negative helicity graviton in the three point

MHV amplitude can be explained from the fact that the
action contains a Lagrange multiplier which is physically
interpreted as the negative helicity graviton.
At the one loop level, the only nonzero amplitudes are

the ones with all plus helicity gravitons with the minimum
number of gravitons being four. These amplitudes are both
UVand IR finite. The only divergences of these amplitudes
are collinear and soft divergences. Our interest in this
theory stems from the fact that this is a nontrivial quantum
theory which is known to be w invariant.
The one loop all-plus n-graviton stripped amplitude in

self-dual gravity is given by [51]

Anð1þ; 2þ;…; nþÞ ¼ −
i

ð4πÞ2960
�
−
κ

2

�
n X
1≤a<b≤n

M;N

hða;M; bÞhðb;N; aÞtr3½aMbN�; ð4:2Þ

where a and b are the external legs andM andN are two sets such thatM ∪ N ¼ 1;…a − 1; aþ 1;…b − 1; bþ 1;…n and
M ∩ N ¼ ϕ. The sum is over all possible ða; bÞ and ðM;NÞ, where ðM;NÞ and ðN;MÞ are not distinguished. The trace is
defined as

tr½aMbN� ¼ hajKMjb�hbjKN ja� þ ½ajKMjbi½bjKN jai; ð4:3Þ

where KM ¼Pi∈M ki. The “half-soft” function h is given by

hða; f1; 2;…; ng; bÞ ¼ ½12�
h12i

hajK1;2j3�hajK1;3j4� � � � hajK1;n−1jn�
h23ih34i � � � hn − 1; niha1iha2i � � � hanih1bihnbi þ Pð2; 3;…; nÞ; ð4:4Þ

where K1;m ¼Pm
i¼1 ki and Pð2; 3;…; nÞ represents all

permutations keeping the first leg fixed. Throughout this
paper we will set κ ¼ 2.

V. GRAVITON-GRAVITON OPE FROM
SELF-DUAL AMPLITUDES

In this section, we take the 4- and 5-point all plus
amplitudes and express them in the conformal primary
basis by (modified) Mellin transformation. Then we take
the (collinear) OPE limit ðz45 → 0; z̄45 → 0Þ in the 5-point
amplitude with the aim of factorizing it into some differ-
ential operators acting on the 4-point amplitude at every
order in the ðz45; z̄45Þ expansion. Let us now closely look at
the 4-point amplitude, first in momentum space and then in
Mellin space.6

A. 4-Point momentum space amplitude

From (4.2), the 4-point amplitude is given by

A4ð1þ; 2þ; 3þ; 4þÞ ¼ −
i

ð4πÞ2960B4; ð5:1Þ

where

B4 ¼
X

1≤a<b≤4
M;N

hða;M; bÞhðb;N; aÞtr3½aMbN�: ð5:2Þ

Using the explicit expressions for the trace and the
“half-soft” functions, B4 can be easily evaluated and then
simplified to get (see Appendix C for details),

B4 ¼ −24
"
h13ih23ið½13�½23�Þ3

h15i2h25i2 þ ð2 ↔ 3Þ þ ð1 ↔ 3Þ
#
;

ð5:3Þ

where we have relabeled 4 as 5. In terms of ðω; z; z̄Þ
variables, the above equation becomes

6For the sake of convenience of the reader we have moved
some of the intermediate steps in the calculations to the
Appendix. We have refereed to the Appendix in the main text
whenever necessary.

BANERJEE, KULKARNI, and PAUL PHYS. REV. D 109, 086017 (2024)

086017-4



B4 ¼ −28
�
ϵ1ϵ2

ω1ω2ω
4
3

ω2
5

z13z23ðz̄13z̄23Þ3
z215z

2
25

þ ð2 ↔ 3Þ þ ð1 ↔ 3Þ
�
:

This is the form of the 4-point momentum space amplitude that we use in evaluating the Mellin transform and other
manipulations.

B. 4-Point Mellin amplitude

The modified Mellin transform7 of the n-point amplitude is given by

Mnðfui; zi; z̄i; hi; h̄igÞ ¼
Yn
i¼1

Z
∞

0

dωiω
Δi−1
i e−i

P
n
i¼1

ϵiωiuiAnðfωi; zi; z̄i; σigÞ ð5:4Þ

where u can be thought of as a time coordinate and ϵi ¼ �1 for an outgoing (incoming) particle. Note that
Anðfωi; zi; z̄i; σigÞ in (5.4) is the full momentum space amplitude including the momentum conserving delta function.
Using (5.4) we now Mellin transform the 4-point momentum space amplitude (5.1). Using the parametrization of 4-point
delta function given by (B2), we get the full 4-point Mellin amplitude as

M4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ5

Þ ¼ i
ð4πÞ2960 2

6
ΓðΔ0Þ
ðiDÞΔ0 δðx − x̄Þ

Y3
k¼1

ðϵkσk;1ÞΔk−1

× ½N 4 þN 4ð1 ↔ 3Þ þN 4ð2 ↔ 3Þ�; ð5:5Þ

where Δ0 ¼ Δ1 þ Δ2 þ Δ3 þ Δ5 and

N 4 ¼ σ1;1σ2;1σ
4
3;1

z13z23ðz̄13z̄23Þ3
z215z

2
25

D ¼
X3
k¼1

σk;1uk5: ð5:6Þ

N 4ð1 ↔ 3Þ andN 4ð2 ↔ 3Þ corresponds toN 4 with the points (1, 3) and (2, 3) interchanged, respectively. The expressions
for σi;j are given in Appendix B. Note that when we interchange the points (1, 2, 3) in N 4, only the first subscript in σi;j
changes, second one remains unchanged.

C. 5-point amplitude in self-dual gravity

The 5-point one-loop all plus helicity stripped amplitude (without the momentum conservation delta function) is given by

A5ð1þ; 2þ; 3þ; 4þ; 5þÞ ¼
i

ð4πÞ2960B5; ð5:7Þ

where

B5 ¼
X

1≤a<b≤5
M;N

hða;M; bÞhðb;N; aÞtr3½aMbN�: ð5:8Þ

The above expression consists of 30 distinct terms in total. The expression of B5 has been explicitly computed and
simplified in the Appendix D. Its simplified form gives,

7We use the modified Mellin transformation [4,65] because the original Mellin transformation [2,3] diverges for graviton scattering
amplitudes. Introduction of u-dependent phase factors regulate these UV divergence while preserving all the symmetries of the theory.
Graviton-graviton OPE can be extracted from the modified Mellin amplitude and since the OPE has no divergence in the u direction, one
can get the standard celestial OPE by setting all the uis to zero at the end. This method has been applied in the past. See for example
[18,19].
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B5 ¼ −8
�½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i þ ½24�h13ih35ið½13�½35�Þ3

h24ih12ih14ih25ih45i þ ½15�h23ih34ið½23�½34�Þ3
h15ih21ih25ih14ih54i

½14�h23ih35ið½23�½35�Þ3
h14ih21ih24ih15ih45i þ ½45�h13ih23ið½13�½23�Þ3

h45ih14ih15ih42ih52i þ ½34�h25ih15ið½15�½25�Þ3
h34ih13ih14ih32ih42i

½35�h14ih24ið½14�½24�Þ3
h35ih13ih15ih32ih52i þ ½12�h34ih35ið½34�½35�Þ3

h12ih41ih42ih15ih25i þ ½12�h35ih45ið½35�½45�Þ3
h12ih31ih32ih14ih24i

½12�h34ih45ið½34�½45�Þ3
h12ih31ih32ih15ih25i

�
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð5:9Þ

To avoid complication, we will not write down the Mellin
transformation for the full 5-point amplitude. Rather, we
will first expand the 5-point amplitude around z45 ¼ 0;
z̄45 ¼ 0 in momentum space and then Mellin transform the
individual terms in that expansion.

D. Expansion of the 5-point amplitude around
z45 = z̄45 = 0 in momentum space

By parametrizing (5.9) in terms of fω; z; z̄g one may
think that there are holomorphic singularities in the limit
z4 → z5 which goes like 1

z45
. But this is not true. Clubbing

together all the twelve singular-looking terms, and rewrit-
ing them gives contributions only at leading Oðz̄45z45

Þ and
higher orders (see Appendix D for details). By parametriz-
ing ω4 ¼ tωP;ω5 ¼ ð1 − tÞωP we arrange all the terms
in (5.9) in the following way:

B5 ¼ −27
ωP

tð1 − tÞ
�
z̄45
z45

TL þ TOð1Þ þ z̄45Tz̄

�
þ Higher-Order Terms; ð5:10Þ

where

TL ¼
�
ϵ1
z12z25z̄312z̄

3
25

z213z
2
35

ω1ω
4
2

ω2
3

þ ϵ2
z12z15z̄312z̄

3
15

z223z
2
35

ω4
1ω2

ω2
3

þ ϵ3
z13z15z̄313z̄

3
15

z223z
2
25

ω4
1ω3

ω2
2

�
þ
�
ϵ1ϵ2

z13z23z̄313z̄
3
23

z215z
2
25

ω1ω2ω
4
3

ω3
P

þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
: ð5:11Þ

The expressions for TOð1Þ; Tz̄ and the detailed calculation
about how we arrived at these expressions are given in the
Appendix D. The point we want to emphasize here is that,
(5.10) is the expansion of the 5-point amplitude around
z45 ¼ z̄45 ¼ 0 in the momentum space. One should not
confuse it with the OPE expansion on the celestial torus,
which will be done in the following subsections. The terms
TL; TOð1Þ, and Tz̄ contain energy factors fω1;ω2;ω3g
which will contribute to the OPE expansion after Mellin
transformation. On top of that we have 5-point momentum

conserving delta functions as well as other factors in the
Mellin integral, all of which will contribute in the OPE limit
of the 5-point Mellin amplitude. (5.10) is just a neat way of
organizing the 5-point momentum space amplitude, which
allows us to easily extract the OPE from the 5-point
celestial amplitude.

E. Mellin transformation of the 5-point amplitude
and extracting the graviton-graviton OPE

Let us start with the modified Mellin transformation of
B5 given by

B̃5 ¼
Z

∞

0

Y5
i¼1

dωiω
Δi−1
i e−i

P
5

i¼1
ϵiωiuiB5δ

ð4Þ
 X5

i¼1

ϵiωiqi

!
:

ð5:12Þ

In the above equation for B5, we use the expansion (5.10).
Then using the 5-point delta function parametrization given
in the Appendix B 2, we can extract each term in the OPE
factorization in the Mellin space. We now discuss the terms
order-by-order in the OPE expansion in Mellin space.

1. Leading order

For convenience let us take ϵ4 ¼ ϵ5 ¼ þ1. Then the
leading-order term in (5.12) is given by

B̃5jOðz̄45z45
Þ ¼ −26

z̄45
z45

BðΔ4 − 1;Δ5 − 1Þ ΓðΔÞðiDÞΔ δðx − x̄Þ

×
Y3
k¼1

ðϵkσk;1ÞΔk−1½N 4 þN 4ð2 ↔ 3Þ

þN 4ð1 ↔ 3Þ�; ð5:13Þ

where Δ ¼P5
i¼1 Δi. This has been derived in detail in

Appendix E. Finally, taking care of the prefactors, we
can write down the Mellin transformation of the complete
5-point amplitude A5 (5.7) at Oðz̄45z45

Þ,
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M5jOðz̄45z45
Þ ¼ −

i
ð4πÞ2960 2

6BðΔ4 − 1;Δ5 − 1Þ ΓðΔÞðiDÞΔ δðx − x̄Þ z̄45
z45

Y3
k¼1

ðϵkσk;1ÞΔk−1

× ½N 4 þN 4ð2 ↔ 3Þ þN 4ð1 ↔ 3Þ�: ð5:14Þ

This gives us the 5-point Mellin amplitude at leading order. In terms of the 4-point Mellin amplitude
M4ð1þΔ1

; 2þΔ2
; 3þΔ3

; 5þΔ4þΔ5
Þ given by (5.5), we can write (5.14) as follows:

M5ð1þΔ1
; 2þΔ2

; 3þΔ3
; 4þΔ4

; 5þΔ5
Þ ¼ −

z̄45
z45

BðΔ4 − 1;Δ5 − 1ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ4þΔ5

Þ þ � � � : ð5:15Þ

Thus, at the level of OPE we have

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5Þ ¼ −

z̄45
z45

BðΔ4 − 1;Δ5 − 1ÞGþ
Δ4þΔ5

ðz5; z̄5Þ þ � � � : ð5:16Þ

This matches with the well known answer [66] and provides a basic sanity check for our calculation.

