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In this paper we compute the celestial operator product expansion between two outgoing positive helicity
gravitons in the self-dual gravity. It has been shown that the self-dual gravity is a wy , -invariant theory
whose scattering amplitudes are one-loop exact with all positive helicity gravitons. Celestial wy,
symmetry is generated by an infinite tower of (conformally soft) gravitons which are holomorphic
conserved currents. We find that at any given order only the descendants of a finite number of wy
currents contribute to the operator product expansion. This is somewhat surprising but, this is consistent
with our earlier analysis based on wy , , symmetry alone. The phenomenon of truncation also suggests that
in some (unknown) formulation the spectrum of conformal dimensions in the dual two dimensional theory

can be bounded from below.

DOI: 10.1103/PhysRevD.109.086017

I. INTRODUCTION

Celestial holography is a conjectured duality between
quantum gravity in 4D asymptotically flat spacetime and a
quantum field theory on the 2D celestial sphere [1-3].
Symmetries play an important role in this conjectured
duality. The Lorentz group in 4D acts on the 2D celestial
sphere as the global conformal group. So the dual theory
should be a conformal field theory. Motivated by this, a new
basis was introduced [2—4] in which the S-matrix elements
transform like 2D conformal correlators. Besides the two-
dimensional global conformal symmetry, celestial con-
formal field theory has various infinite-dimensional current
algebra symmetries [5-34].

Operator product expansion (OPE) is a central tool used to
study various aspects of any CFT. In the context of celestial
CFT also, OPE played an important role in identifying new
symmetries [19,22,23], null states [19,20,35-45] etc. It has
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also found applications in the bootstrap program [46,47].
Based on the universal singular structure of the tree-level
OPE between two positive helicity gravitons, it was shown
in [22] that celestial conformal field theory has an infinite
tower of soft symmetries which close into w_,, algebra
[23]. Loop corrections to the tree-level celestial OPEs have
been studied in [48,49].

In a previous paper [39], we have studied the implications
of the wy,, symmetry at the level of OPEs by using
representation theory. By studying the subleading terms in
the OPE between two positive helicity outgoing gravitons,
we have shown that there should exist an infinite number of
theories which are invariant under w, ., algebra.

In this paper we derive the OPE in one such theory,
known as the quantum self-dual gravity [S0-54] which was
shown to be wy  invariant in [55-57]. Here we do a
collinear expansion of the known graviton scattering ampli-
tudes in the self-dual gravity theory and extract the celestial
OPE from there. For simplicity, we analyze the 5-point all
plus amplitude in self-dual gravity and factorize it in the
collinear limit through a 4-point amplitude. The results we
obtain are consistent with what we proposed in [39] based
on the representation theory of wy, .. The rest of the paper
is organized as follows.

In Sec. II we introduce notations and conventions used in
this paper. Section III briefly describes the wy ., algebra
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and how the whole tower of the w  currents can be
generated using the two s/,(R) subalgebras. In Sec. IV we
briefly discuss about the scattering amplitudes in quantum
self-dual gravity. Section V discusses how to extract the
OPE between two positive helicity outgoing gravitons from
the 5-point one-loop self-dual amplitude. We start by
simplifying the 5-point amplitude in the momentum space
and then Mellin transform it to get the celestial amplitudes.
We then discuss how to factorize each term order-by-order
in the OPE limit of the celestial amplitudes. The null states
of the self-dual gravity appearing at various orders of the
OPE and the invariance of the OPE under wy ., algebra are
discussed in Appendixes I and J.

For the sake of completeness of the paper, we give a
brief review of the celestial amplitude in Appendix A. In
Appendix B, we discuss the parametrization of the 4- and
5-point delta functions which are useful in our context of
the OPE expansion. Appendixes C and D discuss how to
simplify the 4- and S5-point amplitudes in momentum
space using momentum conserving delta functions and
various identities of the spinor-helicity brackets. These
simplifications are done keeping in mind the fact that we
want to factorize the 5-point amplitude in terms of the
4-point amplitude in the OPE expansion. Appendix E deals
with the Mellin transformation of the 5-point amplitude. In
Appendix F we discuss the conditions on the graviton
primary operators under the wy, ., algebra which follow
from the universal structure of the OPE. In Appendix G, we
list the transformation properties of all the maximally
helicity violating (MHV) null states under the action of

sl>(R)y and sl,(R) algebras which are required to show the
W1 -invariance of the self-dual OPE. Appendix H briefly
reviews the construction of a general w_ ,-algebra invari-
ant OPE and how one can obtain an infinite family of w; -
algebra invariant theories.

II. NOTATIONS AND CONVENTIONS

In this paper, we will work in the (2, 2) signature space-
time, which is also known as Klein space. The null
momentum p* of a massless particle, satisfying the on
shell condition p*> = 0, is parametrized as

P =eqt,

¢ =o{l +22,2+2,2—-2,1 — 22}, (2.1)
where € = £1 for outgoing and incoming particles respec-
tively, (z, Z) are two independent real variables and  is any
positive number interpreted as the energy of the particle. In
Klein space the null infinity takes the form of a Lorentzian
torus (known as the celestial torus) times a null line. The
Lorentz group in (2, 2) signature is given by SO(2,2) ~

% and acts as the group of conformal trans-

formations on the celestial torus,

az+>b

SL2,R),: z— d Z—2%Z, ad—bc=1,
b o
SLQ.R),: 225t L. ad-be—=1. (22)
cz+d

In our conventions the spinor-helicity variables are given by

(i]) = 2ei€;\Jww;z;5, [i]] = 2\/0;0,Z;;,  (2.3)
where z;; = z; — z; and we also have 2p, - p; = —(ij)[i/].

III. REVIEW OF w,, ., ALGEBRA

We start by reviewing the wy_, algebra which follows
from the universal singular terms in the OPE between two
positive helicity outgoing gravitons. Let G} (z,Z) denote
the positive helicity graviton conformal primary operator of
dimension A at the point (z,Z) on the celestial torus. The
universal singular terms in the OPE are given by [22]

- - 22 o
GXI(Zlel)GXZ(ZbZz):—Zﬁ B(Aj—1+n,A4,-1)
12 =0

71" 1~ _
Xn—a GA1+A2(Z2’ZZ)

(3.1)

Let us define an infinite family of positive helicity
conformally soft [58—64] gravitons [22] as,1

HYz.2) = lim(A - K)G{(2.2). k=1.0.-1.-2....
(3.2)

with weights (32,%52). It follows from the OPE (3.1) that

we can introduce the following truncated mode expansion:

o

—k X
m(Z

— k=
Zm +T

o[

H*(z,Z) = , (3.3)

TMN|
T

—k=2
m==

and the modes H¥ (z) are the conserved holomorphic
currents. The currents H%,(z) can be further mode expanded
in the z-variable to get,

k
Ha,m
k2
k+2 ZOH_ 2

Hy,(z) =

aE€e 7=

(3.4)

and one can show [22] that the modes H%, satisfy the
algebra,

'In (3.2) and the equations following this, the index k starts
from 1 instead of 2 [23]. H?(z.Z) is a central term and we take it
to be zero because G} has no pole at A =2. This has the
consequence that supertranslations commute.

Here we are assuming that k = /322Gy = 2.
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[He e Hp ) = =[n(2 = k) =m(2=1)]
Fr-m+H -n-1)!
(Gt =m)!(F = n)!
GF+m+H+n- 1)!H"”
(GE+m) (L +n)!

(3.5)

a+p.m+n*

This is called the holographic symmetry algebra (HSA).
Now if we make the following redefinition (or discrete light
transformation) [23]:

1 -
w,’),’,m:E(p—m—l)l(p—i—m—l)!Ha,z,,fJr4 (3.6)
then (3.5) turns into the wy algebra3
-2
Wl w5, = [m(g = 1) =n(p = D)Wl 0, (37)

52,3, and 1—p§m§p—1.4

For our purpose it is more convenient to work with the
HSA (3.5) rather than the w; . algebra. However, we
continue to refer to the HSA as the w algebra.

Now, in [39], it was shown that the whole tower of the w
currents can be generated using the two s/, (R) subalgebras.
One of them is sl,(R),” generated by the operators
{HLy y Hoo Hip),

where p =3,2,3

(3.8)

The other s/,(R) subalgebra is generated by the global
(Lorentz) conformal transformations {H{,.H{,. H{_,}.

We call this sl,(R) because this acts only on the Z
coordinate. Now the w symmetry is generated by the
infinite number of soft currents {H%(z)} where k=
1,0,—1,-2, ... is the dimension (A) of the soft operator
and k—gzs p < —%. For a fixed k, the soft currents

{H* (z),.... Hf,(2)} transform in a spin-(%%) represen-
2 2

tation of the s/, (R).
Now let us consider the currents {H!, H?, ..., H*, ...}
2 2

with the lowest sl,(R) weights. These currents transform in
an irreducible highest weight representation of the s, (R), .

This is the wedge subalgebra of wy .
*Again we let p run from % instead of 1 because w! = 0.

*Here V stands for vertical. Please see Fig. 1 for an
explanation.

sla(R)

@ ®
OL0XO
OJOROR0)

wl DO OO E
o‘o
FIG. 1. The figure shows the soft currents. The rows and the

columns are indexed by the s/,(R) weights and the dimension
(A=k=1,0,—-1,-2,...) of the conformally soft graviton
H*(z,7), which generates the currents sitting in a row, respec-

tively. s/,(R) acts horizontally along a row and s/,(R), acts
vertically along a column. In this way they generate the whole
symmetry algebra starting from the current H!(z) on the top-left

corner.

This can be seen from the following commutation relations
following from (3.5),

-1
[Hl I, H H}
23 a5

1
—~(k=2)(k=3)H"! .,
S (k= 2)(k=3)H

2

(o Hi|

1 k
)

(k=2)H" .

(3.9)

k+1
11 —H "y
R

Therefore, starting from the current H!(z) we can generate
2

any other w current by the combined action of the s/, (R)
and sl,(R), (Fig. 1).

IV. SCATTERING AMPLITUDES IN QUANTUM
SELF-DUAL GRAVITY

In this section, following [51] we briefly review the all-
plus helicity scattering amplitudes in quantum self-dual
gravity. In (2, 2) signature, self-duality translates into the
following condition on the Riemann tensor:

1
= SW”/”R

R uvpe — D)

(4.1)

afipor
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where % is the completely antisymmetric tensor with
€123 = 41, In order to maintain the reality condition on the
fields, the self-dual gravity is described in either (2, 2) or
(0, 4) signature. In Lorentzian (1, 3) signature, the con-
dition (4.1) acquires an extra factor of i and contain no real
solutions. At the classical level, the linearized self-dual
solutions consist of positive helicity plane waves.