2. Oð1Þ terms

Now we turn our attention to theOð1Þ terms in the 5-point Mellin amplitude. This is one of the main results of our paper.
The complete expression for the 5-point Mellin amplitude at Oð1Þ is given by (E13)

M5jOð1Þ ¼ −
i

ð4πÞ2960 2
5
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X4
k¼0

BðΔ4 þ k − 1;Δ5 − 1ÞF ð1Þ
k ðfϵi; zi; z̄igÞδðx − x̄Þ; ð5:17Þ

where F ð1Þ
k ðfϵi; zi; z̄igÞ are some functions of its arguments, but their explicit expressions are not important for OPE

factorizations. Now we take the leading conformal soft limit Δ4 → 1 in the above equation to get

lim
Δ4→1

ðΔ4 − 1ÞM5jOð1Þ ¼ −
i

ð4πÞ2960 2
5
Γ
�P

5
i¼1;i≠4Δi þ 1

�
ðiDÞ

P
5

i¼1;i≠4
Δiþ1

Y3
i¼1

ðϵiσi;1ÞiλiF ð1Þ
0 ðfϵi; zi; z̄igÞδðx − x̄Þ: ð5:18Þ

Only the k ¼ 0 term in the sum in (5.17) survives because, in the Δ4 → 1 limit, BðΔ4 þ k − 1;Δ5 − 1Þ is nonsingular for
all k > 0.
On the other hand, from the leading soft-graviton theorem we know that

lim
Δ4→1

ðΔ4 − 1ÞM5jOð1Þ ¼ H1
−3
2
;1
2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ5

Þ: ð5:19Þ

To make things transparent, we have used H-notations when the soft modes are acting on the Mellin amplitudes as
differential operators and the number 5 in the argument of H denotes that it is a descendant of the 5th conformal graviton
primary. The consistency of the two equations (5.18) and (5.19) implies that

−
i

ð4πÞ2960 2
5
Γ
�P

5
k¼1;k≠4Δk þ 1

�
ðiDÞ

P
5

k¼1;k≠4 Δkþ1

Y3
k¼1

ðϵkσk;1ÞiλkF ð1Þ
0 ðfϵi; zi; z̄igÞδðx − x̄Þ

¼ H1
−3
2
;1
2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ5

Þ: ð5:20Þ

Now, we can replace Δ5 by Δ4 þ Δ5 − 1 in (5.20) and then use it in (5.17) to get

M5jOð1Þ ¼ BðΔ4 − 1;Δ5 − 1ÞH1
−3
2
;1
2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ4þΔ5−1Þ

−
i

ð4πÞ2960 2
5
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X4
k¼1

BðΔ4 þ k − 1;Δ5 − 1ÞF ð1Þ
k ðfϵi; zi; z̄igÞδðx − x̄Þ: ð5:21Þ
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Here we have replaced the F ð1Þ
0 dependent term in (5.17) in terms of a soft graviton mode acting on the 4-point amplitude.

Let us now repeat the same procedure for F ð1Þ
1 .

By taking the subleading conformal soft limit Δ4 → 0 in (5.21), we get

lim
Δ4→0

Δ4M5jOð1Þ ¼ −ðΔ5 − 2ÞH1
−3
2
;1
2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ5−1Þ

−
i

ð4πÞ2960 2
5
ΓðP5

k¼1;k≠4ΔkÞ
ðiDÞ

P
5

k¼1;k≠4
Δk

Y3
i¼1

ðϵiσi;1ÞΔi−1F ð1Þ
1 ðfϵi; zi; z̄igÞδðx − x̄Þ: ð5:22Þ

Now, from subleading soft graviton theorem we know that

lim
Δ4→0

Δ4M5jOð1Þ ¼ −H0
−1;1ð5ÞH1

−1
2
;−1

2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ5−1Þ: ð5:23Þ

Again, consistency of the two equations (5.22) and (5.23) gives us the function F ð1Þ
1 in terms of the leading and subleading

soft modes. Substituting this back in (5.21) results in

M5jOð1Þ ¼
ΓðΔ4 þ 1Þ
ΓðΔ4Þ

BðΔ4 − 1;Δ5 − 1ÞH1
−3
2
;1
2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ4þΔ5−1Þ

þ BðΔ4;Δ5 − 1ÞH0
−1;1ð5Þ

�
−H1

−1
2
;−1

2

ð5ÞM4ð1þΔ1
; 2þΔ2

; 3þΔ3
; 5þΔ4þΔ5−1Þ

�
−

i
ð4πÞ2960 2

5
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X4
k¼2

BðΔ4 þ k − 1;Δ5 − 1ÞF ð1Þ
k ðfϵi; zi; z̄igÞδðx − x̄Þ: ð5:24Þ

We continue this process till all the F ð1Þ
k ’s have been replaced by descendant correlation functions of the soft modes. From

the above equation (5.24), it is clear that to replace all the F ð1Þ
k ’s by the descendant correlation functions of the soft modes,

we have to go till sub4leading order in the soft limits of Δ4. We only write the final result here which is given by

M5ð1þΔ1
; 2þΔ2

; 3þΔ3
; 4þΔ4

; 5þΔ5
ÞjOð1Þ ¼

X4
k¼0

1

ð4 − kÞ!
ΓðΔ4 þ 4Þ
ΓðΔ4 þ kÞBðΔ4 þ k − 1;Δ5 − 1Þ

×H1−k
k−3
2
;kþ1

2

ð5Þ
�
H1

−1
2
;−1

2

ð5Þ
�
k
M4ð1þΔ1

; 2þΔ2
; 3þΔ3

; 5þΔ4þΔ5−1Þ: ð5:25Þ

Now that we have factorized theOð1Þ terms in the 5-point Mellin amplitude completely in terms of soft modes acting on the
4-point amplitude, we can easily extract the Oð1Þ graviton graviton OPE from the above equation. It is given by

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjOð1Þ ¼

X4
k¼0

1

ð4 − kÞ!
ΓðΔ4 þ 4Þ
ΓðΔ4 þ kÞBðΔ4 þ k − 1;Δ5 − 1Þ

×H1−k
k−3
2
;kþ1

2

�
H1

−1
2
;−1

2

�
k
Gþ

Δ4þΔ5−1ðz5; z̄5Þ: ð5:26Þ

We can rewrite (5.26) using the null states of MHV-sector. From (H1), it is clear that all the soft modes H1−k
k−3
2
;kþ1

2

with

k ¼ 1;…; 4 can be replaced by the MHV null states fΦk; k ¼ 1;…; 4g. Thus, (5.25) in terms of the Oð1Þ MHV null
states (H1), becomes

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjOð1Þ ¼ BðΔ4 − 1;Δ5 − 1ÞH1

−3
2
;1
2

Gþ
Δ4þΔ5−1ðz5; z̄5Þ

þ
X4
k¼1

1

ð4 − kÞ!
ΓðΔ4 þ 4Þ
ΓðΔ4 þ kÞBðΔ4 þ k − 1;Δ5 − 1ÞΦkðΔ4 þ Δ5Þ: ð5:27Þ
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Thus, we see that, the Oð1Þ terms in the self-dual OPE
between two positive helicity outgoing gravitons can
completely be written in terms of the Oð1Þ MHV OPE
and theOð1Þ null states of the MHV sector. We can also see
that the Oð1Þ OPE in the self-dual theory gets contribution
from the descendants of the conformally soft operators up
to Δ ¼ −3, i.e., H−3ðz; z̄Þ. This is consistent with what we
found in [39] based on w1þ∞ symmetry. This is somewhat
surprising given that w1þ∞ has an infinite number of soft
currents. We further discuss this in Sec. VI.
Now, as discussed in Appendix H, we can define a new

basis for MHV null states instead ofΦk ’s. This new basis is
given by (H3). For our convenience, let us write Eq. (H3)
here again,

ΩkðΔÞ ¼
Xk
n¼1

1

ðk − nÞ!
ΓðΔþ k − 2Þ
ΓðΔþ n − 2ÞΦnðΔÞ: ð5:28Þ

This basis has nice transformation properties under the
w-algebra [39], reviewed in Appendix G. Represented in
terms of this newΩ-basis, the graviton-graviton OPE (5.27)

takes a very simple form,

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjOð1Þ

¼ BðΔ4 − 1;Δ5 − 1ÞH1
−3
2
;1
2

Gþ
Δ4þΔ5−1ðz5; z̄5Þ

þ
X4
k¼1

BðΔ4 þ k − 1;Δ5 − 1ÞΩkðΔ4 þ Δ5Þ: ð5:29Þ

3. Oðz̄45Þ term
The soft modes that appear at order z̄45 from the

w-algebra are given by

Hk
−kþ2

2
;−k

2

; k ¼ 1; 0;−1;…: ð5:30Þ

Now, like the Oð1Þ OPE we can factorize the Oðz̄45Þ terms
from the 5-point amplitude using the soft limits and
w-modes. The crucial difference from Oð1Þ is that, now
we have to go one order higher in the soft limits thanOð1Þ.
We start by writing the Oðz̄45Þ term of the 5-point Mellin
amplitude given by [see (E17)]

M5jOðz̄45Þ ¼ −
i

ð4πÞ2960 2
5
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X5
k¼1

BðΔ4 þ k − 1;Δ5 − 1ÞF ðz̄Þ
k ðfϵi; zi; z̄igÞ: ð5:31Þ

One can easily see from (5.31) that, to factorize the 5-point Mellin amplitude completely, i.e., to replace all the functions

F ðz̄Þ
k ðfϵi; zi; z̄igÞ by the descendant correlation functions of soft modes, we have to continue taking the soft limits in Δ4 till

we reach Δ4 → −4. Thus, the highest soft modes that can appear in the OPE atOðz̄45Þ are given byH−4
1;2. We have discussed

how to factorize the amplitude at Oð1Þ in terms of the descendant correlators of the soft modes in the previous section in
detail. One has to repeat the same procedure forOðz̄45Þ as well. Without going into much detail we directly write theOðz̄45Þ
OPE which is given by

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjOðz̄45Þ ¼ Gþ

Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjMHV atOðz̄45Þ

þ
X4
k¼1

1

ðn − kÞ!
ΓðΔ4 þ nþ 1Þ
ΓðΔ4 þ kþ 1ÞBðΔ4 þ k;Δ5 − 1ÞΨkðΔ4 þ Δ5 þ 1Þ; ð5:32Þ

where

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjMHV atOðz̄45Þ ¼ BðΔ4 − 1;Δ5 − 1Þ

�
Δ4 − 1

Δ4 þ Δ5 − 2
H0

−1;0

�
−H1

−1
2
;−1

2

�
þΔ4H1

−3
2
;−1

2

�
Gþ

Δ4þΔ5−1 ð5:33Þ

and ΨkðΔ4 þ Δ5 þ 1Þ is given by

ΨkðΔ4 þ Δ5 þ 1Þ ¼
�
H−k

k−2
2
;k
2

ð−H1
−1
2
;−1

2

Þkþ1 −
ð−1Þk
k!

ΓðΔ4 þ Δ5 þ k − 1Þ
ΓðΔ4 þ Δ5 − 1Þ H0

−1;0

�
−H1

−1
2
;−1

2

�
−ð−1Þk k

ðkþ 1Þ!
ΓðΔ4 þ Δ5 þ k − 1Þ
ΓðΔ4 þ Δ5 − 2Þ H1

−3
2
;−1

2

�
Gþ

Δ4þΔ5−1: ð5:34Þ

In terms of the new basis defined in (H4), the above OPE can again be written in a very nice and simple form given by
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Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjOðz̄45Þ

¼ Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjMHV atOðz̄45Þ

þ z̄45
X4
k¼1

BðΔ4 þ k;Δ5 − 1ÞΠkðΔ4 þ Δ5 þ 1Þ: ð5:35Þ

Thus we see that the Oðz̄45Þ terms in the OPE again
truncate at H−4ðz; z̄Þ.

VI. DISCUSSION

Operator product expansion plays a very important role
in any quantum field theory and therefore it is important to
understand the structure of OPE in the celestial CFTs. In its
current formulation, celestial CFTs differ from more con-
ventional CFTs in many ways. The primary difference is
that the spectrum of the operator dimensions in celestial
CFTs is not bounded from below. Taken at face value, this
implies that the number of descendants that can appear at
any given order of the celestial OPE can be infinite.
However, this is not a very desirable feature and warrants
further study.
In this paper, we have undertaken the task of computing

the celestial OPE of two positive helicity outgoing gravitons
in the quantum self-dual gravity. It is known that the self-
dual gravity enjoys w invariance. Therefore, one should be
able to express the OPE in terms of w descendants of the
graviton primary. This is what we have found. However, the
most surprising fact which comes out of our study is that at
any given order the OPE contains only a finite number of w
descendants. Therefore, the self-dual gravity behaves like
any other CFT with a spectrum of operator dimensions
bounded from below.
This raises some interesting questions. For example, we

know that the HSA contains an infinite tower of holomor-
phic currents Hk

nðzÞ with k going from 1 to −∞. Our
calculation shows that in the self-dual theory atOð1Þ and at
Oðz̄Þ the list of w descendants truncate at k ¼ −3 and
k ¼ −4, respectively. However, this is somewhat unnatural
given the fact that the currents H−3

n ðzÞ and H−4
n ðzÞ do not

play any distinguished role in the algebra. Therefore, it is
natural to wonder if there are other w invariant theories
where the truncation occurs at other values of k. The answer
is yes. In fact in our earlier work [39] we wrote down the
general structure of w invariant OPEs which can be derived
using the representation theory of w algebra. In [39] we
found that at Oðz0z̄0Þ the OPE can truncate at any integer
value of k ¼ 1; 0;−1;−2;…. For example, in the MHV
sector it truncates at k ¼ 1 and in the self-dual gravity
theory it truncates at k ¼ −3. But truncation at other values
of k also gives us w invariant OPE. This is true also for other
subleading-order terms in the OPE. Therefore, the value of k
at which the OPE truncates at any particular subleading
order is not determined by the w symmetry. The Lagrangian

description of the infinite family of w invariant theories
remains as an outstanding problem.
Before we end, we would like to point out that truncation

means that the self-dual theory in many ways behave like
theories with operator dimensions bounded from below. So
it is very likely that the self-dual theory and the (tree-level)
MHV sector of GR can be reformulated in terms of celestial
primary operators with dimensions strictly bounded from
below. Interesting proposals along this line has been put
forward in [67,68].8 It will be fascinating if they can be
applied to the present problem.
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APPENDIX A: BREIF REVIEW
OF CELESTIAL OR MELLIN AMPLITUDES

FOR MASSLESS PARTICLES

The celestial or Mellin amplitude for massless particles
in four dimensions is defined as the Mellin transformation
of the S-matrix element, given by [2,3]

Mnðfzi; z̄i; hi; h̄igÞ ¼
Yn
i¼1

Z
∞

0

dωiω
Δi−1
i Anðfωi; zi; z̄i;σigÞ;

ðA1Þ
where σi denotes the helicity of the ith particle and the on
shell momenta are parametrized by (2.1). The scaling
dimensions ðhi; h̄iÞ are defined as

hi ¼
Δi þ σi

2
; h̄i ¼

Δi − σi
2

: ðA2Þ

Under the Lorentz transformation (2.2), the Mellin ampli-
tude Mn transforms as

8In conventional CFTs we get a finite number of descendants
at every order of the OPE because the set of conformal
dimensions of primary operators is bounded from below. The
OPE in the self-dual gravity behaves in the same way, i.e., we get
only a finite number of w descendants at every order. The basis
proposed in the Refs. [67,68] consists of operators whose
dimensions are Δ ¼ 0;−1;−2;…. This is a basis where the
set of operator dimensions is bounded from above. So, this is
exactly the opposite of what happens in conventional CFTs but,
this comes very close. We leave further study of this potential
connection to future works.
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Mnðfzi; z̄i; hi; h̄igÞ ¼
Yn
i¼1

1

ðczi þ dÞ2hi
1

ðc̄z̄i þ d̄Þ2h̄i Mn

�
azi þ b
czi þ d

;
āz̄i þ b̄
c̄z̄i þ d̄

; hi; h̄i

�
: ðA3Þ

This is the familiar transformation law for the correlation function of primary operators of weight ðhi; h̄iÞ in a 2D CFT under
the global conformal group.
In Einstein gravity, the Mellin amplitude as defined in (A1) usually diverges. This divergence can be regulated by

defining a modified Mellin amplitude as [4,65]

Mnðfui; zi; z̄i; hi; h̄igÞ ¼
Yn
i¼1

Z
∞

0

dωiω
Δi−1
i e−i

P
n
i¼1

ϵiωiuiAnðfωi; zi; z̄i; σigÞ; ðA4Þ

where u can be thought of as a time coordinate and ϵi ¼ �1 for an outgoing (incoming) particle. Under (Lorentz) conformal
transformation the modified Mellin amplitude Mn transforms as

Mnðfui; zi; z̄i; hi; h̄igÞ ¼
Yn
i¼1

1

ðczi þ dÞ2hi
1

ðc̄z̄i þ d̄Þ2h̄i Mn

�
ui

jczi þ dj2 ;
azi þ b
czi þ d

;
āz̄i þ b̄
c̄z̄i þ d̄

; hi; h̄i

�
: ðA5Þ

Under global space-time translation, u → uþ Aþ Bzþ
B̄ z̄þCzz̄, the modified Mellin amplitude is invariant, i.e.,

Mnðfui þ Aþ Bzi þ B̄z̄i þ Cziz̄i; zi; z̄i; hi; h̄igÞ
¼ Mnðfui; zi; z̄i; hi; h̄igÞ: ðA6Þ

Now in order to make manifest the conformal nature of
the dual theory living on the celestial sphere it is useful to
write the (modified) Mellin amplitude as a correlation
function of conformal primary operators. So let us define a
generic conformal primary operator as

ϕϵ
h;h̄
ðz; z̄Þ ¼

Z
∞

0

dωωΔ−1aðϵω; z; z̄; σÞ; ðA7Þ

where ϵ ¼ �1 for an annihilation (creation) operator of a
massless particle of helicity σ. Under (Lorentz) conformal
transformation the conformal primary transforms like a
primary operator of scaling dimension ðh; h̄Þ,

ϕ0ϵ
h;h̄
ðz; z̄Þ ¼ 1

ðczþ dÞ2h
1

ðc̄ z̄þd̄Þ2h̄ ϕ
ϵ
h;h̄

�
azþ b
czþ d

;
ā z̄þb̄
c̄ z̄þd̄

�
:

ðA8Þ

Similarly in the presence of the time coordinate u we have

ϕϵ
h;h̄
ðu; z; z̄Þ ¼

Z
∞

0

dωωΔ−1e−iϵωuaðϵω; z; z̄; σÞ: ðA9Þ

Under (Lorentz) conformal transformations,

ϕ0ϵ
h;h̄
ðu; z; z̄Þ ¼ 1

ðczþ dÞ2h
1

ðc̄ z̄þd̄Þ2h̄

×ϕϵ
h;h̄

�
u

jczþ dj2 ;
azþ b
czþ d

;
ā z̄þb̄
c̄ z̄þd̄

�
: ðA10Þ

In terms of (A7), the Mellin amplitude can be written as
the correlation function of conformal primary operators,

Mn ¼
	Yn

i¼1

ϕϵi
hi;h̄i

ðzi; z̄iÞ


: ðA11Þ

Similarly using (A9), the modified Mellin amplitude can be
written as

Mn ¼
	Yn

i¼1

ϕϵi
hi;h̄i

ðui; zi; z̄iÞ


: ðA12Þ

1. Comments on notation in the paper

Note that the conformal primaries carry an extra index ϵ
which distinguishes between an incoming and an outgoing
particle. In this paper, for notational simplicity, we omit this
additional index unless this plays an important role. So in
most places we simply write the (modified) Mellin ampli-
tude as

Mn ¼
	Yn

i¼1

ϕhi;h̄iðzi; z̄iÞ



ðA13Þ

or

Mn ¼
	Yn

i¼1

ϕhi;h̄iðui; zi; z̄iÞ


: ðA14Þ
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Similarly in many places in the paper we denote a graviton
primary of weight Δ ¼ hþ h̄ by Gσ

Δ where σ ¼ �2 is the
helicity (= h − h̄). Since we are considering pure gravity,
we can further simplify the notation to G�

Δ by omitting
the 2.

APPENDIX B: PARAMETRIZATION
OF THE DELTA FUNCTIONS

In this appendix, we parametrize the 4-point and 5-point
delta functions which will be convenient for our purpose of
extracting the OPE.

1. 4-Point delta function

In (2, 2) split signature, the parametrization of the null
momentum (pi) for ith massless particle in terms of
ðωi; zi; z̄iÞ is given by

pi ¼ ωif1þ ziz̄i; zi þ z̄i; ðzi − z̄iÞ; 1 − ziz̄ig; p2
i ¼ 0:

ðB1Þ

This allows us to write down the 4-point momentum
conserving delta function in the following way which is
more convenient for us:

δð4Þ
 X5

i¼1;≠4
ϵipi

!
¼ 1

4
δ

 X5
i¼1;≠4

ϵiωi

!
δ

 X3
i¼1

ϵiωizi5

!

× δ

 X3
i¼1

ϵiωiz̄i5

!
δ

 X3
i¼1

ϵiωizi5z̄i5

!

¼ ϵ1ϵ2ϵ3ϵ5
1

4ω5

δðω1 − ω�
1Þδðω2 − ω�

2Þ

× δðω3 − ω�
3Þδðx − x̄Þ; ðB2Þ

where ϵi ¼ �1 for outgoing (incoming) particle and

ω�
i ¼ ϵ5ω5ϵiσi;1; ðB3Þ

σ1;1 ¼ −
z25z̄35
z12z̄13

; ðB4Þ

σ2;1 ¼
z15z̄35
z12z̄23

; ðB5Þ

σ3;1 ¼ −
z25z̄15
z23z̄13

; ðB6Þ

x ¼ z12z35z̄13z̄25; x̄ ¼ z13z25z̄12z̄35: ðB7Þ

The σi;1’s defined above satisfy the following identities
with the support of δðx − x̄Þ,

σ1;1 þ σ2;1 þ σ3;1 þ 1 ¼ 0; ðB8Þ

z15σ1;1 þ z25σ2;1 þ z35σ3;1 ¼ 0; ðB9Þ

z̄15σ1;1 þ z̄25σ2;1 þ z̄35σ3;1 ¼ 0: ðB10Þ

This representation for the 4-point delta function and the
properties of σi;1 ’s will be useful in extracting the OPE.
Note that in this delta function representation, we have
indexed the four particles by 1, 2, 3, and 5 because to
extract the OPE, we take the 4 → 5OPE limit in the 5-point
Mellin amplitude and then factorize it in terms of the 4-
point Mellin amplitude now indexed by 1, 2, 3, 5. This is a
notation that we followed throughout the paper.