In this paper, we are interested in the collinear behaviour
of gravitons in the self-dual gravity. At the tree level, we
have only one nontrivial amplitude; the three point MHV
amplitude where, only one external graviton has negative
helicity and other two have positive helicity. The appear-
ance of the negative helicity graviton in the three point

MHV amplitude can be explained from the fact that the
action contains a Lagrange multiplier which is physically
interpreted as the negative helicity graviton.

At the one loop level, the only nonzero amplitudes are
the ones with all plus helicity gravitons with the minimum
number of gravitons being four. These amplitudes are both
UV and IR finite. The only divergences of these amplitudes
are collinear and soft divergences. Our interest in this
theory stems from the fact that this is a nontrivial quantum
theory which is known to be w invariant.

The one loop all-plus n-graviton stripped amplitude in
self-dual gravity is given by [51]

A2 o) = = s (<5) 3 oM. 6)A0. N, b

1<a<bzn
M.N

(4.2)

where a and b are the external legs and M and N are two sets suchthat M UN =1,...a—1,a+1,...b —1,b+1,...nand
M N N = ¢. The sum is over all possible (a, b) and (M, N), where (M, N) and (N, M) are not distinguished. The trace is
defined as

tr[aMbN| = (a|Ky|b](b|Ky|a] + [a|Ky|b)[b|Ky]a). (4.3)
where K, = >, < ki The “half-soft” function 4 is given by
[12] (alKy»[3](alKy5]4] - - - (a| K} i |n]
h(a,{1,2,...,n},b) = : : : P(2,3,...,n), 4.4
(a{ ") = 2y 23V B4) - (n = L {al){a2) -~ (an)(16)(nB) |\ ") (44
|
where K, => " k; and P(2,3,...,n) represents all A. 4-Point momentum space amplitude
permutations keeping the first leg fixed. Throughout this From (4.2), the 4-point amplitude is given by
paper we will set k = 2.
A(17,25,35 47 ) = ———__B,  (5.1)
V. GRAVITON-GRAVITON OPE FROM (47)7960
SELF-DUAL AMPLITUDES
where
In this section, we take the 4- and 5-point all plus
amplitudes and express them in the conformal primary B, = Z h(a.M.b)h(b,N,a)tr*[aMbN]. (5.2)

basis by (modified) Mellin transformation. Then we take
the (collinear) OPE limit (z45 — 0, Z45 — 0) in the 5-point
amplitude with the aim of factorizing it into some differ-
ential operators acting on the 4-point amplitude at every
order in the (z45, Z45) expansion. Let us now closely look at
the 4-point amplitude, first in momentum space and then in
Mellin space.6

®For the sake of convenience of the reader we have moved
some of the intermediate steps in the calculations to the
Appendix. We have refereed to the Appendix in the main text
whenever necessary.

1<a<b<4
M.N

Using the explicit expressions for the trace and the
“half-soft” functions, B, can be easily evaluated and then
simplified to get (see Appendix C for details),

(13)(23)([13][23))*

Ba=-2 (15)2(25)2

+2o3)+(1<3)|,

(5.3)

where we have relabeled 4 as 5. In terms of (®,z,Z)
variables, the above equation becomes
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4 = = \3
W1 W03 Z13223(213223)
€ a)2

_ _»n8
B4 = 2 € D)
5 215425

+ 2 3)+(1<3)].

This is the form of the 4-point momentum space amplitude that we use in evaluating the Mellin transform and other
manipulations.

B. 4-Point Mellin amplitude

The modified Mellin transform’ of the n-point amplitude is given by
Mo ({uiy 2, 2 by hiy) = H/ dwiwiAi_le_iZL]eiwiuiAn({a)i’ZiaZi»o'i}) (5.4)
=10

where u# can be thought of as a time coordinate and ¢; = +1 for an outgoing (incoming) particle. Note that
A,({®;,7;,Z;,0;}) in (5.4) is the full momentum space amplitude including the momentum conserving delta function.
Using (5.4) we now Mellin transform the 4-point momentum space amplitude (5.1). Using the parametrization of 4-point
delta function given by (B2), we get the full 4-point Mellin amplitude as

N F(A/ : At
M4(1A|’2A2’3A3’5A5) B (47[)29602 (iD) g %)
X [Ny +Ny(1 < 3)+Ny(2 < 3)), (5:3)

where A’ = A + A, + A; + A5 and

= = )3
Z13223(Zl3223)

_ 4

N4 =01,1021031— 5 o>

2
215225

3
D= de’luks. (56)
k=1

N4(1 < 3) and N4(2 <> 3) corresponds to N4 with the points (1, 3) and (2, 3) interchanged, respectively. The expressions
for 6, ; are given in Appendix B. Note that when we interchange the points (1, 2, 3) in A4, only the first subscript in o; ;
changes, second one remains unchanged.

C. 5-point amplitude in self-dual gravity

The 5-point one-loop all plus helicity stripped amplitude (without the momentum conservation delta function) is given by

i

As(17,2%,3T,4% 5+ ———B;,
( )= (47)2960 °

(5.7)

where

Bs= Y h(a.M,b)h(b.N,a)u*[aMbN]. (5.8)

1<a<b<5
M N

The above expression consists of 30 distinct terms in total. The expression of Bs has been explicitly computed and
simplified in the Appendix D. Its simplified form gives,

"We use the modified Mellin transformation [4,65] because the original Mellin transformation [2,3] diverges for graviton scattering
amplitudes. Introduction of u-dependent phase factors regulate these UV divergence while preserving all the symmetries of the theory.
Graviton-graviton OPE can be extracted from the modified Mellin amplitude and since the OPE has no divergence in the u direction, one
can get the standard celestial OPE by setting all the ;s to zero at the end. This method has been applied in the past. See for example
[18,19].
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B — _g[2SI3)BH13][34))°  [24)13)(35)([13][35))°  [15](23)(34)([23][34])*
: (25)(12)(15)(24)(54) " (24)(12)(14)(25)(45) " (15)(21)(25)(14)(54)
[14)(23)(35)([23)35))° | [45)(13)(23)([13][23])° _[34){25){15)([15][25))°
(14)(21)(24) (15)(45) " (45)(14)(15)(42)(52) " (34)(13)(14)(32)(42)
[35)(14) (24)([14][24))° | [12](34)(35)([34][35])° | [12){35)(45)([35][45])*
(35)(13)(15)(32)(52)  (12)(41)(42)(15)(25) ' (12)(31)(32)(14)(24)

[34][45))°

To avoid complication, we will not write down the Mellin
transformation for the full 5-point amplitude. Rather, we
will first expand the 5-point amplitude around z45 = 0,
Z45 = 0 in momentum space and then Mellin transform the
individual terms in that expansion.

D. Expansion of the 5-point amplitude around
Z45 =245 =0 in momentum space

By parametrizing (5.9) in terms of {w, z,Z} one may
think that there are holomorphic singularities in the limit
Z4 — Z5 which goes like i But this is not true. Clubbing
together all the twelve singular-looking terms, and rewrit-
ing them gives contributions only at leading O(%Z) and
higher orders (see Appendix D for details). By parametriz-
ing w; = twp,ws = (1 —t)wp we arrange all the terms
in (5.9) in the following way:

10) Z
o 7 P 45 -
Bs = — — T+ Toq) + 2sT:
t(1—1) \245
+ Higher-Order Terms, (5.10)
where
=3 =3 4 =323 4
212225212375 W1y 212215312315 W@
Ty = €& 2 2 2 €2 2 2 2
213435 w3 223435 w3

€3 2 2 2 3

323 4 =3 =3 4
213215213315 D1 @3 21322321333 W1 D203
2 2 + |e1e2
223425 w3 215425 wp

—|—(1<—>3)—|—(2<—>3)]. (5.11)

The expressions for To(1), Tz and the detailed calculation
about how we arrived at these expressions are given in the
Appendix D. The point we want to emphasize here is that,
(5.10) is the expansion of the 5-point amplitude around
Z45 = Z45 = 0 in the momentum space. One should not
confuse it with the OPE expansion on the celestial torus,
which will be done in the following subsections. The terms
T, Ton), and T; contain energy factors {w;,w,, w3}
which will contribute to the OPE expansion after Mellin
transformation. On top of that we have 5-point momentum

(5.9)

conserving delta functions as well as other factors in the
Mellin integral, all of which will contribute in the OPE limit
of the 5-point Mellin amplitude. (5.10) is just a neat way of
organizing the 5-point momentum space amplitude, which
allows us to easily extract the OPE from the 5-point
celestial amplitude.

E. Mellin transformation of the 5-point amplitude
and extracting the graviton-graviton OPE

Let us start with the modified Mellin transformation of
Bs5 given by

) w5 —. 5
Bs = A Hda’iwiAi_le_l E;‘Siwiui355<4> (Z eiwiq")
i1 i=1

(5.12)

In the above equation for Bs, we use the expansion (5.10).
Then using the 5-point delta function parametrization given
in the Appendix B 2, we can extract each term in the OPE
factorization in the Mellin space. We now discuss the terms
order-by-order in the OPE expansion in Mellin space.

1. Leading order

For convenience let us take e, = ¢5 = +1. Then the
leading-order term in (5.12) is given by

% a5 I'(4)
Bs| a5, = 222 B(A, — 1, A5 — 1
5|0(%) Zs ( 4 5 )(lD>A
3

X H(ekak,l)Ak_l[N4 +N4(2+ 3)

k=1

+N4(1 < 3)],

5(x —X)

(5.13)

where A =72 A;. This has been derived in detail in
Appendix E. Finally, taking care of the prefactors, we
can write down the Mellin transformation of the complete
5-point amplitude As (5.7) at O(2%),
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I — _; 6 _ _ (A Z45 Ak 1
Mslogs) = (471)29602 B(Ay—1,A5—1) D) Z45kH €01

This gives us the 5-point Mellin amplitude at leading order. In terms of the 4-point Mellin amplitude
My(13,525,,31,- 54,1 4,) given by (5.5), we can write (5.14) as follows:

245
M5(1X1,2X2,3X3,4X4,5X5) = —aB(A —1,A5 - 1)/\/14(11],212,313,514%5) 4o (5.15)
Thus, at the level of OPE we have
_ _ Z _
GX4(Z4’Z4)GX5(25’Z5) = —ﬁB(A -1 As - I)GX4+A5(Z5’ZS) +o (5.16)
This matches with the well known answer [66] and provides a basic sanity check for our calculation.