2. 5-point delta function

We now write down the representation for the delta
function for five particles. For concreteness, we take
ϵ4 ¼ ϵ5 ¼ þ1. Since we are interested in the OPE limit
4 → 5, it is convenient to use the following parametrization:

ω4 ¼ tωP; ω5 ¼ ð1 − tÞωP; ðB11Þ

in representing the 5-point delta function. For the case of
n ¼ 5 particles in four spacetime dimensions we have four
constraint equations coming from the four components of
the energy momentum conserving equations. We can solve
these four constraint equations for three energy variables
fω1;ω2;ω3g in terms of ω4 and ω5. Thus, the representa-
tion of the 5-point delta function which is better suited for
our purposes of performing the OPE decomposition of the
Mellin amplitude in the (4, 5) channel, is given by [19]9

δð4Þ
 X5

i¼1

ϵiωiqi

!
¼ 1

4ωP
δðω1 − ω�

1Þδðω2 − ω�
2Þδðω3 − ω�

3Þ

× δ

�
x − x̄ − tz45

�
x
z35

−
x̄
z25

�
− tz̄45

�
x
z̄25

−
x̄
z̄35

�
þ tz45z̄45

�
x

z35z̄25
−

x̄
z25z̄35

��
; ðB12Þ

where for i ¼ f1; 2; 3g we have

ω�
i ¼ ωPω̃

�
i ;

ω̃�
i ¼ ϵiðσi;1 þ tz45σi;2 þ tz̄45σi;3 þ tz45z̄45σi;4Þ; ðB13Þ

9Please note that in [19] the OPE factorization has been done
starting from the 6-point Mellin amplitude whereas in this paper it
is done starting from the 5-point amplitude. Thus, in para-
metrizing the 5-point delta function in this paper, we have used
the same methodology which was used for 6-point delta function
in [19].
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and the σi;1; x; x̄ are given by (B3)–(B7). We also have

σi;2 ¼
∂σi;1
∂z5

; σi;3 ¼
∂σi;1
∂z̄5

; σi;4 ¼
∂σi;1
∂z5∂z̄5

; ∀ i ¼ 1; 2; 3: ðB14Þ

APPENDIX C: SIMPLIFICATION OF THE 4-POINT AMPLITUDE

In this appendix, we simplify the 4-point self-dual one-loop amplitude in momentum space which is used in Sec. V. We
start with Eq. (5.2) for the 4-point amplitude,

B4 ¼
X

1≤a<b≤4
M;N

hða;M; bÞhðb;N; aÞtr3½aMbN�

¼ hð1; 3; 2Þhð2; 4; 1Þtr3½1324� þ hð1; 2; 3Þhð3; 4; 1Þtr3½1234� þ hð1; 2; 4Þhð4; 3; 1Þtr3½1243�
þ hð2; 1; 3Þhð3; 4; 2Þtr3½2134� þ hð2; 1; 4Þhð4; 3; 2Þtr3½2143� þ hð3; 1; 4Þhð4; 2; 3Þtr3½3142�:

The trace function is given by

tr½aMbN�¼ hajKMjb�hbjKN ja�þ½ajKMjbi½bjKN jai: ðC1Þ

For M ¼ fig; N ¼ flg we have

tr½aibl� ¼ hajkijb�hbjklja� þ ½ajkijbi½bjkljai
¼ haii½ib�hbli½la� þ hbii½ia�hali½lb�: ðC2Þ

From the above equation we can see that tr½aibl� ¼ tr½ialb�.
Using this property of the trace function and the expression
for the half-soft function,

hða; i; bÞ ¼ 1

haii2hibi2 ; ðC3Þ

(C1) can be simplified as

B4 ¼ 2ðhð1; 3; 2Þhð2; 4; 1Þtr3½1324� þ hð1; 2; 3Þ
× hð3; 4; 1Þtr3½1234� þ hð1; 2; 4Þhð4; 3; 1Þtr3½1243�Þ:

ðC4Þ

Now, using the momentum conservation for four particles
in the trace functions (C2) and the explicit expressions of
the half-soft functions (C3), (C4) finally gives

B4 ¼ −24
�h13ih23ið½13�½23�Þ3

h14i2h24i2 þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
:

ðC5Þ
As mentioned earlier, since we will index the four particles
as 1, 2, 3, 5, relabeling 4 as 5 in the above expression gives
the following form of the 4-point amplitude in momentum
space,

B4 ¼ −24
�h13ih23ið½13�½23�Þ3

h15i2h25i2 þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
:

ðC6Þ
APPENDIX D: SIMPLIFICATION
OF THE 5-POINT AMPLITUDE

Similar to what was done for the 4-point case, we will
now simplify the 5-point self-dual one loop amplitude in
momentum space which is used in Sec. V C by considering
Eq. (5.8),

B5 ¼
X

1≤a<b≤5
M;N

hða;M; bÞhðb;N; aÞtr3½aMbN�

¼ hð1;M; 2Þhð2; N; 1Þtr3½1M2N� þ hð1;M; 3Þhð3; N; 1Þtr3½1M3N� þ hð1;M; 4Þhð4; N; 1Þtr3½1M4N�
þ hð1;M; 5Þhð5; N; 1Þtr3½1M5N� þ hð2;M; 3Þhð3; N; 2Þtr3½2M3N� þ hð2;M; 4Þhð4; N; 2Þtr3½2M4N�
þ hð2;M; 5Þhð5; N; 2Þtr3½2M5N� þ hð3;M; 4Þhð4; N; 3Þtr3½3M4N� þ hð3;M; 5Þhð5; N; 3Þtr3½3M5N�
þ hð4;M; 5Þhð5; N; 4Þtr3½4M5N�: ðD1Þ

The two sets M and N are such that M ∪ N ¼ 1;…a − 1; aþ 1;…b − 1; bþ 1;…n, and M ∩ N ¼ ϕ and the sum is over
all possible a, b and sets ðM;NÞ, where ðM;NÞ and ðN;MÞ are not distinguished. For 5-point amplitudes, with
M ¼ fi; jg; N ¼ flg, the trace function given by

tr½aMbN� ¼ hajKMjb�hbjKN ja� þ ½ajKMjbi½bjKN jai ðD2Þ
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becomes

tr½afiþ jgbflg� ¼ hajki þ kjjb�hbjklja� þ ½ajki þ kjjbi½bjkljai
¼ tr½aibl� þ tr½ajbl�
¼ ðhaii½ib� þ haji½jb�Þhbli½la� þ ðhbii½ia� þ hbji½ja�Þhali½lb�: ðD3Þ

Now, using momentum conservation in the spinor notation,

haið≠ fa; b; j; kgÞi½ið≠ fa; b; j; kgÞb� þ hajð≠ fa; b; i; kgÞi½jð≠ fa; b; j; kgÞb�
þ hakð≠ fa; b; i; jgÞi½kð≠ fa; b; i; jgÞb� ¼ 0 ðD4Þ

one can show that,

tr½afiþ jgbflg� ¼ −2hali½al�hbli½bl�;
where each label is different. Thus we see that tr½afiþ jgbflg� is independent of fi; jg. The half soft functions needed for the
simplification of the 5-point amplitude are given by

hða; fi; jg; bÞ ¼ ½ij�
hijihaiihajihibihjbi ; ðD5Þ

hða; fig; bÞ ¼ 1

haii2hibi2 : ðD6Þ

Thus, we see that hða; fi; jg; bÞ ¼ hða; fj; ig; bÞ.
Now, using the explicit form of the trace and half-soft functions in terms of spinor helicity brackets, we can write (D1) as

B5 ¼ −8
�½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i þ ½24�h13ih35ið½13�½35�Þ3

h24ih12ih14ih25ih45i þ ½15�h23ih34ið½23�½34�Þ3
h15ih21ih25ih14ih54i

þ ½14�h23ih35ið½23�½35�Þ3
h14ih21ih24ih15ih45i þ ½45�h13ih23ið½13�½23�Þ3

h45ih14ih15ih42ih52i þ ½34�h25ih15ið½15�½25�Þ3
h34ih13ih14ih32ih42i

þ ½35�h14ih24ið½14�½24�Þ3
h35ih13ih15ih32ih52i þ ½12�h34ih35ið½34�½35�Þ3

h12ih41ih42ih15ih25i þ ½12�h35ih45ið½35�½45�Þ3
h12ih31ih32ih14ih24i

þ ½12�h34ih45ið½34�½45�Þ3
h12ih31ih32ih15ih25i

�
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ðD7Þ

Before simplifying this, first note that the first four terms (and hence a total of 12 terms) in the above expression have the
apparent form that seems to go like ∼ 1

h45i. However, it cannot be true that the 5-point amplitude has a leading behaviour of

∼ 1
h45i. Wewill show that these terms add up to contribute to the leading order [Oð½45�h45iÞ],Oð1Þ, and higher orders as expected.

Hence, to simplify further, let us first write down these 12 terms explicitly,

−
BS
5

8
¼ ½25�h13ih34ið½13�½34�Þ3

h25ih12ih15ih24ih54i þ ½35�h12ih24ið½12�½24�Þ3
h35ih13ih15ih34ih54i þ ½24�h13ih35ið½13�½35�Þ3

h24ih12ih14ih25ih45i

þ ½34�h12ih25ið½12�½25�Þ3
h34ih13ih14ih35ih45i þ ½15�h23ih34ið½23�½34�Þ3

h15ih21ih25ih14ih54i þ ½35�h12ih14ið½12�½14�Þ3
h35ih23ih25ih34ih54i

þ ½14�h23ih35ið½23�½35�Þ3
h14ih21ih24ih15ih45i þ ½34�h12ih15ið½12�½15�Þ3

h34ih23ih24ih35ih45i þ ½15�h23ih24ið½23�½24�Þ3
h15ih31ih35ih14ih54i

þ ½25�h13ih14ið½13�½14�Þ3
h25ih32ih35ih24ih54i þ ½14�h23ih25ið½23�½25�Þ3

h14ih31ih34ih15ih45i þ ½24�h13ih15ið½13�½15�Þ3
h24ih32ih34ih25ih45i : ðD8Þ

Keeping terms only up to Oðz̄45Þ, the first term above can be rewritten as
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½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i ¼ −

1

h45i
½25�h12i3h24i3½12�3½24�3

h25ih12ih15ih24ih13i2h34i2 þ 3
½45�
h45i

½25�h12i2h15ih24i3½12�3½24�2
h25ih12ih15ih24ih13i2h34i2

þ 3
½25�h12i3h24i2½12�2½15�½24�3
h25ih12ih15ih24ih13i2h34i2 − 3h45i ½25�h12i

2½12�½15�2½24�3
h25ih15ih13i2h34i2

− 9½45� ½25�h12ih24i½12�
2½15�½24�2

h25ih13i2h34i2 : ðD9Þ

Now we use a little trick to explicitly show that the terms in (D8) add up to give [Oð½45�h45iÞ], Oð1Þ and higher orders

contributions. It involves appropriately combining terms in the equation. To see this, note that the first term in rhs of (D9)
and second term in rhs of (D8) can be combined to get

−
1

h45i
½25�h12i3h24i3½12�3½24�3

h25ih12ih15ih24ih13i2h34i2 þ
½35�h12ih24ið½12�½24�Þ3
h35ih13ih15ih34ih54i

¼ −
1

h45i
h12ih24ið½12�½24�Þ3

h13i2h15ih25ih34i2h35i ðh12ih24ih35i½25� þ h13ih34ih25i½35�Þ: ðD10Þ

Note that although we are writing equalities everywhere, one should keep in mind that there are higher-order terms as well.
However, here, and throughout this paper, we will always write expressions keeping terms only up to Oðz̄45Þ. Now, using
the Shouten identity h24ih35i ¼ h25ih34i þ h23ih45i and momentum conservation equation, we can write the above
equation as

−
1

h45i
½25�h12i3h24i3½12�3½24�3

h25ih12ih15ih24ih13i2h34i2 þ
½35�h12ih24ið½12�½24�Þ3
h35ih13ih15ih34ih54i

¼ −
1

h45i
h12ih24ið½12�½24�Þ3

h13i2h15ih25ih34i2h35i ð−h14ih25ih34i½45� þ h12ih23ih45i½25�Þ: ðD11Þ

Hence the first two terms in (D8) give

½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i þ ½35�h12ih24ið½12�½24�Þ3

h35ih13ih15ih34ih54i ¼ 3
½45�
h45i

½25�h12ih24i2½12�3½24�2
h25ih13i2h34i2

þ 3
½25�h12i2h24i½12�2½15�½24�3

h25ih15ih13i2h34i2 þ ½45�
h45i

h12ih14ih24i½12�3½24�3
h13i2h15ih34ih35i −

h12i2h23ih24i½25�½12�3½24�3
h13i2h15ih25ih34i2h35i

− 3h45i ½25�h12i
2½12�½15�2½24�3

h25ih15ih13i2h34i2 − 9½45� ½25�h12ih24i½12�
2½15�½24�2

h25ih13i2h34i2 : ðD12Þ

Using momentum conservation again in the fourth term in the rhs of the above equation, we finally get

½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i þ ½35�h12ih24ið½12�½24�Þ3

h35ih13ih15ih34ih54i ¼ 3
½45�
h45i

½25�h12ih24i2½12�3½24�2
h25ih13i2h34i2

þ ½45�
h45i

h12ih14ih24i½12�3½24�3
h13i2h15ih34ih35i þ 2

½25�h12i2h24i½12�2½15�½24�3
h13i2h25ih15ih34i2 −

½25�h12i2h24i½12�2½14�½24�3
h13i2h15ih25ih34ih35i

− 3h45i ½25�h12i
2½12�½15�2½24�3

h25ih15ih13i2h34i2 − 9½45� ½25�h12ih24i½12�
2½15�½24�2

h25ih13i2h34i2 : ðD13Þ

Similarly, the third and fourth terms in rhs of (D8) give
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½24�h13ih35ið½13�½35�Þ3
h24ih12ih14ih25ih45i þ ½34�h12ih25ið½12�½25�Þ3

h34ih13ih14ih35ih45i

¼ 3
½45�
h45i

½24�h12ih25i2½12�3½25�2
h24ih13i2h35i2 þ ½45�

h45i
h12ih15ih25i½12�3½25�3
h13i2h14ih34ih35i þ 2

½24�h12i2h25i½12�2½14�½25�3
h24ih14ih13i2h35i2

−
½24�h12i2h25i½12�2½15�½25�3
h13i2h14ih24ih34ih35i þ 3h45i ½24�h12i

2½12�½14�2½25�3
h24ih14ih13i2h35i2 þ 9½45� ½24�h12ih25i½12�

2½14�½25�2
h24ih13i2h35i2 : ðD14Þ

As is clear from the above equations, we can combine the 12 terms of (D8) in groups of two as shown above to see that the
leading-order contribution coming from (D8) is indeed Oðz̄45z45

Þ instead of the apparent Oð 1
z45
Þ.

Now, we rewrite the first four terms in (D8) in terms of fωi; zi; z̄ig, and then expand around z45 ¼ z̄45 ¼ 0. As mentioned
earlier, we only keep terms up to Oðz̄45Þ to get

½25�h13ih34ið½13�½34�Þ3
h25ih12ih15ih24ih54i þ ½35�h12ih24ið½12�½24�Þ3

h35ih13ih15ih34ih54i þ ½24�h13ih35ið½13�½35�Þ3
h24ih12ih14ih25ih45i þ ½34�h12ih25ið½12�½25�Þ3

h34ih13ih14ih35ih45i

¼ 24ϵ1
ω1ω

4
2

ω2
3ω4ω5

ðω4 þ ω5Þ3
z̄45
z45

z12z25z̄312z̄
3
25

z213z
2
35

− 24ϵ1
ω1ω

4
2

ω2
3ω4ω5

½ðω4 þ ω5Þ3 − 5ω4ω5ðω4 þ ω5Þ�
z212z̄

2
12z̄15z̄

4
25

z213z15z
2
35

þ 24ϵ1z̄45
z12z̄312z̄

3
25

z213z15z
3
35

ω1ω
4
2

ω2
3ω4ω5

½−z15z35ω4ðω2
4 þ 6ω4ω5 − 3ω2

5Þ þ z25z35ð−ω3
4 þ ω3

5Þ

þz15z25ðω3
4 þ 6ω2

4ω5 þ ω3
5Þ� þ 24ϵ1z̄45

z212z̄
2
12z̄

3
25

z213z15z
2
35

ω1ω
4
2

ω2
3ω4ω5

½z̄25ω4ðω2
4 − 2ω2

5Þ

þ z̄15ð3ω3
4 − 6ω2

4ω5 − 2ω4ω
2
5 þ ω3

5Þ� þ � � � : ðD15Þ

The contribution from the other eight terms in (D8) is simply obtained by taking different permutations of 1, 2, and 3 in the
above expression. Setting ω4 ¼ tωP;ω5 ¼ ð1 − tÞωP and collecting all the singular terms we finally get

BS
5 ¼ −27

ωP

tð1 − tÞ
�
z̄45
z45

TS
L þ TS

Oð1Þ þ z̄45TS
z̄

�
; ðD16Þ

where

TS
L ¼

�
ϵ1
z12z25z̄312z̄

3
25

z213z
2
35

ω1ω
4
2

ω2
3

þ ϵ2
z12z15z̄312z̄

3
15

z223z
2
35

ω4
1ω2

ω2
3

þ ϵ3
z13z15z̄313z̄

3
15

z223z
2
25

ω4
1ω3

ω2
2

�
; ðD17Þ

TS
Oð1Þ ¼ −

�
ϵ1
z212z̄

2
12z̄15z̄

4
25

z213z15z
2
35

ω1ω
4
2

ω2
3

þ ϵ2
z212z̄

2
12z̄25z̄

4
15

z223z25z
2
35

ω4
1ω2

ω2
3

þ ϵ3
z213z̄

2
13z̄35z̄

4
15

z223z35z
2
25

ω4
1ω3

ω2
2

�
½1 − 5tð1 − tÞ�; ðD18Þ

and

TS
z̄ ¼ ϵ1

z12z̄312z̄
3
25

z213z15z
3
35

ω1ω
4
2

ω2
3

½−z15z35tðt2 þ 6tð1 − tÞ − 3ð1 − tÞ2Þ þ z25z35ð−t3 þ ð1 − tÞ3Þ

þ z15z25ðt3 þ 6t2ð1 − tÞ þ ð1 − tÞ3Þ� þ ϵ1
z212z̄

2
12z̄

3
25

z213z15z
2
35

ω1ω
4
2

ω2
3

½z̄25tðt2 − 2ð1 − tÞ2Þ

þ z̄15ð3t3 − 6t2ð1 − tÞ − 2tð1 − tÞ2 þ ð1 − tÞ3Þ�

þ ϵ2
z12z̄312z̄

3
15

z223z25z
3
35

ω4
1ω2

ω2
3

½−z25z35tðt2 þ 6tð1 − tÞ − 3ð1 − tÞ2Þ þ z15z35ð−t3 þ ð1 − tÞ3Þ
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þ z25z15ðt3 þ 6t2ð1 − tÞ þ ð1 − tÞ3Þ� þ ϵ2
z212z̄

2
12z̄

3
15

z223z25z
2
35

ω4
1ω2

ω2
3

½z̄15tðt2 − 2ð1 − tÞ2Þ

þ z̄25ð3t3 − 6t2ð1 − tÞ − 2tð1 − tÞ2 þ ð1 − tÞ3Þ�

þ ϵ3
z13z̄313z̄

3
15

z223z35z
3
25

ω4
1ω3

ω2
2

½−z35z25tðt2 þ 6tð1 − tÞ − 3ð1 − tÞ2Þ þ z15z25ð−t3 þ ð1 − tÞ3Þ

þ z35z15ðt3 þ 6t2ð1 − tÞ þ ð1 − tÞ3Þ� þ ϵ3
z213z̄

2
13z̄

3
15

z223z35z
2
25

ω4
1ω3

ω2
2

½z̄15tðt2 − 2ð1 − tÞ2Þ

þ z̄35ð3t3 − 6t2ð1 − tÞ − 2tð1 − tÞ2 þ ð1 − tÞ3Þ�: ðD19Þ

Taking into account the other 18 terms [although note that atOðz̄45Þ, only 12 of these contribute and the ninth and tenth term
in (D7) and the (1 ↔ 3) and (2 ↔ 3) permutation of those do not contribute at this order] in (D7) we finally get B5 as

B5 ¼ −27
ωP

tð1 − tÞ
�
z̄45
z45

TL þ TOð1Þ þ z̄45Tz̄

�
þ � � � : ðD20Þ

where we have neglected the higher-order terms in the expansion of the rhs of (D7) around z45 ¼ z̄45 ¼ 0 in ðω; z; z̄Þ
space and

TL ¼ TS
L þ

�
ϵ1ϵ2

ω1ω2ω
4
3

ω3
P

z13z23ðz̄13z̄23Þ3
z215z

2
25

þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
;

TOð1Þ ¼ TS
Oð1Þ þ

�
ϵ1ϵ2ϵ3

ω1ω2ω
2
P

ω3

z̄35ðz̄15z̄25Þ3
z35z13z23

fð1 − tÞ5 þ t5g þ ϵ1ϵ2
ωPω

4
3

ω1ω2

z̄12z235z̄
6
35

z12z215z
2
25

t2ð1 − tÞ2þð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
;

Tz̄ ¼ TS
z̄ þ

�
ϵ1ϵ2

ω1ω2ω
4
3

ω3
P

z13z23ðz̄13z̄23Þ3
z215z

2
25

�
1

z15
þ 1

z25

�
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ

�
−
�
ϵ1ϵ2ϵ3

ω1ω2ω
2
P

ω3

ðz̄15z̄25Þ3
z13z23z35

ð1 − tÞ5 þ 3ϵ1ϵ2ϵ3
ω1ω2ω

2
P

ω3

z̄35ðz̄15z̄25Þ2ðz̄15 þ z̄25Þ
z13z23z35

t5

þϵ1ϵ2
ω4
3ωP

ω1ω2

z̄12z235z̄
5
35

z12z215z
2
25

t2ð1 − tÞ2 þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
: ðD21Þ

We will now Mellin transform (D20) and take the OPE limit 4 → 5. We want to emphasize here that after Mellin
transformation, the higher-order terms in the OPE expansion of the Mellin amplitude may receive contribution from the
lower-order terms. This is because of the fact that, after Mellin transformation the Mellin amplitude will depend on ω̃�

i ’s as
well as the delta function involving cross ratios coming from 5-point momentum conserving delta function as parametrized
in (B12). In the next subsection we analyze this in detail and calculate the order-by-order terms in the OPE expansion 4 → 5
of the 5-point Mellin amplitude.

APPENDIX E: MELLIN TRANSFORMATION OF THE 5-POINT AMPLITUDE

For the discussion of this appendix, the prefactor i
ð4πÞ2960 in (5.7) is not important. Thus we only Mellin transform B5 and

keep terms only up to Oðz̄45Þ. Substituting (D20) in (5.12) we get

B̃5 ¼ −27
Z

∞

0

Y5
i¼1

dωiω
Δi−1
i e−i

P
4

i¼1
ϵiωiui5 ωP

tð1 − tÞ
�
z̄45
z45

TLðω1;ω2;ω3;ωPÞ þ TOð1Þðω1;ω2;ω3;ωPÞ

þ z̄45Tz̄ðω1;ω2;ω3;ωPÞ
�
δð4Þ
 X5

i¼1

ϵiωiqi

!
; ðE1Þ

where TL; TOð1Þ, and Tz̄ are given by (D21) and we have kept their fωg dependence explicit for our convenience. Also we
have used momentum conservation in the exponential. Now using the parametrization (B12), we can perform the
ðω1;ω2;ω3Þ integrals to obtain,
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B̃5 ¼ −25
Z

1

0

dttΔ4−2ð1 − tÞΔ5−2
Z

∞

0

dωPω
Δ4þΔ5−1
P

Y3
i¼1

ðω�
i ÞΔi−1e−i

P
3

i¼1
ϵiω

�
i ui5−iωPtu45

×

�
z̄45
z45

TLðω�
1;ω

�
2;ω

�
3;ωPÞ þ TOð1Þðω�

1;ω
�
2;ω

�
3;ωPÞ þ z̄45Tz̄ðω�

1;ω
�
2;ω

�
3;ωPÞ

�
× δ

�
x − x̄ − tz45

�
x
z35

−
x̄
z25

�
− tz̄45

�
x
z̄25

−
x̄
z̄35

�
þ tz45z̄45

�
x

z35z̄25
−

x̄
z25z̄35

��
: ðE2Þ

Now from (B13) and the explicit expressions of TL; TOð1Þ, and Tz̄ given by (D21) one can see that

TLðω�
1;ω

�
2;ω

�
3;ωPÞ ¼ ω3

PT Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ;

TOð1Þðω�
1;ω

�
2;ω

�
3;ωPÞ ¼ ω3

PT Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ;

Tz̄ðω�
1;ω

�
2;ω

�
3;ωPÞ ¼ ω3

PT z̄ðω̃�
1; ω̃

�
2; ω̃

�
3Þ; ðE3Þ

where

T Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T S

Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ þ

�
ϵ1ϵ2ω̃

�
1ω̃

�
2ðω̃�

3Þ4
z13z23ðz̄13z̄23Þ3

z215z
2
25

þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
;

T Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T S

Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ þ

�
ϵ1ϵ2ϵ3

ω̃�
1ω̃

�
2

ω̃�
3

z̄35ðz̄15z̄25Þ3
z35z13z23

fð1 − tÞ5 þ t5g

þ ϵ1ϵ2
ðω̃�

3Þ4
ω̃�
1ω̃

�
2

z̄12z235z̄
6
35

z12z215z
2
25

t2ð1 − tÞ2 þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
;