2. O(1) terms

Now we turn our attention to the O(1) terms in the 5-point Mellin amplitude. This is one of the main results of our paper.
The complete expression for the 5-point Mellin amplitude at O(1) is given by (E13)

w

; F A) 4 W ) .
Mslony = (4”)2960 (l E Eea,l ;B(A4+k—1,A5—l)}"k (enziz,)8(x — %), (5.17)

where F ,il)({e,-,zi, Z;}) are some functions of its arguments, but their explicit expressions are not important for OPE
factorizations. Now we take the leading conformal soft limit A; — 1 in the above equation to get

- TS5, LA+ ) 3
. 1 5 ( i=1,i#4 =i A, _

- - — | | ) F - X). 1
Alir_r}l(A“ 1)M5|O(l) (47[)29602 (ﬂ))E:L.z#AA i+1 i=1 60_11 {SI’Z”Z }> ( X) (5 8)

Only the & = 0 term in the sum in (5.17) survives because, in the A, — 1 limit, B(A4 + k — 1, A5 — 1) is nonsingular for
all k> 0.
On the other hand, from the leading soft-graviton theorem we know that

lim (Ay = D)Moy =

Ay—1

(5)M4(13,.24,-34,.54,)- (5.19)

_3
2

Si—

To make things transparent, we have used H-notations when the soft modes are acting on the Mellin amplitudes as
differential operators and the number 5 in the argument of H denotes that it is a descendant of the 5th conformal graviton
primary. The consistency of the two equations (5.18) and (5.19) implies that

: N(Shipm A1) 2
L k=1.k#4 =k . 1) _ _

_ 25 z/lkf'( 2 T S(x —
(477.')2960 (l'D)E i:]./quAkJr] klzll(ekak.l) 0 ({61 Zis % }) (x x)

=M (IML(14, 25,034,055, (5.20)

Now, we can replace As by A, + A5 — 1 in (5.20) and then use it in (5.17) to get

Msloay = B(Ay = 1, A5 = )M, ((5)M4(1;,. 24,38, 54, 1 a-1)

Nm
51—

3 4
(471)2960 (I;A) [T(eioi) > B(As+ k= 1,85 = ) F ({e, 2. 2:1)6(x = ). (5.21)

i=1 k=1
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Here we have replaced the F (()1) dependent term in (5.17) in terms of a soft graviton mode acting on the 4-point amplitude.

(1)

Let us now repeat the same procedure for 7, .
By taking the subleading conformal soft limit A, — 0 in (5.21), we get

Alim0A4M5|0(1) = —(As =2)H', (5)M, (15,25 . 3%, 54, 1)
4 3 5

31
22

i TS0 A) 1 _ i} i}
" no60° (@)kzls’k# s (o)™ 7 (e 2. 21)o(x - ). (5.22)
i k=1.k#4 i=1

Now, from subleading soft graviton theorem we know that

Jim A Msloq) = =10, (SIH!, ()M, 25,.35,.55, ). (5.23)

Again, consistency of the two equations (5.22) and (5.23) gives us the function F (11) in terms of the leading and subleading
soft modes. Substituting this back in (5.21) results in

(A, +1)

Mslon) = (A B(Ay—1,A5 - I)Hl_%,%(5)/\44(11,,2X2,3X3,5L+A5—1)

# B85 = 1 5) (<P (ML 28,35, 55, 10,0

1
2

[SIE

, 4
i

3
" {an960° (Fzg))A [Tt D B8+ k=185 = )F({en 2 2o =), (524)

We continue this process till all the F ,(cl) ’s have been replaced by descendant correlation functions of the soft modes. From

the above equation (5.24), it is clear that to replace all the F ,(CU ’s by the descendant correlation functions of the soft modes,
we have to go till sub*leading order in the soft limits of A,. We only write the final result here which is given by

4

1 T(Ay+4)
Ms(15 25,35 .45 .50 o) =

A2 he? Zhs7 TA ZAs/10) ;(4—k)!F(A4+k)

x HIZE(5) (M

2

B(Ay+k—1,A5—1)

k
4(5) ML 24,35, 55 s (5.25)

1_1
272

Now that we have factorized the O(1) terms in the 5-point Mellin amplitude completely in terms of soft modes acting on the
4-point amplitude, we can easily extract the O(1) graviton graviton OPE from the above equation. It is given by

L1 (A +4)

G} (24:74)GA (25, 25)| o) =
2,24, 24)G (25. Z5) o) ;(4_]()!F(A4+k)

B(Ay+k—1,As—1)
k -
< HIh (HYy ) 6L, a(35.75). (5.26)
2°2 2 2

We can rewrite (5.26) using the null states of MHV-sector. From (H1), it is clear that all the soft modes H gkm with

2 2
k=1,...,4 can be replaced by the MHV null states {®,k = 1,...,4}. Thus, (5.25) in terms of the O(1) MHV null
states (H1), becomes

G (24, 24)GE (25, 25)lo() = B(Ay = 1,As = DH'; G 5 (25, 25)

33
4
1 T(As+4)
B(A —1,A5 = 1)@, (A, + As). 2
+;(4_k)!F(A4+k) (Ag + k=1, As = 1)@ (Aq + As) (5.27)
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Thus, we see that, the O(1) terms in the self-dual OPE
between two positive helicity outgoing gravitons can
completely be written in terms of the O(1) MHV OPE
and the O(1) null states of the MHV sector. We can also see
that the O(1) OPE in the self-dual theory gets contribution
from the descendants of the conformally soft operators up
to A = =3, i.e., H3(z,z). This is consistent with what we
found in [39] based on wy_, symmetry. This is somewhat
surprising given that wy, ., has an infinite number of soft
currents. We further discuss this in Sec. VIL.

Now, as discussed in Appendix H, we can define a new
basis for MHV null states instead of @, ’s. This new basis is
given by (H3). For our convenience, let us write Eq. (H3)
here again,

T(A+k-2)
n)!T(A+n-2)

-3

n:l

@, (A).  (5.28)

This basis has nice transformation properties under the
w-algebra [39], reviewed in Appendix G. Represented in
terms of this new Q-basis, the graviton-graviton OPE (5.27)
|

takes a very simple form,

Gy, (24,24)Gx (25, 25) o)
= B(Ay— 1. A5 = DH', G} L a i (25.25)

4
+) B(Ay+k—1,A5 — 1)Q(Ay + As).  (5.29)
k=1

3. O(Zys) term

The soft modes that appear at order Z s from the
w-algebra are given by

H*\ o k=1,0,-1, (5.30)

Now, like the O(1) OPE we can factorize the O(Zy5) terms
from the 5-point amplitude using the soft limits and
w-modes. The crucial difference from O(1) is that, now
we have to go one order higher in the soft limits than O(1).
We start by writing the O(Z45) term of the 5-point Mellin
amplitude given by [see (E17)]

3 5

i F(A @) _
€0 B(A +k—-1A —l)f i ({ei,Zi,Zi}).
~(@n)%960° (D)~ 11 ) ,; ! ’ ¢

M5|O Z45 -

(5.31)

One can easily see from (5.31) that, to factorize the 5-point Mellin amplitude completely, i.e., to replace all the functions
F f) ({€i, z:» Z;i}) by the descendant correlation functions of soft modes, we have to continue taking the soft limits in A4 till
we reach A, — —4. Thus, the highest soft modes that can appear in the OPE at O(Zs) are given by H7%. We have discussed
how to factorize the amplitude at O(1) in terms of the descendant correlators of the soft modes in the previous section in

detail. One has to repeat the same procedure for O(Z5) as well. Without going into much detail we directly write the O(Zy5)
OPE which is given by

Gy, (24.24)G4 (25, 25) 0(z,5) = GA, (24: Z) G, (25 Z5) My acozss)

4
+ ; T _1 k)!g: ]: ZI 3 B(Ay+k As— ¥, (A,+As+ 1), (5.32)
where
Gy, (24:24)GR (25, Z5) lvnv w0z, = B(Ag = 1, A5 = 1) [LIH% 0( -H!, _L> +AH!, _1] Giiai (5:33)
: : Ay +As—2 L 4] Vaarag
and W, (A4 + As + 1) is given by
e I e e v e L LI G

~(=1)* (k f 1! F(?(Z ﬁzl—{ ;)1) Hl—%—%} Gavas- (5:34)

In terms of the new basis defined in (H4), the above OPE can again be written in a very nice and simple form given by
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Gy, (24,24) Gy (25, 25) oz,

= GA4 (24, Z4)GA5 (z5.2 )|MHV atO(Zys)

4
+2i5 > B(Ay+k As — DIL(A, + As +1). (5.39)
k=1

Thus we see that the (O(Z45) terms in the OPE again
truncate at H*(z,7).

VI. DISCUSSION

Operator product expansion plays a very important role
in any quantum field theory and therefore it is important to
understand the structure of OPE in the celestial CFTs. In its
current formulation, celestial CFTs differ from more con-
ventional CFTs in many ways. The primary difference is
that the spectrum of the operator dimensions in celestial
CFTs is not bounded from below. Taken at face value, this
implies that the number of descendants that can appear at
any given order of the celestial OPE can be infinite.
However, this is not a very desirable feature and warrants
further study.

In this paper, we have undertaken the task of computing
the celestial OPE of two positive helicity outgoing gravitons
in the quantum self-dual gravity. It is known that the self-
dual gravity enjoys w invariance. Therefore, one should be
able to express the OPE in terms of w descendants of the
graviton primary. This is what we have found. However, the
most surprising fact which comes out of our study is that at
any given order the OPE contains only a finite number of w
descendants. Therefore, the self-dual gravity behaves like
any other CFT with a spectrum of operator dimensions
bounded from below.

This raises some interesting questions. For example, we
know that the HSA contains an infinite tower of holomor-
phic currents HX(z) with k going from 1 to —oco. Our
calculation shows that in the self-dual theory at O(1) and at
O(z) the list of w descendants truncate at k = —3 and
k = —4, respectively. However, this is somewhat unnatural
given the fact that the currents H;>(z) and H;*(z) do not
play any distinguished role in the algebra. Therefore, it is
natural to wonder if there are other w invariant theories
where the truncation occurs at other values of k. The answer
is yes. In fact in our earlier work [39] we wrote down the
general structure of w invariant OPEs which can be derived
using the representation theory of w algebra. In [39] we
found that at O(z°z°) the OPE can truncate at any integer
value of k =1,0,—1,-2,.... For example, in the MHV
sector it truncates at k = 1 and in the self-dual gravity
theory it truncates at k = —3. But truncation at other values
of k also gives us w invariant OPE. This is true also for other
subleading-order terms in the OPE. Therefore, the value of k
at which the OPE truncates at any particular subleading
order is not determined by the w symmetry. The Lagrangian

description of the infinite family of w invariant theories
remains as an outstanding problem.

Before we end, we would like to point out that truncation
means that the self-dual theory in many ways behave like
theories with operator dimensions bounded from below. So
it is very likely that the self-dual theory and the (tree-level)
MHYV sector of GR can be reformulated in terms of celestial
primary operators with dimensions strictly bounded from
below. Interesting proposals along this line has been put
forward in [67,68].% It will be fascinating if they can be
applied to the present problem.
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APPENDIX A: BREIF REVIEW
OF CELESTIAL OR MELLIN AMPLITUDES
FOR MASSLESS PARTICLES

The celestial or Mellin amplitude for massless particles
in four dimensions is defined as the Mellin transformation
of the S-matrix element, given by [2,3]

M, ({22 i T}) = / do™ A, ({20, 70.0,}).

(A1)

where o; denotes the helicity of the ith particle and the on
shell momenta are parametrized by (2.1). The scaling
dimensions (h;, i;) are defined as

poBiton o _Aizo

2 2

Under the Lorentz transformation (2.2), the Mellin ampli-
tude M, transforms as

(A2)

*In conventional CFTs we get a finite number of descendants
at every order of the OPE because the set of conformal
dimensions of primary operators is bounded from below. The
OPE in the self-dual gravity behaves in the same way, i.e., we get
only a finite number of w descendants at every order. The basis
proposed in the Refs. [67,68] consists of operators whose
dimensions are A =0,—1,-2,.... This is a basis where the
set of operator dimensions is bounded from above. So, this is
exactly the opposite of what happens in conventional CFTs but,
this comes very close. We leave further study of this potential
connection to future works.

086017-10



CELESTIAL OPE IN SELF-DUAL GRAVITY

PHYS. REV. D 109, 086017 (2024)

M, ({zi Zi i bi}) =

L 1
,-1:[1 (czi + d)™i (¢z; 4 d)™

1 +b az;+b -
<az,—|— az; + ) (A3)

) —7h"h'
czi+d ez +d U

This is the familiar transformation law for the correlation function of primary operators of weight (/;, i;) in a 2D CFT under

the global conformal group.

In Einstein gravity, the Mellin amplitude as defined in (A1) usually diverges. This divergence can be regulated by

defining a modified Mellin amplitude as [4,65]

Mn({ui7zi7 Zh hi’ Ijll})

n [Se] .
=11 / dono™" e L A, ({0 21,210 07)),
i—1 0

(A4)

where u can be thought of as a time coordinate and ¢; = +1 for an outgoing (incoming) particle. Under (Lorentz) conformal
transformation the modified Mellin amplitude M, transforms as

L 1

Mn({uivzivzhhivﬁi}) H(

Under global space-time translation, u - u + A + Bz+
B 7 +Czz, the modified Mellin amplitude is invariant, i.e.,

Mn({ui + A+ BZ,‘ + BZ[ + CZ,‘Z,’, Zi 2, hi? El})

= M, ({u; 2.2 by b }). (A6)

Now in order to make manifest the conformal nature of
the dual theory living on the celestial sphere it is useful to
write the (modified) Mellin amplitude as a correlation
function of conformal primary operators. So let us define a
generic conformal primary operator as

‘f’Zﬁ(Z’Z):/ doo*a(ew,z,z,0), (A7)
’ 0

where ¢ = £1 for an annihilation (creation) operator of a
massless particle of helicity 0. Under (Lorentz) conformal
transformation the conformal primary transforms like a
primary operator of scaling dimension (4, h),

© (17) = 1 1 o az+b a
bk (cz+dP" (cz+d)*h """ ’

Similarly in the presence of the time coordinate u we have
o0 .
ha.2,2) = A dow®™ e a(ew, 7,7,0).  (A9)

Under (Lorentz) conformal transformations,

—M,
czi +d)*" (¢z; 4 d)

ik

u; az;+b az;+b | - (A5)
|CZ,‘+d|2,C‘Z,'+d’E’Z,‘+C_l,’ g .

1 1
(cz+d)*" (cz4+d)*

u az+b az+b
i lcz+d)* cz+d ¢z+d

/; h(u Z Z) =

). (@)

In terms of (A7), the Mellin amplitude can be written as
the correlation function of conformal primary operators,

- <H¢h h Zt? i >

Similarly using (A9), the modified Mellin amplitude can be
written as

(A11)

(A12)

Mn = <H ¢Zi,-,f_l,-(ui’ Zi» Zl)>
i=1

1. Comments on notation in the paper

Note that the conformal primaries carry an extra index e
which distinguishes between an incoming and an outgoing
particle. In this paper, for notational simplicity, we omit this
additional index unless this plays an important role. So in
most places we simply write the (modified) Mellin ampli-
tude as

M, = <H¢<zz>> (A13)
or
- <Q¢hi,ﬁi(ui,zi,zi)>. (Al14)
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Similarly in many places in the paper we denote a graviton
primary of weight A = h + h by G% where ¢ = 42 is the
helicity (= & — h). Since we are considering pure gravity,
we can further simplify the notation to G5 by omitting
the 2.

APPENDIX B: PARAMETRIZATION
OF THE DELTA FUNCTIONS

In this appendix, we parametrize the 4-point and 5-point
delta functions which will be convenient for our purpose of
extracting the OPE.

1. 4-Point delta function

In (2, 2) split signature, the parametrization of the null
momentum (p;) for ith massless particle in terms of
(w;,z;,7;) is given by
Zi) 1 pi=0.

(B1)

pi=o{l +2,Z,2; + 2, (2 — - 2%}

This allows us to write down the 4-point momentum
conserving delta function in the following way which is
more convenient for us:

5 5 3
5@ ( Z €ipi> = %6( z eia)i)ﬁ(Z €iwiZi5>
i=1

i=T.#4 i=T .44

3 3
X 5( E CiCUiZis) 5( E eiwizi52i5>
=1 =1

1
= €1€2€3€5 Eé(wl - wT)5<CU2 —_ a);)

x 6(w3 — w})6(x — X), (B2)
where €; = %1 for outgoing (incoming) particle and
W; = €5Ws€;0; |, (B3)
225235
O11=—"7- 2 > (B4)
212213
215235
61 = - > (B5)
212223
225215
031 = ~—7- = > (B6)
223213
X = 2122352132255 X = 213225212235+ (B7)

The o,,’s defined above satisfy the following identities
with the support of §(x — %),

611+021+03;+1=0, (B8)

215011 + 225621 + 235031 =0, (B9)

215011 + 225021 + 235031 = 0. (B10)
This representation for the 4-point delta function and the
properties of o;;’s will be useful in extracting the OPE.
Note that in this delta function representation, we have
indexed the four particles by 1, 2, 3, and 5 because to
extract the OPE, we take the 4 — 5 OPE limit in the 5-point
Mellin amplitude and then factorize it in terms of the 4-
point Mellin amplitude now indexed by 1, 2, 3, 5. This is a
notation that we followed throughout the paper.

2. 5-point delta function

We now write down the representation for the delta
function for five particles. For concreteness, we take
€4, = €5 = +1. Since we are interested in the OPE limit
4 — 5, itis convenient to use the following parametrization:

W, = twp, ws = (1 - 1t)wp, (B11)
in representing the 5-point delta function. For the case of
n = 5 particles in four spacetime dimensions we have four
constraint equations coming from the four components of
the energy momentum conserving equations. We can solve
these four constraint equations for three energy variables
{w|,w,, w3} in terms of w, and ws. Thus, the representa-
tion of the 5-point delta function which is better suited for
our purposes of performing the OPE decomposition of the
Mellin amplitude in the (4, 5) channel, is given by [19]9

5
1
s < E €ia’iq1'> = —08(w — @7)8(w; — @3)5(w; — @5)
P

40)p
X X
xé(x—)"c—tz45<———>
235 225
B X X
—1Zys\ — ——
225 %35

+ 1245245 <

Zzs);s))’ (B12)

235225
where for i = {1,2,3} we have

= G)PCI)?,

= €;(0;1 + 12450, 2 + 12450, 3 + 12457450;4), (B13)

%Please note that in [19] the OPE factorization has been done
starting from the 6-point Mellin amplitude whereas in this paper it
is done starting from the 5-point amplitude. Thus, in para-
metrizing the 5-point delta function in this paper, we have used
the same methodology which was used for 6-point delta function
in [19].
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and the o, |, x, X are given by (B3)-(B7). We also have

66“ 06“
i, aZS ’ L, aZS ’

06“

Vi=1.23. (B14)

025075

APPENDIX C: SIMPLIFICATION OF THE 4-POINT AMPLITUDE

In this appendix, we simplify the 4-point self-dual one-loop amplitude in momentum space which is used in Sec. V. We

start with Eq. (5.2) for the 4-point amplitude,

By= Y h(a.M,b)h(b. N, a)tr’|[aMbN]

1<a<bz4
M.N

= (1,3,2)h(2.4, 1)tr3[1324] + h(1,2,3)h(3.4, 1)tr3[1234] + h(1,2,4)h(4,3, 1)t [1243)]
+ h(2.1,3)h(3,4,2)t3[2134] + h(2.1,4)h(4,3,2)t3[2143] + h(3,1,4)h(4,2,3)r3[3142].

The trace function is given by

trlaMbN] = (a|Ky|b](b|Ky|a] +[a|Ky|b)[b|Ky|a). (C1)

For M = {i}, N = {I} we have

trlaibl] = {alk;|b)(blki]a] +
= (ai)|ib](b1)[la] +

[a|k;|b) [b]ki|a)

(bi)lia)(al)[Ib].  (C2)

From the above equation we can see that tr[aibl] = tr[ialb).
Using this property of the trace function and the expression

for the half-soft function,

1

h(a,i,b) = +——, C3
(a..b) = ooy (3)
(C1) can be simplified as
By =2(h(1,3,2)h(2,4,1)tr3[1324] + (1,2, 3)
x h(3,4, 1)tr3[1234] + h(1,2,4)h(4,3, 1)t [1243]).
(C4)

Bs =Y h(a.M,b)h(b,N,a)u*[aMbN]

1<a<b<5
M.N

= h(1,M,2)h(2,N, 1)t
+ h(1,M,5)h(5.N, D)tr
+h(2.M.5)

+ h(4,M,5)h(5, N, 4)tr3[4M5N].