T z̄ðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T S

z̄ ðω̃�
1; ω̃

�
2; ω̃

�
3Þ þ

�
ϵ1ϵ2ω̃

�
1ω̃

�
2ðω̃�

3Þ4
z13z23ðz̄13z̄23Þ3

z215z
2
25

�
1

z15
þ 1

z25

�
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ

�
−
�
ϵ1ϵ2ϵ3

ω̃�
1ω̃

�
2

ω̃�
3

ðz̄15z̄25Þ3
z13z23z35

ð1 − tÞ5 þ 3ϵ1ϵ2ϵ3
ω̃�
1ω̃

�
2

ω̃�
3

z̄35ðz̄15z̄25Þ2ðz̄15 þ z̄25Þ
z13z23z35

t5

þ ϵ1ϵ2
ðω̃�

3Þ4
ω̃�
1ω̃

�
2

z̄12z235z̄
5
35

z12z215z
2
25

t2ð1 − tÞ2 þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
; ðE4Þ

and T S
Lðω̃�

1; ω̃
�
2; ω̃

�
3Þ; T S

Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ, and T S

z̄ ðω̃�
1; ω̃

�
2; ω̃

�
3Þ are given by (D17), (D18), and (D19) respectively with

fω1;ω2;ω3g replaced by fω̃�
1; ω̃

�
2; ω̃

�
3g. Now we can perform the ωP integral in (E2) and obtain,

B̃5 ¼ −25ΓðΔÞ
Z

1

0

dttΔ4−2ð1 − tÞΔ5−2
Q

3
i¼1ðω̃�

i ÞΔi−1

½iðP3
i¼1 ϵiω̃

�
i ui5 þ tu45Þ�Δ

×

�
z̄45
z45

T Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ þ T Oð1Þðω̃�

1; ω̃
�
2; ω̃

�
3Þ þ z̄45T z̄ðω̃�

1; ω̃
�
2; ω̃

�
3Þ
�

× δ

�
x − x̄ − tz45

�
x
z35

−
x̄
z25

�
− tz̄45

�
x
z̄25

−
x̄
z̄35

�
þ tz45z̄45

�
x

z35z̄25
−

x̄
z25z̄35

��
; ðE5Þ

where Δ ¼P5
i¼1 Δi. We now expand the above equation around z45 ¼ z̄45 ¼ u45 ¼ 0.

1. Evaluating the leading-order contribution

It is clear from (E5) that the leading order term goes as ∼ z̄45
z45

and the contribution to the leading order can come only from

the term containing T Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ. At leading order we have ω̃�

i ¼ ϵiσi;1. Thus, the leading-order term of B̃5 is given by

B̃5jOðz̄45z45
Þ ¼ −25

z̄45
z45

ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
Z

1

0

dttΔ4−2ð1 − tÞΔ5−2T Lðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þδðx − x̄Þ; ðE6Þ
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where D ¼ ðP3
i¼1 σi;1ui5Þ. From (D17) and the first equation of (D21) we have

T Lðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ ¼
�
z12z25z̄312z̄

3
25

z213z
2
35

σ1;1σ
4
2;1

σ23;1
þ z12z15z̄312z̄

3
15

z223z
2
35

σ41;1σ2;1
σ23;1

þ z13z15z̄313z̄
3
15

z223z
2
25

σ41;1σ3;1
σ22;1

�
þ
�
σ1;1σ2;1σ

4
3;1

z13z23ðz̄13z̄23Þ3
z215z

2
25

þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�
: ðE7Þ

Now, using (B3)–(B7), one can show that

z12z25z̄312z̄
3
25

z213z
2
35

σ1;1σ
4
2;1

σ23;1
¼ z12z13ðz̄12z̄13Þ3

z225z
2
35

σ41;1σ2;1σ3;1;

z12z15z̄312z̄
3
15

z223z
2
35

σ41;1σ2;1
σ23;1

¼ z12z23ðz̄12z̄23Þ3
z215z

2
35

σ1;1σ
4
2;1σ3;1;

z13z15z̄313z̄
3
15

z223z
2
25

σ41;1σ3;1
σ22;1

¼ z13z23ðz̄13z̄23Þ3
z215z

2
25

σ1;1σ2;1σ
4
3;1: ðE8Þ

Using the above relations, we can simplify (E7) to get

T Lðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ ¼ 2

�
σ1;1σ2;1σ

4
3;1

z13z23ðz̄13z̄23Þ3
z215z

2
25

þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ
�

¼ 2½N 4 þN 4ð1 ↔ 3Þ þN 4ð2 ↔ 3Þ�; ðE9Þ

where the second equality follows from (5.6). Since this is independent of t, we can easily carry out the t-integral in (E6)
to get

B̃5jOðz̄45z45
Þ ¼ −26

z̄45
z45

BðΔ4 − 1;Δ5 − 1Þ ΓðΔÞðiDÞΔ δðx − x̄Þ
Y3
i¼1

ðϵiσi;1ÞΔi−1½N 4 þN 4ð1 ↔ 3Þ þN 4ð2 ↔ 3Þ�: ðE10Þ

This precisely gives Eq. (5.13).

2. Evaluating the Oð1Þ contribution
From (E5), we can see that the Oð1Þ contribution to the 5-point amplitude essentially comes only from the term

containing T Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ when ω̃�

i ’s take their leading-order value given by ϵiσi;1. Let us write the Mellin integral at
order one,

B̃5jOð1Þ ¼ −25
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
Z

1

0

dttΔ4−2ð1 − tÞΔ5−2T Oð1Þðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þδðx − x̄Þ: ðE11Þ

We will not attempt to take the explicit expressions of T Oð1Þðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ and Mellin integrate it. Rather we will
take a different approach which is more helpful for our purpose of the OPE factorization. Firstly, from the second equation
of (D21) we observe that T Oð1Þðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ is a polynomial in t with the highest power being 4. We use this fact
and write T Oð1Þðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ as

T Oð1Þðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ ¼
X4
k¼0

tkF ð1Þ
k ðfϵi; zi; z̄igÞ: ðE12Þ

The explicit expressions for the functions F ð1Þ
k ðfϵi; zi; z̄igÞ can be read out from the second equation of (D21). However,

they are not relevant for our discussions and hence we will not write them explicitly. Using (E12), we can easily evaluate the
integral (E11) to get,
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B̃5jOð1Þ ¼ −25
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X4
k¼0

BðΔ4 þ k − 1;Δ5 − 1ÞF ð1Þ
k ðfϵi; zi; z̄igÞδðx − x̄Þ: ðE13Þ

This is the expression we have used in Sec. V E 2.

3. Evaluating the order Oðz̄45Þ contribution
We apply the same strategy as the previous section here. However, we have to be careful now as there will be

contributions at Oðz̄45Þ from the lower-order terms. Like Oð1Þ terms, here also we are only concerned about the t-
dependence. Before proceeding further let us first write down the expansion of different components in (E5) around
z45 ¼ z̄45 ¼ u45 ¼ 0. Keeping terms only up to Oðz̄45Þ we have

ω̃�
i ¼ ϵiðσi;1 þ tz45σi;2 þ tz̄45σi;3Þ;

T Lðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T Lðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ þ z45T

ðzÞ
L ðfϵi; zi; z̄igÞ þ z̄45T

ðz̄Þ
L ðfϵi; zi; z̄igÞ;

T Oð1Þðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T Oð1Þðϵ1σ1;1; ϵσ2;1; ϵ3σ3;1Þ þ z45T

ðzÞ
Oð1Þðfϵi; zi; z̄igÞ þ z̄45T

ðz̄Þ
Oð1Þðfϵi; zi; z̄igÞ;

T z̄ðω̃�
1; ω̃

�
2; ω̃

�
3Þ ¼ T z̄ðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ þ z45T

ðzÞ
z̄ ðfϵi; zi; z̄igÞ þ z̄45T

ðz̄Þ
z̄ ðfϵi; zi; z̄igÞ: ðE14Þ

The explicit expressions for different T ’s are not required for our discussions. For notational convenience, we will not write

the arguments of different T ’s and replace T L;Oð1Þ;z̄ðϵ1σ1;1; ϵ2σ2;1; ϵ3σ3;1Þ by T ð0Þ
L;Oð1Þ;z̄. Let us first write down all possible

contributions to B̃5 at Oðz̄45Þ. From (E5) we have

B̃5jOðz̄45Þ ¼ −25
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
Z

1

0

dttΔ4−2ð1 − tÞΔ5−2
�
ðT ðzÞ

L þ T ðz̄Þ
Oð1Þ þ T ð0Þ

z̄ Þδðx − x̄Þ

− t

��
x
z35

−
x̄
z25

�
T ð0Þ

L þ T ð0Þ
Oð1Þ

�
x
z̄25

−
x̄
z̄35

��
δ0ðx − x̄Þ

− t

�
ðΔ1 − 1Þ σ1;2

σ1;1
þ ðΔ2 − 1Þ σ2;2

σ2;1
þ ðΔ3 − 1Þ σ3;2

σ3;1
− Δ

P
3
i¼1 σi;2ui5

D

�
T ð0Þ

L δðx − x̄Þ

− t

�
ðΔ1 − 1Þ σ1;3

σ1;1
þ ðΔ2 − 1Þ σ2;3

σ2;1
þ ðΔ3 − 1Þ σ3;3

σ3;1
− Δ

P
3
i¼1 σi;3ui5

D

�
T ð0Þ

Oð1Þδðx − x̄Þ
�
: ðE15Þ

Now, by expanding the T ’s in (D21) around z45 ¼ z̄45 ¼ 0 and keeping terms only up to Oðz̄45Þ, one can check that all

the terms at different orders in the expansion are polynomial of t. The highest degree of polynomial is 5 and appears in T ð0Þ
z̄

only. All the other T ’s have less power of t. Thus we conclude that the terms in the parenthesis ½� � �� in (E15) can be written
as a polynomial of t in the following way:�

ðT ðzÞ
L þ T z̄

Oð1Þ þ T ð0Þ
z̄ Þδðx − x̄Þ − t

��
x
z35

−
x̄
z25

�
T ð0Þ

L þ T ð0Þ
Oð1Þ

�
x
z̄25

−
x̄
z̄35

��
δ0ðx − x̄Þ

− t
�
ðΔ1 − 1Þ σ1;2

σ1;1
þ ðΔ2 − 1Þ σ2;2

σ2;1
þ ðΔ3 − 1Þ σ3;2

σ3;1
− Δ

P
3
i¼1 σi;2ui5

D

�
T ð0Þ

L δðx − x̄Þ

− t

�
ðΔ1 − 1Þ σ1;3

σ1;1
þ ðΔ2 − 1Þ σ2;3

σ2;1
þ ðΔ3 − 1Þ σ3;3

σ3;1
− Δ

P
3
i¼1 σi;3ui5

D

�
T ð0Þ

Oð1Þδðx − x̄Þ
�

¼
X5
k¼1

tkF ðz̄Þ
k ðfϵi; zi; z̄igÞ; ðE16Þ

where once again the explicit expressions of F ðz̄Þ
k ðfϵi; zi; z̄igÞ are not relevant for our discussions. Substituting (E16)

in (E15) and performing the t-integral, we finally get
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B̃5jOðz̄45Þ ¼ −25
ΓðΔÞ
ðiDÞΔ

Y3
i¼1

ðϵiσi;1ÞΔi−1
X5
k¼1

BðΔ4 þ k − 1;Δ5 − 1ÞF ðz̄Þ
k ðfϵi; zi; z̄igÞ: ðE17Þ

This is the form for the Oðz̄45Þ 5-point amplitude which we use in the main text of this paper.