The two sets M and N are suchthat M UN =1

,..a—1l,a+1,...

Now, using the momentum conservation for four particles
in the trace functions (C2) and the explicit expressions of
the half-soft functions (C3), (C4) finally gives

13333
B= 2 (s

+(1<—>3)+(2<—>3)>.
(C5)

As mentioned earlier, since we will index the four particles
as 1, 2, 3, 5, relabeling 4 as 5 in the above expression gives
the following form of the 4-point amplitude in momentum
space,

033 (13)R3))
&“ﬁ< (15)2(25)?

+(1 <—>3)+(2<—>3)>.
(Co)

APPENDIX D: SIMPLIFICATION
OF THE 5-POINT AMPLITUDE

Similar to what was done for the 4-point case, we will
now simplify the 5-point self-dual one loop amplitude in
momentum space which is used in Sec. V C by considering
Eq. (5.8),

B[IM2N] + h(1,M,3)h(3, N, D)t [IM3N] + h(1, M, 4)h(4, N, 1)tr3[1M4N]

( 3[IM5N] + h(2.M,3)h(3, N, 2)tr®

h(5.N.2)t*[2M5N] + h(3, M, 4)h(4, N, 3)t3[3M4AN] + h(3, M. 5)h(5. N, 3)ur>
(

[2M3N] + h(2, M, 4)h(4, N, 2)tr* [2M4N]
[3M5N]

(D1)

b—1,b+1,...n,and M N N = ¢ and the sum is over

all possible a, b and sets (M,N), where (M,N) and (N,M) are not distinguished. For 5-point amplitudes, with

M = {i,j},N = {l}, the trace function given by

trfaMbN| =

(a|Ky|b](b|Kyla] +

[a|Ky|B)[D|K y|a) (D2)
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becomes
trla{i + j}b{1}] = (alk; + k;|b](b|ki|a] + [alk; + k;[D)[b]ki|a)
= tr[aibl] + trlajbl]
= ((ad)[ib] + (aj)[jbl)(b1)[la] + ((bi)[ia] + (bj)[ja]){al)[ib]. (D3)
Now, using momentum conservation in the spinor notation,
(ai(# {a, b, j, k}))i(# {a, b, j. k})b] + (aj(# {a, b, i, k}))[j(# {a. b, j, k})b]
+ (ak(# {a, b, i, j})) [k(# {a, b, i, j})b] = O (D4)
one can show that,
trla{i + j}yb{l}] = =2(al)|al](b])[bl],

where each label is different. Thus we see that tr[a{i + j}b{/}] is independent of {i, j}. The half soft functions needed for the
simplification of the 5-point amplitude are given by

[i]]

I = iy o ) (0
a{i}.) = fors. (D6)

Thus, we see that h(a, {i, j},b) = h(a,{J,i},b).
Now, using the explicit form of the trace and half-soft functions in terms of spinor helicity brackets, we can write (D1) as

B — _8 [25K13><34>([13H34D3+[24]<13>< 5)([13][35] 3+[ 5](23)(34) ([23][34])°
5 (25)(12)(15)(24)(54) | (24)(12)(14)(25)(@5) | (15)(21)(25)(14)(54)

L [14)23)(35)([23] 35))° | [451(13)(23)([13] 23])° L B AS)([15] 25])°
(14)(21) (24)(15)(43) | (a5)(14)(15)(@2)(52) ' (34)(13)(14)(32) (42)

N [35](14) (24) ([14] [24])° L [121(34) (35)([34] 35])° N [12](35) (45)([35][45])°
B5)(13)(15)(32)(52) | (12)(@1)(d2)(15)(25)  (12)(31)(32)(14)(24)
[12](34)(45)([34][45])°

e as)esy | T2 (D7)

Before simplifying this, first note that the first four terms (and hence a total of 12 terms) in the above expression have the
apparent form that seems to go like ~ = ( 5 However, it cannot be true that the 5-point amplitude has a leading behaviour of

( 5 We will show that these terms add up to contribute to the leading order [O( [45] )] O(1), and higher orders as expected.
Hence, to simplify further, let us first write down these 12 terms explicitly,

_ B _ [25](13)(34)([13][34 ])3+[ 5(12)24)([1 ][24])*+[ 4](13)(35)([13][35])°
8 (25)(12)(15)(24)(54) ~ B5)(13)(15)(34)(54) ~ (24)(12)(14)(25)(45)

L B4(12)25)(12[25)° | [15)(23){34)([2 ][34])3+[ 51(12)(14)([12][14])°
BH{3)(14)(35)(45) — (15)(21)(25)(14)(54) ~ (35)(23)(25)(34)(54)

L [141(23)(35)([2 3][35])3+[ 4](12)(15)({1 ][15])’+[15]<23><24>([23][24])3
(1) (21)(24)(15)(45) —~ (34)(23)(24)(35)(45) ~ (15)(31)(35)(14)(54)
4 [25133)(14)([13][1 ])g+[ 4](23)(25)([23]2 5])3+[24]<13><15>([13H15])3 (DS)
" (25)(32)(35) (24)(54)  {14)(31)(34) (15){45)  (24)(32)(34) (25)(45)

Keeping terms only up to O(Z,s), the first term above can be rewritten as
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[25](13)(34)([13][34])® R [25](12)3(24)3[12]3[24]3 13 [45] [25](12)%(15)(24)3[12]3[24]*
(25)(12)(15)(24)(54) —  (45) (25)(12)(15)(24)(13)2(34)2 '~ (45) (25)(12)(15)(24)(13)2(34)?
43 [25](12)3(24)2[12]?[15][24])* _3(45) [25](12)%[12][15]*[24)*
(25)(12)(15)(24)(13)2(34)? (25)(15)(13)2(34)2
_ gpas) 2SN12) 2HN2P[15]24P (D9)

Now we use a little trick to explicitly show that the terms in (D8) add up to give [O(%)], O(1) and higher orders
contributions. It involves appropriately combining terms in the equation. To see this, note that the first term in rhs of (D9)

and second term in rhs of (D8) can be combined to get

L [S[12)°Q4)° (1224 [35](12)(24)([12][24])°
(45) (25)(12)(15) (24)(13)2(34)2 " (35){13)(15)(34)(54)
L (12)@4)(12][24))°

=~ 5 T3 (15) (25) G sy (1224 B5)[25] + (13)(34)(25)33). (D10)

Note that although we are writing equalities everywhere, one should keep in mind that there are higher-order terms as well.
However, here, and throughout this paper, we will always write expressions keeping terms only up to O(Zs). Now, using
the Shouten identity (24)(35) = (25)(34) + (23)(45) and momentum conservation equation, we can write the above
equation as

I [25]12)° (40 [12P 24P | [35)(12)24)([12][24])°
(45) (25)(12)(15)(24)(13)2(34)> * (35)(13)(15)(34)(54)
L (12)4)([12][24])°

= T a5) (13)2(15)(25)(34)2(35) (—(14)(25)(34)[45] + (12)(23)(45)[29]). (D11)

Hence the first two terms in (DS8) give

D* | 135]12) 24)([12][24))° _

4y T (35)(13)(15)(34)(54) (4
12]2[15][24]  [45] (12)
3)2(34)2 @5y (1
2][15]2[24]3
13)2(34)2

—_|—

—9[45]

(D12)

[12]°[24F°
)(34)(35)

(D13)

Similarly, the third and fourth terms in rhs of (D8) give

086017-15



BANERIJEE, KULKARNI, and PAUL PHYS. REV. D 109, 086017 (2024)

[24K13><35>613H35D3_+[ 41(12)(25) ([12][25])°
(24)(12)(14)(25)(45) ~ (34)(13)(14)(35)(45)
45] [24](12)(25)2[12F°[25) | [45] (12)(15)(25)[12]°[25}°
(45) 1

L4 Ay 5 A12205) 1P [14]25]
@) (eGSR @) (137(14) (34 (33) (24)(14) (13)235)?
241(122(25) 12121525 RA2P[2N4PRSE | R4(12)(25) 12P[14]25F
T BRI B35 o a1 esE T 132 3s) (D14)

As is clear from the above equations, we can combine the 12 terms of (D8) in groups of two as shown above to see that the
leading-order contribution coming from (D8) is indeed (’)(Z‘*:) instead of the apparent (’)( ).

Now, we rewrite the first four terms in (D8) in terms of {w;, z;, Z;}, and then expand around Z45 = Zu5 = 0. As mentioned
earlier, we only keep terms up to O(Z,s) to get

[25](13)(34)((13][3 ])3_%[35]<12><24>([12H24J)3_F[24l<13><35>([13H35})3_%[34l<12><25>([12ﬂ25])3
(25)(1 >< 5)(24)(54)  (35)(13)(15)(34)(54) ~ (24)(12)(14)(25)(45) ~ (34)(13)(14)(35)(45)

gl = =3 =3 4 222 = =4

_ 4 @, 3245 212225212225 4 W10 3 212212415425

= 2| — 2 (wy + )} TETEES _ odey (w4 + @5)” = Sws05(w4 + 5)] =55
W3W4W5 245 {13435 wW3W4W5 213215435

=3 =3 4
1 2%, Zas Z12212%)5 W10,

2 3o (21523504 (0] + 6w405 — 303) + 255235 (—w; + @3)
273215835 W3W4Ws

2 22 =3 4
_ 2,758 o
+ 215205 (0] + 6@ ws + @3)] + 2*e 745 221222 2
15425\Wy 45 5 1445 5 2 2
Z13Z15Z35 0)30)40)5

+215(30] — 6wiws — 20,02 + wd)] + - - (D15)

[Zasw4 (0] — 202)

The contribution from the other eight terms in (D8) is simply obtained by taking different permutations of 1, 2, and 3 in the
above expression. Setting w, = fwp, ws = (1 — t)wp and collecting all the singular terms we finally get

w z B
B = =27 L (ZET) 4 T8 | +2sTS ), (D16)
5 1— o(1) z
(1 —1) \zs5
where
=3 =3 4 =3 =3 4 =3 =3 4
s 212225212225 01 W5 212215212815 @@ 213215213815 @1 @3
Iy =|e 2 2 P R > BT 5 5 > | (D17)
213435 w3 223435 w3 223225 w;
222 = =4 4 222 = =4 4 222 = =4 4
s 21221221535 W1 @, 21281282585 W W) 21381323585 W W3
Tomy == 3 2 3 3 2 > T €635 2 5| [1 =511 =1)], (D18)
213815335 W3 233825235 W3 233435235 W3
and
4
2122 Z wla)
TS = ey 5P —2 [—ziszast (2 4 61(1 = 1) = 3(1 = 1)?) + 2p5235 (= + (1 = 1)?)