APPENDIX F: w-ALGEBRA PRIMARIES

Let us start with the universal term in the OPE between two positive helicity hard gravitons given by

Gþ
Δ1
ðz; z̄ÞGþ

Δð0; 0Þ ¼ −
1

z

X∞
n¼0

BðΔ1 − 1þ n;Δ − 1Þ z̄
nþ1

n!
∂
nGþ

ΔþΔ1
ð0; 0Þ: ðF1Þ

We now take the conformal soft limit, first by setting Δ1 ¼ kþ ε and then taking ε → 0 to get

lim
ε→0

εGþ
kþεðz; z̄ÞGþ

Δð0; 0Þ ¼ −
1

z

X∞
n¼0

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i z̄nþ1

n!
∂
nGþ

Δþkð0; 0Þ

⇒ Hkðz; z̄ÞGþ
Δð0; 0Þ ¼ −

1

z

X∞
n¼0

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i z̄nþ1

n!
∂
nGþ

Δþkð0; 0Þ: ðF2Þ

Next, we mode expand the soft graviton operator Hkðz; z̄Þ on the lhs of (F2) according to (3.3) and get

X2−k2
m¼k−2

2

Hk
mðzÞ

z̄mþk−2
2

Gþ
Δð0; 0Þ ¼ −

1

z

X∞
n¼0

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i z̄nþ1

n!
∂
nGþ

Δþkð0; 0Þ: ðF3Þ

By comparing the terms at order z̄nþ1 on both the sides of (F3) for 0 ≤ n ≤ 1 − k, we get

Hk
2−k
2
−n−1ðzÞGþ

Δð0; 0Þ ¼ −
1

z

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i 1
n!

∂
nGþ

Δþkð0; 0Þ: ðF4Þ

Now we use the holomorphic mode expansion (3.4) of the currents Hk
2−k
2
−n−1ðzÞ in the above equation and obtain,

X
α

z−α−
kþ2
2 Hk

α;2−k
2
−n−1G

þ
Δð0; 0Þ ¼ −

1

z

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i 1
n!

∂
nGþ

Δþkð0; 0Þ: ðF5Þ

We can see from the above equation, that there is only a simple pole at z ¼ 0 on the rhs. Thus, the holomorphic singularity
structure of the above Eq. (F5) tells us that the following conditions should hold:

Hk
−kþ2

2
þm;2−k

2
−n−1G

þ
Δð0; 0Þ ¼ −

h
lim
ε→0

εBðk − 1þ nþ ε;Δ − 1Þ
i 1
n!

∂
nGþ

Δþkð0; 0Þ ðF6Þ

for m ¼ 1 and

Hk
−kþ2

2
þm;2−k

2
−n−1G

þ
Δð0; 0Þ ¼ 0 ðF7Þ

for m > 1 and 0 ≤ n ≤ 1 − k with k ¼ 1; 0;−1;….
Moreover, from (F3), one can see that there is no term on the RHS that goes like z̄0. Thus, on the lhs, the coefficients of

the z̄0 term should also vanish which gives the following condition:

Hk
2−k
2

ðzÞGþ
Δð0; 0Þ ¼ 0: ðF8Þ

This equation implies

Hk
−kþ2

2
þm;2−k

2

Gþ
Δð0; 0Þ ¼ 0; m ≥ 1: ðF9Þ
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APPENDIX G: TRANSFRORMATION OF THE MHV NULL STATES UNDER
sl2ðRÞV AND sl2ðRÞ ALGEBRAS

In this section of the appendix, we list the transformation properties of all the MHV null states appearing at different
orders of the OPE between two positive helicity outgoing gravitons under sl2ðRÞV and sl2ðRÞ algebras. Let us first write
down their explicit expressions in terms of the descendants of the w-algebra. We first write down the actions of the H−1

1
2
;1
2

on

the null states ΦkðΔÞ given by (H1) and ΨkðΔÞ given by (H2). They are given by

H−1
1
2
;1
2

ΦkðΔÞ ¼ −
1

2
ðkþ 1Þðkþ 2ÞΦkþ1ðΔ − 1Þ − 1

2
ðΔþ k − 3ÞðΔþ k − 4ÞΦkðΔ − 1Þ þ ð−1Þk

k!
ΓðΔþ k − 2Þ
ΓðΔ − 2Þ Φ1ðΔ − 1Þ;

H−1
1
2
;1
2

ΨkðΔÞ ¼ −
1

2
ðkþ 2Þðk − 1ÞΨkþ1ðΔ − 1Þ − 1

2
ðΔþ k − 3ÞðΔþ k − 4ÞΨkðΔ − 1Þ − ð−1Þk

k!
ΓðΔþ k − 2Þ
ΓðΔ − 2Þ Ψ1ðΔ − 1Þ;

H−1
1
2
;1
2

ΩkðΔÞ ¼
1

2
ðkþ 1Þðkþ 2ÞΩkðΔ − 1Þ − 1

2
ðΔ − 4ÞðΔ − 5ÞΩkðΔ − 1Þ − 1

2
ðkþ 1Þðkþ 2ÞΩkþ1ðΔ − 1Þ;

H−1
1
2
;1
2

ΠkðΔÞ ¼
1

2
kðkþ 1ÞΠkðΔ − 1Þ − 1

2
ðΔ − 4ÞðΔ − 5ÞΠkðΔ − 1Þ − 1

2
ðk − 1Þðkþ 2ÞΠkþ1ðΔ − 1Þ: ðG1Þ

The actions of H1
−1
2
;−1

2

on the MHV null states are given by

H1
−1
2
;−1

2

ΦkðΔÞ ¼ −ΦkðΔþ 1Þ −Φk−1ðΔþ 1Þ;
H1

−1
2
;−1

2

ΨkðΔÞ ¼ −ΨkðΔþ 1Þ −Ψk−1ðΔþ 1Þ;
H1

−1
2
;−1

2

ΩkðΔÞ ¼ −ΩkðΔþ 1Þ;
H1

−1
2
;−1

2

ΠkðΔÞ ¼ −Πkþ1ðΔþ 1Þ: ðG2Þ

The actions of H0
0;1 on the MHV null states are given by

H0
0;1ΦkðΔÞ ¼ 0;

H0
0;1ΨkðΔÞ ¼ ðkþ 2ÞΦkþ1ðΔ − 1Þ − 2

ð−1Þk
k!

ΓðΔþ k − 2Þ
ΓðΔ − 2Þ Φ1ðΔ − 1Þ;

H0
0;1ΩkðΔÞ ¼ 0;

H0
0;1ΠkðΔÞ ¼ −ðΔþ k − 3ÞΩkðΔ − 1Þ þ ðkþ 2ÞΩkþ1ðΔ − 1Þ: ðG3Þ

In deriving the above transformation properties, we have used the algebra (3.5) and the action of different operators on the
primaries given in Appendix F.

APPENDIX H: REVIEW OF GENERAL STRUCTURE OF w-INVARIANT OPE

It was shown in [39], that the OPE between two positive helicity outgoing graviton primaries of any w-invariant theory
can always be written in terms of the MHV OPE’s and its null states. The MHV null states that can appear at Oðz0z̄0Þ and
Oðz0z̄Þ are given by [19,20]

ΦkðΔÞ ¼
�
H1−k

k−3
2
;kþ1

2

ð−H1
−1
2
;−1

2

Þk − ð−1Þk
k!

ΓðΔþ k − 2Þ
ΓðΔ − 2Þ H1

−3
2
;1
2

�
Gþ

Δ−1 ðH1Þ

and
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ΨkðΔÞ ¼
�
H−k

k−2
2
;k
2

ð−H1
−1
2
;−1

2

Þkþ1 −
ð−1Þk
k!

ΓðΔþ k − 2Þ
ΓðΔ − 2Þ

×H0
−1;0ð−H1

−1
2
;−1

2

Þ

−
ð−1Þkk
ðkþ 1Þ!

ΓðΔþ k − 2Þ
ΓðΔ − 3Þ H1

−3
2
;−1

2

�
Gþ

Δ−2; ðH2Þ

respectively, where k ¼ 1; 2; 3;…;∞. However, it is more
convenient to work with the new basis defined by

ΩkðΔÞ ¼
Xk
n¼1

1

ðk − nÞ!
ΓðΔþ k − 2Þ
ΓðΔþ n − 2ÞΦnðΔÞ ðH3Þ

for the Oðz0z̄0Þ null states and similarly for the Oðz0z̄Þ null
states the new basis is defined by

ΠkðΔÞ ¼
Xk
n¼1

1

ðk − nÞ!
ΓðΔþ k − 2Þ
ΓðΔþ n − 2ÞΨnðΔÞ: ðH4Þ

There is another set of null states, which are of the
Knizhnik-Zamolodchikov-type and decoupling of these
null states give rise to differential equations for the
scattering amplitudes [19,40,42,45,69–71]. We will discuss
about these null states in the context of self-dual gravity in
Sec. 2. Then, using these new basis (H3) and (H4) the OPE
between two positive helicity outgoing graviton primaries
with dimensions Δ1 and Δ2 of any w-invariant theory can
always be written as

Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0Þ ¼ −

z̄
z
BðΔ1 − 1;Δ2 − 1ÞGþ

Δ1þΔ2
ð0; 0Þ

þ Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0ÞjMHV atOðz0 z̄0Þ þ

Xn
p¼1

BðΔ1 − 1þ p;Δ2 − 1ÞΩpðΔ1 þ Δ2Þ

þ Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0ÞjMHV atOðz0 z̄1Þ þ z̄

Xn
p¼1

BðΔ1 þ p;Δ2 − 1ÞΠpðΔ1 þ Δ2 þ 1Þ þ � � � ; ðH5Þ

where Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0ÞjMHV atOðz0 z̄0Þ and Gþ

Δ1
ðz; z̄Þ×

Gþ
Δ2
ð0; 0ÞjMHV atOðz0 z̄1Þ are the MHV OPEs at Oðz0z̄0Þ

and Oðz0z̄Þ, respectively. It has been shown in [66] that
the leading term in z̄ is uniquely determined by the sl2ðRÞV
invariance. Once the leading term is known, the subleading
terms in z̄ of Oðz̄qz Þ, q ≥ 2 are determined by the sl2ðRÞ
invariance.
It was shown in [39], that both theMHV null statesΩkðΔÞ

and ΠkðΔÞ form representations of sl2ðRÞV . However, these
representations are reducible because for any integer n ≥ 0,
the subspaces spanned by fΩnþ1ðΔÞ;Ωnþ2ðΔÞ; � � �g and
fΠnþ1ðΔÞ;Πnþ2ðΔÞ; � � �g form a representation of sl2ðRÞV .
Hence we can get smaller representations spanned by
the states fΩ1ðΔÞ;Ω2ðΔÞ;…;ΩnðΔÞg and fΠ1ðΔÞ;
Π2ðΔÞ;…;ΠnðΔÞg if we set

Ωkþ1ðΔÞ ¼ 0; k ≥ n ≥ 0;

Πkþ1ðΔÞ ¼ 0; k ≥ n ≥ 0: ðH6Þ

Using the algebra (3.5), one can also check that the null
states ΩkðΔÞ and ΠkðΔÞ are primaries under sl2ðRÞ. Thus,
the conditions (H6) are invariant under sl2ðRÞ, hence under
whole w-algebra.
We have showed in Sec. III that, the whole tower of

w-currents can be generated using two subalgebras given
by sl2ðRÞ and sl2ðRÞV . Moreover, the conditions (H6) are

also invariant under sl2ðRÞ and sl2ðRÞV , and hence under
the full w-algebra. Now, using these facts and the algebra
(3.5), it is not hard to show the OPE (H5) is invariant under
w-algebra. The important point we want to emphasize
about the OPE (H5) is that the integer n can take any
arbitrary value without breaking the w-invariance. Hence,
there exists a discrete infinite family of w-invariant OPEs.
From (H5) it is already clear that n ¼ 0 gives the MHV
sector. In this paper, we have shown that n ¼ 4 gives the
OPE of the quantum self-dual gravity theory which is
known to be w-invariant.
Now, the last thing we want to discuss in this section is

that, the null states fΩ1ðΔÞ;Ω2ðΔÞ;…;ΩnðΔÞg are not
completely independent. For a given n, there is another set of
⌈ n
2
⌉10 nontrivial11 states fχ1nðΔÞ;…; χ⌈n=2⌉n ðΔÞg defined as

χ1nðΔÞ ¼
Xn
p¼1

ΩpðΔÞ;

χinðΔÞ ¼
Xn
p¼i

Y2i−2
q¼i

ðp−qÞΩpðΔÞ; i¼ 2;3;…;⌈
n
2
⌉; ðH7Þ

10⌈ n
2
⌉ ¼ Smallest integer ≥ n

2
.