213115135 a’%

4
22,7275 0@

T 21s2as( 4 62(1 = 1) + (1= 1)) + € SRS PB 2 2 (1 - 1)2)
Z13215135 w3

+ 25383 = 612(1 = 1) = 2t(1 = 1) + (1 = 1)3)]
22T %4 wiw,

+e5—35—5 [—2252351(12 4+ 61(1 — 1) = 3(1 — 1)?) 4 235235(—F + (1 — 1)?)
133425835 W3
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4
Z12112115 w 602

+ 205215(F + 62 (1 —1) + (1 = 1)*)] + &, —=[zist(? = 2(1 = 1)?)

53205735 @3
+ 25383 = 62(1 — 1) = 2t(1 = 1) + (1 = £)3)]

4
Z13113Z15 @ w3

+ €3 [—2352052(1* + 61(1 — 1) = 3(1 = 1)*) 4 245205 (=1 + (1 = 1)?)
Z23135Z25 a’z
+z35215( +662(1 —1) + (1 — 1)) + 3Mw ?3[ st(2 =2(1 = 1)?)
Z23235225 w;
+735(38 —612(1 — 1) = 2t(1 = 1)> + (1 = 1)3)]. (D19)

Taking into account the other 18 terms [although note that at O(Z5), only 12 of these contribute and the ninth and tenth term
in (D7) and the (1 <> 3) and (2 <> 3) permutation of those do not contribute at this order] in (D7) we finally get Bs as

(1 —1) \z45

where we have neglected the higher-order terms in the expansion of the rhs of (D7) around z45 = 745 = 0 in (@, z, 2)
space and

Bs = 27 wp (Z45 T, + T@( y+ 245]‘2) 4+ (DZO)

4 s = 3
T, =T;+ [61626016032603 ZBZBZ(Z];ZB) +(1<3)+2« 3)]
W 77<2
P 15%25
25 (5 5 )3 0
00,0 Z35(Z15205) S, .5 a’sz Z12135225 2 2
TOI :TS +|:€1€2€3 {( I) +t}+€1€ —t (l—t) +(1<—>3)+(2(—>3) ,
M o) w3 235213223 w10, Z12115125

4 Z13Z23)° [ 1 1
T. =TS+ [61 2(01(02503 213223(213223) (_+_> (1 (_)3)4_(2(_)3)}

3 )
@p 215425 415 225

- |:€]€2€.; w1a)2w12!> <215225)3 1-— [)5 + 3€6263 w1w2w% Z35 (215225)2(215 + 225) e
T 03 213223735 RN 213223235
+e16, w3a)PM;2(1—;)2+(1 <—>3)+(2<—>3)} (D21)
10 712275255

We will now Mellin transform (D20) and take the OPE limit 4 — 5. We want to emphasize here that after Mellin
transformation, the higher-order terms in the OPE expansion of the Mellin amplitude may receive contribution from the
lower-order terms. This is because of the fact that, after Mellin transformation the Mellin amplitude will depend on ;s as
well as the delta function involving cross ratios coming from 5-point momentum conserving delta function as parametrized
in (B12). In the next subsection we analyze this in detail and calculate the order-by-order terms in the OPE expansion 4 — 5
of the 5-point Mellin amplitude.

APPENDIX E: MELLIN TRANSFORMATION OF THE 5-POINT AMPLITUDE

For the discussion of this appendix, the prefactor - @ )2960 in (5.7) is not important. Thus we only Mellin transform B5 and

keep terms only up to O(Z,s). Substituting (D20) in (5.12) we get

D [aon’; <
Bs——27/ I_Ia'a)a)A e i 5 (lft) ( 45TL(601,602,603,60P)+T0()(a)l,a)z,a)g,a)p)

+Z45Tz(a)l,a)2,a)3,wp)>6(4) (Z €iwi%’>» (E1)
i=1

where T, T(1), and T+ are given by (D21) and we have kept their {w} dependence explicit for our convenience. Also we

have used momentum conservation in the exponential. Now using the parametrization (B12), we can perform the
(w1, m,, w3) integrals to obtain,
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3
1 oo . 3 .
— — Ay+As—1 -1 - et us—
Bs = _25/ At 2(1 _ t)AS 2/ dCUPa)P4+ 5 | |(CUT)A’ =i g S €] us—iwptuys
0 0 i=1

Zs .
X <Z4 Ty (@}, @3, 03, wp) + To) (0], 03, 0F, p) + 145Tz(wf,a)§,w§,wp)>
45

B X X X X X X
xé(x—x— 1245 <———> 1245 <———> + tZ45245( — — —— )) (E2)
i35 225 25 135 35225 Z25%35

Now from (B13) and the explicit expressions of T, Tyy), and T given by (D21) one can see that

Ty (0}, 03, 03, 0p) = 0pT (@], @3, @3).

Tou) (@}, @3, 05, wp) = 03T o1 (@], D3, @),
T:(w}, 03, 3, wp) = W%TZ(CT’T’&’;@;% (E3)

> )3
oy o~y ~ /o~ 2132232132
T (@}, @5 ;) = T3 (@}, @3, @) + { fw;(w;>4%+ (1o3)+2« 3)],
1525

@3 235(Z15%05)°
— {1 =0 +7}
W3 235213223

=6
e, @) Mﬂu 24 <—>3)+(2<—>3)],

N Z12115125

= 5.)3
e e~ e 1 213223(2132 1 1
T.(@. @} @%) = TS(@t. @5 &%) + {6162 I () R nhad At =L 232< 2 ») <—+—> +( <—>3)—|—(2<—>3)]
215425 215 225

a) ()] *&) = - 2/(= -
- |:€1€2€3 ! ZMU _,)5 + 3€16465 l* Z35(Z15225)* (215 +Zzs)t5
@3 213223235 w3 213223235
2122352
+€1€2(~* )* 12 35 35t2(1—t)2+(1<—>3)+(2<—>3)], (E4)
B} @3 212275725

and T3 (@], @3 @3), T, )(&)’f @3, @3), and T3 (@}, @5, %) are given by (D17), (D18), and (D19) respectively with
{w;, w,, w3} replaced by {@7, @}, @%}. Now we can perform the wp integral in (E2) and obtain,

»ST(A ld M2(] _ A 3 (@)~
By = - 182 (1 = 1) ‘.
5 ( )/) (I-1) (53 efus + tugs)]®
3 ~ *
X (st T (@7, @3, &3) + T o) (@], @3, @3) + 245 =(0], @3, & 3)>
5

_ X X X X X X
X 5(]6 — X — tZ45 (— - —) tZ45 (— - —> + tZ45245 ( — — — )), (ES)
735 225 5 135 735225 225435

where A = Z?zl A;. We now expand the above equation around 7,5 = 745 = uys = 0.

1. Evaluating the leading-order contribution
It is clear from (ES) that the leading order term goes as ~ % and the contribution to the leading order can come only from
the term containing 7 (&}, @}, @}). At leading order we have @; = ¢;0, . Thus, the leading-order term of Bs is given by
rQA) ¢

= Z 1 _ _ _
Bs|@(%§) =2 Z:z D) 11 €i0;1)™" A dtt (1 = 1)2572T 1 (€161 1, €202,1. €303 1)5(x — %), (E6)
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where D = (>_3}_, 6;,u;5). From (D17) and the first equation of (D21) we have

=3 =3 4 =3 =3 4 =3 =3 4
T _[%12205%12235 01,1021 | 212215212215 01,102,1 | 213215273315 01,1903.1
L(€]01.1’6202.ls€363,1) =

2 2 2 2 2 2 2 2 2
213435 031 423235 031 223225 031
= = \3
113Z23(213223)‘
n {o—l,laz.]o—;nz ) a3t e ). (E7)
’ 215225

Now, using (B3)—(B7), one can show that

=3 =3 4 5 5 \3
212225212235 011051 212213(Z12213) 4

= O0,10»>10
2 2 2 2 2 1,102,103,1>
213435 031 225435
112215Z12215 ‘71 1021 112223(212223) 4
> 01,102103,1,
Z23135 031 515235
=3 =3 4 = = \3
213215213815 01,103,1 213223(Z13223) 4
= 01,102,103 - (E8)
2 2 2 2 2 102,103
423225 03,1 215225

Using the above relations, we can simplify (E7) to get

2 23223(Z13223)°
T 1(€161,1,€,01,€303,) = 2|0},0,,03, —5 5 T (1<3)+(2<«3)
215425

where the second equality follows from (5.6). Since this is independent of ¢, we can easily carry out the f-integral in (E6)
to get

ra

x—x

= Z
Biloss) = ~2* 2 B(Ay ~ 1,45 = 1) 7

Zas (61.1)2 Ny + N4(1 < 3) + Ny(2 < 3). (EI0)

1

3
i=

This precisely gives Eq. (5.13).

2. Evaluating the O(1) contribution

From (ES5), we can see that the O(1) contribution to the 5-point amplitude essentially comes only from the term
containing 7 O(l)(cb’{, @5, @5) when @;’s take their leading-order value given by ¢;0; ;. Let us write the Mellin integral at
order one,

3 T(A) o 1 i}
Bslon) = -2 (Z(D))A H(eiaiJ)A[_I A drt®=2(1 - f)AS_zTO(l)(elf’l,l, €0, 1,€3031)0(x — X). (E11)

We will not attempt to take the explicit expressions of 7 o) (€101.1, €20, 1, €303,1) and Mellin integrate it. Rather we will
take a different approach which is more helpful for our purpose of the OPE factorization. Firstly, from the second equation
of (D21) we observe that 7 ¢() (€101.1,€20,1,€3031) is a polynomial in ¢ with the highest power being 4. We use this fact
and write 7 o(1y(€161 1, €205, €303) as

4
1 -
To(l)(elf’m,6202,176303.1) = Ztk}_/(c )({eiazi»Zi})- (E12)
k=0
The explicit expressions for the functions F ,((1)({6,», Z;,Z;}) can be read out from the second equation of (D21). However,

they are not relevant for our discussions and hence we will not write them explicitly. Using (E12), we can easily evaluate the
integral (E11) to get,
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. r(A) 4 4 .
Below = 2 L (e > B(A + k= 185 = DFL ({62513 - 5). (E13)
k=0

—

This is the expression we have used in Sec. VE 2.