11There are of course the n states fΩ1ðΔÞ;…;ΩnðΔÞg which
transform in a representation of sl2ðRÞV but, we cannot set them
to zero because that will lead us again to the MHV sector.
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which transform in a representation of the sl2ðRÞV as a
consequence of (H6). We can also set these states to zero

χinðΔÞ ¼ 0 ðH8Þ

without violating the sl2ðRÞV or sl2ðRÞ symmetry.

APPENDIX I: NULL STATES IN SELF-DUAL
GRAVITY

In this appendix, we will derive the null states of the self-
dual gravity appearing at different orders of the OPE. We
will first start with the OPE between two positive helicity
outgoing gravitons in the self-dual gravity derived in
Sec. V E. It is given by

Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5Þ¼−

z̄45
z45

BðΔ4−1;Δ5−1ÞGþ
Δ4þΔ5

ðz5; z̄5ÞþBðΔ4−1;Δ5−1ÞH1
−3
2
;1
2

Gþ
Δ4þΔ5−1ðz5; z̄5Þ

þ
X4
k¼1

BðΔ4þk−1;Δ5−1ÞΩkðΔ4þΔ5Þþ z̄45

�
BðΔ4−1;Δ5−1ÞGþ

Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjMHV atOðz̄45Þ

þ
X4
k¼1

BðΔ4þk;Δ5−1ÞΠkðΔ4þΔ5þ1Þ
�
þ��� ; ðI1Þ

where Gþ
Δ4
ðz4; z̄4ÞGþ

Δ5
ðz5; z̄5ÞjMHV atOðz̄45Þ is given by

(5.33). We now derive the null states appearing at Oð1Þ
and Oðz̄45Þ.

1. Null states at Oð1Þ
We can see from (I1) that at Oð1Þ the OPE truncates at

k ¼ 4. Now we take the conformal soft limit Δ4 → −4
in (I1). In this limit, the soft descendant that appear atOð1Þ
on the lhs of (I1) is given by H−4

1;3G
þ
Δ5
ðz5; z̄5Þ. After taking

the same conformal soft limits on the rhs and comparing the
results we get

Ω5ðΔÞ ¼
X5
j¼1

1

ð5 − jÞ!
ΓðΔþ 3Þ

ΓðΔþ j − 2ÞΦjðΔÞ ¼ 0; ðI2Þ

whereΦjðΔÞ are given by (H1). Thus, we see that Ω5ðΔÞ is
a null state of the self-dual gravity. Now we will show the
consistency of (I2) under w-algebra. Under sl2ðRÞV, Ω5ðΔÞ
transforms as (G1), (G2),

H1
−1
2
;−1

2

Ω5ðΔÞ ¼ −Ω5ðΔþ 1Þ;

H−1
1
2
;1
2

Ω5ðΔÞ ¼ 21Ω5ðΔ− 1Þ− 1

2
ðΔ− 4ÞðΔ− 5ÞΩ5ðΔ− 1Þ

− 21Ω6ðΔ− 1Þ; ðI3Þ

and H0
0;0 ¼ 2L̄0 is diagonal on these states. However,

Ω6ðΔ − 1Þ is also a null state of the theory and thus (I2)
is invariant under sl2ðRÞV. One can also check that

H0
0;1Ω5ðΔÞ ¼ 0: ðI4Þ

Thus we see that (I2) is also invariant under sl2ðRÞ. Hence
we conclude that (I2) is invariant under w-algebra.

There is another set of null states (H7) atOð1Þwhich can
be found using the commutativity property of the OPE
together with the conformal soft limits. In case of self-dual
gravity, they are explicitly given by

χ14ðΔÞ ¼
X4
p¼1

ΩpðΔÞ;

χ24ðΔÞ ¼
X4
p¼3

ðp − 2ÞΩpðΔÞ; ðI5Þ

These null states also transform under the representation
of sl2ðRÞV and sl2ðRÞ algebra and as a consequence one
can set them to 0 without violating the w-symmetry. The
null states (I5) play an important role in showing the
invariance of the Knizhnik-Zamolodchikov-type null state
under w-algebra which will be discussed in the next
subsection.

2. Null states at Oðz̄45Þ: Knizhnik-Zamolodchikov-type
null state

Knizhnik-Zamolodchikov (KZ)-type null states occur at
Oðz0z̄1Þ of the OPE. The easiest way to derive it is to use
the commutativity property of the OPE and conformal soft
limits together. So we start with the commutativity property
of the OPE given by

Gþ
Δ1
ðz1; z̄1ÞGþ

Δ2
ðz2; z̄2Þ ¼ Gþ

Δ2
ðz2; z̄2ÞGþ

Δ1
ðz1; z̄1Þ: ðI6Þ

Now we use the OPE (I1) in (I6), and take the leading
conformal soft limits Δ1 → 1. Then by comparing the terms
at Oðz̄45Þ we get the following Knizhnik-Zamolodchikov-
type equation:
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Ξ4ðΔÞ ¼ ξðΔÞ þ
X4
k¼1

ΠkðΔþ 1Þ ¼ 0; ðI7Þ

where ξðΔÞ is the KZ-type null state in the MHV sector
given by [19]

ξðΔÞ ¼ L−1 Gþ
Δ þH0

0;−1H
1
−3
2
;1
2

Gþ
Δ−1 þH0

−1;0G
þ
Δ

þ ðΔ − 1ÞH1
−3
2
;−1

2

Gþ
Δ−1: ðI8Þ

We have used that χ14ðΔÞ is a null state in this theory to
arrive at the form (I7). One can check that (I7) is consistent
under the actions of sl2ðRÞ and sl2ðRÞV generators. For
example,

H0
0;1Ξ4ðΔÞ ¼ 6Ω5ðΔÞ − ðΔ − 3Þχ14ðΔÞ: ðI9Þ

We have already shown that Ω5ðΔÞ and χ14ðΔÞ are both null
states in this theory, so we get

H0
0;1Ξ4ðΔÞ ¼ 0: ðI10Þ

Therefore, Ξ4ðΔÞ is an sl2ðRÞ primary.
Similarly, we have

H−1
1
2
;1
2

Ξ4ðΔÞ ¼ −
1

2
ðΔ − 2ÞðΔ − 3ÞΞ4ðΔ − 1Þ − 9Π5ðΔÞ

−H−1
1
2
;−1

2

χ14ðΔÞ −H0
0;−1ððΔ − 1Þχ14ðΔ − 1Þ

þ χ24ðΔ − 1ÞÞ: ðI11Þ

However, since Π5ðΔÞ; χ14ðΔÞ, and χ24ðΔÞ are null states in
the theory, we get

H−1
1
2
;1
2

Ξ4ðΔÞ ¼ −
1

2
ðΔ − 2ÞðΔ − 3ÞΞ4ðΔ − 1Þ: ðI12Þ

Therefore, Ξ4ðΔÞ transforms under a representation of the
sl2ðRÞV and we can consistently set it to zero without
violating the sl2ðRÞV symmetry. Hence, we conclude that
(I7) is indeed w invariant. Decoupling of null states gives
rise to differential equations which the graviton scattering
amplitudes in this theory have to satisfy.

APPENDIX J: INVARIANCE OF THE SELF-DUAL
OPE UNDER w-ALGEBRA

In [39], it was shown that the OPE (H5) is invariant
under w-algebra for any arbitrary truncation in n, which has
been reviewed in Appendix H. We have shown in Sec. V E
that self-dual OPE truncates at n ¼ 4 of the general OPE
(H5). Thus, we can say that the invariance of the self-dual
OPE under w-algebra is guaranteed. However, for the sake
of completeness of this paper and for the better readability,
we will repeat the same analysis here with focusing on

the self-dual OPE. As discussed in Sec. III, the whole
w-algebra can be derived by the combined action of
sl2ðRÞV and sl2ðRÞ. Thus, it is enough to show the
invariance of the OPE under these two subalgebras.

1. w-invariance at Oð1Þ
Let us start with theOð1ÞOPE. Wewrite it here again for

the readers convenience,

Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0ÞjOð1Þ

¼ BðΔ1 − 1;Δ2 − 1ÞH1
−3
2
;1
2

Gþ
Δ1þΔ2−1ð0; 0Þ

þ
X4
k¼1

BðΔ1 þ k − 1;Δ2 − 1ÞΩkðΔ1 þ Δ2Þ: ðJ1Þ

We now show that it is invariant under the two subalgebras
sl2ðRÞV and sl2ðRÞ.

a. sl2ðRÞV invariance

To show the invariance of the OPE, we need the action of
the sl2ðRÞV on the MHV null states ΩkðΔÞ that can appear
atOð1Þ. These actions were computed in [39] and reviewed
in Appendix G. We also need the commutator algebra (3.5)
along with the action of these generators on the graviton
primaries given by (see Appendix F),

H1
−1
2
;−1

2

Gþ
Δðz; z̄Þ ¼ −Gþ

Δþ1ðz; z̄Þ;

H−1
1
2
;1
2

Gþ
Δðz; z̄Þ ¼ −

1

2
½ðΔ − 2ÞðΔ − 3Þ þ 4ðΔ − 2Þz̄∂z̄

þ 3z̄2∂2z̄ �Gþ
Δ−1ðz; z̄Þ: ðJ2Þ

Using Appendix G, (3.5), and (J2), it is not difficult to show
that the Oð1Þ OPE (J1) is invariant under H1

−1
2
;−1

2

whereas

the action of H−1
1
2
;1
2

on both the sides of the OPE (J1) gives

H−1
1
2
;1
2

ðrhs − lhsÞ of ðJ1Þ ¼ −12BðΔ1 þ 3;Δ2 − 1Þ
×Ω5ðΔ1 þ Δ2 − 1Þ ðJ3Þ

However, we have already shown in Appendix 1, that
Ω5ðΔÞ is a null state of the self-dual gravity appearing at
Oð1Þ of the OPE and as a consequence we can set it to 0.
Hence, we conclude that the Oð1Þ self-dual OPE (J1) is
invariant under the sl2ðRÞV algebra.

b. sl2ðRÞ invariance
It was shown in [19], that the OPE in the MHV sector is

invariant under the action ofH0
0;1.

12 Also from (G3), we can
see that the null states ΩkðΔÞ are annihilated by H0

0;1.

12H0
0;1 ∼ L̄1.
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Therefore, we can say that Oð1Þ self-dual OPE (J1) is
invariant under the sl2ðRÞ algebra.

2. w-invariance at Oðz̄Þ
We nowmove on to showing the w-invariance of the self-

dual OPE at Oðz̄Þ. Let us first write down the Oðz̄Þ OPE
(5.35) again,

Gþ
Δ1
ðz; z̄ÞGþ

Δ2
ð0; 0ÞjOðz̄Þ ¼ BðΔ1 − 1;Δ2 − 1ÞGþ

Δ1
ðz; z̄Þ

×Gþ
Δ2
ð0; 0ÞjMHV atOðz̄45Þ

þ
X4
k¼1

BðΔ1 þ k;Δ2 − 1Þ

× ΠkðΔ1 þ Δ2 þ 1Þ: ðJ4Þ

From the previous subsection, it is clear that the
w-invariance of the OPE at Oðz̄Þ is guaranteed to follow
if we can show that it is invariant under the two subalgebras
sl2ðRÞV and sl2ðRÞ. Among the generators of these two
subalgebras, we only show the invariance of the OPE (J4)

under the actions of H−1
1
2
;1
2

and H0
0;1. This is mainly because

the invariance of the OPE (J4) under the rest of the
generators are fairly easy to show. By applying H−1

1
2
;1
2

on

both sides of the OPE (J4) we get

H−1
1
2
;1
2

ðrhs − lhsÞ of ðJ4Þ ¼ −9BðΔ1 þ 4;Δ2 − 1Þ
× Π5ðΔ1 þ Δ2Þ ðJ5Þ

and for H0
0;1 we have

Hð0Þ
0;1ðrhs − lhsÞ of ðJ4Þ ¼ 6BðΔ4 þ 4;Δ5 − 1Þ

×Ω5ðΔ1 þ Δ2Þ: ðJ6Þ

However, from Appendix I, we know that both Π5ðΔÞ and
Ω5ðΔÞ are the null states of the self-dual gravity appearing
at Oðz̄Þ and Oð1Þ, respectively. Thus, we conclude that the
Oðz̄Þ OPE in self-dual gravity is also invariant under
sl2ðRÞV and sl2ðRÞ, and hence under the whole w-algebra.
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