3. Evaluating the order O(Z45) contribution

We apply the same strategy as the previous section here. However, we have to be careful now as there will be
contributions at O(Z45) from the lower-order terms. Like O(1) terms, here also we are only concerned about the 7-
dependence. Before proceeding further let us first write down the expansion of different components in (E5) around
245 = 45 = Uys = 0. Keeping terms only up to O(Z45) we have

@ = €;(0;) + 12450, + 12450;3),

T (&7, @5, @3) = T (€101, €021, €303) + Z45T§‘Z)({€i»ziv Zi}) + 2457'@({61" 2i:Zi})s
TO(])(&)Tvd);vﬁ);) = 70(1)(6101.1,€0’2,la€303,1) + Z457 ({GnZnZ })+ Z457 ({esznZ s
72(5)775’37@) =T; (610'1 1,€2021, €303, 1)+ Z4ST ({GZ,ZHZ }) + Z4sT ({ei’zhzi})- (E14)

The explicit expressions for different 7 s are not required for our discussions. For notational convenience, we will not write

the arguments of different 7’s and replace 7° L,O(l),z(€10'1.1 ,€,0,.1,€3031) by T 20.)0(1) .- Let us first write down all possible

contributions to Bs at O(Z,s). From (E5) we have

Bslog,,) = -

b A2 a2 | (7@ 70 (0) .
Heal i At (1= )22 (T + Ty +T2)8(x = X)

i=1

_t{(1_1>7< +¢r<()(x —_i>}5’(x—5c)
235 225 225 2135

3 Giau
{ml “ P24 (8 )R (g - 1) 22 - AT T )
021

63’1 D
013 033 Z?;l 0;3Ujs5 (0) _
(Al—l)—+(A2—1) 21+(A —1)631 AT TO(I)é(x—x) . (E15)

Now, by expanding the 7 s in (D21) around z45 = Z45 = 0 and keeping terms only up to ((Z,s), one can check that all

the terms at different orders in the expansion are polynomial of . The highest degree of polynomial is 5 and appears in Téo)
only. All the other 7’s have less power of 7. Thus we conclude that the terms in the parenthesis |- - -] in (E15) can be written
as a polynomial of ¢ in the following way:

T+ 7 +T")5(x—x —t{(i—i)T +7 (i—i>}5’x—x
[( g om ‘ )( ) <35 <25 om 225 X35 ( )

3 AU
A -T2 (A -2 (A, - 1) B2 A 7Zi16"2u’5}720)5(x—)‘c)

—

01,1 021 03] D
- t{(A D23 (A - 1) (A - 1) B2 A 2 Oiatis ""3”"5}7(0) S(x —x)]
o1,1 02,1 03,1 D o
5
= AR (e z.7)), (E16)

~
Il

where once again the explicit expressions of F 5?({6,-, z;,Z;}) are not relevant for our discussions. Substituting (E16)
in (E15) and performing the #-integral, we finally get
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5

. 55 1(4) 2 - : .
Bs|0(z45) (ID)A H (ei611)~7! ZB(Az& +k=1 45— 1)]:/(( )({ei,Zi,Zi})' (E17)
i=1 k=1

This is the form for the O(Z,5) 5-point amplitude which we use in the main text of this paper.

APPENDIX F: w-ALGEBRA PRIMARIES
Let us start with the universal term in the OPE between two positive helicity hard gravitons given by

—n+1

_ & "
G4, (2,2)G4(0,0) = _EZ (A —1+4n,A— 1) 0"GL,4,(0,0). (F1)
n=0

We now take the conformal soft limit, first by setting A; = k + ¢ and then taking ¢ — 0 to get

1 snt+l
limeGy., (z.2)G5(0.0) = =) [yingB(k —l+nteA- 1)} Zm 7'G¥,,(0.0)
n=0 '
1 ) Zn+l _
= H*(23)G(0.0) = =-) [}gi_r}&eB(k —l4n+ed- 1)} —"G,(0.0). (F2)

Il
=}

n

Next, we mode expand the soft graviton operator H*(z,Z) on the lhs of (F2) according to (3.3) and get

8}

—k
sn+1

[nmgB(k— I 4nted— 1)} a
n:.

e—0

’:n(z
m-+45

—

M4
s
Mz

Il

GL(0.0) =~ 7GL,(0.0). (F3)

»
~|
L

=2

Il
=

m= n

y

By comparing the terms at order z"*! on both the sides of (F3) for 0 <n <1 —k, we get

1 -
HY, (2)GL(0,0) = —= [limosB(k —l4nteA- 1)} — 3G ,(0.0). (F4)
= n- 7 Le— n!

Now we use the holomorphic mode expansion (3.4) of the currents Hé‘;k_n_l(z) in the above equation and obtain,
2

—a-ki2 1. 1,
S tH L, GE0.0) :—E[L%SB(k—l+n+e,A—l)}Ha GL,,(0,0). (F5)

We can see from the above equation, that there is only a simple pole at z = 0 on the rhs. Thus, the holomorphic singularity
structure of the above Eq. (F5) tells us that the following conditions should hold:

By, GA(0,0) = = Eii%eB(k —l4nted- 1)] —3'G5.,(0.0) (F6)

for m = 1 and

H’:%er% ,G1(0,0)=0 (F7)

form>1and0<n<1-kwithk=1,0,-1,
Moreover, from (F3), one can see that there is no term on the RHS that goes like 70. Thus, on the lhs, the coefficients of
the z° term should also vanish which gives the following condition:
HL(2)G4(0.0) = 0. (F8)
2

This equation implies

sy, GE0.0) =0, m> 1. (F9)
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APPENDIX G: TRANSFRORMATION OF THE MHV NULL STATES UNDER
sly(R),, AND s,(R) ALGEBRAS

In this section of the appendix, we list the transformation properties of all the MHV null states appearing at different

orders of the OPE between two positive helicity outgoing gravitons under s/,(R), and sl,(R) algebras. Let us first Write
down their explicit expressions in terms of the descendants of the w-algebra. We first write down the actions of the H| 1 on

the null states ®,(A) given by (H1) and ¥, (A) given by (H2). They are given by

1 DFT(A + k-2
H;%ICD,((A) = _E(IH— (k+2)®(A-1) - E(A +k=3)(A+k—-4)D(A-1)+ = ') ( ra-2) )(IDI(A— 1),
1 1 DDA+ k-2
H'W, (A) = ——(k—|— k-1D¥ 1 (A-1)—=(A+k=-3)(A+k-4)¥ (A-1) - (=17 )‘PI(A -1),
27 2 kKl T(A-2)
1 1 1
H;;Qk(A) i(kJr 1)(k+2)(A-1) _E(A —4)(A=5Q(A-1) _E(k + 1) (k+2)Q 1 (A-1),
1 1 1
%% I (A) = Ek(k + DI (A-1) _E(A —4)(A=5I(A-1) _§<k - 1) (k+2)I;(A=1). (G1)
The actions of H!, , on the MHV null states are given by
2 2
d)k(A) —OA+1) =D (A+1),
% %‘Pk(A) =-Y(A+1) =¥ (A+1),
5 égk(A> = _Qk(A + 1),
LI (A) = =Tl (A + 1) (G2)
The actions of Hg,l on the MHV null states are given by
Hp @A) =0,
(-)*r(A+k-2)
HY  Pi(A) = (k+2)@p (A1) =2 K T(A-2) (A -1),
HY,Q(A) =0,
H8’1Hk(A) =—(A+k=3)QQ(A-1)+ (k+2)Q,(A-1). (G3)

In deriving the above transformation properties, we have used the algebra (3.5) and the action of different operators on the
primaries given in Appendix F.

APPENDIX H: REVIEW OF GENERAL STRUCTURE OF w-INVARIANT OPE

It was shown in [39], that the OPE between two positive helicity outgoing graviton primaries of any w-invariant theory
can always be written in terms of the MHV OPE’s and its null states. The MHV null states that can appear at O(z°z°) and
0O(z°Z) are given by [19,20]

(1) T(A+k-2) ,
53 k! T(A=2) —%%

Gay (H1)

and
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(~1)*T(A + k—2)

Fi(a) = kK T(A-2)

Hé&(_Hl_l_l)kJrl -
22 72

X H(il,o(—Hl_%._%)

(D, T(A+k=2)

(k+1)! T(A=3) 3374 (H2)

respectively, where k = 1,2, 3, ..., co. However, it is more
convenient to work with the new basis defined by

k
T(A+k-2)
e = WAy
_ Z
Gy (2.2)G4,(0,0) = _EB(AI — 1,4, = 1)Gy 14,(0,0)

+G{ (z, Z)G+ (0,0)[muv ato(z

+ GXI (2, Z)GXZ (0,0)[muy at0(z°z")

where Gy (2,2)Gy,(0,0)lyny qooz) and Gy (2, Z)
Gy, (0, 0)|MHV a0z are the MHV OPEs at (9( 0)

and O(z°Z), respectively. It has been shown in [66] that
the leading term in Z is uniquely determined by the s/,(R),,
invariance. Once the leading term is known, the subleading
terms in Z of (’)(%) q > 2 are determined by the si,(R)
invariance.

It was shown in [39], that both the MHV null states €2; (A)
and IT; (A) form representations of sl,(R),. However, these
representations are reducible because for any integer n > 0,
the subspaces spanned by {Q, ;(A),Q, »(A), -} and
{1, ;(A),II,,,(A), -} form a representation of s,(R).
Hence we can get smaller representations spanned by

the states {Q;(A),Q,(A),...,Q,(A)} and {IL;(A),
I (A),...,IT,(A)} if we set

Q. (A) =0, k>n>0,

Hk+1<A) :0, k>l’l_0 (H6)

Using the algebra (3.5), one can also check that the null
states Q;(A) and IT;(A) are primaries under s/, (R). Thus,
the conditions (H6) are invariant under s/,(R), hence under
whole w-algebra.

We have showed in Sec. III that, the whole tower of
w-currents can be generated using two subalgebras given

by sl,(R) and sl,(R),. Moreover, the conditions (H6) are

+ZB

+ZZB(A1 +p, A = DI (A +Ay +1) + -+ -,
p=1

for the O(z°Z°) null states and similarly for the O(z°Z) null
states the new basis is defined by

T(A+k-2)
I'(A+n-2)

¥.(a).  (H4)

Hk(A Z(k—l’l

There is another set of null states, which are of the
Knizhnik-Zamolodchikov-type and decoupling of these
null states give rise to differential equations for the
scattering amplitudes [19,40,42,45,69-71]. We will discuss
about these null states in the context of self-dual gravity in
Sec. 2. Then, using these new basis (H3) and (H4) the OPE
between two positive helicity outgoing graviton primaries
with dimensions A; and A, of any w-invariant theory can
always be written as

-1+ p. 8- 1)Q,(A; +4y)

(H5)

also invariant under s/,(R) and sl,(R),, and hence under
the full w-algebra. Now, using these facts and the algebra
(3.5), it is not hard to show the OPE (H5) is invariant under
w-algebra. The important point we want to emphasize
about the OPE (H5) is that the integer n can take any
arbitrary value without breaking the w-invariance. Hence,
there exists a discrete infinite family of w-invariant OPEs.
From (HS) it is already clear that n = 0 gives the MHV
sector. In this paper, we have shown that n = 4 gives the
OPE of the quantum self-dual gravity theory which is
known to be w-invariant.

Now, the last thing we want to discuss in this section is
that, the null states {Q;(A),(A),...,Q,(A)} are not
completely independent. For a given n, there is another set of

f%}lo nontrivial' states {y%(A), ..., )(,E"/ 2W( A)} defined as

= ZQP<A)
p=1
n 2i-2

S Tl -a2,0).

p=i q=i

i:2,3,...,(§1, (H7)

747 = Smallest integer > %

"There are of course the n states {Q;(A), ..., Q,(A)} which
transform in a representation of s/,(R),, but, we cannot set them
to zero because that will lead us again to the MHV sector.
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which transform in a representation of the sl,(R), as a
consequence of (H6). We can also set these states to zero

xn(A)=0 (H8)

without violating the sl,(R), or sl,(R) symmetry.

APPENDIX I: NULL STATES IN SELF-DUAL
GRAVITY

In this appendix, we will derive the null states of the self-
dual gravity appearing at different orders of the OPE. We
will first start with the OPE between two positive helicity
outgoing gravitons in the self-dual gravity derived in
Sec. VE. It is given by

_ _ z _ _
GX4(Z4’Z4)GX5(ZS’Z5) = —ﬁB(Aé;— 1,A5 — I)GX4+A5 (z5,25) + B(A4—1,A5— 1)H1_;_GX4+A5_1(25725)

245

4
+) B(Ay+k—1As— 1)Q(Ay+As) +Zus [B(A4— 1,As —1)G{, (24.24) G, (25.25) lmv o
k=1

4
+

k=1

where GL (24, 24)GZ5 (25+Z5) Immv a0z, 18 given by
(5.33). We now derive the null states appearing at O(1)
and O<Z45).

1. Null states at O(1)

We can see from (I1) that at O(1) the OPE truncates at
k = 4. Now we take the conformal soft limit A, - —4
in (I1). In this limit, the soft descendant that appear at O(1)
on the lhs of (I1) is given by H féGXS(ZS’ Zs). After taking
the same conformal soft limits on the rhs and comparing the
results we get

A =D it gy A =0 (@)

J=1

where @;(A) are given by (H1). Thus, we see that Qs(A) is
a null state of the self-dual gravity. Now we will show the
consistency of (12) under w-algebra. Under s/, (R)y, Q5(A)
transforms as (G1), (G2),

H' Q5(A)=-Qs5(A+1),

H;%IQS(A) =21Q5(A—-1) —%(A—4)(A—5)QS(A— 1)
—21Q4(A— 1), (13)

and H{, = 2L, is diagonal on these states. However,
Qg(A — 1) is also a null state of the theory and thus (I2)
is invariant under s/,(R),. One can also check that

H{,Q5(A) = 0. (14)

Thus we see that (12) is also invariant under s/,(R). Hence
we conclude that (I2) is invariant under w-algebra.

31
22

Zs)

B(As 4k, As— DI (A + As + 1)] e, (I1)

There is another set of null states (H7) at O(1) which can
be found using the commutativity property of the OPE
together with the conformal soft limits. In case of self-dual
gravity, they are explicitly given by

4
14(8) = Zﬂp(A),

4
xi(8) =) (p-2)Q,(4), (I5)

These null states also transform under the representation

of s,(R), and sl,(R) algebra and as a consequence one
can set them to 0 without violating the w-symmetry. The
null states (I5) play an important role in showing the
invariance of the Knizhnik-Zamolodchikov-type null state
under w-algebra which will be discussed in the next
subsection.

2. Null states at O(Z45): Knizhnik-Zamolodchikov-type
null state

Knizhnik-Zamolodchikov (KZ)-type null states occur at
0O(z°z!) of the OPE. The easiest way to derive it is to use
the commutativity property of the OPE and conformal soft
limits together. So we start with the commutativity property
of the OPE given by

Gy, (21,21)Gy, (22, 22) = G4 (22, 22)Gy (21, Z1)- - (16)

Now we use the OPE (I1) in (I6), and take the leading
conformal soft limits A; — 1. Then by comparing the terms
at O(z45) we get the following Knizhnik-Zamolodchikov-
type equation:
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4

E(A)=EA)+ ) I(A+1)=0.  (I7)
k=1

where £(A) is the KZ-type null state in the MHV sector
given by [19]

§A)=| Loy G+ Hy HL,GL +HY, Gy

+ (A - 1)H1_%‘_%GX_1. (18)

We have used that y}(A) is a null state in this theory to
arrive at the form (I7). One can check that (I7) is consistent

under the actions of s/,(R) and sl,(R), generators. For
example,

HY,Z4(A) = 605(A) - (A=3)73(A).  (19)

We have already shown that Qs(A) and y}(A) are both null
states in this theory, so we get

HY E4(A) = 0. (110)

Therefore, E4(A) is an sl (R) primary.
Similarly, we have

HEJZ4(8) = —3 (A= 2)(A ~ 3)E,(8 ~ 1) ~ 9TI(A)

1
2
~H (&) - HY (A= Dd(a - 1)

+x3(A=1)). (I111)

(ST

However, since I15(A), y1(A), and y5(A) are null states in
the theory, we get

HilE,(A) = —%(A —2)(A=3)E,(A-1).

1
2

(112)

I—

Therefore, Z4(A) transforms under a representation of the
sl,(R)y, and we can consistently set it to zero without
violating the s/,(R), symmetry. Hence, we conclude that
(I7) is indeed w invariant. Decoupling of null states gives
rise to differential equations which the graviton scattering
amplitudes in this theory have to satisfy.

APPENDIX J: INVARIANCE OF THE SELF-DUAL
OPE UNDER w-ALGEBRA

In [39], it was shown that the OPE (H5) is invariant
under w-algebra for any arbitrary truncation in n, which has
been reviewed in Appendix H. We have shown in Sec. V E
that self-dual OPE truncates at n = 4 of the general OPE
(H5). Thus, we can say that the invariance of the self-dual
OPE under w-algebra is guaranteed. However, for the sake
of completeness of this paper and for the better readability,
we will repeat the same analysis here with focusing on

the self-dual OPE. As discussed in Sec. III, the whole
w-algebra can be derived by the combined action of

slh(R), and sl,(R). Thus, it is enough to show the
invariance of the OPE under these two subalgebras.

1. w-invariance at O(1)

Let us start with the O(1) OPE. We write it here again for
the readers convenience,

Gy, (2.2)Gy (0,0)] o)
- B(Al - 1,A2 - l)ng GZ]JFAZ_I(O,O)

—33
4
+Y B(A + k=18 = DA+ 4y).  (J1)
k=1

We now show that it is invariant under the two subalgebras
Slz(R)V and Slz(R)

a. sl(R)y invariance

To show the invariance of the OPE, we need the action of
the s/,(R),, on the MHV null states Q;(A) that can appear
at O(1). These actions were computed in [39] and reviewed
in Appendix G. We also need the commutator algebra (3.5)
along with the action of these generators on the graviton
primaries given by (see Appendix F),
Hl

_1_1

GA(2.2) = =Gy (2. 2),
1
Hi{GA(2.2) = =5 [(A =2)(A =3) +4(A - 2)20;
22

+32203]G,_y (2.2). (32)
Using Appendix G, (3.5), and (J2), it is not difficult to show
that the O(1) OPE (J1) is invariant under H', | whereas

22
the action of Hy! on both the sides of the OPE (J1) gives
22

Hy!(rhs —1hs) of (J1) = —=12B(A; +3,A, — 1)

L
2

NI—

x Qs(A; + Ay — 1) (J3)

However, we have already shown in Appendix 1, that
Qs(A) is a null state of the self-dual gravity appearing at
O(1) of the OPE and as a consequence we can set it to 0.
Hence, we conclude that the O(1) self-dual OPE (J1) is
invariant under the s/,(R), algebra.

b. sl,(R) invariance

It was shown in [19], that the OPE in the MHV sector is
invariant under the action of H{) ;. 2 Also from (G3), we can

see that the null states € (A) are annihilated by HJ),.

12750 7
HO.l ~ Ll'
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Therefore, we can say that O(1) self-dual OPE (J1) is
invariant under the s/,(R) algebra.

2. w-invariance at O(Z)

We now move on to showing the w-invariance of the self-
dual OPE at O(Z). Let us first write down the O(z) OPE
(5.35) again,

Gi, (2:2)GE,(0.0) o = B(A, = 1,4 = )G (2.7

X GXQ (0,0) |muy at O(Zy5)

4
+ ) B(A +kA,—1)
k=1

From the previous subsection, it is clear that the
w-invariance of the OPE at O(Z) is guaranteed to follow
if we can show that it is invariant under the two subalgebras

sl>(R)y and sl,(R). Among the generators of these two
subalgebras, we only show the invariance of the OPE (J4)

under the actions of Hy| and Hj) . This is mainly because
22 ’
the invariance of the OPE (J4) under the rest of the
generators are fairly easy to show. By applying H;! on
22
both sides of the OPE (J4) we get

Hi{(rhs — lhs) of (J4) = ~9B(A; + 4,4, — 1)

2

[STE

X H5<A1 + Az) (JS)
and for H), we have

0

HY) (ths — Ihs) of (J4) = 6B(A, + 4, As — 1)

X QS(AI + Az) (J6)

s

However, from Appendix I, we know that both ITs(A) and
Qs(A) are the null states of the self-dual gravity appearing
at O(z) and O(1), respectively. Thus, we conclude that the
O(z) OPE in self-dual gravity is also invariant under

s, (R)y and sl,(R), and hence under the whole w-algebra.
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